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In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and
higher-order structures such as motifs and communities. While the reciprocity of binary networks has been
extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap
between the availability of weighted network data and our understanding of their dyadic properties. Here we
introduce a general approach to the reciprocity of weighted networks, and define quantities and null models
that consistently capture empirical reciprocity patterns at different structural levels. We show that,
counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are
uninformative. By contrast, our measures allow to consistently classify different weighted networks
according to their reciprocity, track the evolution of a network’s reciprocity over time, identify patterns at
the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a
true tendency towards (anti-)reciprocation.

T
he study of link reciprocity in binary directed networks1,2, or the tendency of vertex pairs to form mutual
connections, has received an increasing attention in recent years3–14. Among other things, reciprocity has
been shown to be crucial in order to classify3 and model4 directed networks, understand the effects of

network structure on dynamical processes (e.g. diffusion or percolation processes5–7), explain patterns of growth
in out-of-equilibrium networks (as in the case of the Wikipedia8 or the World Trade Web9,10), and study the onset
of higher-order structures such as correlations11,12 and triadic motifs13–16. In networks that aggregate temporal
information such as e-mail or phone-call networks, reciprocity also provides a measure of the simplest feed-back
process occurring in the network, i.e. the tendency of a vertex to respond to another vertex stimulus. Finally,
reciprocity quantifies the information loss determined by projecting a directed network into an undirected one: if
the reciprocity of the original network is maximum, the full directed information can be retrieved from the
undirected projection; on the other hand, no reciprocity implies a maximum uncertainty about the directionality
of the original links that have been converted into undirected ones3. In particular intermediate cases, significant
directed information can be retrieved from an undirected projection using the knowledge of reciprocity9. In
general, reciprocity is the main quantity characterizing the possible dyadic patterns, i.e. the possible types of
connections between two vertices.

While the reciprocity of binary networks has been studied extensively, that of weighted networks has received
much less attention17–20, because of a more complicated phenomenology at the dyadic level. While in a binary
graph it is straightforward to say that a link from vertex i to vertex j is reciprocated if the link from j to i is also
there, in a weighted network there are clear complications. Given a link of weight wij . 0 from vertex i to vertex j,
how can we assess, in terms of the mutual link of weight wji, whether the interaction is reciprocated? While wji 5 0
(no link from j to i) clearly signals the absence of reciprocation, what about a value wji . 0 but such that wji=wij?
This complication has generally led to two approaches to the study of directionality in weighted networks: one
assuming (either explicitly or implicitly) that perfect reciprocity corresponds to symmetric weights (wij 5

wji)17,19,20, and one looking for deviations from such symmetry by studying net flows (or imbalances), defined
as wij 2 wji

21. In the latter approach, significant information about the original weights, including their recipro-
city, is lost: the original network produces the same results as any other network where w0ij~wijzDij and
w0ji~wjizDij. Since Dij is arbitrary, this approach cannot distinguish networks that have very different symmetry
properties. In particular, maximally asymmetric (i.e. Dij 5 2wji, implying w0ji~0 whenever w0ijw0) and max-
imally symmetric networks (i.e. Dij?wijzwji, implying w0ij<w0ji), which are treated as opposite in the first
approach, are indistinguishable in the second one. Consider, for example, two nodes a and b linked by the
asymmetric weights wab 5 0 and wba 5 10: the imbalance wba 2 wab is the same as if they were an almost
symmetric dyad with wab 5 104 and wba~104z10^104.

In addition to the above limitations, it has become increasingly clear that the heterogeneity of vertices, which in
weighted networks is primarily reflected into a generally very broad distribution of the strength (total weight of the
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links entering or exiting a vertex22), must be taken into account in
order to build an adequate null model of a network23–34. Indeed, the
different intrinsic tendencies of individual vertices to establish and/
or strengthen connections have a strong impact on many other
structural properties, and the reciprocity is no exception. It is there-
fore important to account for such irreducible heterogeneity by treat-
ing local properties such as the strength (or the degree in the binary
case) as constraints defining a null model for the network14. While
null models of weighted networks are generally computationally
demanding32,33, recently a fast and analytical method providing exact
expressions characterizing both binary and weighted networks with
constraints has been proposed14. This allows us, for the first time, to
have mathematical expressions characterizing the behaviour of topo-
logical properties under the null model considered. In this paper we
extend those results, in order to propose new mathematical defini-
tions of reciprocity in the weighted case and to evaluate their beha-
viour exactly under various null models that introduce different
constraints. This also allows us to assess whether an observed asym-
metry between reciprocal links is consistent with fluctuations around
a balanced but noisy average, or whether it a statistically robust
signature of imbalance. Finally, we introduce models that success-
fully reproduce the observed patterns by introducing either a correct
global reciprocity level or more stringent constraints on the local
reciprocity structure.

Results
We first introduce measures of reciprocity which meet three criteria
simultaneously: 1) if applied to a binary network, they must reduce to
their well-known unweighted counterparts; 2) they must allow a
consistent analysis across all structural levels, from dyad-specific
through vertex-specific to network-wide; 3) they must have a math-
ematically controlled behaviour under null models with different
constraints, thus disentangling reciprocity from other sources of
(a)symmetry. Then, we discuss the differences with respect to other
inadequate measures of ‘symmetry’, show our empirical results, and
introduce theoretical models aimed at reproducing the reciprocity
structure of real weighted networks.

Dyad-specific measures. We consider a directed weighted network
specified by the weight matrix W, where the entry wij indicates the
weight of the directed link from vertex i to vertex j, including the case
wij 5 0 indicating the absence of such link. For simplicity, we assume
no self-loops (i.e. wii 5 0 i), as the latter carry no information about
reciprocity (in any case, allowing for self-loops is straightforward in
our approach). As Fig. 1 shows, we can always decompose each pair
(wij, wji) of reciprocal links into a bidirectional (fully reciprocated)
interaction, plus a unidirectional (non reciprocated) interaction.

Formally, we can define the reciprocated weight between i and j
(the symmetric part) as

w<
ij :min wij,wji

� �
~w<

ji ð1Þ

and the non-reciprocated weight from i to j (the asymmetric part) as

w?
ij :wij{w<

ij ð2Þ
Note that if w?

ij w0 then w?
ji ~0, which makes the unidirectionality

manifest. We can also define

w/
ij :wji{w<

ij ~w?
ji ð3Þ

as the non-reciprocated weight from j to i, and restate the unidirec-
tionality property in terms of the fact that w?

ij and w/
ij cannot be both

nonzero. Thus any dyad (wij, wji) can be equivalently decomposed as
(w<

ij , w?
ij , w/

ij ). If the network is binary, all the above variables are
either 0 or 1 and our decomposition coincides with a well studied
dyadic decomposition3–6.

Vertex-specific measures. From the above fundamental dyadic
quantities it is possible to define reciprocity measures at the more
aggregate level of vertices. We recall that the out- and in-strength of a
vertex i are defined as the sum of the weights of the out-going and in-
coming links respectively:

sout
i ~

X

j=i

wij sin
i ~

X

j=i

wji ð4Þ

In analogy with the so-called degree sequence in binary networks, we
denote the vector of values {sout

i } as the out-strength sequence, and the
vector of values {sin

i } as the in-strength sequence. Using eqs.(1–3), we
can split the above quantities into their reciprocated and non-
reciprocated contributions, as has been proposed for vertex degrees
in binary networks3,4. We first define the reciprocated strength

s<i :
X

j=i

w<
ij ð5Þ

which measures the overlap between the in-strength and the out-
strength of vertex i, i.e. the portion of strength of that vertex which is
fully reciprocated by its neighbours. Then we define the non-
reciprocated out-strength as

s?i :
X

j=i

w?
ij ~sout

i {s<i ð6Þ

and the non-reciprocated in-strength as

s/i :
X

j=i

w/
ij ~sin

i {s<i ð7Þ

The last two quantities represent the non-reciprocated components
of sout

i and sin
i respectively, i.e. the out-going and in-coming fluxes

which exceed the inverse fluxes contributed by the neighbours of
vertex i.

Network-wide measures. Finally, we introduce weighted measures
of reciprocity at the global, network-wide level. Recall that the total
weight of the network is

W:
X

i

X

j=i

wij~
X

i

sout
i ~

X

i

sin
i ð8Þ

Similarly, we denote the total reciprocated weight as

W<:
X

i

X

j=i

w<
ij ~

X

i

s<i ð9Þ

Extending a common definition widely used for binary graphs1–3, we
can then define the weighted reciprocity of a weighted network as

r:
W<

W
ð10Þ

If all fluxes are perfectly reciprocated (i.e. W« 5 W) then r 5 1,
whereas in absence of reciprocation (i.e. W« 5 0) then r 5 0. In the

Figure 1 | Basic decomposition of any two dyadic fluxes (in the
example shown, wij 5 2 and wji 5 7) into a fully reciprocated component
(w<

ij ~2) and a fully non-reciprocated component (w/
ij ~5, which implies

w?
ij ~0).
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SI we discuss the difference between our definitions and other
attempts to characterize the reciprocity of weighted networks17–20.

Just like its binary counterpart, eq.(10) is informative only after a
comparison with a null model (NM) is made, i.e. with a value ÆræNM

expected for a network having some property in common (e.g. the
number of vertices N and/or the total weight W) with the observed
one. As a consequence, networks with different empirical values of
such quantities cannot be consistently ranked in terms of the mea-
sured value of r. An analogous problem is encountered in the binary
case3, and has been solved by introducing a transformed quantity that
we generalize to the present setting as

rNM:
r{ rh iNM

1{ rh iNM

ð11Þ

The sign of rNM is directly informative of an increased, with respect
to the null model, tendency to reciprocate (rNM . 0) or to avoid
reciprocation (rNM , 0). If rNM is consistent with zero (within a
statistical error that we quantify in the SI), then the observed level of
reciprocity is compatible with what merely expected by chance under
the null model. The literature on null models of networks is very
vast4,14,23–26,29,30,34–39. In this paper we adopt a recent analytical
method14 and extend it in order to study the reciprocity of weighted
networks. The three null models we consider are described in the
Methods and SI.

Reciprocity versus symmetry. We stress that the alternative
approaches17–20 are all based on the assumption that the maximum
level of reciprocity corresponds to a symmetric network where wij 5

wji, so that deviations from this symmetric situation are interpreted
as signatures of incomplete reciprocity. This is actually incorrect:
independently of other properties of the observed network, the
symmetry of weights (i.e. wij 5 wji) is completely uninformative
about the reciprocity structure, for two reasons.

First, in networks with broadly distributed strengths (as in most
real-world cases) the attainable level of symmetry strongly depends
on the in- and out-strengths of the end-point vertices: unless sin

i ~sout
i

for all vertices, it becomes more and more difficult, as the hetero-
geneity of strengths across vertices increases, to match all the con-
straints required to ensure that wij 5 wji for all pairs. Therefore, even
networks that maximize the level of reciprocity, given the values of
the strengths of all vertices, are in general not symmetric.

On the other hand, in networks with balance of flows at the vertex
level (sin

i ~sout
i for all vertices) an average symmetry of weights (Æwijæ

5 Æwjiæ) is automatically achieved by pure chance, even without
introducing a tendency to reciprocate (see SI). In many real networks
(including examples we study below), the balance of flows at the
vertex level is actually realized, either exactly or approximately, as

the result of conservation laws (e.g. mass or current balance). In those
cases, the symmetry of weights should not be interpreted as a pref-
erence for reciprocated interactions.

In the SI we also show that measures based on the correlation
between wij and wji are flawed. Similarly, studies of asymmetry focus-
ing on the differences wij 2 wji are severely limited by the fact that the
observed imbalances might actually be fluctuations around a zero
average (Æwij 2 wjiæ 5 0), irrespective of the level of reciprocity. Thus,
reciprocity and symmetry are two completely different structural
aspects10.

Reciprocity rankings classify weighted networks. We now carry
out an empirical analysis of several real weighted networks using
our definitions introduced above. We start with the global
quantities r and rNM defined in eqs.(10) and (11). In Table I we
report the analysis of 70 biological, social and economic
networks40–50.

All networks display a nontrivial weighted reciprocity structure
(i.e. r ? 0), which differs from that predicted by the 3 null models
considered (WCM, BCM and WRG: see Methods and SI). This
means that the imposed constraints cannot account for the observed
reciprocity. Remarkably, we also find that networks of the same type
systematically display similar values of r: for a given choice of the
null model, the resulting reciprocity ranking provides a consistent
(non-overlapping) classification of networks. However, different null
models provide different estimates of reciprocity and rank the same
networks differently. Some networks (social networks41–46 and the
World Trade Web47) always show a positive reciprocity, while others
(foodwebs50) always show a negative reciprocity, irrespective of the
null model. However, other networks (interbank networks48) are
classified as weakly but positively reciprocal under the WCM, but
as strongly negatively reciprocal under the BCM and the WRG. In
one case (neural network49), the estimated level of reciprocity can be
slightly positive, negative, or even consistent with zero depending on
the null model. As a consequence, the 5 interbank networks are more
reciprocal than the neural network under the WCM, while the rank-
ing is inverted under the BCM and the WRG. Since the WCM is the
most conservative model, preserving most information from empir-
ical data, we choose to rank the networks in the Table using rWCM.

Importantly, we find that all weighted rankings are quite different
from the binary analysis-based ranking3. While the various snap-
shots of the World Trade Web are systematically found to be strongly
and sometimes almost perfectly reciprocal in the binary case (0.68 #

rRG # 0.95 under the binary Random Graph model3), here we find
them to be less reciprocal than social networks if the additional
weighted information is taken into account. Also, while the neural
network of C. elegans has a strong binary reciprocity (rRG 5 0.413),

Table I | Reciprocity of 70 real weighted networks (see the SI for a description of the data), measured using rNM under 3 null models
(Weighted Configuration Model, Balanced Configuration Model, Weighted Random Graph), and comparison with r

rWCM rBCM rWRG r

Social networks (3 nets)
Most reciprocal 0.75 6 0.01 0.75 6 0.01 0.75 6 0.01 0.85 6 0.01
Least reciprocal 0.59 6 0.01 0.58 6 0.02 0.57 6 0.02 0.78 6 0.01
World Trade Web (53 nets)
Most reciprocal 0.59 6 0.03 0.57 6 0.03 0.57 6 0.04 0.79 6 0.02
Least reciprocal 0.43 6 0.03 0.35 6 0.05 0.36 6 0.05 0.66 6 0.02
Interbank networks (5 nets)
Most reciprocal 0.07 6 0.02 20.26 6 0.03 20.26 6 0.03 0.37 6 0.01
Least reciprocal 0.02 6 0.01 20.40 6 0.02 20.40 6 0.02 0.30 6 0.01
Neural network (1 net)
C. Elegans 0.02 6 0.01 20.11 6 0.03 20.007 6 0.01 0.08 6 0.01
Foodwebs (8 nets)
Most reciprocal 20.14 6 0.26 20.67 6 0.20 20.65 6 0.20 0.17 6 0.02
Least reciprocal 20.34 6 0.22 20.97 6 0.02 20.97 6 0.02 0.01 6 0.02
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here we find it to have a very weak (under the WCM), consistent
with zero (under the WRG), or even negative (under the BCM)
weighted reciprocity. These important differences show that the reci-
procity of weighted networks is nontrivial and irreducible to a binary
description.

The role of node imbalances. The two differences between the
WCM and the WRG (see Methods and SI) are node imbalance
(Æsin

i æ and Æsout
i æ are equal in the WRG and different in the WCM)

and node heterogeneity (the expected strenghts of all vertices are
equal in the WRG, and broadly distributed in the WCM). We can
use the BCM as an intermediate model in order to disentangle the
role of these two differences in producing the observed deviations
between rWCM and rWRG. The BCM preserves node heterogeneity
but assumes node balance by regarding the observed difference
between the in- and out-strength of each vertex as a statistical
fluctuation around a balanced average (see SI). As we show in
Fig. 2, some real networks (such as foodwebs and the World Trade
Web) indeed appear to display very small fluctuations around this
type of node balance. In foodwebs, where edges represent stationary
flows of energy among species, the almost perfect balance is due to an
approximate biomass or energy conservation at each vertex. In the
World Trade Web, where edges represent the amount of trade
among world countries, the approximate balance of vertex flows is
due to the fact that countries tend to minimize the difference between
their total import and their total exports, i.e. they try to ‘balance their
payments’51.

As we show in the SI, the balance of vertex flows implies that, even
without introducing a tendency to reciprocate, the expected mutual

weights are equal: Æwijæ 5 Æwjiæ. This implies a larger expected reci-
procated weight ÆW«æ in the BCM than in the WCM, so that rWCM

. rBCM, as confirmed by Table I. However, we find that rBCM and
rWRG are always very similar, while they can be very different from
rWCM. This means that node imbalances, even when very weak, can
have a major effect on the expected level of reciprocity. Surprisingly,
we find that this effect is much stronger than that of the strikingly
more pronounced node heterogeneity. Correctly filtering out the
effects of flux balances or other symmetries can lead to counter-
intuitive results: the most reciprocal of the four networks (the social
network, see Table I) is one of the least symmetric ones (see Fig. 2d),
whereas the least reciprocal of the four networks (the foodweb, see
Table I) is the most symmetric one (see Fig. 2a).

Time evolution and fluctuations. Since r consistently ranks the
reciprocity of networks with different properties, it can also track
the evolution of reciprocity in a network that changes over time. For
this reason, in our dataset we have included 53 yearly snapshots of
the World Trade Web, from year 1948 to 20009,47. In Fig. 3 we show
the evolution of r, Æræ and r under the three null models. The plots
confirm that, unlike r, r is not an adequate indicator of the evolution
of reciprocity, since the baseline expected value Æræ (under every null
model) also changes in time as a sort of moving target (Fig. 3a).

Note that ÆræWCM fluctuates much more than ÆræWRG and ÆræBCM,
and its fluctuations resemble those of the observed value r (see
Fig. 3a). This is due to the fact that, while all snapshots of the network
are characterized by ‘static’ fluctuations of the empirical strengths of
vertices around the balanced flux condition sin

i ~sout
i (like those in

shown in Fig. 2c for the year 2000), these fluctuations have different

Figure 2 | In-strength sin
i versus out-strength sout

i in four weighted networks in increasing order of reciprocity r: (a) the Everglades Marshes foodweb,
(b) the neural network of C. elegans, (c) the World Trade Web in the year 2000, and (d) the social network of a fraternity at West Virginia
College (note that the increase in reciprocity is not necessarily associated with an increase in symmetry).

www.nature.com/scientificreports
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entities in different years. Changes in the size of ‘static’ fluctuations
produce the ‘temporal’ fluctuations observed in the evolution of
ÆræWCM, and partly also in the observed value r, confirming the
important role of node (im)balances. After controlling for the
time-varying entity of node imbalances (using the WCM), we indeed
find that the fluctuations of rWCM are less pronounced than those of
rBCM and rWRG (see Fig. 3b). However, the fluctuations of r and
ÆræWCM do not cancel out completely, and their resulting net effect
(the trend of rWCM) is still significant, indicating the strongest level
of reciprocity across the three null models.

While a binary analysis of the WTW9,10 detected an almost mono-
tonic increase of the reciprocity, with a marked acceleration in the
90’s, we find that the weighted reciprocity has instead undergone a
rapid decrease over the same decade: this counter-intuitive result
confirms that the information conveyed by a weighted analysis of
reciprocity is nontrivial and irreducible to the binary picture.

Local reciprocity structure. We now focus on the reciprocity
structure at the local level of vertices, i.e. on the reciprocated and
non-reciprocated strength s<i , s/i and s?i defined in eqs.(5–7). As
clear from eq.(9), this allows us to analyse how different vertices
contribute to the overall value of W« and hence to r. In order to
assess whether the vertex-specific reciprocity structure is significant,
rather than merely a consequence of the local topological properties
of vertices, we compare the observed value of s<i , s/i and s?i with
their expected values under the WCM and the BCM. Unlike the
WRG, these models preserve the total strength stot

i ~sout
i zsin

i of
each vertex, thus filtering out the effects of the observed
heterogenity of vertices. In Fig. 4 we show the observed and
expected values of the (non-)reciprocated strength versus the total
strength stot

i for the four networks already shown in Fig. 2 in order of
increasing reciprocity.

For the anti-reciprocal networks with r , 0 (the foodweb and,
under some null model, the neural network), the dominant and less
fluctuating contribution to stot

i comes from the non-reciprocated
strength, and therefore we choose to plot s/i zs?i versus stot

i
(Fig. 4a–b). Conversely, for the positively reciprocal networks with
r . 0 (the World Trade Web and the social network) the dominant
contribution comes from the reciprocated strength, so we consider
s<i versus stot

i (Fig. 4c–d).
We found very rich and diverse patterns. In all networks, the

selected quantity displays an approximately monotonic increase with
stot

i . Qualitatively, this increasing trend is also reproduced by the two
null models. However, we systematically find large differences

between the latter and real data. In the foodweb (Fig. 4a), the
observed values of the non-reciprocated strength s/i zs?i are always
larger than the expected values (note that the separation between the
two trends is exponentially larger than it appears in a log-log plot).
This shows that each vertex contributes, roughly proportionally to its
total strength, to the overall anti-reciprocity of this network (W« ,

ÆW«æNM and hence rNM , 0, see Table I). By contrast, in the neural
network (Fig. 4b) some vertices (mostly, but not uniquely those with
large stot

i ) have a larger non-reciprocated strength than expected
under the null models, while for other vertices (mostly those with
small stot

i ) the opposite is true. This shows that the weak (and nearly
consistent with zero, see Table I) overall reciprocity of this network is
the result of several opposite contributions of different vertices, that
cancel each other almost completely. The World Trade Web (Fig. 4c)
also shows a combination of deviations in both directions, even if in
this case for the vast majority of vertices the observed reciprocated
strength is larger than the expected one. This results in the overall
positive reciprocity of the network, but again in a such a way that the
global information is not reflected equally into the local one. Finally,
the social network (Fig. 4d) displays a behaviour analogous, but
opposite, to that of the foodweb: the observed reciprocated strength
of each vertex systematically exceeds its expected value and gives a
proportional contribution to the overall positive reciprocity.

Note that, while the striking similarity between the predictions of
the WCM and the BCM in the foodweb and in the World Trade Web
is not surprising, because of the very close node-balance relationship
sout

i <sin
i in these two networks (see Fig. 2a and 2c), in the neural

network and in the social network the similarity between the predic-
tions of the two null models is nontrivial, since node balance is
strongly violated in these cases (see Fig. 2b and 2d).

Having shown that the reciprocity of real weighted networks is
very pronounced, we conclude our study by introducing a class of
models aimed at correctly reproducing the observed patterns. To this
end, rather than proposing untestable models of network formation,
we expand the null models we have considered above by enforcing
additional or alternative constraints on the reciprocity structure.
This approach leads us to define the weighted counterparts of the
binary Exponential Random Graphs (or p* models) with recipro-
city1,2 and their generalizations3,4,10. We first define three models that
exactly reproduce, besides the observed heterogeneity of the strength
of vertices, the observed global level of reciprocity (i.e. such that W«

5 ÆW«æ and W 5 ÆWæ, implying r 5 0). Our aim is to check whether
this is enough in order to reproduce the more detailed, local recipro-
city structure.

Figure 3 | Temporal evolution of the reciprocity of the World Trade Web during the 53 years from 1948 to 2000: (a) observed value of r (blue) and its
expected values ÆræNM under the Weighted Configuration Model (red), the Balanced Configuration Model (green), and the Weighted Random
Graph (orange); (b) evolution of rNM under the same 3 null models as above.
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In the first model (‘Weighted Reciprocity Model’, see SI), the
constraints are sin

i and sout
i for each vertex (as in the WCM), and

additionally W«. This model is the analogue of the binary reciprocity
model by Holland and Leinhardt1 and replicates the overall recipro-
city r exactly. However, as we discuss in the SI, it is best suited to
reproduce networks that are anti-reciprocal or, more precisely, less
reciprocal than the WCM (rWCM , 0). Therefore, in our analysis we
can only apply it to the foodwebs. In Fig. 5a we show our results on
the Everglades web. For the sake of comparison with Fig. 4a, we plot
s/i zs?i as a function of stot

i . We find that, quite surprisingly, the
model does not significantly improve the accordance between real
and expected trends produced by the WCM and BCM (see Fig. 4a).
The only difference with respect to the latter is that now a few vertices
with very large stot

i lie below the expected trend, while all the other
vertices continue to lie above it (Fig. 5a) producing an overall r 5 0:
so, even if all vertices appeared to contribute evenly and proportion-
ally to the global anti-reciprocity (see Fig. 4a), adding the latter as an
overall constraint is not enough in order to capture the local reci-
procity structure.

In our second model (‘Non-reciprocated Strength Model’, see SI),
the constraints are s/i , s?i (for each vertex), and W«. This slightly
relaxed model (potentially) generates all levels of reciprocity r.
However, it does not automatically reproduce the in- and out-
strength sequences, therefore it is only appropriate for networks
where s/i and s?i are the dominant contributions to sin

i and sout
i

respectively, so that specifying the former largely specifies the latter
as well. So, even if now there are no mathematical restrictions, this
model is again only appropriate for networks with negative recipro-
city (rWCM , 0). In Fig. 5a we show the predictions of this model on
the foodweb: note that, as compared to the previous model, now the
quantity s/i zs?i is exactly reproduced by construction, while stot

i is
not reproduced, with most vertices lying above the expected trend
and a few dominating ones lying below it. So the result is even worse
than before. In Fig. 5b we also show the performance of this model on
the neural network (which actually displays rWCM < 0, even if it still
has negative reciprocity under other null models, see Table I): even if
the agreement is now much better, most data continue to lie either
above or below the expected curve, confirming that the reciprocated
strengths cannot be simply reconciled with the total strengths. Note
however that for networks with smaller r this model becomes more
accurate, and in the limit W« R 0 it exactly reproduces all the
strength sequences of any network.

Our third model (‘Reciprocated Strength Model’, see SI) is a ‘dual’
one appropriate in the opposite regime of strong positive reciprocity
(i.e. rWCM . 0, especially in the limit rWCM R 1). The constraints are
now s<i (for each vertex) and the total weight W (note that, as a
consequence, also the non-reciprocated total weight WR ; W 2

W« is kept fixed). This model is most appropriate for networks
where s<i is the dominant contribution to stot

i . In Fig. 5c we show
the predictions of this model on the World Trade Web. Now s<i is

Figure 4 | Relationship between total (stot
i ) and reciprocated (s<i ) or non-reciprocated (s/i zs?i ) strength in four weighted networks in increasing

order of reciprocity r: (a) the Everglades Marshes foodweb, (b) the neural network of C. elegans, (c) the World Trade Web in the year 2000, and (d) the
social network of a fraternity at West Virginia College (black: real data, green: Weighted Configuration Model, red: Balanced Configuration Model).
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obviously always reproduced, while stot
i instead is not reproduced for

all vertices. In Fig. 5d we show the results for the social network, and
in this case we find that the model reproduces real data remarkably
well. This confirms that the model is particularly appropriate for
strongly reciprocal networks. We therefore find that, as in the dual
case discussed above, if the overall reciprocity is moderate then the
constraints are in general not enough in order to characterize the
local reciprocity structure. However, in networks with strong overall
reciprocity, this model accurately (and exactly in the limit WR R 0)
reproduces all the local reciprocity structure.

Discussion
The above three models produce the correct level of global recipro-
city (i.e. Æræ 5 r or r 5 0) but not necessarily the correct local
reciprocity structure. In networks with strong (either positive or
negative) reciprocity, the local reciprocity structure can be simply
inferred from the global one, plus some information about the het-
erogeneity of vertices (some strength sequence). Conversely, in
networks with moderate reciprocity the local patterns are irreducible
to any overall information, and thus constitute intrinsic heterogen-
eous features. In this case, it is unavoidable to use a model that fully
reproduces the three quantities s/i , s?i and s<i separately for each
vertex, by treating them as constraints. In the SI we describe
this model, that we denote as the Weighted Reciprocated
Configuration Model (WRCM) in detail. Using this model, all the
plots in Fig. 5 are automatically reproduced exactly, by construction.
Therefore we believe that this model represents an important starting

point for future analyses of higher-order topological properties in
weighted networks. In particular, we foresee two main applications.

The first application is to the analysis of weighted ‘motifs’, i.e. the
abundances of all topologically distinct subgraphs of three or four
vertices13,15. In the binary case, it has been realized that such sub-
graphs are important building blocks of large networks, and that
their abundance is not trivially explained in terms of the dyadic
structure. This result can only be obtained by comparing the
observed abundances with their expectation values under a null
model that separately preserves the number of reciprocated and
non-reciprocated (in-coming and out-going) links of each vertex.
In the weighted case, no similar analysis has been carried out so
far, because of the lack of an analogous method, like the WRCM
defined here, to control for the reciprocated and non-reciprocated
connectivity properties separately.

The second application is to the problem of community detec-
tion52 in weighted directed networks, i.e. the identification of densely
connected modules of vertices. Most approaches attempt to find the
partition of the network that maximizes the so-called ‘modularity’,
i.e. the total difference between the observed weights of intra-com-
munity links and their expected values under the WCM. In networks
where the observed reciprocity is not reproduced by the WCM (as all
networks in the present study), the difference between observed and
expected weights is not necessarily due to the presence of community
structure, as it also receives a (potentially strong) contribution by the
reciprocity. This means that, in order to filter out the effects of
reciprocity from community structure, in the modularity function

Figure 5 | Relationship between total (stot
i ) and reciprocated (s<i ) or non-reciprocated (s/i zs?i ) strength in four weighted networks in increasing order

of reciprocity r: (a) the Everglades Marshes foodweb, (b) the neural network of C. elegans, (c) the World Trade Web in the year 2000, and (d) the
social network of a fraternity at West Virginia College (black: real data, blue: the Weighted Reciprocity Model, orange: the Non-reciprocated Strength
Model, green: the Reciprocated Strength Model; all such models reproduce the global level of reciprocity but not necessarily the local reciprocity
structure).
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one should replace the expected values under the WCM with the
expected values under the WRCM.

The ever-increasing gap between the growth of data about
weighted networks and our poor understanding of their dyadic prop-
erties led us to propose a rigorous approach to the reciprocity of
weighted networks. We showed that real networks systematically
display a rich and diverse reciprocity structure, with several interest-
ing patterns at the global and local level. We believe that our results
form an important starting point to answer many open questions
about the effect of reciprocity on higher-order structural properties
and on dynamical processes taking place on real weighted networks.

Methods
Equation (11) in the Results section introduces the quantity rNM, as the normalized
difference between the observed value of the weighted reciprocity r and its expected
value under a chosen null model ÆræNM. The introduction of rNM has two important
consequences. Firstly, networks with different parameters can be ranked from the
most to the least reciprocal using the measured value of rNM. Secondly, and conse-
quently, the reciprocity of a network that evolves in time can be tracked dynamically
using rNM even if other topological properties of the network change (as is typically
the case). Clearly, the above considerations apply not only to the global quantity r, but
also to the edge-and vertex-specific definitions we have introduced in eqs.(1–3) and
(5–7). For this reason, in the SI we introduce and study three important null models in
great detail. We briefly describe these models below.

Null models: the Weighted Random Graph model. To start with, we consider a
network model with the same total weight W as the real network but with no tendency
towards or against reciprocation, i.e. a directed version of the Weighted Random
Graph (WRG) model36. This allows us to quantify for the first time the baseline level
of reciprocity ÆræWRG expected by chance in a directed network with given total
weight. However, this null model is severely limited by the fact that it is completely
homogeneous in two respects (see the SI): it generates networks where each vertex i
has the same expected in- and out-strength ( sin

i

� �
WRG~ sout

i

� �
WRG: sih iWRG Vi), and

moreover this value is common to all vertices (ÆsiæWRG 5 ÆsæWRG mi).

Null models: the Weighted Configuration model. A popular and more appropriate
null model that preserves the observed intrinsic heterogeneity of vertices is one where
all vertices have the same in-strength and out-strength as in the real network, i.e. the
directed Weighted Configuration Model (WCM)30. In such model, since

sin
i

� �
WCM~sin

i and sout
i

� �
WCM~sout

i Vi, the two sources of homogeneity
characterizing the WRG are both absent: each vertex has different values of the in-
strength and out-strength, and these values are also heterogeneously distributed
across vertices. In other words, this model preserves the in- and out-strength
sequences separately.

Null models: the Balanced Configuration model. Another important null model
that we introduce here for the first time is one that allows us to conclude whether the
observed asymmetry of fluxes is consistent with a fluctuation around a balanced
network (i.e. one where the net flow at each vertex is zero). This model, that we denote
as the Balanced Configuration Model (BCM), is somewhat intermediate between the
above two models, as it assumes (like the WRG) that the expected in- and out-
strength of each vertex are the same, i.e. that the two observed values sin

i and sout
i are

fluctuations around a common expected value sih iBCM~ sin
i zsout

i

� ��
2, but at the

same time preserves (as the WCM) the strong heterogeneity of vertices (i.e. in general
ÆsiæBCM ? ÆsjæBCM if i ? j). This model preserves the total strength stot

i :sin
i zsout

i of
each vertex, but not the in- and out-strength separately.

Note that all the above null models preserve the total weight of the original net-
work, i.e. ÆWæNM 5 W. However, they do not automatically preserve the reciprocity
(neither locally nor globally). Our aim is to understand whether the observed reci-
procity can be simply reproduced by one of the null models (and is therefore trivial),
or whether it deviates systematically from the null expectations. In the next section we
show that the latter is true, and that the reciprocity structure is a robust and novel
pattern characterizing weighted networks.

A unifying formalism. As we show in the SI, it is possible to characterize all the above
null models analytically, and thus to calculate the required expected values exactly.
Even if the final expressions are rather simple, their derivation is in some cases quite
involved and requires further developments of mathematical results that have
appeared relatively recently in the literature29,34,36. Moreover, the crucial step that fixes
the values of the parameters of all models requires the application of a maximum-
likelihood method that has been proposed by two of us only recently14. It is for the
above reasons, we believe, that the reciprocity of weighted networks has not been
studied as intensively as its binary counterpart so far. By putting all the pieces
together, we are finally able to approach the problem in a consistent and rigorous way.
Importantly, the framework wherein our null models are introduced (maximum-
entropy ensembles of weighted networks with given properties) extends to the
weighted case, and at the same time formally unifies, recent randomization
approaches proposed by physicists and well-established models of social networks
introduced by statisticians, i.e. the so-called Exponential Random Graphs or p*

models (see the SI). While a variety of specifications for the latter exist in the binary
graph case2,37,38, very few results for weighted graphs are available39,53,54. Our
contribution opens the way for the introduction of more general families of
Exponential Random Graphs for weighted networks. Indeed, besides the null models
discussed above, we will also introduce the first models that correctly reproduce the
observed reciprocity structure, either at the global (but not necessarily local) level, or
at the local (and consequently also global) level. It is worth mentioning that our
approach makes use of exact analytical expressions, and allows to find the correct
values of the parameters both in the null models and in the models with reciprocity.
By contrast, the common methods available in social network analysis to estimate
binary Exponential Random Graphs rely on approximate techniques such as Markov
Chain Monte Carlo or pseudo-likelihood approaches2,37,38. Another advantage is that
the method we employ allows us to obtain the expected value of any topological
property mathematically, and in a time as short as that required in order to measure
the same property on the original network14. Unlike other randomization
approaches23,24, we do not need to computationally generate several randomized
variants of the original network and take (approximate, and generally biased35)
sample averages over them.

Comparing real data with the above null models, and the null models among
themselves, allows us to separate different sources of heterogeneity observed in net-
works. This is a key step towards understanding the origin of the reciprocity structure
of real weighted networks.
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