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Static versus dynamic longevity-risk hedging

Clemente De Rosa∗, Elisa Luciano†, Luca Regis‡

March 17, 2015

Abstract

This paper provides the static, swap-based hedge for an annuity, and
compares it with the dynamic, delta-based hedge, achieved using longevity
bonds. We assume that the longevity intensity is distributed according to
a CIR-type process and provide closed-form derivatives prices and hedges,
also in presence of an analogous CIR process for interest rate risk. Our
calibration to 65-year old UK males shows that – once interest rate risk
is perfectly hedged – the average hedging error of the dynamic hedge
is moderate, and both its variance and the thickness of the tails of its
distribution are decreasing with the rebalancing frequency. The spread
over the basic "swap rate" which makes 99.5% quantile of the distribution
of the dynamic hedging error equal to the cost of the static hedge lies
between 0.01 and 0.04%.
Keywords: longevity risk, static vs. dynamic hedging, longevity swaps,
longevity bonds.
JEL classification: G22, G32.

1 Introduction
Life insurance companies’ portfolios are affected by so-called longevity risk,
which is the risk that people live longer than expected when the company priced
and reserved their policies. So, while increasing longevity is welcome from the
social point of view, it is considered one of the risks that life insurance compa-
nies have to face. The ways in which at present they can cope with longevity
is either by reinsuring it, as they used to do in the past, or by using more re-
cent hedging approaches. Such strategies rely on the use of so-called mortality
derivatives, which were first introduced by Blake and Burrows (2001). In the
last decade the market for such instruments slowly developed and, while still
lacking liquidity, allows insurers and pension funds to pursue these alternative
de-risking strategies.
At present, actors seeking coverage against longevity risk can choose between a
full, static hedge through a derivative, such as an s-forward or a longevity swap,
or a partial, dynamic hedge. In the first case the whole excess of longevity is
transferred to a third party, once and for all, and the coverage is not changed
over time. In the second case, coverage is partial, often done through customized
∗Collegio Carlo Alberto, clemente.derosa@carloalberto.org
†University of Torino and Collegio Carlo Alberto, elisa.luciano@unito.it.
‡IMT Institute for Advanced Studies Lucca and Collegio Carlo Alberto;
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derivatives, which we will call longevity bonds. The partial nature of coverage
calls for adjustment over time.

In this paper longevity risk is represented through the so-called stochastic
longevity, i.e. by an intensity of mortality arrival which is itself a stochastic
process. In order to keep the model tractable and to provide easy to implement
hedges, we work in continuous time. In order to ensure positivity of the intensity
and to have a longevity model which nicely couples with the modeling of interest
rates, we assume that longevity itself follows a Feller, or Cox et al. (1985)-type
(CIR) process.

Some previous works have focused on static hedging tools. Ngai and Sherris
(2011), in particular, compared the effectiveness of static hedging through vari-
ous derivatives. Rather few previous studies focus instead on dynamic hedging.
Among them, Dahl et al. (2011) analyzed dynamic hedging via longevity swaps,
analyzing the different performance of a constant and of a rebalanced strategy.

The original contribution of our paper lies in providing both static and dy-
namic, closed - form hedges for the CIR longevity process. The static hedge
entails the use of a longevity swap, while the dynamic hedge is performed ap-
plying Delta-Gamma hedging strategy, as proposed by Luciano et al. (2012b).
We couple the theoretical contribution with a calibrated example, and we com-
pare the efficiency of the static versus the dynamic hedge. We determine the
cost of the static hedge which would “equate”, in a sense that we specify below,
the hedging error of the partial coverage. We explore sensitivity with respect
to different assumptions on the rebalancing frequency of the strategy, which is
expected to affect the quality of hedging. We leave the study of the role of
transaction costs and basis risk for further research.

The paper unfolds as follows: in Section 2 we set up the model for longevity
and financial risk evaluation, in Section 3 we describe the liabilities to be hedged,
in Section 4 we explain the static and dynamic hedging strategy, in Section 5 we
compare their effectiveness on a calibrated model. The last Section summarizes
and outlines further research.

2 Longevity and interest rate risk modelling
In order to model longevity and interest rate risk, we assume that mortality for
a specific generation occurs according to a Poisson process, whose intensity is
stochastic. We consider a standard filtered probability space (Ω,F ,Q), which
satisfies the usual assumptions, and on which a filtration Ft is defined. The
measure Q is already the so-called risk-neutral measure. We will discuss below
the relationship between this measure and the effective one.

We let the mortality intensity of a specific generation be described by a so-
called Cox-Ingersoll and Ross (CIR) process, which is actually a Feller process,
of the type:

dλ(t) = (a+ bλ(t))dt+ σ
√
λ(t)dW (t), (1)

with a > 0, b > 0, σ > 0, λ(0) = λ0 ∈ R++. The reason behind the assumption
b > 0 is that the process is expected to have no mean reversion. The previous
SDE describes the evolution (for a given generation) of the intensity of mortality
arrival over calendar time. Because the generation ages over time, the previous
drift simply tells that the expected change in intensity is affine and increasing
with the intensity itself.
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If the initial point λ0 is strictly positive and the coefficients satisfy the following
condition:

a ≥ σ2

2
, (2)

then the mortality intensity λ(t) will be strictly positive for every t, almost
surely. Hence, in order to obtain a satisfactory calibrated model for the intensity
process, we impose this condition on the parameters during the calibration.

Consistently, we assume that the spot interest rate - or interest rate intensity
- follows a CIR process of the type:

dr(t) = (ā− b̄r(t))dt+ σ̄
√
r(t)dW ′(t), (3)

with ā > 0, b̄ > 0, σ̄ > 0, r(0) = r0 ∈ R++, where the Wiener process W ′ is in-
dependent of W .1 The last assumption entails independency between the whole
longevity and interest intensity processes. The negative sign preceding b̄ and
its strict positivity guarantee that the process for the interest-rate incorporates
mean reversion, which is a usual assumption in the interest-rate domain. The
coefficient b̄ is called speed of mean reversion and represents the speed at which
the the short rate r(t) returns to its long-run value ā whenever r < ā or vicev-
ersa.
Similarly to the longevity case, the restriction on the parameters that, together
with the positivity of the initial point r0, guarantees that the interest rate r(t)
never turns negative is given by:

ā ≥ σ̄2

2
. (4)

At each single point in time, the conditional distributions of the mortality
intensity and the interest rate are given, up to a scale factor, by a noncentral
chi-square distribution. In details, given two time instants u < t, then the
distribution of λ(t) conditional on λ(u) is given by:

λ(t) ≈
σ2
(
eb(t−u) − 1

)
4b

X
′2
d (ν), (5)

where X ′2
d (ν) denotes the density of a noncentral chi-square random variable

with degrees of freedom

d =
4a

σ2
, (6)

and noncentrality parameter

ν =
4beb(t−u)

σ2(eb(t−u) − 1)
λ(u). (7)

Similarly, the distribution of r(t) conditional on r(u) is given by:

r(t) ≈
σ̄2
(
1− e−b̄(t−u)

)
4b̄

X
′2
d̄ (ν̄), (8)

1Let the filtration Ft be the filtration generated by the two Brownian motions.
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where X ′2
d̄

(ν̄) denotes the density of a noncentral chi-square random variable
with degrees of freedom

d̄ =
4ā

σ̄2
, (9)

and noncentrality parameter

ν̄ =
4b̄e−b̄(t−u)

σ̄2(1− e−b̄(t−u))
r(u). (10)

In order to proceed to insurance products pricing and hedging, the risk-
neutral dynamics of the two previous processes is needed. However, for calibra-
tion purposes, its effective or historical version may be useful, at least for the
longevity case. In order to keep the notation simple, we just assume that there
is no risk premium in the longevity market or, equivalently, that equation (1)
holds under both measures. Therefore, the calibration of the longevity inten-
sity is performed by estimating its dynamics under the historical measure and,
then, using it also under the risk-neutral measure. The calibration of the interest
rate dynamics is, on the other hand, performed directly under the risk-neutral
measure, thus incorporating the risk premium.

If we call τ the time to death, the conditional survival probability from t to
T is

S(t, T ) = P (τ > T | τ > t) .

where P is in the Q−measure. In the presence of a stochastic intensity, it can
be represented as

S(t, T ) = E

[
exp

(
−
∫ T

t

λx(s)ds

)
| Ft

]
. (11)

The expectation E, here and below, is still under Q. Under the CIR assumption,
that probability becomes:

S(t, T ) = A(t, T )e−B(t,T )λ(t), (12)

where A(t, T ) and B(t, T ) are solutions of an appropriate system of Riccati
equations. These functions are

A(t, T ) =

(
2γe

1
2 (γ−b)(T−t)

(γ − b)
(
eγ(T−t) − 1

)
+ 2γ

) 2a
σ2

, (13)

B(t, T ) =
2
(
eγ(T−t) − 1

)
(γ − b)

(
eγ(T−t) − 1

)
+ 2γ

, (14)

where γ =
√
b2 + 2σ2. As shown in Fung et al. (2014), the above specification

guarantees also that the limit of the survival probability, when T diverges, is
zero.

For any given t, it is possible to compute the log derivative of the survival
probability, which is somewhat inappropriately called the " forward" mortality
intensity for time T , since it represents its forecast at time t. By definition

f(t, T ) = −∂lnS(t, T )

∂T
= −∂lnA(t, T )

∂T
+
∂B(t, T )

∂T
λ(t), (15)
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where

∂lnA(t, T )

∂T
=

2a

σ2

[
1

2
(γ − b)− γeγ(T−t)

eγ(T−t) − 1 + 2γ
γ−b

]
, (16)

∂B(t, T )

∂T
=

4γ2eγ(T−t)[
(γ − b)

(
eγ(T−t) − 1

)
+ 2γ

]2 . (17)

Using a technique described in Jarrow and Turnbull (1994) and Luciano et al.
(2012a), which exploits the definition of "forward" intensity, we can write the
survival as

S(t, T ) = e−X(t,T )I(t)+Y (t,T ), (18)

where I(t) = λ(t)−f(0, t), while X(t, T ) and Y (t, T ) are deterministic functions
of parameters and time t and T :

X(t, T ) = B(t, T ),

Y (t, T ) = lnA(t, T )−B(t, T )

[
−∂lnA(0, t)

∂t
+
∂B(0, t)

∂t
λ(0)

]
.

The term I is called longevity risk factor and is the difference between the
actual and forecasted intensity for time t. Using the fact that λ(t) = I(t) +
f(0, t), (18) becomes

S(t, T ) = A(t, T )e−B(t,T )[I(t)− ∂lnA(0,t)
∂t +

∂B(0,t)
∂t λ(0)]. (19)

Hence, we have an expression for the survival equivalent to (12). This expression
will play a crucial role in hedging, because it encapsulates all riskiness in the
I factor, which has the intuitively nice interpretation of difference between the
forecasted and actual intensity. This is exactly what we have in mind when we
think of longevity risk.

The discount factor or bond price for time t, under any stochastic process
for the spot rate, is

D(t, T ) = E

[
exp

(
−
∫ T

t

r(u)du

)
|Ft

]
, (20)

which, in the CIR case, becomes

D(t, T ) = Ā(t, T )e−B̄(t,T )r(t),

Ā(t, T ) =

(
2γ̄e

1
2 (γ̄+b̄)(T−t)

(γ̄ + b̄)
(
eγ̄(T−t) − 1

)
+ 2γ̄

) 2ā
σ̄2

, (21)

B̄(t, T ) =
2
(
eγ̄(T−t) − 1

)
(γ̄ + b̄)

(
eγ̄(T−t) − 1

)
+ 2γ̄

, (22)

with γ̄ =
√
b̄2 + 2σ̄2. As in the longevity case, the bond value can be reformu-

lated as
D(t, T ) = e−X̄(t,T )K(t)+Ȳ (t,T ), (23)
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where

X̄(t, T ) = B̄(t, T ),

Ȳ (t, T ) = lnĀ(t, T )− B̄(t, T )

[
−∂lnĀ(0, t)

∂t
+
∂B̄(0, t)

∂t
r(0)

]
,

and K is the financial risk factor, measured by the difference between the short
and forward rate:

K(t) = r(t)− F (0, t).

The forward rate F (0, t) is a significant financial quantity, that represents the
fair price at time 0 - and in general at time t when it becomes F (t, T ) - for a
forward contract on the spot rate at T . It is computed, similarly to the forward
mortality intensity, as

F (t, T ) = −∂ lnD(t, T )

∂T
= −∂lnĀ(t, T )

∂T
+
∂B̄(t, T )

∂T
r(t), (24)

where

∂lnĀ(t, T )

∂T
=

2ā

σ̄2

[
1

2
(γ̄ + b̄)− γ̄eγ̄(T−t)

eγ̄(T−t) − 1 + 2γ̄
γ̄+b̄

]
, (25)

∂B̄(t, T )

∂T
=

4γ2eγ̄(T−t)[
(γ̄ + b̄)

(
eγ̄(T−t) − 1

)
+ 2γ̄

]2 , (26)

So, also in the bond case, the reformulation in terms of the risk factor allows
us to synthetize in a unique spread the forecast error that economic agents can
make and that they may be willing to hedge.

3 The insurance company portfolio
Let us suppose that the insurance company has sold a number n of annuities
on the generation x whose mortality intensity is λ. In principle, its portfolio
is likely to include also term insurance contracts, pure endowments or more
complex products, but, for the purpose of our discussion, it seems sufficient to
concentrate on annuities. The extension to the other contracts just listed is
quite straightforward.

If liabilities are evaluated at fair value, an annuity - with annual installments
R, paid at year-end - issued at time 0 to an individual belonging to generation x,
lasting up to T and (already) paid through a single premium at policy inception
is worth

N(t, T ) = R

T−t∑
u=1

D(t, t+ u)S(t, t+ u). (27)

Assuming a CIR mortality intensity (1) and a CIR interest rate process (3), we
have that

N(t, T ) = R

T−t∑
u=1

e−X̄(t,t+u)K(t)+Ȳ (t,t+u) · e−X(t,t+u)I(t)+Y (t,t+u). (28)
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This is the so-called fair value of the reserves that the insurance company should
have in order to face the payments for the generation under exam. Under
the previous assumptions, if there is any unexpected change in the mortality
intensity or the interest rate process, the marginal effect on the reserve is as
follows:

dN =
∂N

∂I
dI +

1

2

∂2N

∂I2
(dI)

2
+
∂N

∂K
dK +

1

2

∂2N

∂K2
(dK)

2
,

where
∂N

∂I
= R

T−t∑
u=1

D(t, t+ u)∆M (t, t+ u),

∂2N

∂I2
= R

T−t∑
u=1

D(t, t+ u)ΓM (t, t+ u),

∂N

∂K
= R

T−t∑
u=1

∆F (t, t+ u)S(t, t+ u),

∂2N

∂K2
= R

T−t∑
u=1

ΓF (t, t+ u)S(t, t+ u),

and the greeks against mortality and interest rate risk, denoted as ∆M ,ΓM ,∆F ,ΓF ,
are defined starting from (19) and (23). Appropriate derivations lead to

∂S

∂I
= ∆M (t, T ) = −X(t, T )S(t, T ) ≤ 0, (29)

∂2S

∂I2
= ΓM (t, T ) = X(t, T )2S(t, T ) ≥ 0. (30)

Analogously, the greeks for interest-rate risk are

∂D

∂I
= ∆F (t, T ) = −X̄(t, T )D(t, T ) ≤ 0, (31)

∂2D

∂I2
= ΓF (t, T ) = X̄(t, T )2D(t, T ) ≥ 0. (32)

4 Hedging Strategies: implementation
We discuss separately the static and the dynamic hedge. In order to hedge the
unexpected changes just formalized, the insurance company can either buy a
static hedge, i.e. a derivative, or set up an approximated, partial hedge, that
can then be revised over time.

4.1 Static hedge
For longevity, the static hedge can be provided by a so-called s-swap or longevity
swap. A longevity swap is a sequence of s-forwards.

An s-forward signed at t is a contract in which one party agrees to pay a
fixed amount in exchange for the number of survivors belonging to a specific
generation x in a given time period. We normalize the number of individuals
in generation x to one. We thus abstract from idiosyncratic risk and consider
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a single annuity as equivalent to a well-diversified homogeneous portfolio of
annuities. If the maturity of the forward is T , and the fixed payment is K(T ),
then the payoff at maturity, from the point of view of who pays fixed, is

exp

(
−
∫ T

t

λx(s)ds

)
−K(T ), (33)

where λx is the mortality intensity of generation x. An s-forward (unit hedge)
helps providers of annuities to hedge their exposure: if the provider sold a pure
endowment on generation x with maturity T , and buys an s-forward, he will
pay K(T ) for sure instead of being exposed to the randomness of the payment
exp

(
−
∫ T
t
λx(s)ds

)
. Under the assumption of no arbitrage, and assuming in-

dependence between mortality and interest-rate risk, the fair value at time t of
such a contract is

[S(t, T )−K(T )]D(t, T ) =

= Et

[
exp

(
−
∫ T

t

λx(s)ds

)
−K(T )

]
Et

[
exp

(
−
∫ T

t

r(u)du

)]
.

where the index t signals that the expectation is the Ft− one. Since, in order
to enter such a contract, no price is paid at inception, the no-arbitrage value of
K(T ), which equates the fair value to zero, is S(t, T ).

A longevity swap is a sequence of s-forwards. If the exchange of amounts
happens once a year, the payment for the period (T − 1, T ) is K(T ) and the
contract lasts until the last individual of the generation is dead (at age ω), the
payoffs are given by (33) for T = 1, .., ω − t.

Under the assumption of no arbitrage, and still assuming independence be-
tween mortality and interest-rate risk, the value at time t of such a contract
is

ω−t∑
T=t+1

[S(t, T )−K(T )]D(t, T ) =

=

ω−t∑
T=t+1

Et

[
exp

(
−
∫ T

t

λx(s)ds

)
−K(T )

]
Et

[
exp

(
−
∫ T

t

r(u)du

)]
,

which is equal to zero, as a fair pricing would require, if K(T ) is set equal to
the survival probability for time T . We call K(T ) the swap rate for the time
period (T − 1, T ).2

Usually the previous swap is not offered to the insurance company at fair
value. It entails a cost, which we take to be fixed and equal to C0. It follows

2An alternative would be to fix a unique swap rate for all periods, K(T ) = K. In this case
fairness would be guaranteed by setting K equal to the following value:

K =

ω−t∑
T=t+1

E
[
exp

(
−
∫ T

t
λx(s)ds

)]
E
[
− exp

(∫ T

t
r(u)du

)]
ω−t∑
T=1

E
[
− exp

(∫ T

t
r(u)du

)] .
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that the fees K(T ) are raised to K ′(T ), where the sequence K ′(T ) solves

−C0 =

ω−t∑
T=t+1

[S(t, T )−K ′(T )]D(t, T ).

For the sake of simplicity, we assume that the cost C0 is evenly distributed along
the "life" of the swap, by increasing the swap rates K by the same amount, i.e.
K ′(T ) = K (T )(1 +m) = S(t, T )(1 +m) where m is determined as follows:

−C0 =

ω−t∑
T=t+1

[S(t, T )−K(T )(1 +m)]D(t, T )

= −m
ω−t∑
T=t+1

S(t, T )D(t, T ),

which implies that

m =
C0

ω−t∑
T=t+1

S(t, T )D(t, T )

=
C0

ω−t∑
T=t+1

e−X̄(t,T )K(t)+Ȳ (t,T ) · e−X(t,T )I(t)+Y (t,T )

.

In principle, the insurance company can be interested in hedging interest
rate risk too. We neglect this coverage here. However, given the similarity of
the two processes, the formulas for an interest rate swap would be similar to
the survival one.

4.2 Dynamic hedge
An alternative to the previous hedge is the following: cover only the changes in
the fair value of the reserve (the liabilities) approximated at the first or second
order. This is known as delta, or delta-gamma, hedging (see Luciano et al.
(2012a)). Both the first and second-order changes in the reserve, delta and
gamma, depend on changes of the CIR longevity intensity and their expression
has been already given explicitly in Section 3. For consistency with the static
hedge, we assume that interest rate risk is not covered. For the same reason, we
also assume that the dynamic hedge is self-financing, a requirement formalized
below.

In order to cover the annuity against the two changes, a possibility is that of
setting up a portfolio comprehensive of longevity bonds. Our longevity bonds
pay at every year-end the survivorship of the reference generation.3 Their payoff
for year T is then

exp

(
−
∫ T

t

λx(s)ds

)
.

3If there is no longevity bond for a specific generation, basis risk arises: see for instance
Cairns, Blake, Dowd, and MacMinn (2006).
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Under no-arbitrage, if the bond maturity is Ti, its fair value at time t, Mi(t), is

Mi(t) = S(t, Ti)D(t, Ti),

which, using the CIR assumption, can be written as

Mi(t) = Ā(t, Ti)e
−B̄(t,Ti)r(t)A(t, Ti)e

−B(t,Ti)λx(t),

or, in the Jarrow and Turnbull formulation, as

Mi(t) = e−X̄(t,Ti)K(t)+Ȳ (t,Ti)e−X(t,Ti)I(t)+Y (t,Ti).

In order to delta-gamma hedge and keep the hedge self financing, we need at
each point in time three bonds, whose maturity is kept constant along the life
of the hedge. The three bonds have maturities Ti, i = 1, 2, 3 and the number of
bonds in the portfolio is ni, i = 1, 2, 3.

At each rebalancing point t, the amount of the bonds used to hedge can be
found by solving the following system

−n∂N(t)

∂I
dI +

3∑
i=1

ni
∂Mi(t)

∂I
dI = 0,

−n∂
2N(t)

∂I2
(dI)2 +

3∑
i=1

ni
∂2Mi(t)

∂I2
(dI)2 = 0, (34)

−nN +

3∑
i=1

niMi(t) = 0.

The first equation nullifies the delta of the portfolio, the second nullifies
the gamma, while the third requires it to be self-financing. Notice that the
terms associated to the annuity enter with negative signs, as they represent the
liability that the company is endowed with. Note also that the longevity bond
value is equal to an annuity with a unique cash flow, or a pure endowment.
The difference, from the standpoint of an insurance company, is that it can sell
annuities and pure endowments – or reduce its exposure through reinsurance –
and buy longevity bonds, while, at least in principle, it cannot do the converse.4
We could use a number of other instruments to cover the annuity, starting from
life assurances or death bonds, which pay the benefit in case of death. We
restrict the attention to longevity bonds for the sake of simplicity. Let us also
recall that longevity bonds – together with the life assurance and death bonds
– represent the Arrow-Debreu securities of the insurance market. Once hedging
is provided for them, it can be extended to every more complicated instrument.
Immediately before each rebalancing date t we evaluate the portfolio. Its value
is the gain or loss of the hedging strategy, which we finance through the bank
account. In other words, at each rebalancing date we sell the entire portfolio
and re-apply the self-financing delta-gamma strategy using the same instruments
and solving equations (34). Any gain or loss from the hedging revision is stored
or charged in the bank account, from which the payments due because of the
annuity contract are also taken. The bank account accrues or charges the short
interest rate r(t). We refer to the absolute value of the bank account as to the
hedging error.

4Reinsurance companies have less constraints in this respect. For instance, they can swap
pure endowments or issue longevity bonds: see for instance Cowley and Cummins (2005).
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5 Hedging Strategies: effectiveness and perfor-
mance comparison

In order to compare the two strategies (static and dynamic) above, here we
proceed as follows: we calibrate the models to the observed mortality rates of
65-year old UK males, we imagine different revision frequencies of the dynamic
strategy, and then determine the cost of the static hedge which would equate
the hedging error of the partial coverage, under different assumptions on the
rebalancing frequency of the second. We focus on longevity risk hedging, thus
assuming that interest-rate risk has already been hedged perfectly.

5.1 Calibration
We calibrate the parameters of our mortality model on the generation of UK
males born in 1946, who were aged 65 on 31/12/2010 (i.e. x = 65). We fit our
model minimizing the Rooted Mean Squared Error (RMSE) between the model-
implied and the observed survival probabilities as computed from data provided
by the Human Mortality Database. Under the constraint given by condition
(2), we fix 01/01/1991 as the observation point (individuals have all reached
aged 44) and we fit the observed survival probabilities S(0, t) with t=1,...20.
We collect the parameters and the calibration error in Table 1.

Table 1. Mortality Intensity Calibration results.

a b σ Calibration Error

4.13 · 10−5 0.0709 0.0087 0.00006

Because condition (2) holds, the simulated mortality intensities λ(t) will be
strictly positive. In the simulations, we assume that the maximum life-span
of an individual belonging to generation x is ω = 115, hence the time horizon
we use for the simulations of the intensity process is 50 years. Some simulated
sample paths of the λx(t) process are shown in figure 1.

Having abstracted from hedging issues concerning interest rate risk, we set
the interest rate to a constant value r = 0.02.

5.2 Rebalancing frequency and dynamic hedging perfor-
mance

In this section we compute the performance of the dynamic hedging strategy
we described in Section 4.2 under different rebalancing frequencies and use the
results to assess reasonable ranges for the cost of a longevity swap, as described
in Section 4.1. Let us consider an annuity provider who has sold a whole-life
annuity written on UK males aged 65 at time 0 (maturity TA = 50y). We
assume moreover the existence of three longevity bonds with rolling maturities
10, 15 and 20 years, written on the same generation of 65-year-old UK males.
Figure 2 provides simulated sample paths for the value of those bonds.
Next, we need to decide after how many years we want to assess the perfomance
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Figure 1. Simulated sample paths of the mortality intensity process λx(t).

of the hedge. In principle, since the value of the annuity is computed taking
into account the maximum life-span ω = 115 of an individual belonging to
generation x, then, the implementation of the dynamic delta-gamma hedging
strategy is of interest up to 50 years. By so doing, it does not disregard the tails
of the distribution of deaths among policyholders. This procedure is justified
since, when an insurance company decides to implement a longevity risk hedging
strategy, she wants to protect herself against the risk that the realizations of
death arrivals among her portfolio of annuitants might belong to the right-tail
of the death distribution. However, given the initial age and the behaviour of
survival probabilities, it is reasonable to assume that 30 years after the inception
of the Annuity contract, the bulk of her initial obligations would be gone. This
is why, in order to evaluate the effectiveness of the self-financing dynamic Delta-
Gamma hedging strategy, we fix a time horizon of 30 years. We consider three
different rebalancing frequencies of 3 months, 6 months and 1 year, respectively.
Sample paths of the simulated evolution of the annuity value, using these three
different step sizes, are represented in Figure 3.

Simulated samples of the evolution of the Bank Account, for each rebalanc-
ing frequency, are given in Figure 4. The variability of each path is larger at the
beginning of the horizon, when the value of the annuity is higher, and decreases
with time. Figure 5 reports the distribution of the value of the bank account
at our horizon of interest, t=30 years, for the three different rebalancing fre-
quencies. The picture shows that the average cost of the hedging strategy is
higher the longer the time interval between two revisions of the strategy. Also,
increasing the rebalancing frequency reduces remarkably the dispersion of the
value around its mean. The strategy rebalanced at 1-year frequency (solid line)
presents the fattest tails. Table 2 contains, for each case, the mean and stan-
dard deviation of the hedging error after 30 years and allows to appreciate the
effects of different rebalancing frequencies. Less frequent rebalancing leads to
higher average hedging errors and higher variability, as expected. However, we
remark that this result is obtained in the absence of transaction costs, which
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Figure 2. Simulated sample paths of the Longevity Bonds Mi(t) written on genera-
tion x.
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Figure 3. Simulated sample paths of a whole-life Annuity under different assumptions
on the simulation step size.
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Figure 4. Simulated sample paths of the Bank Account under different assumptions
on the heding rebalancing frequency.
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Figure 5

we neglect here and will be higher the higher the frequency. Given the results
of our implementation of the dynamic hedging strategy, we compute the cost of
the swap based on a value-at-risk loading principle. Table 3 reports the cost C0

and loading m of the swap. The premium charged to the buyer of the swap C0

is computed as the present value of the 99.5% value-at-risk of the bank account
value at t=30 years obtained applying our hedging strategy with different re-
balancing intervals. The resulting loading m, which represents the percentage
increase in each observed survival, ranges from 0.01% to 0.04%. This value
might seem low, but it is worth noticing again that it is obtained in the absence
of transaction costs and basis risk, which might contribute to increase the costs
of the dynamic hedging strategies.

Table 2. Hedging Error’s moments under different rebalancing frequencies.

3 months 6 months 1 year

Mean 0.0008 0.0015 0.0030
Standard Deviation 0.0011 0.0022 0.0066

Table 3. Longevity Swap premiums and loadings equivalent to the 99.5% Value-at-
Risk of the Delta Gamma Hedging strategy at t = 30 years.

3 months 6 months 1 year

C0 0.0024 0.0049 0.0109
m 0.01% 0.02% 0.06%

6 Summary and further research

This paper computed the static, swap-based hedge for an annuity, and compared
it with the dynamic, delta-based hedge, achieved using a longevity bond. All
throughout, we assumed that the longevity intensity was distributed according
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to a CIR process. A similar assumption was done for the interest rate, in the
theoretical part, while the empirical application focused on longevity risk. We
showed that, once the model is calibrated – to a UK individual aged 65, in our
case – the average hedging error of the dynamic hedge is moderate, and both
its variance and the thickness of the tails of its distribution are decreasing with
the rebalancing frequency, which we brought from three months to one year.
We also computed the spread over the basic "swap rate" which makes 99.5%
quantile of the distribution of the dynamic hedging error equal to the cost of
the static hedge. This spread stayed between 0.01 and 0.04%. In doing that, we
were more interested in providing a method to assess which cost of the static
hedge makes it comparable to a given, tolerated error for the dynamic hedge,
than to the magnitude of the result itself.

The model developed above, indeed, is novel in that it incorporates dynamic
hedging in a CIR framework and its comparison with a static hedge. To fully
appreciate the magnitudes of the errors one could include basis risk, i.e. the
fact that static hedges are usually OTC, and therefore the reference population
is the annuity one, while dynamic hedges are most likely based on indices, and
therefore have a reference population which is not the annuity one. As a second
refinement, one could include a number of annuitants different from one, and
distinguish the idiosyncratic from the common mortality risk in the group of
annuitants. Last, but most simply, we could enrich our comparison taking into
consideration the fact that not only OTC-swaps are usually provided at a cost,
which can be a spread on the fair rate or a fixed, initial amount, but also dynamic
hedges could involve transaction costs, and the rebalancing frequency could be
chosen so as to optimize – in a sense to be defined – the trade-off between
the effectiveness of the hedge and its costs. We leave these three extensions to
further research.
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