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into the sea all the rivers go, and yet the sea is never filled, and still to their goal the

rivers go

–Ecclesiastes, The Jerusalem Bible Translation
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Abstract

The search for reliable proxies of past deep ocean temperature and salinity has proved

difficult, thereby limiting our ability to understand the coupling of ocean circulation and

climate over glacial-interglacial timescales. Previous inferences of deep ocean temperature

and salinity from sediment pore fluid oxygen isotopes and chlorinity indicate that the deep

ocean density structure at the Last Glacial Maximum (LGM, ∼20,000 years BP) was set

by salinity, and that the density contrast between northern and southern sourced deep

waters was markedly greater than in the modern ocean. High density stratification could

help explain the marked contrast in carbon isotope distribution recorded in the LGM

ocean relative to that we observe today, but what made the ocean’s density structure

so different at the LGM? How did it evolve from one state to another? Further, given

the sparsity of the LGM temperature and salinity data set, what else can we learn by

increasing the spatial density of proxy records?

We investigate the cause and feasibility of a highly and salinity stratified deep ocean at

the LGM and we work to increase the amount of information we can glean about the past

ocean from pore fluid profiles of oxygen isotopes and chloride. Using a coupled ocean–

sea ice–ice shelf cavity model we test whether the deep ocean density structure at the

LGM can be explained by ice–ocean interactions over the Antarctic continental shelves,

and show that a large contribution of the LGM salinity stratification can be explained

through lower ocean temperature. In order to extract the maximum information from

pore fluid profiles of oxygen isotopes and chloride we evaluate several inverse methods

for ill-posed problems and their ability to recover bottom water histories from sediment

pore fluid profiles. We demonstrate that Bayesian Markov Chain Monte Carlo parameter

estimation techniques enable us to robustly recover the full solution space of bottom
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water histories, not only at the LGM, but through the most recent deglaciation and the

Holocene up to the present. Finally, we evaluate a non-destructive pore fluid sampling

technique, Rhizon samplers, in comparison to traditional squeezing methods and show

that despite their promise, Rhizons are unlikely to be a good sampling tool for pore fluid

measurements of oxygen isotopes and chloride.
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Chapter 1

Introduction

Over the last ∼0.8 Ma (Ma = one million years), the Earth has experienced glacial

cycles with a dominant ∼100 ka (ka = one thousand years) period (Ruddiman et al.,

1989, Lisiecki and Raymo, 2007). At the glacial maxima, ice sheets blanketed extensive

swaths of the northern hemisphere continents (CLIMAP Project Members, 1976), and the

mean annual atmospheric temperature dropped globally relative to temperatures during

interglacials (glacial minima), with values of -2◦C over the tropics to -30◦C over the

Northern Hemisphere continental ice sheets (Braconnot et al., 2007). While solar energy

received by the Earth due to changes in the Earth’s orbit around the sun has major

variability on periods of 23 ka, 41 ka and 100 ka, spectral analysis of temperature records

in ocean sediments and ice cores over the last 0.8 million years shows that the magnitude

of the 100 ka year climate variability is disproportionate to the changes in solar input

on the same timescale. As compared to the solar forcing and climate response at 23 ka

and 41 ka periods, the 100 ka climate cycle appears to be nonlinear with respect to solar

variability. Thus, it is commonly believed that one or more process internal to the Earth’s

climate system must explain the recent dominance of the 100 ka glacial cycle (Hays et al.,

1976, Imbrie et al., 1992, 1993).

The CO2 concentration in the atmosphere, as recorded over the past 0.8 Ma in ice core

bubbles, has mirrored atmospheric temperature changes. From glacial maxima to glacial

minima, CO2 increased by 80-100 ppmv (Petit et al., 1999). As a greenhouse gas CO2

can amplify temperature changes, which may contribute to the nonlinearity of the 100
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ka atmospheric temperature cycle (Jouzel et al., 2007). While we are interested in longer

timescales, we have a relative richness of data spanning the most recent deglaciation, a pe-

riod of warming and ice sheet collapse following the Last Glacial Maximum (LGM, roughly

26-19 ka BP). The ∆14C of atmospheric CO2, a measure of the amount of radiocarbon

(14C) in the atmosphere, steadily declined over the last deglaciation as the atmospheric

concentration of CO2 increased. Somehow, the CO2 simultaneously increased in concen-

tration and became older. Further, during a period known as the “Mystery Interval”,

there was a sharp jump in CO2 concomitant with a drop in ∆14C from 17.5 ka to 14.5

ka (Beck et al., 2001, Hughen et al., 2000, 2004, Fairbanks et al., 2005, Broecker and

Barker, 2007). While part of the decrease in ∆14C may have been due to a decline in

the rate of atmospheric production of 14C over the last 40,000 years (Laj et al., 2002,

Frank et al., 1997), other evidence shows that the production of 14C remained steady

over the deglaciation (Muscheler et al., 2004). Whether or not atmospheric radiocar-

bon production changed over the last 40 ka, the declines implied are not large enough

to explain the full atmospheric signal in atmospheric ∆14C relative to atmospheric CO2

(Broecker and Barker, 2007). Instead, it seems increasingly likely that a long-isolated,

and thus radiocarbon-depleted, reservoir of CO2 was released to the atmosphere during

the deglaciation through steady degassing punctuated by one or two (Marchitto et al.,

2007) burps. The most likely candidate for the source of the depleted radiocarbon is

the ocean, given its large capacity for storing carbon (∼39,000 Pg vs. 2,700 Pg in the

atmosphere and terrestrial reservoirs combined (Sigman and Boyle, 2000)) and sluggish

circulation (Broecker and Denton, 1989). Moderate changes in the oceanic ∆14C and

CO2 budget can lead to large changes in the atmosphere’s ∆14C, due to the relative

size difference between the ocean and atmosphere carbon reservoirs(Burke and Robinson,

2012). As the atmospheric CO2 and temperature records are synced, it seems likely that

whatever altered carbon exchange between the ocean and atmosphere also affected the

ocean–atmosphere heat exchange.

There are a variety of hypotheses for how the ocean is able to modulate atmospheric CO2

and temperature. The leading ideas suggest that past glacial cycles were caused by a

combination of changes in biological productivity or efficiency and physical reorganiza-

tion of oceanic circulation (Knox and McElroy, 1984, Sarmiento and Toggweiler, 1984,
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Siegenthaler and Wenk, 1984, Sigman and Boyle, 2000, Sigman et al., 2010). The pa-

leoceanographic evidence strongly favors a combination rather than a single mechanism

(Adkins, 2013).

Due to their strong regional signatures in the surface ocean, chemical properties are our

best tracers of ocean overturning, the rates and pathways by which the deep ocean is ven-

tilated. In areas of high planktonic photosynthesis in the surface ocean, the water is heavy

in δ13C, that is, it has a high proportion of the carbon isotope 13C relative to the most

abundant carbon isotope 12C. Due to its productivity, the subtropical North Atlantic has

heavy δ13C which is distinct from the light δ13C in the Southern Ocean. As today deep

waters primarily sink from either the North Atlantic or Southern Ocean, and their indi-

vidual source signatures are distinct in δ13C, we can distinguish the origin of deep water

and the amount it has mixed through its δ13C value (Kroopnick, 1985). A similar argu-

ment holds for the phosphate and cadmium concentrations in water; cadmium is highly

correlated with oceanic phosphate concentrations (Marchitto and Broecker, 2006, Elder-

field and Rickaby, 2000, Boyle, 1988), an essential nutrient for photosynthesis, and both

cadmium and phosphate concentrations antivary with water δ13C. Cadmium concentra-

tion is an independent marker of a source water mass that contains the same information

as δ13C (Boyle, 1992).

One complication in using δ13C and cadmium as water mass tracers is that remineral-

ization at depth makes the water light in δ13C and returns the phosphate and cadmium

to the water column. After water sinks from the surface to the deep ocean, it becomes

increasingly lighter in δ13C and its cadmium concentration increases until it resurfaces.

Thus, δ13C and cadmium indicate both the surface origin of the water mass and the time

since the water left the surface. Despite these complications, these nutrient-like tracers

can constrain the mixing between northern and southern source water masses because

both the surface signatures and ages of North Atlantic and Southern Ocean waters are so

strikingly different.

δ13C of calcium carbonate (CaCO3) in ocean-dwelling foraminifera shells records the δ13C

of the water in which they grow. The circulation patterns traced in the water are mirrored

in the δ13C recorded in modern foraminifera shells. Similarly, the Cd/Ca ratio recorded
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in foraminifera shells mirrors the water cadmium content except in water undersaturated

in carbonate ion or in regions of very high productivity (Marchitto and Broecker, 2006,

Elderfield and Rickaby, 2000, Boyle, 1992).

Measurements of δ13C in glacial-age foraminifera fossils show an increase in surface and

intermediate waters (down to ∼2000 meters) and a decrease in deep waters relative to

modern values. This pattern is consistent in the Atlantic (Curry and Oppo, 2005, Duplessy

et al., 1988), Southern Ocean (Charles and Fairbanks, 1992, Ninnemann and Charles,

2002), and Pacific (Matsumoto et al., 2002) basins. The higher vertical gradient in δ13C

has been interpreted variously as a slowing of oceanic overturning, a shift in surface source

water masses, or a biologically induced redistribution of the surface signatures of δ13C and

Cd/Ca without any change in circulation. Our information from glacial δ13C and Cd/Ca

can support either a biological or physical difference in the glacial ocean carbon cycle

relative to today’s.

While reconstructions of nutrient-like data such as δ13C and cadmium (phosphate) con-

centrations are suggestive of a slower past deep ocean ventilation rate, several inversions

using paleoceanographic proxies of these quantities have been unable to rule out that the

circulation at the LGM was the same as it is today, or even two times faster (LeGrand

and Wunsch, 1995, Huybers et al., 2007). Huybers et al. (2007) suggested that an order

of magnitude increase is needed in both spatial resolution and measurement precision

in order to have enough information to reject an LGM circulation that is two times

different than today’s. Circulation in these particular inverse studies is defined as the

three-dimensional geostrophic velocities on somewhat arbitrary grids. An inversion of the

LGM ocean circulation using a slightly different gridding approach than in either LeGrand

and Wunsch (1995) or Huybers et al. (2007) found instead that the LGM circulation is

distinguishable from modern circulation using available paleoceanographic data (Marchal

and Curry, 2008). The assumptions made in (Marchal and Curry, 2008) vs. those in

(Huybers et al., 2007) are very subtly different, suggesting that the ability to distinguish

between modern and LGM ocean circulation using nutrient proxies depends quite strongly

on prior assumptions in the inverse approach.

Reconstructions of nutrient-like tracers such as δ13C and Cd/Ca alone cannot constrain



5

ocean circulation (without other assumptions), as their values are also a function of biolog-

ical productivity, biological efficiency, time, ocean redox state and carbonate saturation,

which are themselves functions of each other. While radioisotope data is promising as

an independent “clock” or measurement of rates, we still have many uncertainties about

radioisotope initial values at any point in time or space, limiting their utility.

In modern oceanography, water mass sources and pathways can be tracked in large part

through temperature and salinity, which are almost perfectly conservative tracers in the

ocean interior. Additionally, large-scale ocean circulation is balanced by horizontal density

gradients (assuming geostrophic and hydrostatic balance). The density of ocean water is

set by temperature and salinity, thus temperature and salinity give us both conservative

tracers of pathways and estimates of velocities.

It is clear that knowledge of the past ocean’s temperature and salinity fields would vastly

improve our ability to distinguish between hypothetical past circulations. Short of that, a

proxy for water density could be used to estimate large-scale flows, although the picture

of circulation we can draw from temperature and salinity is more complete than that from

density alone.

Paleodensity proxies

δ18O (a normalized ratio of 18O relative to 16O) of foraminifera shells records the tem-

perature and δ18O of the water in which the foraminifera grew. Today there is a strong

correlation between δ18O of water and the salinity of water, as the same processes that

change the δ18O likewise change the salinity (evaporation, precipitation, ice-ocean inter-

actions). Locally there is often a simple (linear) relationship between water density and

the δ18O of the foraminifera growing in that water. Thus, if one assumes that the δ18O–

salinity relationship is constant in time one can locally reconstruct the geostrophic flow

(Lynch-Stieglitz et al., 1999a,b, Lynch-Stieglitz, 2001, Hirschi and Lynch-Stieglitz, 2006,

Lynch-Stieglitz et al., 2006). The main drawback to this technique is that the density–

δ18O relationship varies quite strongly spatially in the ocean and there is no guarantee that

this relationship is constant in time under changing circulation and ice melting conditions

(Lynch-Stieglitz et al., 2008).
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In lieu of a paleodensity proxy, we need to combine both paleotemperature (paleother-

mometer) and paleosalinity proxies to reconstruct the past ocean density structure.

Paleotemperature proxies

Several reliable proxies for past surface ocean temperature exist, including alkenone satu-

ration ratios, and planktonic foraminifera species assemblages (see for example de Vernal

et al. (2006)). These proxies record the temperature of the upper few meters of the ocean,

but an understanding of how the ocean density gradients changed in the past will require

proxies for intermediate and deep ocean temperature. A variety of paleothermometers

have been proposed, but we still lack a robust technique to reconstruct past sub-surface

ocean temperature.

The δ18O recorded in the calcium carbonate shells of foraminifera, δ18Oc is a function

of temperature, but also of the δ18O of water, δ18Ow, which can vary due to changes in

ice–ocean interactions, evaporation, precipitation and mixing. δ18Ow varies substantially

in space, making δ18Oc a poor proxy for deep ocean temperature.

The elemental ratio Mg/Ca in foraminiferal shells is sensitive to temperature. However,

the relationship between Mg/Ca uptake and temperature is itself sensitive to carbonate ion

([CO2−
3 ]) saturation state and temperature. In carbonate undersaturated water and/or

cold water (below ∼ 3◦C), that is, deep ocean conditions, Mg/Ca is not reliable as a

temperature proxy without knowledge of the carbonate saturation state (Elderfield et al.,

2006, Rosenthal et al., 2006, Yu and Elderfield, 2008). The proper use of Mg/Ca to

reconstruct past deep ocean temperature requires another proxy for carbonate saturation

state, which has not yet been developed. Even when the [CO2−
3 ] is or is assumed well-

known, the reported error for temperature in best case scenarios is ±0.5−1.0◦C Elderfield

et al. (2012, see e.g.), which is quite large relative to the typical range of deep ocean

temperatures of ∼ 5◦C.

The extent of clumping of the heavy isotopes of carbon and oxygen (13C and 18O) in

carbonate shells records the temperature of formation of the shell, which in an oceanic

setting, is the temperature of the water in which the animal grew (Ghosh et al., 2006,

Eiler, 2011). Measurement of isotope clumping in ocean dwelling carbonate shell building
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animals is a robust paleothermometer, in that it records only temperature. One major

limitation of clumped isotope paleothermometry is that inter-laboratory calibrations as

yet have not achieved any better than ±2◦C offsets in their measurements of the same

standard, restricting the accuracy of any absolute temperature measurement. Clumped

isotope measurements also require large quantities of samples to achieve high precision

results (Eiler, 2011). For this reason they have been most successfully used for ocean

temperature reconstructions on deep sea corals (Thiagarajan et al., 2011), massive rel-

ative to foraminifera. Unfortunately deep sea corals are not ubiquitous either spatially

or in time, due to their sensitivity to environmental parameters such as aragonite satu-

ration state and oxygen saturation of the water. Deep sea corals appear quite sparse or

entirely absent below 2600m (Thiagarajan et al., 2013). Foraminifera measurements have

been made successfully on sets of hundreds of foraminifera, but it can often be difficult

to find this many foraminifera in a sediment sample and impractical to use them all for

a single temperature reconstruction. New advances in techniques may allow us to make

measurements on smaller samples, such as 10-20 individuals, but for now clumped iso-

tope thermometry can only identify large temperature signals (Grauel et al., 2013). In

the deep ocean the temperature change over glaciations and deglaciations probably was

less than 4◦C, making the clumped isotope thermometry technique difficult to apply to

understanding our recent climate history.

With an independent estimate of the water δ18O in the past, we could reconstruct tem-

perature from δ18Oc in foraminifera. By combining measurements of sediment pore fluid

δ18O with a numerical model of advection and diffusion in sediments, McDuff (1985),

Schrag and DePaolo (1993), Schrag et al. (1996), Paul et al. (2001), Adkins et al. (2002),

Schrag et al. (2002) and Malone et al. (2004) found δ18Ow histories that, input to their

model, produced output that fit the measured data, allowing them to estimate the LGM

δ18Ow and temperatures at those sites. The advantages of this technique are that it is

not sensitive to ocean chemistry or pressure and though the time resolution is limited,

the absolute error may be smaller than that of other paleotemperature proxies. However,

this technique’s major limitation is that finding the history of bottom water δ18O from

present-day pore fluid measurements is an inverse problem with a non-unique solution.

As yet, a robust approach to this modeling has not been established. Due to the ability of
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isotopes to diffuse in the sediments, the time resolution of the technique is guaranteed to

be lower than that of clumped isotope or paired Mg/Ca and δ18Oc measurements, which

are sealed upon shell formation. So far only one time point in the past has been estimated,

the LGM. As part of this thesis, we search for a robust approach to extracting deep ocean

δ18Ow histories using pore fluid measurements.

Paleosalinity proxies

Past deep ocean salinity is notoriously difficult to reconstruct, in part because the modern

range of deep ocean salinities is quite narrow. The wide range of surface ocean salinities

and temperatures allow us to examine the sensitivity of surface-dwelling foraminifera,

coccolithophores, dinoflagellate cysts and diatoms to their environments and use our un-

derstanding of this environmental sensitivity to read the sedimentary records. In contrast,

over the very narrow range of deep ocean salinities and temperatures it is difficult to iden-

tify the sensitivity of benthic foraminiferal species to their environments, and the deep

ocean salinity range is particularly small. Surface salinity can be reasonably well recon-

structed through dinoflagellate cyst species assemblages (de Vernal et al., 2005), but there

is no generally applicable salinity paleo proxy for depths below 5-10m.

To date, the only measurement that claims to definitively identify past ocean salinity is

reconstructions from present-day sediment pore fluid profiles. In a method analogous to

that for the δ18Ow problem, McDuff (1985) and Adkins et al. (2002) reconstructed the

LGM salinity using pore fluid measurements of [Cl−] as a conservative measure of salinity.

Published results from pore fluid reconstructions of LGM temperature and salinity suggest

that at the Last Glacial Maximum (LGM), the salinity contrast between northern source

deep water and southern source bottom water was reversed with respect to the contrast

today. Further, the density gradient between deep waters was larger than that of the

modern (Adkins et al., 2002), the only true mechanistic support for the hypothesis that

the deep ocean’s reservoir of carbon was physically isolated in the past. In addition to

temperature, salinity, density and circulation pathways, pore fluid reconstructions have

the potential to yield information about spatial variability in mass wasting of glaciers

through the changing values of δ18Ow in time and space.
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Despite their promise, and the lack of other reliable techniques, sediment pore fluid recon-

structions of past ocean δ18Ow and salinity have not caught on in the paleoceanographic

community. This is in part because the information-to-sample ratio so far has been quite

low. The recommended amount of sediment to do one LGM reconstruction is at minimum

one hundred 5-cm samples, that is, 5 m of sediment core. In contrast, a single time point

reconstruction of any other climate variable can require as little as 1-3 mm of core, and

usually multiple measurements can be performed on the same section. Squeezing pore

fluids from a sample destroys the sample for other purposes (F. Sierro, personal commu-

nication), and thus LGM pore fluid reconstructions are a very inefficient use of precious

sediment.

The other likely reason that more researchers have not enthusiastically adopted the pore

fluid proxy technique is that the reconstruction of the LGM values is ad hoc; there is no

consistent and robustly demonstrated method to invert for bottom water histories from

pore fluid profiles. Instead, each publication has relied on similar but different approaches,

requiring the need to every time re-demonstrate the insensitivity of their results to changes

in their parameters. The lack of a consistent and proven method makes the entry cost to

working with pore fluids as a proxy for deep ocean salinity and δ18O quite high.

Are pore fluids a reliable proxy for past ocean δ18O, temperature, and salinity? If so, can

we use them to reconstruct the deglacial evolution of the ocean rather than just the LGM

values, making more efficient use of the sediment? Alternatively, or additionally, is there

a way to dramatically increase the number of measurements we make with pore fluids

without sacrificing other climate records? Finally, given our knowledge of the modern

ocean, is there a way to explain how the ocean density stratification was dominated by

salinity at the LGM?

This thesis attempts to remove the barriers to the use of pore fluid proxy for δ18O,

temperature and salinity. Our main goal is to robustly determine the information content

of pore fluid profiles, that is, what they can tell us about the past ocean and what they

can not. As part of this work, we examined the oceanic feasibility of the temperature and

salinity distribution from Adkins et al. (2002)’s pore fluid LGM temperature and salinity

reconstruction. Simultaneously we sought to advance the feasibility and reliability of
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collecting and measuring sediment pore fluid δ18O and [Cl−] in order to encourage wider

participation and global dataset size.

In Chapter 2 we examine the ability of traditional regularized least squares inverse meth-

ods to recover information about past ocean δ18O and salinity from sediment pore fluid

profiles. With synthetic examples, we show that regularization destroys the resolution of

the inverse solution. Further, we demonstrate that the underlying approach in regularized

inversions places constraints on the inverse problem’s solution that do not mesh with our

a priori information. This work was done in collaboration with Jess Adkins and Mark

Simons.

Chapter 3 places the pore fluid inverse problem in a fully nonlinear Bayesian framework.

We apply a Bayesian Markov Chain Monte Carlo parameter estimation technique to

estimate the robustness of present-day pore fluid profiles as a proxy for LGM δ18O and

salinity and consider whether these profiles can be used to reconstruct the full deglacial

evolution of δ18O, temperature and salinity. We show that, in general, δ18O and salinity

in the Holocene can be reliably reconstructed using pore fluid data, but that information

about the LGM is more uncertain. This work was done in collaboration with Jess Adkins,

Mark Simons, and Sarah Minson.

Chapter 4 addresses the reliability of a new technique for ocean sediment pore fluid

sampling. The use of pore fluid δ18O and [Cl−] as paleoceanographic proxies has in

part been limited by the difficulty of obtaining samples, as their procurement destroys

other ocean sediment climate records. We evaluate Rhizon samplers in comparison to the

traditional squeezing technique, and show that Rhizon samplers contaminate [Cl−] and

δ18O in ocean sediment pore fluid samples. This work was done in collaboration with Jess

Adkins, David Hodell, and the science party and technical staff on IODP Expedition 339,

with major assistance from Christopher Bennight and Erik Moortgat.

Finally, in Chapter 5 we examine the role of ice–ocean processes in a cold ocean on

setting the temperature and salinity distribution at the LGM. In this work we ask whether

our current knowledge of oceanic processes can explain a higher-than-modern salinity

stratification of deep ocean water masses at the LGM. We test whether reduced ice shelf
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basal melting due to interaction with a cold ocean could switch the direction of salt

stratification between the deep North and South Atlantic. Chapter 5 has previously

appeared in the journal Paleoceanography and was completed in collaboration with Jess

Adkins, Dimitris Menemenlis, and Michael Schodlok.
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Chapter 2

Reconstructing δ18O and salinity
histories from pore fluid profiles:
What can we learn from regularized
least squares?

2.1 Introduction

Using constraints from sediment pore fluid profiles of δ18O and chlorinity, Adkins et al.

(2002) inferred that there were larger density differences between deep water masses at

the Last Glacial Maximum (LGM), due primarily to their salinities. Of the sites consid-

ered, they concluded that Glacial Southern Source Bottom Water (GSSBW), deep water

originating from the southern hemisphere, was the densest due to its salinity. These re-

sults contrast strikingly with the distribution of today’s deep ocean water masses whose

density differences are set primarily by temperature; modern southern source deep water,

Antarctic Bottom Water (AABW), is the densest deep ocean water mass because it is

cold, while remaining less saline than overlying water masses.

The greater inferred stratification in deep water density supports the hypothesis that

there was a physically isolated reservoir of CO2 in the deep ocean at the LGM (Broecker

and Barker, 2007). In fact, these reconstructed LGM salinities and temperatures from

pore fluids are the only paleoceanographic evidence for an isolated reservoir that solely

record physical, rather than biological or chemical, changes in the ocean. While the
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LGM distribution of δ13C, Cd/Ca and δ18O indicate the possibility of a slower than

modern ocean overturning circulation, inverse analyses (Gebbie, 2012, Huybers et al.,

2007, LeGrand and Wunsch, 1995) have shown the LGM ocean distributions are also

consistent with a modern circulation and differences in surface properties. Knowledge of

the past ocean’s bottom temperature and salinity field would be a significant contribution

to the picture of past ocean circulation, enabling us to untangle physical changes from

chemical and biological signals and better explain why tracer fields in the past ocean

varied so strikingly from those of today’s ocean.

To date, the only data set that claims to unequivocally identify past ocean density gra-

dients is the pore fluid reconstruction of LGM values. However, the data set in Adkins

et al. (2002) consists of four spatial points at one time. In order to fully understand the

changing ocean circulation over the most recent deglaciation, we need more points in both

time and space. We address a method to increase the spatial resolution of LGM density

reconstructions in Chapter 4, while here we investigate whether we can increase the past

temporal information we can recover from pore fluid profiles.

Previous efforts to reconstruct bottom water δ18O and S from modern pore fluid profiles

focused on recovering only one point in the time series, the value at the LGM. The focus

on the LGM was because in most paleoceanographic records the LGM can be identified

as a large, persistent signal and because modern pore fluid profiles record only a diffusive

history of the bottom water time series. In the appropriate sedimentary environment,

variability at the sediment-water interface is a strong control on the pore fluid concen-

trations, but the effects of small magnitude or high frequency forcing on the pore fluid

profile are heavily damped.

The method previously used to reconstruct LGM δ18O and chlorinity in Adkins et al.

(2002), Paul et al. (2001), Schrag et al. (1996), Schrag and DePaolo (1993) and Mc-

Duff (1985) relied on a number of restrictive assumptions that made it impossible to

recover the deglacial histories of δ18O and [Cl−]. Their essential approaches relied on

the supposition that δ18O and [Cl−] are both conservative tracers in ocean sediments

and determined by one-dimensional advection and diffusion. While there is significant

two- or three-dimensional advective fluid flow in many places on the ocean floor associ-
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ated with spreading and converging plate boundaries, submarine groundwater discharge

from continental aquifers, gas seeps (Judd and Hovland, 2007), and bathymetric pressure

perturbations due to current-obstruction interactions (Huettel and Webster, 2001), the

evolution of pore fluid concentration profiles in impermeable muddy sediments in abyssal

plains is dominated by one-dimensional diffusion (Spinelli et al., 2004, Huettel and Web-

ster, 2001, Boudreau, 1997, Berner, 1980). All of the parameters of the problem were

assumed known except for one of the boundary conditions: the bottom water histories of

alternatively δ18O or [Cl−]. It was further assumed that the basic shape of the bottom

water histories was known, at least up to a scaling constant; the bottom water histories of

δ18O and [Cl−] primarily reflected changes in sea level, but were able to scale relative to

an LGM – modern difference in concentration. Then this scaling parameter was varied in

order to find a good fit between the modeled output and the measured data. Figure 2.1

illustrates the application of this technique. Three different sea level histories resulting

from three choices for the LGM – modern scaling parameter are shown in Figure 2.1a and

the results of using these histories as the sediment-water interface boundary condition are

plotted on top of the measured data in Figure 2.1b. The LGM value was determined from

the LGM – modern scaling parameter that yielded model output with the best fit to the

data.

Underlying this technique is the assumption that, at a given site, changes in total ocean

water volume always produce the same local change in properties. Further it requires that

all sites co-evolve in the same way for all time. Finally, there must be a linear relationship

between a site’s concentration and the global mean. In the observational record, these

are not assumptions that have been found true. Chaining the bottom water histories at

all sites to the mean sea level curve prohibits them from expressing independent deglacial

approaches to the modern. Adkins et al. (2002) even note that their best fit models

generate systematic misfits between all of the data and model-generated profiles in the

upper sediment column, providing compelling evidence that the pore fluid profiles contain

information about the deglacial evolutions of temperature and salinity that could not be

extracted with their methodology.

Another questionable assumption in previous reconstructions of LGM δ18O and [Cl−]
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Figure 2.1: Illustration of the method previously used to reconstruct the LGM salinity and
δ18O. Changes in salinity scaled to the sea level curve, up to a scaling constant. Low sea
level corresponds to high salinity and vice versa. (a) shows boundary conditions produced
using three different scaling factors, and (b) shows the model output using those boundary
conditions overlaid on measured data in sediment pore fluids (black circles). Each color
corresponds to a different LGM – modern scaling factor.

was that the dominant diffusion coefficient at a site could be computed using a scaling

approach with the knowledge that the LGM was uniformly at 20 ka BP. The controlling

diffusion coefficient, D0, was calculated as D0 = L2

T
, where T = 20,000 years and L was

the depth of the maximum value of δ18O or [Cl−] in the sediments. Recent studies have

shown that the LGM occurred at different times for different glaciers (Clark et al., 2009),

which calls into question the idea of a synchronous LGM in the ocean, particularly with

the knowledge that the ocean equilibration timescales are long (Wunsch and Heimbach,

2008). Intuition also suggests that the bottom water histories and the diffusion coefficient

at each site covary; a higher diffusion coefficient would leave behind a more damped trace

of the LGM δ18O and [Cl−] maximum in the modern measured profiles.

We seek a robust method to reconstruct past ocean bottom temperature and salinity from

sediment core interstitial water profiles of δ18O and [Cl−] in combination with δ18O of

benthic foraminifera that will allow us to release the restrictions listed above, particularly

the requirement that local bottom water histories can only vary from the global mean by

a single, time-invariant, scaling constant. Our main aim is to identify whether we can
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recover the deglacial histories of δ18O and [Cl−] from modern pore fluid profiles, while

at the same time re-evaluate the information about the LGM yielded by the pore fluid

profiles.

We have revisited the problem with a variety of inverse methods that allow us to release

the previous assumption that bottom water histories scaled to the sea level curve, allowing

us to 1) test the robustness of previous reconstructions and 2) examine whether we can

extract more information than the LGM value from present-day interstitial water profiles.

The solution to an inverse diffusion problem is not unique, and thus without some as-

sumptions the problem is intractable. In this chapter we frame our problem as a linear

inverse problem by assuming we do in fact know the dominant diffusion coefficient at a

site and focus primarily on reconstructing the ocean bottom water histories of δ18O and

[Cl−]. In Chapter 3 we release the requirement that the diffusion coefficient is known, and

examine how doing so affects our uncertainty in past ocean time series of δ18O and [Cl−].

In what follows we evaluate the skill of several regularization methods for linear inversions

in recovering bottom water histories from pore fluid profiles. We rely on synthetic exam-

ples, in which we choose hypothetical synthetic models of bottom water histories, generate

synthetic data by running these through a forward model of advection and diffusion in

ocean sediments, and then invert the synthetic data and compare the inverse solution

with the known solution. These synthetic examples allow us to explore the nature of our

inverse problem as well as the limitations of regularized inversions both in their practical

use and in error estimation. Our work in Chapter 2 motivates the more complex inverse

approach described in Chapter 3.
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2.2 Methods

2.2.1 The forward problem

2.2.1.1 Simplifying assumptions

The movement of chemical species in porous sediments is a well-studied topic. In-depth

treatment and analysis of the processes involved and the breadth of modeling assumptions

can be found in Berner (1980) and Boudreau (1997). The following outlines the approach

we use, which relies primarily on these two works.

We assume that the processes that modify tracer concentrations in interstitial water are

one-dimensional, that is, all changes are in the vertical direction and there are no net

velocity, concentration or pressure gradients in the (local) horizontal directions. The one-

dimensional approximation is expected to be appropriate for locations in the ocean lacking

bedforms, with spatially uniform sedimentary deposition and oceanic concentrations and

consolidated clays, which, in spite of their physical anisotropy, have isotropic permeability

(Spinelli et al., 2004). In practice, the assumption of one-dimensional sediment concen-

tration evolution is rarely tested. We further assume that our concentrations of interest

are conservative, that is, they are not modified by in situ chemical reactions.

The basic equation describing interstitial concentration (c) as a function of depth (z,

positive downwards) and time (t) can then be written:

∂ (φc)

∂t
= D0

∂

∂z

(
φ

θ2

∂c

∂z

)
− ∂ (uφc)

∂z
. (2.1)

φ is known as the sediment porosity, defined as:

φ =
interconnected volume

total sediment + liquid volume
. (2.2)

θ is the sediment tortuosity, which is the resistance of the sediment to interstitial flow due

to grain alignment. D0 is a constant diffusion coefficient, which includes the diffusivity in
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water of the chemical species of interest. Diffusion due to biological mixing is lumped into

the unknown parameter D0. In reality chemical diffusivity varies with sediment depth,

as it is a function of temperature and ionic strength, but for simplicity in the following

examples it is held constant. u is the vertical velocity of the water with respect to the

sediment, predominantly due to sediment compaction.

Expanding out Equation 2.1 leads to

c
∂φ

∂t
+ φ

∂c

∂t
= D0

∂

∂z

(
φ

θ2

)
∂c

∂z
+
D0φ

θ2

∂2c

∂z2
− ∂ (φuc)

∂z
. (2.3)

Assuming steady state compaction, ∂φ
∂t

= 0. Steady state compaction requires a constant

sedimentation rate, which is generally not true on glacial–interglacial timescales (e.g.,

Raymo, 1997, McManus et al., 1998). Here we ignore time evolution of sedimentation rate

and compaction, as their effects on the temporal evolution of pore fluid tracer profiles are

negligible as compared to other factors (Adkins and Schrag, 2003)

The last term on the right hand side of Equation 2.3 expands out to

∂ (φuc)

∂z
= φ∂(uc)

∂z
+ uc∂φ

∂z

= φc∂u
∂z

+ φu ∂c
∂z

+ uc∂φ
∂z
. (2.4)

In a steady, incompressible, flow mass conservation (where the mass flux per unit area at

z is ρfφu) allows the first and third terms of Equation 2.4 to cancel, yielding:

∂ (φuc)

∂z
= φu

∂c

∂z
. (2.5)

Given these two conditions, Equation 2.3 becomes:

φ
∂c

∂t
= D0

∂

∂z

(
φ

θ2

)
∂c

∂z
+
D0φ

θ2

∂2c

∂z2
− φu∂c

∂z

=
∂D∗

∂z

∂c

∂z
+D∗

∂2c

∂z2
− φu∂c

∂z

=

(
∂D∗

∂z
− φu

)
∂c

∂z
+D∗

∂2c

∂z2
, (2.6)
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where D∗ = D0
φ
θ2

. A common model for θ2 is θ2 = φf where f is the non-dimensional

formation factor:

f =
bulk sediment specific electrical resistivity

porewater resistivity
, (2.7)

which means ∂D∗

∂z
= D0

∂
∂z

(
1
f

)
. θ and f are both unknown, but laboratory measurements

suggest that a good approximation for f is φ−n, where n averages 1.8 over various sedi-

ments (Berner, 1980). More complicated models for tortuosity have been proposed, (e.g.

Boudreau and Meysman, 2006), but the differences in their fits to empirical data are very

subtle. With this, ∂D∗

∂z
= n φn−1 D0

∂φ
∂z

= 1.8 φ0.8 D0
∂φ
∂z

.

Our final equation describing concentration evolution with time and space is

∂c

∂t
=

(
1.8 φ0.8D0

∂φ

∂z
− u
)
∂c

∂z
+ φ1.8D0

∂2c

∂z2
. (2.8)

φ and ∂φ
∂z

are measured quantities. In the simple examples that follow, we use a constant

φ = 0.8. D0 is an unknown parameter, but laboratory measurements suggest that its order

should be 10−6−10−5 cm2 s−1 for [Cl−] (Li and Gregory, 1974). In the following examples

we examine the sensitivity of our solutions to D0 by solving the linear regularization

problems using three different orders of magnitude of D0 (from 2.9 x 10−7 to 2.9 x 10−5.

To determine u as a function of z, we assume that compaction ceases at some depth (this

is commonly seen in the profiles of φ). At this depth of no compaction, the fluid and solid

burial velocities are the same, i.e. uz = wz. Then φu = φzwz, or u = φzwz

φ
. wz can be

determined from an appropriate dating scheme of the sediment core sections.

The solution to Equation 2.8 requires two boundary conditions and an initial condition.

We specify a Dirichlet (first-type) boundary condition at the sediment–water interface as

the concentration as a function of time. At the bottom boundary we choose a Neumann

(derivative) boundary condition to be a fixed first derivative of concentration. The bottom

boundary choice represents an interaction with deeper sediments or crust that does not

change over our timescales of interest.
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2.2.1.2 Finite difference solution technique

We solve (integrate) the forward problem (Equation 2.8) with a quadrature rule method,

that is, we approximate the derivatives and the integral locally. As the effect of diffusion

greatly outweighs that of advection in our problem (Peclet numbers < 10−3), we use an

Implicit-Explicit (IMEX) method for a computationally efficient and stable integration.

IMEX methods combine an implicit method to integrate the stiff terms of the equation,

in our case the diffusion term, with an explicit method to integrate the non-stiff terms

(advection). IMEX methods avoid the excessively small time steps necessary to stably

explicitly integrate the diffusion term, while also avoiding iteratively inverting the matrix

associated with the implicit advective term. The IMEX method we use is a second

order Semi-implicit Backward Differentiation Formula (SBDF) as described in Ascher

et al. (1995). For the implicit solver, we use the tridiagonal matrix algorithm (TDMA),

which is a simplified form of Gaussian elimination appropriate for tridiagonal systems of

equations.

By examining the convergence behavior of the forward solution, we choose a time step

of ∆t = 10 years and discretize depth with ∆ z = 50 cm. Over the integration time of

125,000 years and 150 m of sediment these choices lead to a 2-norm error in the solution

of O(10−4).

2.2.1.3 Green’s function approach

If we fix all the parameters in Equation 2.8 in time except for c(z), our problem is a

system of linear partial differential equations. Linearity allows us to use a discrete Green’s

function approach in examining the solution to a variety of forcing conditions. We can

write any discretized linear system of equations generally as Gm = d, where G is a matrix

of discrete Green’s functions, m is the discretized “model” (in our case the boundary

forcing conditions and the initial condition) and d represents a vector of measured data,

the present-day measured concentration profile.

In the following examples we fix the intial and bottom boundary conditions and solve
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only for the top boundary condition, the evolution of δ18O or [Cl−] at the sediment-water

interface on the ocean floor. Thus m is simply a concentration time series. We construct

G by computing finite difference impulse responses to the set of orthonormal boundary

conditions. These impulse responses form the columns of the matrix G. The ith row of

G, scaled by the boundary condition model m, generates the ith measured data point

in d. Then multiplication of G by any boundary condition vector (which is a linear

combination of unit vectors) yields the present day concentration profile that arises in

response to that boundary condition time series.

The dimensions of G are arbitrary, depending on the choice of discretization. In order

to eliminate convergence problems, we compute roughly discretized G matrices from a

converged finite difference solution. The finite difference computation of the columns of

G always uses 10 year time step and 50 cm space step, regardless of the temporal and

spatial discretization of G.

Once the forward problem is framed using discrete Green’s functions, it is numerically

much more efficient to solve; instead of inverting matrices we can use direct matrix multi-

plication. Additionally, the discrete Green’s function approach provides a natural frame-

work for addressing the inverse problem.

2.2.2 The inverse problem

For completeness we summarize the necessary theoretical background to solving discrete

ill-posed problems. Unless otherwise noted, the information in sections 2.2.2.1– 2.2.2.5 is

from Aster et al. (2005) and Hansen (1998).

2.2.2.1 Ill-posed nature of inverse problem

In practice, we measure the modern concentration profile c(z)|t=mod. From this set of

observations we wish to infer the past time evolution of water properties at the sediment

– water interface, c0(t). The evolution of the bottom boundary condition cL(z) is also

unknown, as is the initial condition c(z)|t=past. Once we have framed the problem using
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discrete Green’s functions, as described above, the solution to the discretized problem

may be written as

m = G−1d (2.9)

where m in our case is the bottom water boundary condition.

Due to the particular nature of our problem, the inversion of G is not straightforward.

The continuous problem can be written generally as:

∫ b

a

G(z, t)m(t)dt = d(z), a ≤ z ≤ b , (2.10)

where the kernel G is a Green’s function that represents the advection-diffusion operation

on m(t). d(z) is what we observe or measure, in our case the concentration as a function

of depth in the sediment, and G is theoretically known. This equation is a Fredholm

integral equation of the first kind with a square integrable kernel. The solution for m(t)

in this equation is a classical example of a linear ill-posed problem; that is, the solution

for m(t) is not unique and a small perturbation to the measured data can lead to an

arbitrarily large, or unconstrained, change in the solution. (Hansen, 1998).

In real measurement cases, d(z) is always discrete, and so we are considering the dis-

cretized version of the integral equation, which is just the discrete Green’s function. A

discrete ill-posed problem always results from the discretization of a continuous ill-posed

problem. Discrete ill-posed problems are almost always indeterminate so it is impossible

to directly invert G. Instead, all solutions must be some variant of a least-squares solution.

Even in the rare case that a discrete ill-posed problem is full rank, the solution will be

unstable to small perturbations or noise. Instability of discrete ill-posed problems is fur-

ther compounded by the fact that a mathematically full-rank G can become numerically

rank-deficient due to limitations in machine precision.

The SVD of G in an ill-posed problem has singular values and right and left singular

vectors with particular properties that make the computation of a least-squares solution

unstable. The shape and size of G are determined by the number of data points in d and

the level of discretization of the problem. No matter how finely or roughly we discretize

the problem, the singular values of the matrix G decay uniformly to 0 (or the machine
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precision limit). The uniform decay of singular values to 0 means that our problem is “ill-

posed” rather than simply being “rank-deficient”. While the modes of G that correspond

to very small singular values clearly do not contribute much to the solution, in practice it

is difficult to truncate G and apply a truncated least-squares method to the problem, as

there is no clear divide between large and small singular values. The left and right singular

vectors associated with small singular values are highly oscillatory, with the number of

zero crossings increasing monotonically with i (i representing the index of the singular

value). In the forward problem, these oscillations are damped by being multiplied by

small singular values. However, in the inverse problem, division by singular values leads

to amplification of these oscillations, which are magnified in the presence of measurement

noise.

The solution of linear ill-posed inverse problems requires some form of regularization or

stabilization of the solution. A common and relatively simple technique is that found by

solving a damped least squares problem, also known as Tikhonov regularization. In the

following examples we primarily focus on various approaches to finding the inverse solution

to Equation 2.8 using Tikhonov regularization. However, while the inverse solution to

Equation 2.8 is an ill-posed problem, due to the limitations of machine precision, it is also

numerically rank-deficient. As rank-deficient inverse problems can be solved efficiently

using a truncated SVD of G, we include a discussion of the inverse solutions we recover

using a truncated least-squares method and compare it to the solutions we recover using

regularization in place of truncation.

2.2.2.2 Truncated SVD solution

When G is not an invertible matrix, the least squares or generalized inverse solution m†

to the inverse problem for m that satisfies

Gm = d (2.11)

is written as

m† = G†d , (2.12)
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where G† is

G† =
(
GTG

)−1
GT , (2.13)

which can be written in terms of the singular value decomposition of G as

m† = VS−1UTd . (2.14)

In a rank-deficient or ill-posed least squares inverse problem, the solution to Equation 2.14

will be unstable due to division by very small singular values when taking the inverse

of S. A rank-deficient problem is one in which G is not full rank and there is a clear

divide between non-zero and zero singular values in S. In the truncated SVD (TSVD)

least squares inverse method, one simply truncates the small singular values and their

corresponding left and right singular vectors in V and U, and computes the generalized

inverse m† using the TSVD. In a true rank-deficient inverse problem, the information

associated with the missing rank modes can never be recovered; it is irreversibly lost by

the rank-deficiency of the forward problem. Rank-deficient problems are thus distinct

from discrete ill-posed problems, in which there is a very small but non-zero amount of

information retained by the data about the modes associated with the small singular

values.

2.2.2.3 Zeroth-order Tikhonov regularization

In a zeroth-order Tikhonov regularization, we look for the solution m with the smallest

norm, that is

min ||m||2 (2.15)

that also satisfies

||Gm− d||2 ≤ δ , (2.16)

where δ represents the maximum tolerated error in the regularized solution. Constraining

the norm of m has the effect of preferring small magnitude solutions, or, as we discuss

later, represents the prior assumption that m is equal to 0. By using the method of

Lagrange multipliers, we can reframe this optimization problem as the damped least
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squares problem

min ||Gm− d||22 + α2||m||22 , (2.17)

where α is the regularization or damping parameter. This is equivalent to an ordinary

least squares problem:

min

∣∣∣∣∣∣
∣∣∣∣∣∣
G

αI

m−

d

0

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

, (2.18)

which can be solved by the method of normal equations:

[
GT αI

]G

αI

m =
[
GT αI

]d

0

 (2.19)

or (
GTG + α2I

)
m = GTd. (2.20)

Using the Singular Value Decomposition (SVD):

G = USVT (2.21)

the solution to the Tikhonov regularization as a function of α is given by:

mα =
k∑
i=1

s2
i

s2
i + α2

(U.,i)
T d

si
V.,i , (2.22)

where U.,i is the ith column of U, V.,i is the ith column of V, and si is the ith singular

value, that is, the ith diagonal component of S.

Thus the norm of the regularized inverse solution using this technique will always be

smaller than (if not equal to) that of the true solution, since α2 is always greater than 0.
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2.2.2.4 Second-order Tikhonov regularization

An alternative way to constrain m is to require its derivatives to have a certain behavior.

In our problem, we do not expect rapidly oscillating solutions, which we can express by

penalizing solutions with large second derivatives. The damped least squares problem

becomes:

min ||Gm− d||22 + α2||Lm||22 , (2.23)

where L is a matrix representing a finite difference approximation to the second derivative

of m,

L =



1 −2 1

1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2 1

1 −2 1


.

Note that the first and second rows and the second-to-last and last rows are identical.

This feature is not a typo. We chose the approximation of the second derivative for the

first and last elements to be forward and backward differences, while the rest are centered

differences.

For this higher-order problem, we use the generalized SVD to compute the regularized

solution. The notation for the generalized SVD varies; here we use the conventions applied

in Hansen’s regularization toolbox.

This version of the generalized SVD assumes G is an m by n matrix and L is p by n. The

generalized SVD relies on matrices U, V, Λ, M and X. G, assuming it is size m by n can

be decomposed as:

G = U

Λ 0

0 I

X−1 . (2.24)



27

U is m by n with orthonormal columns, X is n by n and nonsingular, and Λ is p by p

and diagonal, with diagonal elements

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp ≤ 1 . (2.25)

The matrix L can be decomposed as:

L = V
[
M 0

]
X−1 , (2.26)

V is p by p and orthogonal and M is a p by p diagonal matrix with

1 ≥ µ1 ≥ µ2 ≥ · · · ≥ µp > 0 , (2.27)

λi and µi are related by the relationship

λ2
i + µ2

i = 1, i = 1, 2, . . . , p , (2.28)

and the generalized singular values are

γi =
λi
µi
. (2.29)

Using these conventions, the regularized solution for a higher-order Tikhonov regulariza-

tion where L is different from the identity matrix is:

mα,L =

p∑
i=1

γ2
i

γ2
i + α2

(U.,i)
T d

λi
X.,i +

n∑
i=p+1

(
UT
.,id
)
X.,i (2.30)

2.2.2.5 Parameter choice

In theory we would like to choose a value for the damping parameter α that enables us

to recover as much information as possible about the true value of m. In practice, when

we are inverting real data to find an input model, we can never determine whether we

have obtained the true model. So, when we recover a single model from a regularized
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inversion, there is no technique that guarantees the best choice of α. In recognition that

the choice of α is always somewhat arbitrary, we consider some simple empirical methods

to illustrate how varying α affects our example solutions.

In the zeroth-order Tikhonov regularization, any value of α comes with a trade-off between

its effect on the solution error-norm ||Gm − d||2 and the model norm ||m||2. In many

problems, ||Gm−d||2 increases monotonically with α and ||m||2 decreases monotonically

with α. Due to these properties, the curve of ||m||2 plotted against ||Gm − d||2 often

has a characteristic L shape in log space, the corner of which would represent the best

trade-off between damping and model size. The L-curve criterion of choosing α is the

choice of α that gives the corner of the L-curve. One common way to find the damping

parameter that corresponds to this corner is to fit a spline to the function and compute

the point of maximum negative curvature (Hansen and O’Leary, 1993). To find the point

of maximum negative curvature, one plots ||Gm− d||2 as the abscissa and ||m||2 as the

ordinate as a function of varying α. Another method that is essentially equivalent is to

compute the minimum in the function P (t) = ||m||||Gm− d|| (Johnston and Gulrajani,

2000, Lian et al., 1998). In the following examples, the L-curve is not very well-behaved;

there is either no well-defined corner or two corners and thus both of these methods fail.

For this reason, in the no-noise cases we show a few different magnitude values of α that

return a close fit to the original synthetic model.

In the presence of noise, a sensible choice of α is one that satisfies the discrepancy principle.

The discrepancy principle is to take the value of α for which the misfit ||Gm − d||2 is

equal to the 2-norm error (noise) in the data. The underlying goal of the discrepancy

principle is to ensure that the inverse solution does not overfit the noise in the data.
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2.3 Results

2.3.1 Recovering a stretched sea level boundary condition

In this example we generate a synthetic data set that looks like an ideal “LGM-like”

concentration profile. That is, it has a maximum chloride concentration several 10s of

meters below the sediment–water interface that is the result of increased water salinity at

the Last Glacial Maximum, due primarily to glacier expansion.

To generate the synthetic data set, at the sediment–water interface we use the same

forcing function as that in Adkins et al. (2002), which is a scaled version of the sea-level

curve extending back to 125 ka before present. We take the LGM salinity to be 38 g kg−1

and the modern salinity as 35 g kg−1 and use the difference between these two to scale

the sea level curve to salinity assuming that the ocean is a rectangular basin that is today

3800 m deep. At the bottom boundary, we set ∂c
∂z

= 0. φ is a constant 0.8, u is a constant

0.01 cm yr−1 and D0 is 2.9 × 10−6 cm2 s−1. The initial condition is a uniform profile,

c(z) = 35 g kg−1.

Once we have a synthetic data set, we apply various inverse methods to the synthetic

data to recover the original forcing function or model, m. We then can evaluate the skill

of the inverse methods by comparing the inverse solution in each case to the synthetic

model we used to generate the data. The data used for the inverse problem is the actual

data minus the initial condition response. In this way we avoid inverting for the initial

condition. The model that we invert for is the top (sediment–water interface) boundary

condition.

In the following cases we compare several different levels of discretization of the problem.

Table 2.1 summarizes the characteristics of the Gs. The coarsest resolution G was chosen

to be square and to have a spatial resolution similar to the typical measurement spatial

resolution.
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Table 2.1: Summary of G properties

Dimensions ∆ z ∆ t Time domain Space domain
of G (cm) (yrs) (yrs) (m)

251 x 251 50 500 125,000 125
301 x 626 50 200 125,000 150
301 x 1251 50 100 125,000 150

2.3.1.1 Properties of G

Figure 2.2 illustrates the general behavior of the G matrix. (a) is the full Picard plot,

while (b) is zoomed in on the singular values above the noise floor. σi are the singular

values of G, |uTi d/σi| are the magnitudes of the modes contributing to the generalized

inverse solution, and the coefficients |uTi d| are known as the Fourier coefficients. This type

of figure is called a “Picard Plot” as it illustrates whether the Picard condition is satisfied

for the generalized inverse problem m† = G†d. In order for the generalized inverse solution

to be stable, the Picard condition requires that at some point the Fourier coefficients must

decay faster than their corresponding σi values. We can see that the Picard condition is

not satisfied, as the Fourier coefficients oscillate around the singular values, which means

that determination of a stable generalized inverse will require regularization. The decay

of the singular values is smooth until the singular values reach a noise floor around the

33rd value. Without the machine precision limit, we expect these values to continue to

decay smoothly towards 0. The inversion of G to find m is an ill-posed problem; there

is no clear cut-off between large magnitude and small magnitude parts of the solution.

The very small singular values will amplify any noise in the data vector when we compute

generalized inverse solutions.

2.3.1.2 TSVD least squares inverse solution

Although the inverse problem is ill-posed, the numerical rank deficiency of G hints that

we may be able to at least partially stabilize our generalized inverse solution by truncating

the SVD at the noise floor. In Figure 2.3 we show the results of truncation beyond the

33rd singular value, using the restriction that singular values must be greater than 10*eps,
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Figure 2.2: Picard plot for G size 251 x 251. (a) is the full plot, while (b) is zoomed in on
the singular values above the noise floor. σi are the singular values of G. The coefficients
|uTi d| are known as the Fourier coefficients, and the Picard condition requires that at
some point these must decay faster than their corresponding values σi in order for the
inverse solution to be convergent and stable. |uTi d/σi| are the magnitudes of the modes
contributing to the generalized inverse solution.

where eps is the machine precision of a double, 2.2×10−16.

Despite the fact that we have truncated many of the small singular values, the model re-

covered using TSVD has artificial oscillations that are not in the synthetic model between
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Figure 2.3: (a) shows the synthetic model (red) used to generate synthetic data and
the model recovered using the TSVD method (blue). (b) is the synthetic data (red)
generated by the synthetic model and used to find the inverse solution plotted against the
data generated by the recovered model using TSVD (blue).

5 ka BP and 30 ka BP, and is artificially smooth relative to the true synthetic model

between 30 ka BP and 125 ka BP. The artificial smoothness we can understand as infor-

mation lost through the truncation of some of the modes of the solution. The artificial

oscillations, however, are evidence of instability in the generalized inverse solution. The

instability in the generalized inverse is due to the fact that the Picard condition is not

satisfied even when we truncate the singular values below the noise floor. Referring back

to Figure 2.2b, we see that the Fourier coefficients and singular values decay at roughly

the same rate between i=10 and i=33.

From i=3 to i=10, the Fourier coefficients do decay faster than the singular values, so we

might consider an even more severe truncation at i=10. However, the condition number of

GT , the truncated version of G, is 86 when we truncate at i=10. The condition number

represents approximately the ratio of the error in the generalized inverse solution to the

error in the data vector d; a matrix with condition number 86 is therefore quite unstable

to noise in the data. In addition, truncation at i=10 forces us to lose the ability to recover

the vast majority of modes in the original synthetic model.
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We cannot approximate our ill-posed problem as a rank-deficient problem without los-

ing more information than necessary, and truncation does not sufficiently stabilize the

generalized inverse G†. Therefore, in the remainder of our discussion we focus on the

use of Tikhonov regularization to stabilize the generalized inverse solutions, rather than

truncating the modes associated with small singular values. However, we can not expect

to recover much, if any, information about modes associated with singular values above

i=33.

2.3.1.3 Zeroth order Tikhonov regularization

Figure 2.4 shows the L-curve for the zeroth-order regularization of G size 251x251 on both

a linear (left) and logarithmic (right) scale. This curve does not have a corner, leading

to failure of curvature methods in the selection of α. For illustration purposes, we show

several different orders of magnitude of α and their effect on the solution.
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Figure 2.4: L-curve for G size 251 x 251, 0th order Tikhonov regularization. ||Gmα−d||2
is the 2-norm of the error between the data and the output generated by the regularized
solution. ||mα||2 is the 2-norm of the regularized solution, mα, which is a function of the
regularization parameter α.

Figures 2.5, 2.6, and 2.7 show the 0th order Tikhonov regularization using varying size

α and discretizations for G. For each combination of α and discretization, we show the

synthetic model plotted on the same figure as the model recovered from the synthetic

data using Tikhonov regularization in the inverse least squares problem. To the right of

the model time series is the synthetic data used as input to the inverse problem plotted
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alongside the data generated using the regularized inverse solution as forcing to the for-

ward model. In all of these cases without noise, the regularized least squares solution,

used as a boundary condition to the forward model, generates data indistinguishable from

the synthetic data.

Even when α is close to 0, as shown in Figure 2.5 where α = 10−14, the oscillations

in the synthetic model between 30 ka and 125 ka BP are not recovered in the inverse

solution. This is not a function of resolution, as demonstrated by the fact that when G

has 100 year temporal resolution (size 301x1251) there are even higher frequency artificial

oscillations between 0 and 10 ka BP in the recovered time series. The recovered time

series between 30 ka and 125 ka BP is strikingly similar to the values recovered over the

same time period by the TSVD method. We therefore conclude that the information lost

is that of the modes associated with the singular values below the noise floor. We do not

lose this information due to damping, but because they are unrecoverable because of the

limitations of machine precision.

Increased discretization in time in general does not enable us to recover any more informa-

tion from the signal. The one exception is perhaps shown in Figure 2.6 where the increase

in resolution from G size 251x251 to size 301x626 enables more of the pattern from 30 to

125 ka BP to appear in the regularized inverse solution. High frequency variability is not

recovered from the data by the regularization; however, the very large maximum around

20ky before present seems well recovered, as are the mean slope of approach and retreat

from this maximum. Instead of increasing information recovery, the near-present oscil-

lations in Figure 2.5e demonstrate that increased discretization, without an equivalent

increase in damping, enhances the instability of the inverse solution.

2.3.1.4 Zeroth order Tikhonov regularization with noise

In the previous example we used perfect data as input to the regularizations. In reality,

there will always be noise in the data due to measurement error. To simulate measurement

error, we add white noise to the synthetic data profile. We then choose a regularization

parameter using the discrepancy principle to ensure that we do not overfit the noise.
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Figures 2.8, 2.9, and 2.10 show the results of regularized inversions with increasingly larger

magnitudes of simulated measurement noise and increasing resolution of G. Accounting

for noise requires the use of a larger damping parameter, which increases the bias of the

solution and decreases the value of the reconstructed LGM salinity. Further, the noisier

the data, the more oscillatory the regularized solution becomes in the approach to the

present. This problem worsens with increased resolution of G. These oscillations are not

present in the original synthetic model; they are entirely a product of the instability of

the regularized inverse.

The near-present oscillations are the result of unstable oscillatory modes associated with

small singular values being smeared into the near-present solution. In order to damp these

oscillations, we can increase the damping parameter, but this would increase the damping

everywhere in the solution. With increasingly resolved G, the oscillatory nature of the

solutions becomes worse. The increasingly resolved G is increasingly underdetermined

and has more modes associated with very small singular values. The number of well-

resolved singular values remains essentially constant with resolution of G (O(10)), but the

number of minute singular values and associated unstable modes increases with increasing

discretization.
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Figure 2.5: 0th order Tikhonov regularization, no noise. The damping parameter α =
1e-14 for all cases. (a) G 251 x 251 (c) G 301 x 626 (e) G 301 x 1251.
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Figure 2.6: 0th order Tikhonov regularization, no noise. The damping parameter α =
1e-9 for all cases. (a) G 251 x 251 (c) G 301 x 626 (e) G 301 x 1251.
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Figure 2.7: 0th order Tikhonov regularization, no noise. The damping parameter α =
1e-4 for all cases. (a) G 251 x 251 (c) G 301 x 626 (e) G 301 x 1251.
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Figure 2.8: 0th order Tikhonov regularization with noise, G 251 x 251. Damping parameter α is chosen using the discrepancy
principle. (a) 0.05% noise (c) 0.1% noise (e) 0.5% noise (g) 1% noise.
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Figure 2.9: 0th order Tikhonov regularization with noise, G 301 x 626. Damping parameter α is chosen using the discrepancy
principle. (a) 0.05% noise (c) 0.1% noise (e) 0.5% noise (g) 1% noise.
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Figure 2.10: 0th order Tikhonov regularization with noise, G 301 x 1251. Damping parameter α is chosen using the discrepancy
principle.(a) 0.05% noise. (c) 0.1% noise (e) 0.5% noise (g) 1% noise.
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2.3.1.5 Resolution of the inverse solution

The oscillations of near-present solution components is confusing, as our intuition tells us

that the information closer to the present should be better constrained than the informa-

tion in the past. This is true, but in a regularized inversion the behavior of poorly resolved

modes is spread or smeared among parameters. One way to see this effect more clearly

is by examining the resolution matrix. The resolution matrix describes the averaging

behavior of the regularization. Recall that

Gmtrue = d (2.31)

and the generalized inverse solution m† is related to the true solution in this way:

m† = G†d = G†Gmtrue = Rmmtrue . (2.32)

A perfect resolution solution would have Rm equal to the identity matrix. Otherwise, Rm

is a symmetric matrix that describes how much the generalized inverse solution smears

the original model m into the recovered model m†.

In the 0th order Tikhonov regularizations, the recovered model is

mα =
(
GTG + α2I

)−1
GTd = G#d , (2.33)

so

Rm,α = G#G = VFVT , (2.34)

where V takes its traditional meaning from the SVD of G and F is a diagonal matrix

with diagonal elements equal to the filter factors:

fi =
s2
i

s2
i + α2

. (2.35)

All of the elements of Rm,α take values between 0 and 1. 1 implies perfect resolution while
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0 means none of the information about the parameter is recovered in the right place. By

examining the diagonal of Rm,α, we can see how well each model parameter is resolved

by G. Figures 2.11a, 2.11c, 2.11e are plots of the diagonal of Rm,α for various values of

α. The x-axis corresponds to the past time associated with each model element and the

y-axis is the associated diagonal value of the resolution matrix. In all cases, the resolution

of the model elements recovered by the regularized inverse are better closer to the present.

As the damping parameter α increases, the drop-off in resolution with time in the past

becomes steeper, as evidenced by the fact that the curves are stacked vertically with the

smallest damping parameter curves at the top (closest to 1) and the largest damping

parameter curves have resolution diagonals less than 0.1.

In the best case scenarios shown, with α = 10−8(α2 = 10−16), seven times are perfectly

resolved in the regularized inverse. When α2 increases to 10, all of the model elements

are poorly resolved in the regularized inverse, with maximum diagonal of the resolution

matrix equal to 0.1. The number of parameters resolved by the regularization does not

vary much with differing discretization, but the positions of the well-resolved parameters

shift forward in time as the discretization increases relative to their positions in the more

roughly discretized problem. Figures 2.11a, 2.11c, 2.11e have the same x-axis limits, but

the maximum age with a resolution diagonal equal to one in these plots is 3000 years BP

for G size 251x151, while only 700 years BP for G size 301x1251.

The columns of the resolution matrix show how information of each parameter is smeared

into other parameters. A visually informative technique is to look at the behavior of a

spike model (unit step change) in response to the resolution matrix. Since we are especially

interested in reconstructing the LGM, we show the results of a spike test positioned at

the LGM, roughly 20,000 years BP. For consistency between different Gs the spike test

is 1000 years long. We use α = 10−4 in the spike test because use of the discrepancy

principle in the regularized inversions with noise consistently required α ≥ 10−4.

Figures 2.11b, 2.11d, and 2.11f demonstrate that the information at the LGM is poorly

resolved by the inverse solution. The diagonal element in all discretizations of G is < 0.2

and the bulk of the signal has been spread tens of thousands of years both forwards

and backwards in time. Apparently, the regularization’s seeming recovery of the LGM’s
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magnitude in Figures 2.8, 2.9, and 2.10 was actually an artifact of the smoothness of our

synthetic model; information has been smeared from other times into the LGM.

The spike test also demonstrates that the smeared contribution of past information to

the near-present solution is quite oscillatory. Thus the oscillatory behavior we see in the

modern solution under noise is in part a result of smearing forward of poorly resolved

older components amplified by the magnitude of the noise.

As a general principle, the left and right singular vectors associated with smaller singular

values have more zero crossings (number of zero crossings increases with i). While these

oscillations are damped in the forward problem when multiplied by small singular values,

the recovery of inverse solutions with the singular value in the denominator amplifies high

frequency variations. In this case, noise appears as a high frequency variation.

With increased damping parameter, the smearing of oscillations is increased. The near-

present values are not smeared as much as the older values, but they preferentially receive

smeared information from the older values. When summed with the well-resolved near-

present information, this smearing leads to the initially counterintuitive high magnitude

oscillations.
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Figure 2.11: (a) G 251x251 resolution matrix diagonals as a function of α (b) G 251 x 251
resolution matrix LGM spike test (c) G 301 x 626 resolution matrix diagonals as a function
of α (d) G 301 x 626 resolution matrix LGM spike test (e) G 301 x 1251 resolution matrix
diagonals as a function of α (f) G 301 x 1251 resolution matrix LGM spike test using α
= 1e-04.
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2.3.1.6 Second order Tikhonov regularization

In order to reduce the oscillatory behavior of the solution we can perform a second order

Tikhonov regularization. The second order Tikhonov regularization penalizes the norm

of the second derivative of the solution, and thus prefers solutions with fewer minima

and maxima, which will reduce the solution’s oscillatory behavior. Note that using this

method, the minimum magnitude of α for a smooth solution is smaller than that for the

zeroth-order regularization, as demonstrated in Figures 2.12–2.14. The magnitudes are

not directly comparable because they have different units; in the zeroth-order case we

damp the amplitude of the solution while in the second-order regularization we damp the

second derivative. In the noisy cases, Figures 2.15–2.17, the boundary condition recovered

using the regularization is much smoother than the synthetic boundary condition, and has

a wider and lower magnitude LGM. Also, the concentration profile produced by using the

regularized model as the forcing condition has a much larger error. Because the penalty

on the second derivative is applied uniformly to the solution, it flattens the maximum

corresponding to the LGM as well as reducing the unwanted oscillations.

The second order regularization is much more stable than the zeroth order regularization,

but it still does not resolve individual model parameters very well, as shown in Figure 2.18

which is the resolution matrix for different values of α. In this case, more information is

smeared backward in time rather than forward, explaining the long-period oscillation in

the old time nodes.

The example we are inverting for is quite smooth, and a case with higher frequency vari-

ability would not be recovered well by the second-order Tikhonov regularized inversion.

This method does penalize more rapidly oscillating solutions over slowly oscillating solu-

tions, however there is no specific frequency dependence to the penalty. Ideally we want

a penalty on solutions that oscillate more rapidly than physically sensible, while allow-

ing physically reasonable oscillations. One way to do this is to use a variable damping

parameter α. Next we consider one particular choice of variable α and its effect on our

ability to recover our synthetic time series.
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Figure 2.12: 2nd order regularization, no noise, using α =1e-14 (a) G 251 x 251 (c) G
301 x 626 (e) G 301 x 1251.
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Figure 2.13: 2nd order regularization, no noise, using α = 1e-9 (a) G 251 x 251 (c) G
301 x 626 (e) G 301 x 1251.
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Figure 2.14: 2nd order regularization, no noise, using α = 1e-4 (a) G 251 x 251 (c) G
301 x 626 (e) G 301 x 1251.
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Figure 2.15: 2nd order regularization with noise, α chosen with discrepancy principle, G 251 x 251. (a) 0.05% noise (c) 0.1% noise
(e) 0.5% noise (g) 1% noise.
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Figure 2.16: 2nd order regularization with noise, α chosen with discrepancy principle, G 301 x 626 (a) 0.05% noise (c) 0.1% noise (e)
0.5% noise (g) 1% noise.
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Figure 2.17: 2nd order regularization with noise, α chosen with discrepancy principle, G 301 x 1251. (a) 0.05% noise (c) 0.1% noise
(e) 0.5% noise (g) 1% noise.
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Figure 2.18: 2nd order resolution matrix diagonals and LGM spike test, G 251 x 251.
(a) resolution matrix diagonals as function of α (b) 2nd order regularization spike test, G
251 x 251, α=1e-9.

2.3.1.7 Variable damping

We are most interested in recovering information about ocean bottom water histories be-

tween the LGM and today, and we are willing to sacrifice our ability to recover the older

parts of the time series. The spike tests illustrated that some of the poorly recovered

information in the past is showing up as artificial oscillations in the present. To eliminate

these oscillations with a uniform damping parameter, we must sacrifice resolution every-

where in the solution, and higher values of damping parameters cause more information

to be smeared among modes.

Instead, we can vary α such that the poorly resolved modes in the inverse solution are

damped more than the well resolved nodes. Following Culaciati (2013), we distinguish be-

tween well and poorly resolved nodes through the matrix GTG. The relative magnitudes

of each model vector element’s contribution to the measured data profile is proportional

to its corresponding diagonal element in GTG. Similarly to Culaciati (2013) (the only

difference is that we do not consider data covariance weights as all of our data covariances

are equal), we construct a sensitivity damping matrix S by multiplying the inverse square

root of the ith diagonal value of GTG, normalized by the largest diagonal value, by the
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ith row of the finite difference approximation to the second derivative L as described in

Section 2.2.2.4, and solving the damped least squares problem:

min ||Gm− d||22 + α2||Sm||22 . (2.36)

Note that the meaning of S in our notation differs from that in Culaciati (2013).

This method of regularization preferentially damps oscillations in the solution at the

positions of the poorly resolved model parameters, in our case, those further back in

time. The effect of using S in place of L in the regularized inversion is illustrated in

Figure 2.19. We perform a set of spike tests at three different times using α = 1, which is

the lowest α that produced solutions satisfying the discrepancy principle in the examples

shown in Figures 2.15-2.17. The upper row of panels in Figure 2.19 uses L as the damping

matrix in the inverse problem while the lower row of panels shows the spike test using

S in place of L as the damping matrix. The differences in these two sets of spike tests

is subtle. In the 4 ka BP spike test, the use of S slightly increases the resolution of the

inverse solution and damps some of the artificial oscillations in the model times further

in the past. The 20.5 ka BP and 40 ka BP show similar magnitude smearing using either

L or S as the damping matrix, however, the position of the maximum in the recovered

solution is more closely centered on the true spike model’s location.

The use of S in place of L generates a very subtle change in the resolution of the inverse

solution because the ratio of maximum to minimum damping scaling encompassed in S is

only ∼100. The damping parameter associated with 40 ka BP and 20.5 ka BP are both

slightly less than 1, which explains the reduction in smearing relative to using a uniform

α in both cases and also the fact that their resolution is little improved relative to the

uniform α case. In contrast, the damping parameter associated with the 4 ka BP model

element is ∼0.1, so it experiences 10 times less damping in its derivative than the model

elements at 20.5 and 40 ka BP.

Comparing the spike tests at 4 ka BP in Figure 2.19 demonstrates clearly that a damping

parameter 10 times smaller does not greatly increase a model element’s resolution in the

inverse solution. Figure 2.18a shows that it requires three orders of magnitude change
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Figure 2.19: Spike tests comparing the skill of constant vs. variable damping through the
sensitivity matrix technique. The first row, (a) - (c) use a constant damping parameter
α = 1 and the standard second-order Tikhonov regularization. The second row, (d) - (f)
use α=1 and the variable sensitivity matrix S in place of the uniform L.

in α to increase the resolution of the model element at year 2500 from 0.6 to 1. In the

generalized inverse solution to the damped least squares problem, the values of S or L

modify the generalized singular values and modes of the solution in a complex manner.

The generalized singular values and generalized inverse represented by Equation 2.30 are

derived from the generalized SVD of the extended matrix

G

L

, or alternatively

G

S

.

We are in the process of deriving an analytical relationship between the resolution matrix

of the inverse solution that uses the damping matrix S and the resolution matrix of the

inverse solution using damping matrix L, but this is complicated by the fact that there

is no clear connection between the diagonal of GTG and the SVD of G.
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2.3.2 The effect of the diffusion parameter

In ocean sediments the diffusion parameter D0 is not well known, and spatially variable.

In light of this, we consider the effect of varying diffusivity on our problem. We repeat

the problem above with an order of magnitude larger and smaller value of D0.

Figure 2.20 shows the zeroth order regularization for the same example with a diffusion

parameter an order of magnitude higher. The regularization is much more unstable to

noise because there is less signal in the data and hence a lower signal-to-noise ratio. In

other words, the concentration profile in this case is a poor constraint on the boundary

forcing inverse problem.

The second order regularization of the data generated with higher diffusivity, Figure 2.21

is similarly poor in skill, essentially only recovering the fact that salinity was larger at

some point in the past.

With an order of magnitude smaller diffusion coefficient, D0 = 2.9e − 7 cm2 s−1, the

regularized solutions, Figures 2.22, 2.23, behave similarly to the original case in which

D0 = 2.9e− 6 cm2 s−1, even though the synthetic data profile’s shape is much sharper.
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Figure 2.20: D0 = 2.9× 10−5 cm2 s−1, 0th order regularization with noise, G 251 x 251 (a) 0.05% noise (c) 0.1% noise (e) 0.5% noise
(g) 1% noise.
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Figure 2.21: D0 = 2.9× 10−5 cm2 s−1, 2nd order regularization with noise, G 251 x 251 (a) 0.05% noise (c) 0.1% noise (e) 0.5% noise
(g) 1% noise.
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Figure 2.22: 0th order reg, D0 = 2.9 × 10−7 cm2 s−1 (a) 0.05% noise G 251x251 and discrep criterion (c) 0.1% noise (e) 0.5% noise
(g) 1% noise.
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Figure 2.23: 2nd order reg, D0 = 2.9 × 10−7 cm2 s−1 (a) 0.05% noise G 251x251 and discrep criterion (c) 0.1% noise (e) 0.5% noise
(g) 1% noise.
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2.4 Discussion

The advantages of solving an ill-posed inverse problem via linear regularized least squares

are the speed of solution and relative simplicity of the implementation. While we have

considered a simplified version of our problem here, it illustrates clearly many of the

general issues in extracting information from discrete ill-posed problems. By applying

standard regularized least squares inverse techniques to recovering a synthetic model of

bottom water salinity from a synthetic pore fluid profile, we are able to identify how ill-

posed the problem is and evaluate the information we can gain from least squares tools.

For our specific problem, we find that we can not recover much information about the

past using a regularization technique.

Evaluation of G, even without consideration of the generalized inverse, shows that there

are very few well-resolved independent modes contained in the data, perhaps order O(10).

Thus, regardless of the method we use to invert the data, there is a huge amount of infor-

mation loss about the sediment-water interface boundary forcing history due to diffusion.

We will not be able to recover information about high frequency variability in the bottom

water history from the measured data.

In the presence of noise, none of the regularized least squares methods we have shown

are capable of returning a satisfactory solution, that is, a solution close to the synthetic

model we used. Satisfactory for us would be a reliable estimate of the LGM value and

a time series between the LGM and the modern time that is close to the true solution.

The zeroth order Tikhonov regularization suffers from introducing artificial oscillations

into the near present solution, while the second order Tikhonov regularization generally

oversmooths the solution such that neither the LGM magnitude nor position is recovered.

The diffusion coefficient D0 is likely to be closer to 1×10−5 than 1×10−6 cm2 s−1, but

we see that values of D0 near 1×10−5 cm2 s−1 significantly reduce the skill of regularized

least squares methods at recovering our synthetic model.

One major disadvantage of regularized least squares inverse methods is that it is difficult

to quantify the error in the solution, which is why we did not compute the quantitative

error between the true (synthetic) model and the inverse solutions. The various different
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solutions we recovered using the same synthetic data illustrate the fact that there is

no strong connection between the residual error, ||Gm − d||2 and the solution error;

the optimized solution we recover using regularized least squares largely depends on the

regularization scheme we use. The resolution matrix can help us estimate which model

elements are well-resolved in the inverse solution, but it can not tell us how smearing

affects the error of the recovered solution.

Using a damping parameter introduces bias into the inverse problem, such that the model

we recover using damped least squares almost always underestimates the magnitude of

the true solution. Additionally, minimizing ||m||2 or ||Lm||2 enforces an implicit prior

expectation that our true model, or its second derivatives, are as close as possible to

zero. Neither of these are good assumptions for the recovery of past ocean bottom water

salinity or δ18O, and both further reduce the magnitude of the solution returned. We

can reframe the optimization problem such that we minimize a different quantity, such

as ||m − mp||2, where mp is our prior guess of the correct solution. However, in the

optimization framework, there is still no reliable way to estimate the error of an inverse

least squares solution.

As the solutions recovered from a regularization will always be damped and biased, the

regularized solution can not be used to validate or invalidate ad hoc techniques. That is,

the damped least squares methods described here can not yield an improvement on the

previous estimates of LGM temperature and salinity from Adkins et al. (2002).

In contrast, a Bayesian approach to regularized least squares, in which we assign an

error estimate to the prior model mp, does return a quantitative error estimate on the

regularized least squares solution. While the Bayesian framework solves some of the issues

with error quantification, it does not eliminate the issue that least squares methods are

sensitive to noise.

Finally, our true problem of interest is a nonlinear inverse problem, in that we wish to

solve simultaneously for the diffusion coefficient D0 and the bottom water time series of

[Cl−] or δ18O. While non-linear regularization techniques exist, they suffer from similar

problems to linear regularizations in that the choice of damping parameters is not obvious
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and they are sensitive to noise in the data.

2.5 Conclusions

Using synthetic examples, we have explored the ability of linear regularized least squares

methods to estimate past deep ocean salinity and δ18O from sediment pore fluid profiles

of [Cl−] and δ18O. We show that regularized least squares methods are highly sensitive

to noise in the data and to the diffusion coefficient in our problem. Of the regularization

techniques we have explored, we have not discovered any that satisfactorily recover bottom

water histories from data that resemble our measurements.

There are three major limitations to regularized least squares inverse methods. The main

limitation is that damped least squares optimization techniques provide a single solution

to a non-unique problem. In order to recover a solution, these techniques must minimize

some constraint, which limits our view of the possible solutions that could have generated

the data. Since we know that the solution is non-unique, we are interested in determining

a range of solutions, rather than just one that minimizes a somewhat arbitrary constraint.

The second major limitation is that these methods are very sensitive to noise in the data.

Finally, the choice of damping parameter is quite arbitrary. Together these limitations

make it practically impossible to assign an error bound on an inverse solution.

With these considerations in mind, we conclude that regularized least squares techniques

are not the ideal way estimate past ocean bottom water time series from pore fluid profiles.

As an alternative we turn to a Bayesian Markov Chain Monte Carlo (MCMC) parameter

estimation method in Chapter 3.
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Chapter 3

What is the information content of
pore fluid δ18O and [Cl−]?

3.1 Introduction

We demonstrate in Chapter 2 that regularized inversions recover minimal information

about ocean bottom water histories from sediment pore fluid profiles of δ18O and [Cl−].

Although some of the difficulty in estimating bottom water histories from pore fluid

profiles stems from the ill-posed nature of the inverse problem, damped least squares

techniques also inject bias into inversions, masking the information about the past that

is retained in the pore fluid profiles. Figure 3.1 shows the measured δ18O and [Cl−]

(converted to salinity) profiles at deep ocean sites where we have measured both quantities

in the pore fluids. There is a clear local maximum in both δ18O and salinity several tens

of meters below the sediment-water interface, which, knowing that diffusion in these

sediments is on the order of 10−5 cm2 s−1, hints at the influence of the LGM. At the

LGM, the ocean sea level was ∼130 meters lower than it is today, but the mass balance

of salt and oxygen isotopes entering and leaving the ocean remained the same. Thus, the

mean ocean salinity and δ18O must have been greater. Any local variability in δ18O and

[Cl−] with respect to the mean change in the past that we can infer from the pore fluid

profiles gives us information about the distribution of ocean δ18O, salinity, temperature

and density.
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Figure 3.1: Measured profiles of (a) δ18O and (b) salinity (converted from the measured
[Cl−] values). Note that the x-axis for ODP Site 1239 in (a) has a wider range than the
others. The values in all of the measured data profiles increase towards a local maximum
several tens of meters below the sea floor.

As an illustration of the potential for pore fluid δ18O and [Cl−] profiles to tell us about

strikingly different past bottom water conditions, we plot the maximum change in δ18O vs

maximum change in [Cl−] in the upper 100 meters below sea floor at sites where we have

sediment depth profiles of both in Figure 3.2. For reference, the geographical locations of

these sites are overlaid on their modern bottom water salinity in Figure 3.3. We see that

the maximum measured values cluster around a different mean than the modern sediment-

water interface values, and that the ordering of the maximum values is spatially distinct

from that of the modern values. For example, 1093 and 1239 are the lowest salinity points

in the modern, but their maximum salinity values in the pore fluids are higher than those

at the other sites. The difference between the modern and maximum pore fluid δ18O on
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Figure 3.2: Information in the measured δ18O and [Cl−] (shown converted to equivalent
salinity). Circles represent the modern sediment-water interface value, while triangles are
the maximum value measured in the pore fluids between 0 and 100 mbsf.

average is smaller in magnitude than the difference between the modern and maximum

pore fluid salinity. While we can not interpret these differences without considering the

temporal evolution of the pore fluid profiles, there is a strong suggestion from the data

alone that ocean bottom waters were distributed differently in the past.

We recognize there are many possible bottom water histories that could have generated our

measured data; the inverse problem is non-unique. However, we also know that some of the

mathematically acceptable histories are physically implausible or impossible. Therefore

we seek to discover the full distribution of physically acceptable bottom water time series

that could have generated our measured data. We would like to know whether this

distribution of solutions is wide or narrow and whether the distribution can be described

simply, for example as a multi-dimensional Gaussian, or if it has multiple sharp peaks

and valleys in any given dimension. Our intuition tells us that the distribution of time

series will depend on the diffusion coefficient we assign in our model. Thus, in addition

to being non-unique, our inverse problem is nonlinear.

Here we evaluate the ability of a Bayesian Markov Chain Monte Carlo (MCMC) method
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Figure 3.3: Locations of the ODP sites where we have pore fluid profile measurements of
δ18O and [Cl−] overlain on the modern ocean bottom water salinity. Note that the range
of modern ocean bottom water salinity is quite narrow.

to reconstruct bottom water histories from pore fluid profiles of δ18O and [Cl−]. We

simultaneously recover initial conditions and the diffusion coefficient D0. A Bayesian

approach allows us to explicitly include our prior information and uncertainty in the

inverse problem and recover a distribution of models with varying probability. Markov

Chain Monte Carlo methods allow us to consider the fully nonlinear problem and are

robust to local minima and maxima. Our work relies on the use of an algorithm named

Cascading Adaptive Tempering Metropolis in Parallel (CATMIP, Minson et al. (2013)).

We first describe the general methodological approach to the forward problem which has

many overlaps with the synthetic example in Chapter 2 and explain how we encapsulate

our knowledge about the deep ocean as probability distributions that can be supplied to

a numerical Bayesian MCMC sampler. We then illustrate the similarities and differences

between regularized inverse methods and the Bayesian MCMC approach with synthetic

examples. Finally we apply the technique to δ18O and [Cl−] data from sediment pore

fluids at five Ocean Drilling Program (ODP) sites, 981, 1063, 1093, 1123 and 1239, and
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identify the robust and non-robust quantities that can be recovered from this data set.

For clarity in the text we often refer to [Cl−] as salinity or S, using the conversion factor

S = 19.354
35

[Cl−] g kg−1, however all of the data measurements are derived from pore fluid

[Cl−]. In our synthetic examples we consider the evolution of salinity, but as δ18O and S

are both conservative tracers away from the surface of the ocean and in the sediments,

our conclusions apply equally to the reconstruction of both δ18O and S, as well as other

conservative tracers.

3.2 Methods

3.2.1 Forward model

We assume that [Cl−] and δ18O are chemically inert and that there are no horizontal

gradients in the sediment and ocean properties. This allows us to represent the time

evolution of each individual tracer, c, with a one-dimensional advection-diffusion equation:

∂ (φc)

∂t
= D0

∂

∂z

(
φ

θ2

∂c

∂z

)
− ∂ (uφc)

∂z
. (3.1)

φ is the sediment porosity, θ is the sediment tortuosity, and D0 is the diffusivity in water

of the chemical species of interest. D0 is a function of temperature and ionic strength,

but we take it as an unknown constant in order the reduce the dimensionality of our

inverse problem. If we make a conservative estimate that the temperature gradient in

the sediments is 100◦C/km, the bottom of our cores will have felt temperatures up to

35◦C. Li and Gregory (1974) estimate that there is roughly a factor of two ratio between

the diffusion coefficient for [Cl−] at 35◦C and that at 0◦C. Since we do not include the

temperature gradient dependence of the diffusion coefficient, we will underestimate the

effect of the bottom boundary condition and lower part of the sediment pore fluid values

on controlling the inverse solution. In general we find that including the temperature

gradient does not qualitatively affect the fit of an inverse model’s output to the data. u is

the vertical velocity of the water with respect to the sediment, which is predominantly due
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to sediment compaction. z is the depth in the sediment, defined increasing downwards.

Assuming bulk steady-state compaction simplifies this equation to

φ
∂c

∂t
=

(
∂D∗

∂z
− φu

)
∂c

∂z
+D∗

∂2c

∂z2
, (3.2)

where D∗ = D0
φ
θ2

. A typical model for θ2 is θ2 = φf where f is the non-dimensional

formation factor:

f =
bulk sediment specific electrical resistivity

porewater resistivity
. (3.3)

Laboratory measurements suggest that a good approximation for f is φ−n, where n aver-

ages 1.8 over various sediments Berner (1980). Our final equation describing concentration

evolution with time and space is

∂c

∂t
=

(
1.8 φ0.8D0

∂φ

∂z
− u
)
∂c

∂z
+ φ1.8D0

∂2c

∂z2
. (3.4)

φ in our model is a smoothed version of the measured porosity in each core. With the

steady-state compaction assumption, u is derived from the sedimentation rate and porosity

data as described in Chapter 2. The concentration profiles at any given time result from

Equation 3.4, an initial condition and two boundary conditions. The top (ocean–sediment

interface) boundary condition is the tracer time evolution in the water overlying the core

site that we seek to constrain. At the bottom boundary we assign a gradient boundary

condition. Equation 3.4 is a stiff partial differential equation, so we solve it with a second

order Implicit-Explicit (IMEX) method for its solution. The advection terms are solved

explicitly while the diffusion terms are solved implicitly (Ascher et al., 1995). The time

step in the solver is 10 years and the spatial resolution is 50 cm. The total integration

time is 125,000 years.
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3.2.2 The inverse problem

With typical values of D0, φ and u, the solution to Equation 3.4 is heavily diffusion

dominated (Peclet O(1e−3) ), and a classic example of an ill-posed problem. The same

concentration profile at a given time can be produced by an infinite number of forcing

conditions. It is not possible to directly invert the measured concentration profile and

recover a unique concentration forcing history. However, many of these infinite mathe-

matically feasible solutions are non-physical. For example, a species concentration can not

be negative. Using a Bayesian approach, we can restrict the solution space by applying

our prior knowledge of the problem. Bayes’ theorem states that:

P (Θ|D) ∝ P (D|Θ)P (Θ) , (3.5)

where Θ is a vector of model parameters and D is the measured data. In words, the

probability that a given model/set of model parameters produced the measured data is

proportional to the product of the prior probability of those parameters and the likeli-

hood of the data produced using those model parameters. P (Θ) is known as the prior

probability, and encompasses our knowledge of the model parameters independent of the

data measurements D. P (D|Θ) is the likelihood, computed using the error between the

measured data and data produced by the forward model using a given set of model pa-

rameters Φ. P (Θ|D) is the posterior probability distribution, or posterior. Bayesian

Markov Chain Monte Carlo (Bayesian MCMC) sampling provides us with a probabil-

ity distribution proportional to the posterior probability distribution of possible model

parameters.

3.2.2.1 Bayesian Markov Chain Monte Carlo sampling

The brute force way to solve this problem is to choose a large range of possible values of

model parameters and perform an integral over all of them to find the probability of any

given parameter. In high-dimensional problems, computing this integral is intractable.

We take a Markov Chain Monte Carlo approach to the integral that instead samples

the Bayesian posterior. A variety of approaches have been proposed for this. We use
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an algorithm called Cascading Adaptive Tempering Metropolis In Parallel (CATMIP)

(Minson et al., 2013), which has been demonstrated to behave very efficiently for high-

dimensional problems. CATMIP is initialized with the prior probability distribution and

evolves from the prior to the posterior in a series of tempering or cooling steps. At

each cooling step a new probability distribution is proposed and the change between

distributions from step to step is monitored to track the evolution. For a given set of

proposed parameters, the likelihood is computed by integrating the forward model with

those parameters and computing a misfit cost function between the model output and

the measured data. Unless otherwise specified, all of the cases described here use a chain

length of 1000 steps and 1000 chains.

3.2.2.2 Model parameterization

Our problem has many unknowns: the top and bottom boundary condition time series,

the initial condition, and the diffusion coefficient D0. We are primarily interested in

recovering the top boundary condition, the time series of [Cl−] or δ18O in the water,

but its solution is not independent of that of the other unknowns. This dependence

requires that we must solve for all of the unknowns simultaneously, which results in a

very high-dimensional problem. Also, since one of our unknowns is D0, the inversion

is non-linear. To make the solution tractable we make simplifying assumptions. These

assumptions can be thought of as part of our prior or choice of model, although we do

not formally evaluate the probability distribution associated with the model choice. We

expect that the bottom boundary condition is not changing rapidly with time, and we

assign a constant in time bottom boundary gradient to each site. The solution is very

sensitive to D0, so we seek to recover the time series of bottom water concentrations that

is our top boundary condition simultaneously to the coefficient D0. The time series is

parameterized as a set of concentrations at fixed time points spaced 2000 years apart near

the present-day with increasing resolution further back in time. Our choice of time points

reflects our understanding that, at low sedimentation rate sites such as those we consider,

the resolution of any paleorecord will not be greater than a few thousand years due to

bioturbation at the sediment–water interface. The diffusion-dominated information in the
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pore fluids will be lower resolution than the information recorded in the solid state. In

order to not degrade the accuracy of the finite difference solution, we linearly interpolate

between the fixed time point parameters to create the input to the forward model.

3.2.2.3 Cost function

We assume our error is exponentially distributed to compute the likelihood function

P (D|Θ) ∝ e−1/2(dm−dobs)TC−1
D (dm−dobs) (3.6)

The data covariance matrix CD is diagonal, under the assumption that the errors of

individual measurements are independent. dm is the data produced by the forward model,

given the model parameters Θ, while dobs is the observed (measured) data.

We use an exponential error assumption rather than a Gaussian error assumption in

order to reduce the effect of extreme data outliers on our solutions. Pore fluids are flame-

sealed into glass vials on retrieval, and if extreme care is not taken in this process, a

sample can partially evaporate, changing its δ18O and [Cl−] concentration. Alternatively,

a vial may appear to be sealed but is not, such that it partially evaporates during the

time in transport from the sampling site to the laboratory. Errors in handling that

lead to evaporation can go unnoticed but later appear as scatter far outside our typical

measurement error. We generally can not quantify the error associated with these seeming

outliers. The exponential error assumption allows us to assign our typical measurement

standard deviation to the data covariance matrix diagonal while still being robust to

handling error which can not be quantified.

3.2.3 Choice of priors

The posterior solution to our problem is highly sensitive to our choice of prior. This

sensitivity implies that if we could improve our prior confidence we could improve our

confidence in the solutions. We have high confidence in some of our prior assumptions,
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such as our estimate of the mean sea level in the past. Other prior information necessary

to the problem is more difficult to choose. We show the results with different, reasonable

priors and discuss the implications of each one to water mass histories, as well as the

biases induced by the given prior.

We choose Gaussian distributions for our prior probabilities of the salinity or δ18O at any

point in time. Recall that we have parameterized the boundary condition in our problem

as a set of nodes; each node represents the value of salinity or δ18O at a given time.

We assign a prior mean and standard deviation to each node. The standard deviation

represents the expected spread of ocean salinities or δ18O values around the mean at

that time. In order to enforce smoothness of our solutions, we further impose covariance

between the node values. For the boundary condition forcing, the prior probability is a

multidimensional Gaussian that can be written as a covariance matrix.

3.2.3.1 Prior information from sea level records

There is little information about past deep ocean salinity from paleo proxies. However,

we do have confidence in sea level reconstructions. Assuming the major ion quantities

are conservative over our time period of interest, the mean ocean salinity is determined

by the amount of water in the oceans, that is, the sea level. We treat the ocean as a

rectangular basin that is 3800 m deep today so that the concentrations scale directly to

changes in sea level:

St = Smod +
ht − hmod

hLGM − hmod
(SLGM − Smod) . (3.7)

Here t denotes the time (in the past), mod indicates the modern mean ocean value, and

h is the absolute mean sea level height. We take the modern mean ocean salinity to be

34.68 and the LGM mean ocean salinity as SLGM = hmodSmod/hLGM = 35.9.

There have been many attempts to estimate the past contribution of δ18O|w to the δ18O|c
of benthic foraminifera at the LGM (e.g. Emiliani, 1966, Shackleton, 1967, Dansgaard and

Tauber, 1969, Chappell and Shackleton, 1986, Fairbanks, 1989, Mix, 1987, Schrag et al.,
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1996). Most estimates rely on estimates of the total continental ice and size of the polar

ice sheets on the planet. Conversion from total ice mass to the mean δ18Ow of the ocean

requires assuming a δ18O of the glacial ice in different locations, and thus it is difficult

to quantify the errors associated with these estimates. Typically the authors of these

studies provide conservative bounds by testing extreme hypotheses. Schrag et al. (1996)

combined pore fluid measurements with hypothetical bottom water boundary conditions

to provide constraints on both local and mean ocean δ18O. Since we are re-evaluating the

pore fluid constraints, we can not use these estimates for our problem. Duplessy et al.

(2002) reviews some of the traditional ice mass based estimates of the δ18O and suggests a

new constraint for the lower bound of ocean mean δ18O|w of 0.85h based on the freezing

point of seawater. They suggest an upper bound constrained by pore fluid data of 1.25h.

Their upper bound based on ice mass approximations is 1.47h. We take the best guess

of the LGM mean ocean δ18O to be the midpoint of the Duplessy et al. (2002) bounds,

1.16h. The equation for δ18O as a function of time (sea level) is similar to that of S,

where we assign modern mean δ18O = 0.

For the sea level curve we have created a new compilation from previously published val-

ues. The values are included in Table 3.1 with their source for reference. Figure 3.4 shows

the compiled values overlain by the selected values we use for our parameter positions.

Where the time of our parameter node does not correspond to a measured value, we take

a linear interpolation between the nearest points.

3.2.3.2 Prior information from modern ocean property spreads

At each time node, the prior assigned for both salinity and δ18O are Gaussians with mean

determined by the sea level. Today, the mean ocean value is a good approximation for

the deep ocean, due to the deep ocean’s volume contribution to the mean.

The past salinity and δ18O spread around the mean is unknown. Lacking other informa-

tion, we might guess that the past spread in δ18O and salinity around the mean is the

same as the modern spread. From the World Ocean Atlas 2009 (Antonov et al., 2010) and

the GISS database (LeGrande and Schmidt, 2006) we plot the histograms of salinity and
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Figure 3.4: Reconstructions of past sea level relative to present (black circles) and the
points we use for sea level in computing the prior mean salinity and δ18O (blue triangles)

δ18O for all points deeper than 2000 m in Figure 3.5. Note that today these are not simple

Gaussians; at best they could be described as a mixture of Gaussians. In particular the

Atlantic and Pacific can be identified in the salinity histogram as unique water masses.

We fit a Gaussian pdf envelope around each histogram, as shown in the blue curves in

Figure 3.5, to estimate the modern mean and spread around the mean. Applying this

method gives a modern deep ocean σS = 0.12 g kg−1 and σδ18O = 0.25h. In addition to

the possible spread of deep ocean property values, the prior variances must also account

for error in the sea level curve. We choose an error of 10 m at the LGM. Propagation

of 10 m error through the scaling for sea level gives an error of 0.098 g kg−1 in salinity.

The LGM δ18O error is not directly related to the sea level, but Duplessy et al. (2002)

suggest an error on their estimate for mean δ18Ow should be 0.2h. Summing together

the modern spread and the error yields σS = 0.218 or a variance σ2
S = 0.05. σδ18O=0.45

and σ2

δ18O
=0.20h.

Today the covariance between δ18O and S varies by water mass/basin. Our choice of defi-

nition of the prior means induces an implicit prior covariance between the mean δ18O and

S that is constant in time and space, although we expect that it varies with time and loca-

tion in the ocean. The solution for δ18O and salinity at a given site are, however, entirely

separate, allowing any combination of the two to arise in the posterior distributions.
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To represent the fact that neighboring points in a time series at a given location are not

independent, since the evolution of δ18O and salinity at deep ocean sites is dominated by

eddy diffusion, we assign covariances to the points in the time series. The covariances are

chosen to have the form:

σij = σ2
iie
−

(ti−tj)
2

2T2 , (3.8)

where T is a timescale of covariance. When ti − tj = T , the correlation between the time

series values at those times is ∼0.6, while if ti − tj = 2T , the correlation between the

values is ∼0.1. T is roughly half of an ocean site’s memory of its previous value, which is

a somewhat ambiguous concept physically.

T is set by ocean mixing, which is spatially variable and depends at least in part on

the global distribution of temperature and salinity through its dependence on the slope

of isopycnals. Much of the information in T is encapsulated in the ever-elusive eddy

diffusivity parameter, κ. T and κ are related in a scaling argument sense through a

length-scale L, that is,

2T =
L2

κ
, (3.9)

where we have written 2T to represent the amount of time it would take for an ocean

site to completely forget its previous value. κ is a spatially variable tensor quantity, with
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Figure 3.5: (a) Modern S below 2000m, GISS database accessed 9/12/2012, excluding the
Mediterranean Sea. Blue curve is Gaussian distribution with standard deviation used for
priors (b) modern δ18O below 2000m
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unique values both across isopycnals and in both the x and y directions along isopycnals.

While there is an ongoing debate about the absolute values of κ, the current best estimates

for deep ocean along-isopycnal κ, primarily using inverse methods on climatologies, are

O (100 m2 s−1) (Zika et al., 2009, 2010). Diapycnal values are not significant for the local

balance as they are at maximum O (1×10−4) (Ledwell et al., 1993, Kunze et al., 2006).

The proper value of L is closely related to the question of how the ocean overturning is set.

For deep ocean sites that feel the influence of spatially homogeneous deep water masses,

we expect the minimum L to be at least half a basin length, or half the Atlantic basin

length: roughly 8000 km. With these values for L and κ, T would be ∼10,000 years.

Our scaling argument assumes a steady state ocean circulation and ignores temporal

variation in ocean circulation. δ13C and δ18O records in the ocean sediments indicate

that the ocean does not remain in steady state over 10,000 years. In the absence of a

strong contribution from geothermal heat, the primary forcing to the ocean circulation

occurs at the surface. T may also represent the time for a site in the ocean to reach

a new steady state in response to perturbations at the surface. Using radiocarbon ages

as rough estimates of the reservoir age of the deep ocean, many have concluded that

the ocean can reach a new steady state after 2000 years (Duplessy et al., 1991, Skinner

and Shackleton, 2005), implying that T = 1000 years. However, Wunsch and Heimbach

(2008) demonstrate that radiocarbon ages can be misleading, and it may take the ocean

up to 10,000 years to reach a new equilibrium or for a specific site to forget its past

value depending on where a regional surface forcing is applied. In our framework this is

equivalent to T = 5000 years or more. The only location which deviates from this rule is

the high latitude North Atlantic, which may require only a few hundred years to locally

equilibrate to a local change in forcing, as a significant component of deep waters there

result from rapid deep convection (McCartney and Talley, 1984, Dickson and Brown,

1994).

3.2.3.3 Accounting for different-than-modern past ocean property spreads

Adkins et al. (2002) suggested that the spread in deep ocean salinities at the LGM was

larger than it is today. While the error bounds on Adkins et al. (2002)’s estimate were
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not well-defined, their solutions did provide acceptable fits to the pore fluid concentration

data profiles. Thus, whether or not Adkins et al. (2002)’s estimates are the most likely,

we want them to be allowable. In this way we can better compare the differences in our

solutions and methodologies. It is possible that the ocean had a wider salinity spread

in the past, but we do not have any a priori information on what the magnitude of the

spread was.

In general, Bayesian MCMC methods allow us to shrink but not expand the prior. That

is, the posterior on a given parameter may be more narrow than the prior, but it can

never be wider. For a Gaussian prior we are unlikely to recover solutions more than

two standard deviations from the mean of the prior. So, to allow for the possibility of

the LGM salinities estimated by Adkins et al. (2002), we consider the sensitivity of our

solution to wider-than-modern prior variances, up to two orders of magnitude larger than

the modern spread.

3.2.3.4 Diffusion coefficient prior

The prior we assign to the diffusion coefficient, D0, is log-normal. We choose this prior

because D0 is what is known as a Jeffreys parameter (Tarantola, 2005). Jeffreys parame-

ters are positive but invariant under scale transformations: physical parameters that are

greater than zero but could vary by orders of magnitude. In the case of diffusion, labora-

tory studies find diffusion coefficients for chloride between 1-20 ×10−6 cm2 s−1, varying as

a function of temperature, pressure, and ionic content (constraints imposed by electroneu-

trality) (Li and Gregory, 1974). The diffusivity of δ18O represents the relative diffusion

of water oxygen isotopes, which will mirror the diffusion of H18
2 O in water, O(1 × 10−5)

cm2 s−1, also a function of temperature (Wang et al., 1953). As shown in Figure 3.6, we

choose a mean diffusion coefficient of 50.5 ×10−6 cm2 s−1 and the standard deviation of

the ln(D0) equal to 1.5. While these choices do allow for greater than expected diffusion

and account somewhat for potential bioturbation, the main motivation for these numbers

is to determine whether the coefficient is resolved by the information in the measured

data. We expect that the true solution is close to 1×10−5 cm2 s−1, for both δ18O and

chloride.
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Figure 3.6: Prior probability for D0 is log-normal centered on 50×10−6 cm2 s−1, with
standard deviation of the logarithm equal to 1.5.

3.3 Results

3.3.1 Synthetic problem

We first examine several synthetic problems that illustrate how CATMIP behaves and

performs on the 1D advection–diffusion problem and illuminate its strengths and weak-

nesses. To enable comparison with the linear regularized inversions in Chapter 2, we hold

D0 and the initial and bottom boundary conditions constant and search for only the top

(sediment–water interface) boundary condition history. Examination of the SVD of the

DGF (Chapter 2) demonstrated that only O(10) modes are resolved by the data, so we

search for a comparably small number of parameters. Restricting our search to O(10)

parameters has the added advantage of retaining a relatively speedy search through pa-

rameter space, important because all MCMC algorithms suffer from the curse of dimen-

sionality. If instead we searched for the exact same number of nodes as in the linear

regularization problem in Chapter 2, one every 500 years, we would have a 250 parameter
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problem. The problem is parameterized by 22 salinity nodes, with higher resolution closer

to the present. The minimum ∆t is 2000 years.

The synthetic model in the following cases is identical to the stretched sea level example

described in Chapter 2. Past salinity is scaled to sea level changes through a constant

factor, determined by assuming that the LGM salinity was 37.1 and the LGM sea level

was 131 meters lower than it is today. D0 = 2.5 × 10−5 cm2 s−1 and the porosity is a

constant 0.8 with depth. The advective velocity at the depth of no compaction is 0.01 cm

year−1. The length of the domain is 150 meters. Initial salinity is a constant-with-depth

35.8 g kg−1. The bottom boundary condition is ∂C
∂z
|L = 0. As before, the forward model is

run with these parameters and a synthetic pore water profile data set is generated. This

data is then fed to CATMIP to return an inverse solution, and the results generated by

CATMIP are compared to the original known forcing used to generate the data.

In all of the following cases we use the same synthetic data set which is generated by

running the synthetic model forward in time 125,000 years. Synthetic noise is added to the

synthetic data at the 0.05% level. 0.05% noise represents essentially perfect measurement

precision, no random outliers, and no sample collection problems. Our motivation is to

consider the best possible measurement scenario in order to test the limitations of the

inverse method.

3.3.1.1 Linear problem – uninformative prior

We seek to provide CATMIP with a completely uninformative prior in order to identify

what information is contained in the data alone. In this example we do not constrain

the salinity to follow the sea level curve; instead we assign the same Gaussian prior in

salinity to every node. Intuitively we expect the most uninformative prior in salinity to be

a uniform prior between 0 and 60 g kg−1 where 60 represents an evaporative environment

and 0 is freshwater. In the deep ocean more reasonable bounds might be 20–45 g kg−1.

However, tests with both of these choices of prior show that the CATMIP algorithm is

ill-suited for use with hard bounds. As random walk steps are drawn from a distribution

centered around zero, if the current model is located near a hard bound, many models
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proposed will fall outside the hard bound. This leads to a high rejection rate and the

posterior distribution having an artificial peak near the bound. The artificial peak results

from two things that happen when models outside the bound are rejected. First, instead

of taking a step, the model remains in place. Second, at the next cooling step, the step

size is smaller, keeping the models from moving to a different region of the solution space.

These two behaviors have the effect of focusing the models near a hard bound, leading to

an artificially high posterior probability there.

CATMIP’s difficulty with hard bounds stems ironically from a design feature intended

for flexibility. That is, the information passed to CATMIP from our physical model is

the numerical values of parameters, their prior probabilities, and their likelihoods from

comparing the forward model runs to data. In the present framework there is no way

to distinguish between a low probability due to an infinite PDF tail-off or due to a hard

bound. However, ideally, the adaptive step-scaling in CATMIP should treat these two

cases differently.

While there are algorithmic solutions to CATMIP’s difficulty with hard bounds, they are

not essential to the present work. We work around the limitation on hard bounds by

using a very wide Gaussian spread around the sea level curve as an uninformative prior.

To represent the idea that the sea level curve is a poor constraint on deep ocean salinity,

we assign a prior standard deviation of 10, or variance of 100, g kg−1 to all salinity nodes

around the mean sea level curve, such that values outside the range 25–45 have vanishingly

small probabilities. The mean salinity scaled to sea level has a minimum value of 34.7 g

kg−1 and a maximum value of 35.9 g kg−1, so the choice of mean scaled to the sea level

is almost identical to choosing a uniform mean of 35 g kg−1.

Applying this wide Gaussian prior to every past salinity nodes we find that the data

alone is a poor constraint on the absolute values of the salinity parameters. As shown in

Figure 3.7, the recovered mean is oscillatory and does not resemble the synthetic input

model. A movie of the highest posterior probability models demonstrates that the mean

solution does not represent many models with similar values, but tradeoffs between pa-

rameters. However, as the covariance timescale increases, the highest probability models

in the posterior become more representative of the mean in the nodes closest to 0 kya.
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The highest probability models also do not resemble the synthetic model. When we con-

strain the smoothness of the solutions by increasing the prior covariance between model

parameters, the node solution magnitudes are damped near the present. With increasing

covariance, the damping extends further back in time. This uni-directional backwards-

directed bleeding results from the fact that the three most modern nodes, from 6 kya to

present, are well-constrained by the data. Increasing the prior covariance expands the

influence that the most recent 6000 years has on the earlier part of the recovered time

series.

The variance of the posterior distributions is a strong function of the prior covariances.

Figure 3.8 compares the marginal distributions of the wide Gaussian prior example with 0

covariance and 6000 year covariance timescale. Visual inspection reveals higher covariance

forces an increase in the number of posteriors that are slimmer than their priors. While

in the 0 covariance timecale case the posteriors that are shrunk only go back to ∼6 kya,

when a 6000 year covariance timescale is imposed through the prior, the salinity node

posteriors back to at least 24 kya are shrunk significantly relative to their priors.

In order to quantify this phenomenon, we compute the ratio of variances between pos-

terior and prior as a function of salinity node position in time, for a range of covariance

timescales. Figure 3.9 demonstrates that as the covariance timescale increases, the shrink-

ing of the variance from prior to posterior extends further into the past. Posterior variance

is determined by prior covariance and this relationship is proportional to information age

in the diffusion problem. In other words, when less information about the salinity at a

given time can be determined directly from the data, the inverse solution at that time is

more sensitive to information we impose through the prior covariance.
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Figure 3.7: Synthetic example with 0.05% noise added to the data. Units for salinity on the y-axis are g kg−1. Red dashed line is the
synthetic (true) model used to generate the data. The black dots represent mean positions of prior salinity nodes. The blue triangles
are the posterior mean salinity nodes. (a) has 0 covariance in the prior, (b) has T= 1000 years covariance timescale prior, (c) T=2000
years, (d) T = 3000 years, (e) T= 4000 years, (f) T = 5000 years, (g) T = 6000 years.
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The mean solution appears similar across prior covariance timescales, suggesting that the

data, while not able to resolve individual values, does constrain the underlying covariance

between parameters. The challenge in picking this information out is that the posterior

covariances are a strong function of prior covariance as demonstrated in Figure 3.10.

However, the 0 prior covariance case does indicate slight posterior covariances that arise

from information in the data. In reading this plot it is important to know that the changes

in ∆t happen at 30 ka BP (from 2000 to 5000 years), at 45 ka BP (from 5000 to 25000) at

70 ka BP (from 25000 to 10000) and at 80 ka BP (from 10000 to 45000) which explains the

unevenness in the older node covariances. In the more recent nodes, moving backwards

in time, there is at first a 2000 year oscillating tradeoff until 12 ka BP. Each node is

primarily correlated with nodes within a 6000 year range until around 20 ka BP, after

which point there are no significant correlations until 30 ka BP. I interpret this to mean

that the oldest nodes act in some sense as an initial condition to the more recent time

information. There is a clear breakpoint at the 12 ka BP node from a 2000-year period

oscillation to a 4000-year or longer time scale. Correlations below 0.2 are masked, but

there must be a low level correlation that balances the negative correlations.

With increasing prior correlation the strips of correlation become longer and larger in mag-

nitude. The alternation between postive and negative correlations suggests the increasing

presence of underlying frequencies in the recovered solutions.

From a spectral analysis perspective, it is difficult to robustly extract underlying frequen-

cies from 22 coarsely located sample positions. However, being careful to not overinterpret

the frequency information, we can still examine the effect of increasing the covariance

timescale on the posterior frequency spectrum. Figure 3.11 shows how the mean of the

posterior shifts relative to the prior as a function of covariance timescale. The time de-

pendence of the mean shift flattens with increasing covariance, and there seems to be a

sinusoidal character to the mean shift.

Using a Lomb-Scargle frequency analysis of the mean posterior (Lomb, 1976, Scargle,

1982), Figure 3.12 shows that as the prior covariance increases, the shift in the posterior

mean increasingly picks up a statistically significant (or at least identifiable at this resolu-

tion) sinusoidal character. At 0 covariance there are no statistically significant frequencies
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Figure 3.8: Histograms of synthetic solution assuming 100 g kg−1 variance. Blue is the
histogram of the prior samples, red is the histogram of the posterior samples. (a) has a
prior with no covariance while (b) has a prior covariance timescale of 6000 years
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Figure 3.9: Ratio of posterior variance to prior variance for the linear synthetic case with
100 = σ2

I and µI set by scaling to sea level curve. Each colored line depicts a different
value for the prior covariance timescale T, from 0 to 6000 years

in the data that can be recovered. The power spectrum of the 0-year prior covariance

example’s posterior mean is essentially flat, and all of the p-values of the frequencies are

∼ 1. As the prior covariance timescale increases the frequencies of peak power in the

posterior shift to lower values (longer periods) and become more significant. Note that

while p-values close to 1 are not statistically significant, and increasingly small p-values

are more likely to be statistically significant, there is no clear cutoff in p-value between

statistically significant and insignificant values.

We can separate out the behavior of the posterior mean and prior mean to identify their

individual contributions to this frequency spectrum. The posterior mean, Figure 3.12,

shifts to lower frequencies with greater prior covariance. The number of frequencies re-

covered in the posterior also declines as the prior covariance increases.

Interestingly, the recovered frequencies in the posterior mean are higher than those in the

prior mean. The prior mean also has a larger number of statistically significant frequencies

than the posterior. The data filters out low frequencies; no matter the prior covariance,

all of the posterior frequencies fall in a certain band. We can also convince ourselves that

increasing the prior covariance timescale T has the effect of picking up harmonics of the

prior sea level curve, although we do not know yet whether this is significant.
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Figure 3.10: Posterior correlation maps for examples inverting the stretched sea level curve using a wide (σ = 10 g kg−1) Gaussian
prior with varying values of T. The axes’ values are the age in ka BP of each node. Each colored block is the posterior correlation
between the nodes represented by the values on the x and y axis. For this reason the maps are symmetric about the diagonal. The
scale is from -1 to 1 in unitless Pearson correlation coefficient rx,y = E[(X−µx)(Y−µy)]

σxσy
. Values between -0.2 and 0.2 have been masked

with white. (a) has 0 covariance in the prior, (b) has T= 1000 years covariance timescale prior, (c) T=2000 years, (d) T = 3000
years, (e) T= 4000 years, (f) T = 5000 years, (g) T = 6000 years.
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Figure 3.11: Shift in the mean solution from prior to posterior as a function of covariance
timescale T. Each line represents a different value of T in years, from 0 years to 6000
years. As T increases, the temporal dependence of the mean shift is flattened or damped.
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Figure 3.12: Lomb-Scargle periodogram of the posterior mean for the stretched sea level
example using a wide Gaussian prior. The black line is the periodogram of the prior mean
for comparision. Each color is the periodogram of the posterior mean with a different prior
covariance timescale T in years, from 0 to 6000 years. The vertical lines overlain show the
peak frequencies for the prior and those of the posterior for the example T = 6000 years.

3.3.1.2 Linear problem – sea level prior with varying variance and covariance

The uninformative prior example demonstrated that there is very little information about

past concentration histories in the data alone. The data alone constrain at most 6000

years of the bottom water boundary condition, assuming that the initial condition, D0

and the other boundary condition are known. However, the uninformative prior example

was a very stringent test, as the deep ocean salinity is unlikely to be able to stray so

far from the mean. In the next example we consider how constraining the past ocean

salinity more tightly to the mean sea level records contributes to recovering past deep

ocean properties from present-day pore fluid profiles.

Deep ocean salinities should be near the mean ocean value, although their exact proximity

is what we want to determine from the pore fluid data. The way we have framed the

problem requires assigning a prior variance in addition to a prior mean on each salinity

node. We do not have any prior information on the standard deviation of salinity at the

LGM. Solutions that are more than two standard deviations from the prior mean are



90

unlikely to be recovered, even if their data likelihood is high, due to the multiplication

factor of 0 from the prior. To recover an LGM value of 37.1, the LGM salinity of site

1093 estimated by Adkins et al. (2002), when our prior information tells us that the mean

ocean salinity at the LGM was 35.9, the prior standard deviation should be at least 0.6,

even without accounting for error in the sea level curve. On the other hand, recall that

the maximum standard deviation we could apply to the modern deep ocean salinity is 0.1

g kg−1. Already these two standard deviations generate an order of magnitude difference

in prior variance.

While we expect that the salinity values will covary in time, we do not want to restrict

their covariance with the prior, instead looking at what arises in the posterior. One tricky

point about this is that if there is covariance in parameters, assigning 0 covariance in the

prior will penalize solutions with covariance. Stated in another way, no matter what level

of covariance is assigned in the prior, solutions with both more than and less than this

level of covariance are penalized in the search.

A second tricky point to remember is that the variance and covariance are part of the

prior, and can not be sampled on as parameters in the problem. If we were to sample

on these parameters, we would be regenerating the prior probability distributions at each

cooling step, violating the continuity of the cooling. Looked at from another perspective,

this would be a nested prior. That is if we stated the prior was “actually” just on the

variance and covariance parameters, these do not uniquely determine the salinity at each

time, and we still need an interior random generation.

With these points in mind, we consider varying levels of variance and covariance in the

prior, and their effect on solution space recovery. We show solutions with variance of 0.02,

0.5 and 1 to show the sensitivity of the solution to this parameter.

Figure 3.13 shows an example with 0 prior covariance and varying levels of prior vari-

ance around a mean prior scaled to the sea level curve. At the 0.02 level of variance,

the mean of the solution space does not recover the synthetic model. The solutions do

generally increase backwards in time, showing that data contains information that the

past salinity was higher. With increased prior variance, the individual solutions can take
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on more extreme values, but there is not a significant change in the mean recovered time

series. Examining the correlations between parameters in Figure 3.14 helps explain this

phenomenon. The maps are essentially identical for all three covariance cases. Having

the same covariance between parameters is what makes the mean constant throughout

the cases. The fact that the mean doesn’t change between covariance levels means that

the mean and some covariance is recovered by the data, but the variance is not. There

is also some checkerboarding in the most modern parameters, the switching between red

and blue colors in the covariance plots as we read along the horizontal rows, suggesting

that the mean value of these nodes is resolved by the data but the absolute values are

not.

As we increase the covariance from 0 to 5000 years, the mean of the recovered time

series solutions improves in its match to the last 40k years. The improved match of the

recovered mean time series to the synthetic input at 5000 years prior covariance shows

that the stretched curve that we chose as a synthetic has an underlying covariance time

scale of 5000 years at least in the more modern section of the time series. The 5000 year

covariance timescale does not affect points in the past as much as those in the present,

as seen in the correlation plot, because they are separated by more than 5000 years.

Their correlations or covariances with other parameters are hence very small and do not

constrain the problem very much. As the covariance increases, the jaggedness of the

solutions clearly drops, as seen by the top ten selected time series plotted in Figures 3.13–

3.19. When T=5000, CATMIP does an excellent job of recovering our synthetic time

series from the LGM to present. In all variance cases the error between the recovered

mean LGM value and the true synthetic value is < 0.1 and for other points the error

is < 0.05. Also while the individual models have some oscillations, the mean estimated

time series does not suffer from instability to noise as did the regularized least squares

solutions in Chapter 2.

The literature contains many examples of sea level-type signals, such as ice core δ18O

records that show high spectral power in the time series at longer frequencies (10–100kyr)

and possibly bulges around the 4000 year frequency (Wunsch, 2003). As the synthetic has

a linear relationship with sea level we expect that its spectral characteristics are similar
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to that of a sea level signal.

For any given covariance timescale, the posterior correlation maps are essentially the same.

The posterior correlations, and hence the posterior covariances, are primarily determined

by the prior covariances. This result reinforces the point that we can not recover much

covariance information from the data that is separate from the prior covariance. It is

true that the assigned prior covariances are all positive, while we are recovering negative

covariances. By essentially forcing certain covariances to be positive, the rest of the pa-

rameters must compensate in response, generating the negative covariances. The negative

covariances in the posterior are a response to the prior positive covariances.



93

0 20 40 60 80 100 120

34.5

35

35.5

36

36.5

37

kya

(a)

0 20 40 60 80 100 120
34

34.5

35

35.5

36

36.5

37

kya

(b)

0 20 40 60 80 100 120
34

34.5

35

35.5

36

36.5

37

37.5

kya

(c)

Figure 3.13: Synthetic example with 0.05% noise added to the data. The prior nodes
are independent (no covariance) Gaussians centered around a salinity curve scaled to sea
level with varying variance. (a) 0.02 g kg−1 (b) 0.5 g kg−1. (c) 1 g kg−1. Red dashed
line is the synthetic (true) model used to generate the data. The black dots represent
mean positions of prior salinity nodes and the black lines are the 10 highest probability
samples from the prior. The blue triangles are the posterior mean salinity nodes and the
blue lines are the 10 highest probability samples from the posterior.
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Figure 3.14: Posterior correlation matrices for models shown in Fig. 3.13 where the prior
T=0. The axes’ values are the age in ka BP of each node. Each colored block is the
posterior correlation between the nodes represented by the values on the x and y axis.
For this reason the maps are symmetric about the diagonal. The scale is from -1 to 1 in
unitless Pearson correlation coefficient rx,y = E[(X−µx)(Y−µy)]

σxσy
. Values between -0.2 and 0.2

have been masked with white. (a) 0.02 g kg−1 variance, (b) 0.5 g kg−1 variance, (c) 1 g
kg−1 variance
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Figure 3.15: Synthetic example with 0.05% noise added to the data. The prior nodes
have Gaussian covariance with time scale T = 1000 years centered around a salinity curve
scaled to sea level with varying variance. (a) 0.02 g kg−1 (b) 0.5 g kg−1. (c) 1 g kg−1.
Red dashed line is the synthetic (true) model used to generate the data. The black dots
represent mean positions of prior salinity nodes and the black lines are the 10 highest
probability samples from the prior. The blue triangles are the posterior mean salinity
nodes and the blue lines are the 10 highest probability samples from the posterior.
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Figure 3.16: Posterior correlation matrices for models shown in Fig. 3.15, where T =
1000 years. The axes’ values are the age in ka BP of each node. Each colored block is the
posterior correlation between the nodes represented by the values on the x and y axis.
For this reason the maps are symmetric about the diagonal. The scale is from -1 to 1 in
unitless Pearson correlation coefficient rx,y = E[(X−µx)(Y−µy)]

σxσy
. Values between -0.2 and 0.2

have been masked with white. (a) 0.02 g kg−1 variance, (b) 0.5 g kg−1 variance, (c) 1 g
kg−1 variance
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Figure 3.17: Synthetic example with 0.05% noise added to the data. The prior nodes
have Gaussian covariance with time scale T = 3000 years centered around a salinity curve
scaled to sea level with varying variance. (a) 0.02 g kg−1 (b) 0.5 g kg−1. (c) 1 g kg−1.
Red dashed line is the synthetic (true) model used to generate the data. The black dots
represent mean positions of prior salinity nodes and the black lines are the 10 highest
probability samples from the prior. The blue triangles are the posterior mean salinity
nodes and the blue lines are the 10 highest probability samples from the posterior.
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Figure 3.18: Posterior correlation matrices for models shown in Fig. 3.17 where T = 3000
years. The axes’ values are the age in ka BP of each node. Each colored block is the
posterior correlation between the nodes represented by the values on the x and y axis.
For this reason the maps are symmetric about the diagonal. The scale is from -1 to 1 in
unitless Pearson correlation coefficient rx,y = E[(X−µx)(Y−µy)]

σxσy
. Values between -0.2 and 0.2

have been masked with white. (a) 0.02 g kg−1 variance, (b) 0.5 g kg−1 variance, (c) 1 g
kg−1 variance
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Figure 3.19: Synthetic example with 0.05% noise added to the data. The prior nodes
have Gaussian covariance with time scale T = 5000 years centered around a salinity curve
scaled to sea level with varying variance. (a) 0.02 g kg−1 (b) 0.5 g kg−1. (c) 1 g kg−1.
Red dashed line is the synthetic (true) model used to generate the data. The black dots
represent mean positions of prior salinity nodes and the black lines are the 10 highest
probability samples from the prior. The blue triangles are the posterior mean salinity
nodes and the blue lines are the 10 highest probability samples from the posterior.
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Figure 3.20: Posterior correlation matrices for models shown in Fig. 3.19, where T=5000
years. The axes’ values are the age in ka BP of each node. Each colored block is the
posterior correlation between the nodes represented by the values on the x and y axis.
For this reason the maps are symmetric about the diagonal. The scale is from -1 to 1 in
unitless Pearson correlation coefficient rx,y = E[(X−µx)(Y−µy)]

σxσy
. Values between -0.2 and 0.2

have been masked with white. (a) 0.02 g kg−1 variance, (b) 0.5 g kg−1 variance, (c) 1 g
kg−1 variance

The histograms of each parameter are equivalent to the parameter’s marginal distribution.

By comparing the marginal of the prior to the marginal of the posterior we can see the

information gain for each individual parameter. Figure 3.21 shows the marginals for

the prior variance of 0.02 g kg−1. Figure 3.21a is using a prior with 0 covariance while

figure 3.21b is on the other end of the spectrum with 5000 years covariance timescale.

With 0 covariance timescale, the means of the distributions are shifted but most of the

distribution priors are the same width as the posterior. The clear exceptions are the two
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most modern nodes parameters, 0 and 2ka BP. In contrast, when the prior covariance

increases to 5000 years, many more nodes have shrunk in variance. Their means are also

in a different position than in the case with 0 covariance priors. It is not easy to see how

far back the change extends, but in Figure 3.22 which is the same but with variance 1

instead of 0.02, we can much more clearly see that the variance of parameter distributions

shrinks backward in time to at least the salinity node at 24 ka BP.

We show how the variance of the posterior shrinks with respect to that of the prior

for a range of variances and covariances together in Figure 3.23. The lines are color-

coded by covariance timescale which serves to illustrate that the results almost collapse

with covariance timescale, or at least are primarily a function of covariance timescale.

A variance shrinkage of more than 0.5 is probably not significant. Otherwise, this plot

very much resembles the resolution plots from Chapter 2. That is, nodes representing

information further back in time are less well resolved than modern nodes. This resolution

is different in that we are not comparing the true solution to the recovered solution. Rather

we are demonstrating the impact of the information from the data on evolving the prior

to become the posterior. With greater covariance, the nodes are increasingly well resolved

in variance and the resolution of the nodes extends further back in time. The main point

of this plot is that the variance in the posterior, or resolution of the method, is a strong

function of the covariance in the prior. The prior covariance sets the posterior variance.

The relationship between parameter mean and prior covariance and variance is shown in

Figure 3.24. Again, much of the information collapses on the covariance timescale. Next

we see that as the covariance time scale increases, the temporal pattern of the mean shift

is squashed, or flattened. This illustrates the point that the shift in the mean of each

individual parameter is a function of the covariance. It reinforces the point brought up

by the plots comparing the mean with different levels of variance; increasing the variance

in the prior does not change the mean of the recovered solution sets, but increasing the

covariance does.

Comparing priors and posteriors is one way to see the information change of the method,

but it does not tell us how well the solution is recovered. Figures 3.13-3.17 demonstrate

that the posterior may not include the true solution if the prior is not an accurate rep-
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resentation of the solution space. We can be tricked by a strong change in the posterior

probability distribution relative to the prior. In Figures 3.25 and 3.26 we plot the differ-

ence between the mean of the posterior distribution and the true synthetic model used to

generate the data, for a variety of input covariance timescales and variances.

The error between the posterior mean and the true model is a function of covariance

timescale, which we interpret again to mean that the underlying covariance timescale of

the synthetic model was closer to 5000 than to 0. However, there also seems to be a

fundamental frequency in the error that is constant between different prior variance and

covariance assumptions. We believe this fundamental frequency is due to the relationship

between the prior and the true synthetic model. Recall that the synthetic is a stretched

version of the prior, such that when CATMIP searches for models that improve on the

prior in their fit to the data, it will find good fits along the directions of stretching. It then

will realign its search in this direction of covariance, tending to populate the posterior

with more values that lie along a particular direction. The relationship between the prior

mean and the true model is fixed throughout these different examples, explaining why a

fundamental frequency arises in the difference between posterior means and true model.
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3.3.1.3 Linear Problem – recovery of models with known variance and co-

variance

In the stretched sea level example above, the variance and covariance of the posteriors are

different than those of the priors, and the relationships between nodes in the time series

oscillate between correlation and anti-correlation. In generating this synthetic example,

we did not specify the underlying variance and covariance of the synthetic model. Our

results suggest that the underlying covariance of the synthetic model is 5000 years or

more. The obvious question at this point is: If the covariance and variance are known,

does this information in addition to the measured data profile allow us to recover the true

model?

To answer this question we generate random sample models from a Gaussian prior with

mean determined by the sea level curve to drive the forward model and produce data

that we invert with CATMIP. We show how well CATMIP, using this synthetic data,

recovers the inputs drawn from a very tight prior, 0.02 g kg−1 variance and 4000 year

covariance, and a less informative prior, with 0.5 g kg−1 variance and both 0 and 4000

year covariances.

Then, we consider what happens when the wrong prior is assigned to CATMIP. Since in

reality we do not know the variance and covariance of the time series that generated the

data, we consider the bias in our solution if our prior information about these parameters

is wrong.

Figure 3.27 shows ten random sample models drawn from a very tight prior with 0.02 g

kg−1 variance and 4000 year covariance, in addition to the mean of the recovered solutions

and the prior mean. Although we may have expected that the recovered mean of the

solutions was the same as the prior mean, this is not the case. Instead, the recovered

posterior mean more closely resembles the synthetic model, at least in the most recent 20

ka before present. Looking backwards in time, the posterior mean decreasingly resembles

the synthetic model, more so the more the synthetic model deviates from the prior mean.

A more accurate representation of the error in the recovered solution is shown in Fig-



100

35 36 37
0

20

40

60

80
Salinity Node 125 ka BP

35 36 37
0

20

40

60

80
Salinity Node 80 ka BP

35 36 37
0

20

40

60

80
Salinity Node 70 ka BP

35 36 37
0

20

40

60

80
Salinity Node 45 ka BP

35 36 37
0

20

40

60

80
Salinity Node 40 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 35 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 30 ka BP

35 36 37
0

20

40

60

80
Salinity Node 28 ka BP

35 36 37
0

20

40

60

80
Salinity Node 26 ka BP

35 36 37
0

20

40

60

80
Salinity Node 24 ka BP

35 36 37
0

20

40

60

80
Salinity Node 22 ka BP

35 36 37
0

20

40

60

80
Salinity Node 20 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 18 ka BP

35 36 37
0

20

40

60

80
Salinity Node 16 ka BP

35 36 37
0

20

40

60

80
Salinity Node 14 ka BP

35 36 37
0

20

40

60

80
Salinity Node 12 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 10 ka BP

35 36 37
0

20

40

60

80
Salinity Node 8 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 6 ka BP

35 36 37
0

20

40

60

80
Salinity Node 4 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 2 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 0 ka BP

(a)

35 36 37
0

10

20

30

40

50

60
Salinity Node 125 ka BP

35 36 37
0

20

40

60

80
Salinity Node 80 ka BP

35 36 37
0

20

40

60

80
Salinity Node 70 ka BP

35 36 37
0

20

40

60

80
Salinity Node 45 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 40 ka BP

35 36 37
0

20

40

60

80
Salinity Node 35 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 30 ka BP

35 36 37
0

20

40

60

80
Salinity Node 28 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 26 ka BP

35 36 37
0

20

40

60

80
Salinity Node 24 ka BP

35 36 37
0

20

40

60

80
Salinity Node 22 ka BP

35 36 37
0

20

40

60

80
Salinity Node 20 ka BP

35 36 37
0

20

40

60

80
Salinity Node 18 ka BP

35 36 37
0

20

40

60

80
Salinity Node 16 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 14 ka BP

35 36 37
0

20

40

60

80
Salinity Node 12 ka BP

35 36 37
0

20

40

60

80
Salinity Node 10 ka BP

35 36 37
0

20

40

60

80
Salinity Node 8 ka BP

35 36 37
0

20

40

60

80
Salinity Node 6 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 4 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 2 ka BP

35 36 37
0

10

20

30

40

50

60
Salinity Node 0 ka BP

(b)

Figure 3.21: Histograms of synthetic solution assuming 0.02 g kg−1 variance. Blue is the
histogram of the prior samples, red is the histogram of the posterior samples. (a) has a
prior with no covariance while (b) has a prior covariance timescale of 5000 years. Each
box is one node of the time series we are estimating. From left to right and top to bottom
the nodes move forward in time, starting at 125 ka BP and ending at the present, 0 ka
BP.
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Figure 3.22: Histograms of synthetic solution assuming 1 g kg−1 variance. Blue is the
histogram of the prior samples, red is the histogram of the posterior samples. (a) has a
prior with 0 covariance while (b) has a prior with 5000 year timescale covariance. Each
box is one node of the time series we are estimating. From left to right and top to bottom
the nodes move forward in time, starting at 125 ka BP and ending at the present, 0 ka
BP.
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Figure 3.23: The ratio of posterior variance (σ2
F ) to prior variance (σ2

I ) for a range of
different input priors and data from the stretched sea level curve example. Each color
corresponds to a different value of T, the covariance timescale in years, while each symbol
is a different input variance. The symbols help delineate the different lines, but the
variance shrinkage is primarily a function of T
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Figure 3.24: Shift in the mean of the posterior population (µF ) with respect to the mean
of the prior distribution (µI), normalized to the mean of the prior distribution. Each
color corresponds to a different value of T, the covariance timescale in years, while each
symbol is a different input variance.
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Figure 3.25: Difference between the posterior mean and the true synthetic model (g kg−1)
as a function of prior variance and covariance. Each color corresponds to a different value
of T, the covariance timescale in years. Each symbol is a different input variance, from
0.02 to 1 g kg−1
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Figure 3.26: Same as Figure 3.25, except also including the examples with wide Gaussian
prior σ2

I = 100 g kg−1
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ure 3.28. Plotted are the error in the posterior from the true solution and the difference

in the prior from the true solution. The reduction in error from the prior to the posterior

indicates the amount of information the data is retaining above and beyond the prior

variance and covaraince. The error envelope between the posterior mean and the true

solution is much flatter from 0 to ∼ 20 ka BP. Further back in time the flattening, if any,

is much more subtle.

Since we know from the previous examples that long timescales of covariance help restrict

the posterior solution space more, the obvious question is what about the case with 0 year

timescale covariance? Figure 3.29 shows the recovery of ten random samples with these

parameters. The synthetic models are more jagged and the posterior does not follow

the synthetic model even in the most recent time nodes. The posterior seems to be a

smoother version of the solution, particularly noticeable in Figure 3.29d and 3.29h. The

posterior nodes in the most recent 10 ka are sitting at the average of their two neighboring

true nodes. Indeed, Figure 3.30, which compares the error in the posterior relative to the

difference in the synthetic from the prior, shows that shrinking the error envelope from

prior to posterior happens over a much shorter time period, ∼10ka BP rather than the

∼20ka BP seen in the case with 4000 year timescale covariance. Thus, even when the

model is drawn from a known prior, longer covariance timescale models can be more

reliably recovered.
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Figure 3.27: Ten random models drawn from the scaled sea level curve with variance 0.02
g kg−1 and covariance T = 4000 years. Red is the target or true model from which the
data was generated. Black circles are the mean of the posterior samples. Black stars and
dashed line are the mean priors
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Figure 3.28: Top: difference between the mean of the posterior and the true model (g
kg−1) used to generate the data for the 10 random sample synthetic models shown in
Figure 3.27, that were drawn from a distribution with 0.02 g kg−1 variance and 4000 year
covariance timescale T. Bottom: difference between the mean of the prior and the true
model for the same set.

What about recovering models from a larger variance prior, in the case that the past

ocean salinity spread was larger? We show the recovery of random samples drawn from

a Gaussian sea level curve prior with 0.5 g kg−1 variance and both 0 and 4000 year

covariance in Figures 3.31 and 3.33. With 0 years of covariance, the recovered solutions

are accurate only up to 4-6 ka BP. With 4000 years of covariance, the solutions are

accurate for longer times in the past, but certainly less than 20 ka. Figures 3.34 and 3.32

confirm this supposition. Comparing the 0.5 variance time series error sets to those of the

0.02 variance, the time limits on information recovered are essentially the same. In both

cases, when the prior covariance timescale is 4000 years, there is some reduction in error

from the prior to posterior up to 20 ka BP. When the covariance timescale is 0 years, the

error reduction drops to ∼ 5ka BP in both variance cases. The difference between the two

variance levels is the amount of error in the solution. Not surprisingly, there is larger error

between the true solution and the posterior when the random models are drawn from a

prior with 0.5 g kg−1 variance, which just reflects the larger possible range of solutions

available. Since there are infinite solutions to this problem, it makes sense that the larger

the solution space width, the more potential error is allowed.
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Figure 3.29: Ten random models drawn from the scaled sea level curve with variance
0.02 g kg−1 and covariance T = 0 years. Red is the target or true model from which the
data was generated. Black circles are the mean of the posterior samples. Black stars and
dashed line are the mean priors
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Figure 3.30: Top: difference between the mean of the posterior and the true model (g
kg−1) used to generate the data for the 10 random sample synthetic models shown in
Figure 3.29, that were drawn from a distribution with 0.02 g kg−1 variance and 0 year
covariance timescale T. Bottom: difference between the mean of the prior and the true
model for the same set.

Similarly to the error reduction, the reduction in variance of the solutions to the random

synthetics is a function primarily of covariance, as shown in Figure 3.35. This shows the

relative reduction in variance for all four sets of random synthetics discussed previously,

0.02 and 0.5 g kg−1 variances with both 0 and 4000 year covariance length scales. The

reduction in variance in all cases collapses on the covariance timescale. Even when both

the variance and covariance of the solution are known, the posterior variance is a function

of the prior covariance more than the prior variance.

In reality, the prior we assign (our prior understanding of the possible ranges of the forward

model parameters) may not be consistent with the true physics of the problem. What

happens then? We take the cases with 0.02 variance and 4000 year covariance timescale

and progressively assign increasingly more inconsistent priors to them. First we show the

case where we correctly assign the covariance timescale, but the wrong prior variance. In

this case, as shown in Figure 3.36 the relative reduction of the posterior variance is very

high, with a maximum value of 0.04. As 0.04 = 0.02/0.5, this is equivalent to the maximum

relative variance of 1 that we would expect if we had assigned the correct prior variance of

0.02. Here we see if the prior covariance timescale is correct and long, assigning too wide
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Figure 3.31: Ten random models drawn from the scaled sea level curve with variance 0.5
g kg−1 and covariance T = 4000 years. Red is the target or true model from which the
data was generated. Black circles are the mean of the posterior samples. Black stars and
dashed line are the mean priors
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Figure 3.32: Top: difference between the mean of the posterior and the true model (g
kg−1) used to generate the data for the 10 random sample synthetic models shown in
Figure 3.31, that were drawn from a distribution with 0.5 g kg−1 variance and 4000 year
covariance timescale T. Bottom: difference between the mean of the prior and the true
model for the same set.

a prior variance does not hurt the recovery of the most recent time nodes. However, note

that the set of reductions resembles the case when the prior covariance is 0. The growth

of relative variance jumps up sharply as we go back in time instead of being flat. So

when we assign too wide a variance, we no longer get the advantage of the long timescale

covariance in recovering increased information further back in time.

Next we show the results when the input prior is incorrect in both the variance and

covariance. Here we inform CATMIP that the prior information is 0.5 variance and 0

covariance. The plot of variance reduction, Figure 3.37, is almost identical to that of

when we assign the wrong variance only. Here assigning the wrong variance, no matter

whether the covariance is correct, has the effect of removing the benefits of the long

covariance timescale in recovering older parts of the solution. In reality, we can’t choose

the value of T, however the intent of this exercise is to discover what we can expect to

recover with confidence given a particular set of prior information.

Finally, we consider what happens when the input prior variance matches the distribu-

tion from which the synthetic solution was drawn, but the input covariance timescale is

incorrect. Here we input a 0.02 variance and 0 year covariance timescale to the synthetic
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Figure 3.33: Ten random models drawn from the scaled sea level curve with variance
0.5 g kg−1 and covariance T = 0 years. Red is the target or true model from which the
data was generated. Black circles are the mean of the posterior samples. Black stars and
dashed line are the mean priors
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Figure 3.34: Top: difference between the mean of the posterior and the true model (g
kg−1) used to generate the data for the 10 random sample synthetic models shown in
Figure 3.33, that were drawn from a distribution with 0.5 g kg−1 variance and 0 year
covariance timescale T. Bottom: difference between the mean of the prior and the true
model for the same set.
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Figure 3.35: Reduction in variance from (σ2
I ) to posterior (σ2

F ) for random samples with
different variance and covariance drawn from known priors. Blue lines have prior variance
0.02 g kg−1 while red lines have prior variance 0.5 g kg−1. The reduction of variance from
the prior to the posterior is a strong function of covariance timescale T
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Figure 3.36: Reduction in variance from prior (σ2
I ) to posterior (σ2

F ) for random sample
models generated from a distribution with 0.02 g kg−1 = σ2 and 4000 years = T when
CATMIP is fed the wrong prior (0.5 g kg−1 = σ2

I , 4000 years = T)
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Figure 3.37: Reduction in variance from prior (σ2
I ) to posterior (σ2

F ) for random sample
models generated from a distribution with 0.02 g kg−1 = σ2 and 4000 years = T when
CATMIP is fed the wrong prior (0.5 g kg−1 = σ2

I , 0 years = T)
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Figure 3.38: Reduction in variance from prior (σ2
I ) to posterior (σ2

F ) for random sample
models generated from a distribution with 0.02 g kg−1 = σ2 and 4000 years = T when
CATMIP is fed the wrong prior (0.02 g kg−1 = σ2

I , 0 years = T)

models drawn from the distribution with 0.02 variance and 4000 year covariance. The

variance reduction looks like a scaled version of the previous two cases with 0.5 variance.

In all of these cases we apply a less restrictive prior to the synthetic examples than the

true prior. So if the prior is wrong, in that it admits more solutions than it should, we

recover significantly less information than if our prior is a good description of the solution

space.

3.3.1.4 Nonlinear problem – recovery of models with known variance and

covariance, allowing D0 and initial condition to vary

When we recover the bottom water time series from real data, the coefficient D0 and

the initial conditions in the sediment are unknown. We now show a synthetic problem

in which we sample on these parameters in addition to nodes that represent the bottom

water time series. Here we consider a sediment domain of 350 meters and the initial

condition nodes are placed evenly spaced from top to bottom of the sediment column.

We consider four nodes and allow the prior for each of these nodes to be an independent

Gaussian centered at 34.6 g kg−1 with a standard deviation of 1 g kg−1.
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Figure 3.39: Top – difference between the true time series solution and the mean posterior,
compared to bottom – the difference between the prior and the true time series solution
for random synthetic model samples in the nonlinear problem with 1=σ2, 0 years = T

The boundary condition time series for this problem has slightly increased resolution

further back in time than the linear problems considered above, and thus there are 30

nodes representing the time series for salinity. In total the problem has 35 parameters.

We run a set of random synthetic cases drawn from Gaussians with both 0 and 6000

year covariance timescales in order to consider the extreme values of interest for the real

ocean. We also consider a variance of both 0.05 and 1. 0.05 represents a similar-to-modern

variance in deep ocean salinity while 1 is an extreme case that allows for vastly different

scenarios in the deep ocean.

Similarly to the linear case, the error in the reconstructed solutions are primarily a function

of the covariance timescale T. By comparing Figures 3.39 and 3.40 we see that the error

envelope expands moving backwards in time, and the amount it expands is inversely

propotional to the covariance timescale T.

In general the diffusion coefficient is well-resolved by the data. The posterior variance of

D0 is much smaller than the prior variance in all of the cases we considered. Figure 3.41

shows characteristic comparisons of prior, posterior and true values of D0 from the random

synthetic solutions. The mean of the posterior aligns closely with the true solution and
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Figure 3.40: Top – difference between the true time series solution and the mean posterior,
compared to bottom – the difference between the prior and the true time series solution
for random synthetic model samples in the nonlinear problem with 1=σ2, 6000 years = T

is not a strong function of the timeseries prior covariances. However, the posteriors are

wider in the cases with wider prior variance in the salinity nodes. A greater spread in

salinities allows a greater spread in diffusion coefficient (or vice versa), demonstrating the

fundamental covariance between the diffusion coefficient and the time series of salinities

that produce the same measured data.

One consequence of allowing D0 and the initial conditions to vary is that the posteriors in

some cases can be wider than the priors. Figure 3.42 shows that the variance reduction in

the cases when T = 6000 and σ2 =1 can be larger than 1, which means that the posterior

has widened relative to the prior. Additionally the reduction in variance shrinks much

less with a large covariance timescale T than it did in the linear cases. This is because

the additional freedom in the added free parameters allows those to change rather than

the time series, letting a wider variety of time series remain in the distribution.

In some cases, the posteriors of our parameters have significantly non-Gaussian distribu-

tions. Figure 3.43 is a comparision of the prior and posterior marginals from a random

synthetic example drawn from the distribution σ2 = 1 g kg−1 and 0 years = T. The

posterior for the log of D0 has two peaks. Similarly the posterior for the boundary con-
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Figure 3.41: Comparison of prior and posterior distributions of D0 for the nonlinear
random synthetic cases. (a) is a random example from the distribution 0.05 g kg−1 = σ2,
0 years = T, (b) is a random example from the distribution 0.05 g kg−1 = σ2, 6000 years
= T, (c) is a random example from the distribution 1 g kg−1 = σ2, 0 years = T, and (d)
is a random example from the distribution 1 g kg−1 = σ2, 6000 years = T.
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Figure 3.42: Variance reduction in the posterior (σ2
F ) relative to the prior (σ2

I ) for random
synthetic cases drawn from the distribution 1 g kg−1=σ2, and both 0 and 6000 years = T

dition salinity node at 4K BP has two peaks. There is a strong cross correlation between

the values of these two parameters (not shown). In cases such as these the mean of

the distributions is not a good descriptor of the best estimate for these two parameters.

These double peaked distributions arise because the data is not a strong constraint on

the solution without knowledge of the diffusion coefficient as well.

Figure 3.43 illustrates a promising point about the initial condition parameters, which is

that the top three initial condition nodes are strongly resolved by the synthetic data. The

fourth (bottom) initial condition posterior, however, is almost identical to its prior. The

histograms for the intial conditions in this case are very similar to those in the cases that

have well-resolved diffusion coefficients. We do not particularly care about recovering

the initial conditions, but at the same time we want to avoid arbitrarily choosing an

initial condition that has a strong influence on the boundary condition time series that

is recovered. For this reason it is a promising sign that the initial condition is recovered

fairly well in these examples. In these synthetic examples, the true initial condition is a

vertical line. The measured data after 125,000 years of boundary forcing retain much of

this vertical line. Thus, the data has many points that constrain the initial condition.

Because there are many points that define the straight line in the data, these synthetic

cases may be especially skilled at retaining information about the initial condition.
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Figure 3.43: Comparison of prior (blue) and posterior (red) marginals for a random
synthetic drawn from the distribution 1=σ2, and both 0 years = T

3.3.2 Real data

We have demonstrated through the synthetic examples that reconstruction of the bottom

water time history using pore fluid measurements as a constraint and a Bayesian MCMC

method is highly sensitive to the prior probability distribution. However, we argue that

the sea level curve provides a very good prior constraint on the mean of any deep ocean

tracer value.

Our major difficulty arises from the need to assign the prior variance and covariance. The

synthetic examples demonstrated that the more important of these two is the covariance.

Conveniently, we have a better idea of what the past covariance is than the past variance

of deep ocean tracer values. At an absolute minimum, T = 1000 years. More likely values

for T for everywhere expect the northernmost N. Atlantic are 2000-5000 years.

To recover the past bottom water time series using real pore fluid data, we sample on

D0 and three initial condition nodes. We found that in the real data cases, as opposed
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to the synthetic examples, we needed to explicitly fix the top (sediment-water interface)

boundary condition to be equal to the oldest boundary condition, as otherwise it was able

to take on unrealistic values. At z=L, the bottom of the spatial integration domain, we

assign a gradient boundary. The boundary condition at z=L is chosen by computing the

slope of the bottom measured values. When there is data below 150 meters, we compute

this gradient using those points below 150 meters. Otherwise we take the bottommost

five points and compute their slope with depth. The length of the spatial domain in all

of the following cases is 350 meters. In some cases, as will be demonstrated, there are no

data constraints below 150 meters, particularly in δ18O measurements.

Figure 3.44 is a compilation of the mean posterior δ18O recovered at our sites using

extreme values in the prior of σ2 and T. σ2 = 0.2h and σ2 = 0.05 g kg−1 represent

modern-like ocean spread in δ18O and S respectively, while σ2 = 1 is one to two orders

of magnitude larger in order to allow very different solutions into our set. The general

shape of the histories is closely constrained by the prior assumption of the sea level curve,

however each time node has some independence, best exemplified by the results at ODP

1063 and ODP 981.

The δ18O histories at site 1093 are very similar from the LGM to present. The same

can be said for site 1239 with the exception of the case with prior σ2=1 and T = 2000

years. Generally for all of the sites, larger prior variance allows solutions that are very

different in shape than the sea level curve. In fact, the larger variance of the δ18O is not

the reason that the mean changes. Instead, when the prior variance on the time series

nodes is higher, the mean diffusion coefficient recovered is also higher and has a wider

posterior marginal. Allowing more choices of δ18O or S allows more choices of D0, and

vice versa. Indeed, as shown in Figure 3.46, even with widely varying priors the recovered

D0 is very similar at sites 1093, 1123, and 1239. In contrast the recovered D0 at site 1063

varies by a factor of two and at site 981 varies by an order of magnitude.

The initial conditions in δ18O that are recovered, shown in Figure 3.45, are not very

different between different prior assumptions at 1093, 1123 and 1239, but have more

variability at site 981. Because of the covariance of the parameters, the same explanation

applies to the initial conditions as to the diffusion coefficients. A wider range of priors in
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the time series nodes allows a wider range of initial conditions to be acceptable. It seems

that the δ18O at site 981 is poorly constrained by the data, perhaps in part because it has

fewer measurements than some of the other sites and its full range of values is similarly

smaller than that at the other locations.

Examination of the mean is actually only useful when the distribution is Gaussian. For

most of the δ18O reconstructions, the distributions are Gaussian. However, the reconstruc-

tions for δ18O at site 981 when the prior σ2 = 1h have boomerang-shaped (rather than

Gaussian circular or oval) cross-correlations between several parameter node times and

the diffusion coefficient. Since these distributions are decidedly non-Gaussian, it is not

fair to compare their means to the means of the other, Gaussian, distributions. Further,

in the case with σ2 = 1h and T=2000, the marginal of D0, Figure 3.50 has two peaks, one

centered on 2.56×10−4 cm2 s−1 and the other centered on 3.47×10−5 cm2 s−1. Thus the

mean is a poor descriptor of the typical diffusion coefficient in some cases. The marginal

of the 2ka BP node also has two peaks, which explains the wild approach to the present in

the mean. There are a number of boomerang or tadpole-shaped cross-correlations in the

posterior distributions for the case σ2 = 1 and T=6000 years at site 981, and thus neither

means nor correlations appropriately summarize the relationships between the posterior

variables in this case as well. At site 1239 in the case σ2 = 1 and T=0, the marginal for

D0 has a very long tail.

Figure 3.47 is a summary of some extreme reconstructions for S from the pore fluid data

at sites 981, 1063, 1093 1123 and 1239. The reconstructions behave similarly to those of

δ18O in that the deviation from the sea level curve is a function of variance and covariance,

and that the outlier cases are generally associated with non-Gaussian distributions of D0

recovered in the posterior.

3.4 Discussion and ongoing investigations

In reconstructions of past ocean bottom water histories using real data pore fluid profiles,

we recovered many non-Gaussian posterior distributions particularly when we assigned a
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Figure 3.44: Mean of 1000 posterior δ18O time series models recovered from data at sites
ODP 981, 1063, 1093, 1123 and 1239, with varying prior assumptions (see inset legends).
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Figure 3.45: Mean of 1000 posterior δ18O initial conditions recovered from data at sites
ODP 981, 1063, 1093, 1123 and 1239, compared to data (black stars), with varying prior
assumptions (see inset legends).
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Figure 3.46: Mean of 1000 posterior D0 for δ18O recovered from data at sites ODP 981,
1063, 1093, 1123 and 1239, with varying prior assumptions (see inset legends).

prior σ2 = 1 for S or δ18O. This prior spread represented the possibility that S and δ18O

spreads in the deep ocean were greater in the past than they are today.

Our challenge now is to interpret and present these results in a way that fairly compares

them to the Gaussian posterior distributions. While the wide prior on D0 did not affect

the D0 we recovered in most synthetic cases, we did see in some synthetic examples that

widening the time series prior to σ2 = 1 caused a second peak to arise in the posterior

D0 distribution. In light of the fact that D0 may not be well-resolved by the data alone,

we need to re-evaluate our wide prior and consider whether it is a good reflection of our

understanding of diffusivity in sediments. At our locations of interest, D0 values around

10−4 cm2 s−1, that we show in Figure 3.50, do not agree with intuition about diffusivity

gained from experimental data.

The synthetic cases showed that the mean solution recovered by CATMIP is often the

best estimate of the true solution, at least when the posterior probability distributions

can be approximated by Gaussians. Our ability to recover parts of the forcing time series

further back in time depends not only on whether we know what T is, but how long T

is. Larger true T, when known, enables us to give better estimates of older nodes of the

bottom water time series.

Synthetic examples further demonstrated that the nodes in our time series that are best
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Figure 3.47: Mean of 1000 posterior salinity time series models recovered from data at
sites ODP 981, 1063, 1093, 1123 and 1239, with varying prior assumptions (see inset
legends).
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Figure 3.48: Mean of 1000 posterior salinity initial conditions recovered from data at sites
ODP 981, 1063, 1093, 1123 and 1239, compared to data (black stars), with varying prior
assumptions (see inset legends).
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resolved by the data fall roughly within the most recent 10,000 years before present.

We are certain that there is very little additional information (beyond the information

encapsulated in the prior) that can be recovered earlier than 20,000 years ago. Depending

on the prior information we provide, the same data can be consistent with an LGM

salinity/δ18O either short in duration and high in magnitude or one that lasted longer

and was lower magnitude.

When the prior variance is large, the time series we recover increasingly resembles a

smoothed version of the true forcing history the further we look back in time. The

smoothing will tend to underestimate maxima and overestimate minima, as well as alias

information into different times. However, the LGM values for high prior variance prob-

ably underestimate the true LGM values.

Figure 3.51 shows the LGM values of S and δ18O for various prior assumptions. At the

LGM, the salinity at site 1093 is always greater than that at the other sites. While it

could be greater, the value at 1093 was mean ∼ 36.6. This is 0.5 lower than the mean

estimate of Adkins et al. (2002). Other robust features of the LGM, irrespective of prior

assumptions, are that the salinity at site 981 is greater than that at 1063, and 1239 has

higher salinity than 1123.

Our results differ from the estimates of Adkins et al. (2002) most strikingly in the LGM

salinity at ODP site 1093. The diffusion coefficients we recover are quite similar to their

estimate of 2×10−5 cm2 s−1, such that we can not explain the difference solely through

a different diffusion coefficient. We will need to investigate the details of the cause of

this large change in solution more carefully, but we hypothesize that the ability of our

boundary forcing to vary from a stretched sea level curve can account for much of the

difference. Recall the synthetic stretched sea level example shown in Figures 3.13-3.19

produced the same output with a low, wide high salinity in the past as a highly peaked

LGM salinity signal. In general, stretching the sea level by a single scaling constant has

the effect of narrowing the shape of the LGM relative to its sea level signal. Our solutions

with a longer period of moderately high salinity can produce a similar residual signal in

the modern sediment concentration profile as would a sharp and rapid peak in salinity.
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Figure 3.51: LGM value of (a) S and (b) δ18O
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Figure 3.52: T/S plots with LGM reconstructions using σ2 = 1 for both δ18O and S (red)
compared to Adkins et al. (2002) (blue) and modern (orange). Here we take the LGM
as the time with maximum in S. (a) uses a prior with T = 0 years while (b) uses a prior
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Figure 3.53: T/S plots with LGM reconstructions using σ2 = 0.05 for S and =0.1 for δ18O
(red) compared to Adkins et al. (2002) (blue) and modern (orange). Here we take the
LGM as the time with maximum in S. (a) uses a prior with T = 0 years while (b) uses a
prior with T = 6000 years
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Considering the reconstruction of temperature and salinity at the LGM, shown for dif-

ferent prior assumptions in Figures 3.53 and 3.52, we see that the spatial distribution

of density is a stronger function of variance than covariance. With large prior variance,

Figure 3.52, assigning a longer covariance does not significantly change the distribution

of LGM temperature and salinity. In contrast, when our prior variance is quite narrow,

Figure 3.53, the posterior spread of temperature and salinity is similarly narrow, whether

or not we assign a long covariance timescale in the prior.

There is a great deal of variability in the δ18O reconstructed using this method, both

at each site and spatially. The spatial differences in δ18O would suggest that there is a

strong local component of δ18O that could tell us about variations in glacier mass wasting

through the deglaciation.

The δ18O and S histories at a given site are not constrained to follow the same shape

curve, and thus their reconstructions have different shapes. If we knew T, we could use

this information to look at the evolution of water mass histories, using a combination of

δ18O and S. The reconstructed time history’s evolution from the LGM to the present is a

strong function of T.

Both the salinity and δ18O histories at site 1123 and site 1239 show a reversal in direction

in the last 6000 years that is independent of the prior T, and σ2 and seems to reflect

an inflection in slope in the upper parts of the sediment pore fluid profile measurements.

While these sites are both in the Pacific, they are not in the same water mass today, as

demonstrated by the salinity contour plots in Figure 3.54. Site 1123 lies in what is mostly

Antarctic Bottom Water (AABW) while Site 1239 is in Pacific Deep Water (PDW). The

salinity of PDW today is set primarily by upward diffusion of AABW. The average vertical

diffusivity in the Pacific implied by optimization calculations is quite high relative to the

rest of the abyssal ocean (Talley, 2013).

The concomitant reversal in direction of δ18O and S suggests either a glaciological source or

precipitation for their changes. A change in glacial meltwater fraction and precipitation

fraction in these water masses would have similar signals. Sea ice is not light in δ18O

relative to ocean water, however a large snow accumulation on the sea ice could also have
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a precipitation-like signal in δ18O.

Glacier regrowth in the Holocene could in theory cause a reversal in the salinity and δ18O

trend in the ocean. While most reconstructions of the sea level curve over the most recent

deglaciation show a monotonic approach to present, the error bars on individually dated

sea level estimates are large enough to allow for the possibility of a reversal in direction.

The approach to present sea level from the LGM is best constrained by dating fossil

Acropora palmata coral reefs, which live between -5 and -1 meters relative to the sea level

(msl). In some cases A. palmata can survive until -17 msl (Bruckner, 2002), but this is

considered rare enough that error bars on depths determined by dating A. palmata are

typically +5 m. Sea level rise from the last deglaciation either halted or slowed around

4 ka BP (Milne and Mitrovica, 2008, Toscano et al., 2011), where coral estimates reach

less than -5 msl. As early as 3657 ±120 BP there are A. palmata samples from St. Croix

measuring -3.08 msl (Toscano et al., 2011). The +5 m error on these records allow for

the possibility that sea level has dropped as much as 1.2 m between 4 ka BP and present

due to glacier regrowth. The St. Croix records agree with records in Tahiti of a ∼-2 msl

A. robusta sample dated to 5040 ± 40 BP (Bard et al., 1996).

In the mean ocean δ18O, 1-5 m of missing sea level represented by error bars on A.

palmata sea level reconstructions are almost imperceptible. Using the rectangular box

ocean scaling with a modern mean depth of 3800 m and assuming that the melted glacier

has -40h δ18O, a melting of an ice volume equivalent to 5 m of sea level is equivalent to

-0.05h when distributed over the ocean. Then 1 m would yield a mean ocean change of

-0.01h. Despite the fact that ODP Sites 1123 and 1239 show a robust reversal in the

mean, -0.01h is smaller than the error bar on any value of δ18O, such that the other sites

could be feeling the mean change as well. In contrast, the reversal in δ18O at ODP 1123

and 1239 is as much as -0.25h with respect to present values. One explanation for this

large signal in δ18O is that the changes were isolated to the Pacific. A second explanation

is that there is some aliasing in the reconstruction such that the minimum excursion is

an underestimate of the true value.

The modern distribution of δ18O, however, clearly demonstrates a local component, and

we can expect the local histories to be independent of the global mean, particularly during
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adjustment. Adjustments to the global mean sea level are felt immediately at the surface

of the ocean, where the water is added, while the deep ocean may not sense a mean change

for thousands of years. Surface adjustments in the N. Atlantic are felt quite quickly in the

deep N. Atlantic. If the reversal we see is due to a glacier regrowth, the signal is unlikely

to originate from the N. Atlantic as the effect on deep water δ18O would be first felt there

before propagating to the Pacfic. Instead we propose that we see something that is either

limited to the Pacific or that originates in the Pacific. The signal we see in the Pacific

could be still propagating to the Atlantic today with a few thousand year lag.

The timing of the salinity and δ18O trend reversal in the Pacific cores may not correspond

to the timing of their forcing. We could be seeing the adjustment of the Pacific after

Meltwater pulse 1-A or 1-B. As the Pacific is thought to have the most inertia of all the

ocean basins, the meltwater pulses would take the longest time both to reach and to leave

the Pacific sites.

Glacier regrowth would remove water from the ocean and increase the mean ocean salinity

and δ18O. However, our reconstructions of bottom water salinity and δ18O in the Atlantic

do not show concrete evidence of either of these scenarios, which indicates the process

is concentrated in the Pacific or that the effects are felt most strongly in SAMW and

AAIW formation in the Pacific. Thus, we expect that this process, either the final surge

of glacial melt or the glacier regrowth happened in the Antarctic Ice Sheet.

Recent studies of the formation of Subantarctic Mode Water (SAMW) and Antarctic

Intermediate Water (AAIW) suggest that the formation of these two water masses is

zonally asymmetric, and happens predominantly in the Pacific sector of the Southern

Ocean (Sallée et al., 2010, Hartin et al., 2011). SAMW formation is driven by wintertime

deep convection, and the densest classes of SAMW contribute to the properties of AAIW.

The salinity of SAMW and AAIW are between 34 and 34.5 (Sloyan and Rintoul, 2001).

A greater contribution of SAMW and/or AAIW to the compositions of Pacific bottom

waters relative to today could easily explain the late Holocene salinity and δ18O signal in

Site 1123 and 1239, even without any change in their salinities.

We may be seeing a shift of a front in the Pacific sector of the Southern Ocean. The



134

exact position of iceberg melt is poorly constrained (Tournadre et al., 2012), but icebergs

are seldom found north of 60◦S in the South Pacific. This contrasts with the S. Atlantic

in which icebergs are found as far north as 45◦S. The Polar and Subantarctic fronts in

the S. Pacific are southward of their positions in the Indian and Atlantic Ocean. A

poleward contraction of the ACC fronts could shift the position of the fresh meltwater

input southward. Water subducted as Subantarctic Mode Water would thus become

saltier. The transport of Subantarctic Mode Water today goes through the Pacific before

returning to the Atlantic. Before returning to the Atlantic, the signal may mix out

throughout the Pacific basin, which is a very large volume of water. Alternatively, if

the lag between Pacific and Atlantic is several thousand years long, the salinification of

SAMW due to glacial regrowth may be just being felt now in the Atlantic deep water. If

the signal we see in the Pacific sites is a shift in circumpolar fronts, that could explain

differences between 1093 and 1123 because 1123 is farther north than 1093.

3.5 Conclusions

The distributions of the bottom water time series solutions that we recover from the

pore fluid profiles are highly sensitive to our prior assumptions, reflecting the ill-posed

nature of an inverse diffusion problem. Bayesian MCMC methods allow us to explicitly

describe our prior biases and uncertainties in physical terms and are additionally much

less sensitive to noisy data than are regularized least squares methods. Given our modern

understanding of the ocean and its history, the spread in salinities at the LGM did not

need to be as high as reported in Adkins et al. (2002) to produce the measured pore

fluid profiles. We show that the diffusion coefficient at each site is generally well-resolved,

but our wide prior on the diffusion coefficient allows some posterior distributions that

are implausible, requiring a re-evaluation of our technique. Our technique allows us to

reconstruct time series over the most recent deglaciation with high confidence, and we

find that the evolution of salinity and δ18O during the Holocene contrasts between the

Atlantic and the Pacific. Our method allows us to extract time variable local information

from each site over and above the information we have from sea level records. Local
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Figure 3.54: Modern mean annual salinity at ODP Sites 1123 and 1239



136

differences can be extracted from the data that differ between the Atlantic and Pacific,

supporting a variety of interesting hypotheses about the progression of sea level rise or

evolution of Southern Ocean dynamics between the LGM and today.
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Table 3.1: Sea level compilation

Age (yrs) Error (yrs) Height (m) Error(m) Reference Description

4674 40 -0.1 0.3 Collins et al. (1993b) Suomi

4700 40 -3.7 0.2 Collins et al. (1993a) Disappointment Island

5804 75 -6.6 0.5 Collins et al. (1993b) Suomi

6368 37 -11.2 0.2 Collins et al. (1993b) Suomi

6390 35 0.3 0.1 Collins et al. (1993b) Morley

6716 56 -1.3 0.2 Collins et al. (1993b) Morley

7102 82 -14.2 0.1 Collins et al. (1993b) Suomi

7460 80 -20.5 – Bard et al. (1990b,a) RGF7-4-2

7962 76 -5.1 0.5 Collins et al. (1993b) Morley

8124 44 -7.5 0.1 Collins et al. (1993b) Morley

8160 100 -11 1 Ludwig et al. (1996) FL-32

8191 113 -11 0.5 Collins et al. (1993b) Morley

8363 71 -13.1 – Edwards et al. (1993)

8450 50 -21.9 – Bard et al. (1990b,a) RGF7-5-5

8520 28 -24.2 – Bard et al. (1996) Tahiti

8621 48 -14.1 0.4 Collins et al. (1993b) Morley

8760 51 -20.5 – Edwards et al. (1993)

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

9000 171 -17.1 0 Collins et al. (1993b) Morley

9245 40 -33.3 – Bard et al. (1996) Tahiti

9347 70 -19.8 0.2 Collins et al. (1993b) Morley

9534 ? -23.5 0.2 Collins et al. (1993b) Morley

9596 21 -35.6 – Bard et al. (1996) Tahiti

9642 72 -31.2 – Edwards et al. (1993)

9700 205 -38.9 – Bard et al. (1996) Tahiti

9730 50 -33.3 – Bard et al. (1990b,a) RGF7-16-2

9831 31 -38.3 – Bard et al. (1996) Tahiti

9920 40 -40.6 – Bard et al. (1996) Tahiti

10113 42 -47.0 – Bard et al. (1996) Tahiti

10201 31 -45.0 – Bard et al. (1996) Tahiti

10250 40 -45.1 – Bard et al. (1996) Tahiti

10490 77 -41.6 – Edwards et al. (1993)

10575 50 -47.9 – Bard et al. (1996) Tahiti

10673 25 -45.6 – Edwards et al. (1993)

10850 50 -53.8 – Bard et al. (1996) Tahiti

10912 27 -52.7 – Edwards et al. (1993)

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

10955 54 -49.3 – Edwards et al. (1993)

11004 14 -53.9 – Bard et al. (1996) Tahiti

11045 57 -53.4 – Edwards et al. (1993)

11090 70 -44.8 – Bard et al. (1990b,a) RGF7-27-4

11280 30 -56.9 – Bard et al. (1996) Tahiti

11495 30 -62.9 – Bard et al. (1996) Tahiti

11530 70 -58.9 – Bard et al. (1990b,a) RGF12-5-2

11590 60 -56.9 – Bard et al. (1990b,a) RGF12-6-7

11930 50 -63.1 – Bard et al. (1996) Tahiti

12084 70 -55.9 – Edwards et al. (1993)

12155 56 -58.1 – Edwards et al. (1993)

12260 90 -62.2 – Bard et al. (1990b,a) RGF12-9-5

12332 39 -58.9 – Edwards et al. (1993)

12695 60 -71.1 – Bard et al. (1996) Tahiti

12710 50 -71.8 – Bard et al. (1996) Tahiti

12800 30 -69.5 – Bard et al. (1996) Tahiti

12818 37 -64.1 – Edwards et al. (1993)

12837 68 -67.2 – Edwards et al. (1993)

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

12865 50 -72.2 – Bard et al. (1996) Tahiti

12875 40 -69.5 – Bard et al. (1996) Tahiti

12905 50 -73.7 – Bard et al. (1996) Tahiti

13065 30 -74.8 – Bard et al. (1996) Tahiti

13106 81 -69.5 – Bard et al. (1990b,a) RGF12/16/05 #1,2

13129 84 -70.4 – Edwards et al. (1993)

13465 38 -77.8 – Bard et al. (1996) Tahiti

13700 170 -73.7 – Bard et al. (1990b,a) RGF12-21-6

13746 31 -80.8 – Bard et al. (1996) Tahiti

14230 100 -93.8 – Bard et al. (1990b,a) RGF9-8-2

18240 140 -112.2 – Bard et al. (1990b,a) RGF9-21-11

19030 100 -120.5 – Bard et al. (1990b,a) RGF9-27-5 #1,2

21930 150 -131.5 – Bard et al. (1990b,a) RGF9-34-8 #1,2

30040 210 -88.2 0 Bard et al. (1990b,a) RGF12-30-2 #1,2

37800 600 -76 3 Chappell et al. (1996) BOBO-U10

41800 1200 -87 5 Chappell et al. (1996) KANZ-U9

70820 600 -81.1 – Bard et al. (1990b,a) RGF1-17-4

80900 1700 -12.2 1 Ludwig et al. (1996) FL-23

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

83200 900 -16.5 1 Ludwig et al. (1996) FL-20

83300 300 -15 3 Gallup et al. (1994) FS-3

92100 700 -7.9 – Esat et al. (1999) Kanzarua Terr. Via

98800 800 -12.7 – Esat et al. (1999) Kwambu Terr. VIa

100500 1100 -17 – Bard et al. (1990b,a) AFZ-2

106400 1000 -27.2 – Esat et al. (1999) Kwambu Terr. VIa

110500 3800 2 – Szabo et al. (1994)

110900 3500 2 – Szabo et al. (1994)

112700 800 -65.6 – Esat et al. (1999) Kanzarua Terr. Via

113200 800 -40.1 – Esat et al. (1999) Kwambu Terr. VIa

114100 1800 2 – Szabo et al. (1994)

114600 2600 2 – Szabo et al. (1994)

114800 2100 2 – Szabo et al. (1994)

115000 900 -84 – Esat et al. (1999) Aladdin’s Cave

115000 1000 1.71 – Stirling et al. (1998) Vlaming Head

116100 900 0.36 – Stirling et al. (1998) Mangrove Bay

117000 1000 -9 3 Gallup et al. (1994) UWI-16

117100 1600 2 – Collins et al. (1993a)

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

117600 1200 -28.4 – Stein et al. (1993) KIL-5(a-2)

117600 1900 2 – Szabo et al. (1994)

117800 1700 2 – Szabo et al. (1994)

118000 2000 2 – Szabo et al. (1994) W. Nanda Terr VIa

118200 1000 0.47 – Stirling et al. (1998) Mangrove Bay

119000 1800 2 – Szabo et al. (1994)

119200 1000 1.35 – Stirling et al. (1998) Mangrove Bay

119500 1200 -32.05 – Stein et al. (1993) KIL-5(a-1)

119800 1000 3.27 – Stirling et al. (1998) Yardie Creek

119900 1400 2 – Chen et al. (1991) 1

120300 2500 2 – Szabo et al. (1994)

120400 3000 2 – Szabo et al. (1994)

121100 1100 2.72 – Stirling et al. (1998) Yardie Creek

121100 1200 2.44 – Stirling et al. (1998) Yardie Creek

121600 1000 1.87 – Stirling et al. (1998) Yardie Creek

121700 1100 3 – Stirling et al. (1998)

121700 1500 2 – Szabo et al. (1994) Burney

121800 800 1.67 – Stirling et al. (1995) Leander Point

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

121900 1100 9 – Bard et al. (1990b,a) Haiti C-1

122000 1500 2 – Chen et al. (1991) 2

122100 1400 1 – Chen et al. (1991) AFS-12 A

122100 1300 1 – Chen et al. (1991) 24

122100 1100 6 – Edwards et al. (1988) 34

122200 1000 1.73 – Stirling et al. (1998) Burney

122300 1000 2 – Chen et al. (1991) 6

122800 1600 1 – Chen et al. (1991) 36

123000 1000 3.04 – Stirling et al. (1998) Burney

123200 2600 2 – Szabo et al. (1994)

123300 1500 1 – Chen et al. (1991) 35

123300 900 1.8 – Stirling et al. (1995) Leander Point

123400 900 2.2 – Stirling et al. (1995) Leander Point

123500 1100 3.09 – Stirling et al. (1998) Burney

123600 1200 2 – Chen et al. (1991) 3

123700 800 1.28 – Stirling et al. (1995) Leander Point

123800 1500 1 – Chen et al. (1991) 32

123800 1100 1 – Chen et al. (1991) 37

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

123800 900 0.7 – Stirling et al. (1995) Leander Point

124000 2000 1.8 0.1 Collins et al. (1993a)

124000 1200 2 – Szabo et al. (1994)

124100 1500 2.16 – Stirling et al. (1995) Leander Point

124200 900 0.68 – Stirling et al. (1995) Leander Point

124300 1000 1.2 – Stirling et al. (1998) Tantabiddi Bay

124500 1300 6 – Edwards et al. (1988) C

124700 1000 2.3 – Stirling et al. (1998) Yardie Creek

124800 1100 0.92 – Stirling et al. (1998) Vlaming Head

124900 1300 8 – Bard et al. (1990b,a) Haiti C-4 #1,2

124900 2100 0 – Chen et al. (1991) 29

125000 3800 2 – Szabo et al. (1994)

125100 1000 8 – Bard et al. (1990b,a) AFM3 #1,2

125100 1300 2 – Szabo et al. (1994)

125400 900 1.83 – Stirling et al. (1995) Rottnest Is.

125400 1100 0.92 – Stirling et al. (1998) Vlaming Head

125400 1100 1.79 – Stirling et al. (1998) Mangrove Bay

125500 800 0.45 – Stirling et al. (1995) Rottnest Is.

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

125700 900 -101.1 – Esat et al. (1999) Aladdin’s cave

126000 800 2.43 – Stirling et al. (1995) Rottnest Is.

126200 800 1.77 – Stirling et al. (1995) Rottnest Is.

126600 900 2.16 – Stirling et al. (1995) Leander Point

126800 1000 2.37 – Stirling et al. (1998)

126800 2300 2 – Szabo et al. (1994) Yardie Creek

127000 2100 2 – Szabo et al. (1994)

127200 1500 1 0 Chen et al. (1991) 22

127300 1000 2.43 0 Stirling et al. (1995) Rottnest Is.

127600 900 -104.2 – Esat et al. (1999) Aladdin’s cave

127800 1100 -1.79 – Stirling et al. (1998) Drillcore coral

127900 1200 1 0 Chen et al. (1991) 19

128100 900 -97.0 – Esat et al. (1999) Kwangam Terr.VIb

128400 1200 0 – Chen et al. (1991) 30

128500 6100 2 – Szabo et al. (1994)

128600 1100 0.7 – Stirling et al. (1998) Yardie Creek

128900 1200 -0.69 – Stirling et al. (1998) Drillcore coral

129100 800 -24 3 Gallup et al. (1994) UWI-2

Continued on next page
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Table 3.1 – Continued from previous page

Age (yrs) Error (yrs) Height (m) Error(m) Reference description

129200 1300 2 – Szabo et al. (1994)

129900 900 -107.8 – Esat et al. (1999) Aladdin’s cave

129900 1000 -107.8 – Esat et al. (1999) Aladdin’s cave

129900 900 -107.8 – Esat et al. (1999) Aladdin’s cave

130200 2500 2 – Szabo et al. (1994)

130600 1000 -109.0 – Esat et al. (1999) Aladdin’s cave

131000 2700 2 – Szabo et al. (1994)

131900 1200 -34.6 – Stein et al. (1993) HP23b

132600 3300 2 – Szabo et al. (1994)

133000 1000 -112.8 – Esat et al. (1999) Aladdin’s cave

133700 1000 -113.9 – Esat et al. (1999) Aladdin’s cave

134700 1300 -39.9 – Stein et al. (1993) HP-23a

135800 1900 -42. – Stein et al. (1993) HP-22

136700 1600 -32.7 – Esat et al. (1999) Sialum Terr. VIIb
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Chapter 4

New techniques for sediment
interstitial water sampling

4.1 Motivation and background

Chloride and oxygen isotopes in ocean sediment interstitial water, commonly known as

pore waters, can be used to reconstruct past ocean salinity and δ18O, and in combination

with the δ18Oc of benthic foraminifera, past temperature as well. As noted in Chapter 1,

there are no other methods by which we can reliably reconstruct past bottom water

salinity or δ18O. However, obtaining high depth resolution pore fluid samples for chloride

and oxygen isotope measurement is limited by the current interstitial water recovery

method, which destroys large sections of ocean sediment cores, disrupting the chronology

of other records. In order to reconstruct the bottom water concentration history at a

given location, we need a high-resolution depth profile of samples: at least one sample

every 1.5 meters of core depth down to at least 150 meters below seafloor (mbsf). The

traditional way to obtain these samples is to slice off a complete 5-10 cm piece of the

sediment core, known as a “whole round”, and squeeze the water out of the sediment

using a hydraulic press. The pressure in the squeezer can reach as much as 300 MPa,

which is well above the typical pressures reached at the seafloor or in the ocean sediments

(6000 m of seawater is ∼60 MPa), and the pressure is applied uniaxially. Squeezing the

sediment crushes foraminiferal tests, causing them to become unrecognizable; therefore

the removal of a whole round interrupts the chronology of the sediment core. At typical
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sedimentation rates of 1-10 cm/ka, this interruption can mean the loss of thousands of

years of climate history.

For many years the only scientific platform capable of recovering long sediment cores

from the deep ocean has been the Integrated Ocean Drilling Program (IODP; formerly the

Ocean Drilling Program and the Deep Sea Drilling Program), an international consortium

that operates two ocean drilling vessels. IODP expeditions are costly and logistically

complicated, and can take over 10 years to progress from initial proposal to expedition.

There have been no IODP expeditions specifically aimed at recovering high-resolution

pore fluid profiles, meaning that the profiles that have been recovered have necessitated

that the pore fluid sampling does not interfere with or significantly compromise other

expedition goals.

One way to advance the number of high-resolution pore fluid profiles is to propose an

IODP expedition focused on their recovery. While a single expedition could target a

specific set of locations, long-term high spatial resolution sampling of the ocean floor can

not be accomplished this way. Another route to higher volume recovery of pore fluid

profiles is through the use of new remotely operated sea floor drill rigs such as MARUM’s

MeBo. Even better, we could find a new, non-destructive method to sample pore fluids

on IODP expeditions.

In order to resolve this pore fluid sampling issue, I participated in a research expedition

through the Integrated Ocean Drilling Program (Expedition 339) to collect samples and

test a non-destructive water sampling method. I collaborated on this project with David

Hodell, who took samples with me at sea and then measured the stable (oxygen and hydro-

gen) water isotopes while I measured the chloride concentration in our home laboratories.

We tested whether Rhizon samplers (Rhizosphere Research Products, Seeberg-Elverfeldt

et al. (2005)), a tool developed for terrestrial soil sampling, can recover water from deep

ocean sediments at high depth resolution.

Rhizons have been used on several deep ocean drilling expeditions, but there is little doc-

umentation on how these samplers behave with respect to traditional squeezing methods.

In particular, it is unknown whether Rhizon sampling significantly affects the concentra-

http://www.marum.de/en/MARUM-MeBo_drill_rig.html
http://www.marum.de/en/MARUM-MeBo_drill_rig.html
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Figure 4.1: Intercomparison of measurements from Rhizon (black triangles) and squeeze
(open circles) samples as reported in Schrum et al. (2012). Note that the reported error
bars are smaller than the plot symbols.

tion and isotopic content of the pore fluid. Dickens et al. (2007) compared the manganese

and ammonium concentrations in samples recovered with Rhizons vs. those recovered

through squeezing, but their study was quite low in resolution and there were only a

few overlapping Rhizon and squeeze samples (six points). Schrum et al. (2012) made a

more comprehensive study of alkalinity, dissolved inorganic carbon (DIC), ammonium,

sulfate and chloride. They found that the alkalinity and DIC in the Rhizon samples were

compromised, presumably due to a loss of carbon dioxide and resultant precipitation of

calcium carbonate, but concluded that ammonium, sulfate and chloride were unaffected.

However, visual inspection of their concentration plots, Figure 4.1, suggests that there

may be a positive bias in their Rhizon sample concentration measurements, which are

again difficult to compare to the squeeze sample measurements due to the small number

of overlapping samples.

The sparse nature of previous intercomparisons has limited our understanding of whether

Rhizons affect sample concentrations. The analytical precision of previous concentration

measurements has perhaps also kept researchers from conclusively finding fractionation.

Further, there have not been tests on water stable isotopes. Here we have performed a

high-resolution test with >100 measurements in order to better our understanding of the

Rhizon sampling effect on chloride and stable isotopes.
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4.2 Methods

4.2.1 Shipboard sampling

I procured the samples for this work in collaboration with David Hodell, with assistance

from the technical staff aboard the JOIDES Resolution. David and I participated in the

Integrated Ocean Drilling Program’s Expedition 339: Mediterranean Outflow. The full

details of the cruise track and our shipboard scientific results are reported in Stow et al.

(2013). The high-resolution intercomparison that follows comes from IODP Site U1385,

which is located near the Western Iberian Margin.

4.2.1.1 Squeeze samples

Following the established IODP protocol, interstitial waters were extracted from 5–15 cm-

long sediment whole rounds at the bottom of every 9.5 m sediment core that were cut and

capped immediately after core retrieval on deck. Standard whole-rounds were 5 cm long,

but as porosity decreased down hole the size of the whole rounds was increased to enable

extraction of ∼30 mL total to split between shipboard and shore-based analyses. Samples

were taken from near the bottom of each core for the upper 150 m and at intervals of

every third core thereafter to the bottom of the hole. Samples from more than one hole

at a single site were treated as constituting a single depth profile (“splice”) using CSF-A

as the depth reference if possible.

To generate a high-resolution profile, we took interstitial water samples from the bottom

of every ∼1.5 m core section in addition to the routine samples. Small plugs of sediment

samples of ∼10 cm3 were taken from the bottom of each section, excluding the section

from which the whole round came, in the upper 150 m of Hole B using a 60-ml syringe

as shown in Figure 4.2. Each chopped syringe was equipped with a 25-mm diameter

wire inserted through two holes drilled at the end. Once the syringe was inserted in the

sediment, this attached wire facilitated separation of the sample from the core and a clean

removal of the sediment. When the syringe was completely inserted into the core, and
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EXPEDITION 339 PORE WATER SAMPLING 

IWSy entry: Sample Type = CYL 
                Sample Tool = SYRINGE 
                Test = IW 
                Name = IWSy(interval) 
                Volume=25 or 50cc 

All Cores 
•Upper 50 m: IWSy (1/2 of 50 cc Syringe), length=5cm Bottom Sec. 1-4 or 5; 
 
•50 to 150m: IWSy (50cc Syringe), Length=10cm Bottom Sec 1-4 or 5; 
 
•0 to 200m: IW (5cm WR) Bottom of Sec. 5 or 6. 
 

1 2 3 4 5 6 7 CC 

Sections 1-5; Syringe 

Whole Round, bottom 5-10 cm (Section 6 or 7)

IW (Whole Round) entry: Sample Type = WRND 
                                           Sample Tool = SPATULA 
                                           Test = IW 
                                           Name = IW(interval) 
                                           Volume=176cc 

Figure 339-Methods–H–F1 

Figure 4.2: Schematic of high-resolution sampling using syringes. Each numbered section
represents 1.5 m of core. CC denotes core catcher. The core barrel is 9.5 m long, but
individual sediment cores vary in length.

full of sediment, the syringe was rotated before removal to cut the sample cleanly from

the section. This sampling technique was used to obtain high-resolution interstitial water

samples while minimizing impact on the integrity of the composite section. Sediment

plugs were taken on the catwalk, immediately after cores were sectioned. No acetone was

used to seal the end caps of the cut cores until after all pore water had been extracted,

because organic solvents can interfere with the spectroscopic analysis of water isotopes.

In the shipboard chemistry laboratory, whole round sediment samples were removed from

the core liner, and the outside surfaces (∼1 cm) of the sediment samples were carefully

scraped off with spatulas to minimize potential contamination with drill fluids. The

drill fluid used was surface seawater, which had significant sulfate concentration at all

sites; therefore, contamination of samples below the sulfate reduction zone was inferred

when there were small deviations from zero in the shipboard sulfate measurement profile.

Sediment samples were then placed into a Manheim titanium squeezer and squeezed at

ambient temperature with a Carver hydraulic press (Manheim et al., 1994), reaching

pressures typically up to 20 MPa and as high as 40 MPa when needed. Interstitial

water samples discharged from the squeezer were passed through 0.45 µm polyethersulfone

membrane filters, collected in plastic syringes, and stored in plastic sample tubes for

shipboard analyses or archived in flame-sealed glass ampules for shore-based analyses.

4.2.1.2 Rhizon samples

At site U1385B interstitial water was also sampled using Rhizon samplers, consisting of

a hydrophilic porous polymer tube (Rhizosphere Research Products, Seeberg-Elverfeldt
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Figure 4.3: Rhizon samplers in cores

et al. (2005)). Rhizon samplers were carefully inserted through holes drilled in the core

liner. Syringes were attached to each Rhizon sampler with a luer-lock, pulled to generate

vacuum, and held open with wooden spacers. Samplers were left in place during the

core temperature equilibration (∼3 hours). The Rhizon samplers were used in sets of

three, spaced 3 cm apart, with the center Rhizon inserted at the center of each section

(i.e., 75 cm from the section top). The typical arrangement of the samplers is shown in

Figure 4.3. Water from all three samplers was combined into one sample in a centrifuge

tube and shaken to mix before analysis and splitting.

In contrast to the methods on previous cruises, the Rhizon samplers were used dry in order

to avoid sample contamination from pre-soaking. In qualitative tests we found that flow

rate through the Rhizons did not depend on pre-soaking. Further, stable water isotope

measurements were sensitive to the isotopic values of the solution in which the Rhizons
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were pre-soaked even when the first few milliliters were discarded from the syringe during

sampling. That is, the syringe was removed from the core, a few milliliters of water was

discarded, then the syringe was re-attached and a fresh sample was taken. This fresh

sample’s isotopic measurement was different than those of the sample taken with a dry

Rhizon. Because of the low total water volume recovery, the pre-soaking fluid can not be

flushed completely from the Rhizon in order to recover an un-contaminated measurement.

In the same manner as for the squeeze samples, Rhizon samples were archived in flame-

sealed glass ampules for shore-based analyses.

4.2.2 δ18O and δD measurements

Oxygen and hydrogen isotopes measurements of interstitial waters were made by cavity

ringdown laser spectroscopy (CRDS). CRDS is a time-based measurement system that

uses a laser to quantify spectral absorption lines unique to H16
2 O, H18

2 O, and 2H16O in

an optical cavity (Gupta et al., 2009). The equipment consisted of an L1102-i Picarro

water isotope analyzer manufactured in July 2009 (Serial Number: 202-HBDS033; 200-

CPVU-HBQ33), an A0211 high-precision vaporizer manufactured in August 2011 (SN:

VAP 292), and a CTC HTC-Pal liquid autosampler (SN: 142552). The Picarro L1102-I

measures δ18O, δD, and total H2O concentration simultaneously. Guaranteed precision

for liquid water using the L1102-I with autosampler injection is ≤ 0.1h for δ18O and

≤ 0.5h for δD. Guaranteed drift is ≤ ±0.3h for δ18O and ≤ ±0.9h for δD. Precision

and drift are defined based on the standard deviation and range (max-min) of the average

values for 12 injections of the same water sample (tap water) measured 12 times, which

is equivalent to 144 injections averaged in blocks of 12.

For the present work, approximately 500 µl of filtered interstitial water was loaded in

a 2-mL septa top glass vial and placed in the autosampler. Each water sample was

injected nine times into the vaporizer. Memory effects from previous samples were avoided

by rejecting the first three results and averaging the final six injections. An internal

seawater standard (SPIT) was analyzed between each unknown sample to correct for

drift. Each value measured on an unknown sample was normalized to the mean of the
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two adjacent standards. Analysis of each sample, consisting of nine injections, took 90

minutes. Three hours per sample is required if one includes the time needed to measure

bracketing standards. The vaporizer septa were changed regularly after no more than

300 injections. Considerable salt buildup occurred in the vaporizer, which necessitated

its periodic cleaning.

The instrument was calibrated using three working standards from the University of

Cambridge with known values: Delta (δ18O = -27.6h, δD = -213.5h), Botty (δ18O

= -7.65h, δD = -52.6h), and either SMOW or SPIT (δ18O = 0h, δD = 0h). The

δ18O and δD of SPIT are indistinguishable analytically from SMOW. Because the Picarro

analyzer is extremely linear, it is only necessary to use three calibration standards. The

calibration line was determined by subtracting the measured values of SPIT from each

of the standards and deriving a regression equation forced through the origin. The slope

of the δ18O regression varied between 1.051 and 1.083 (average = 1.067), whereas the δD

slope varied from 1.129 to 1.160 (average = 1.147). Measured δ18O and δD were corrected

to VSMOW in parts per thousand (h) by multiplying the SPIT-normalized value by the

slope of the calibration line.

Because organic compounds can cause spectroscopic interference in CRDS and affect

isotopic results, we processed the data using Picarro’s ChemCorrect software that iden-

tifies irregularities caused by hydrocarbons. Despite significant amounts of methane in

headspace samples, pore water samples were not flagged as being contaminated by the

ChemCorrect software suggesting that methane gas is lost during the interstitial water

sampling and squeezing process.

4.2.3 [Cl−] measurements

The [Cl−] of each sample is measured by potentiometric titration against silver nitrate

to form the precipitate silver chloride. Our titration apparatus is custom-built, and we

describe the technical details in Appendix A. In brief, the chloride concentration of the

sample is determined by the equivalence-point of the reaction: when an equivalent amount

of silver nitrate reagent to the amount of chloride in solution has been added. The



155

equivalence point is determined potentiometrically by identifying the maximum ∆E
∆V

, where

E is the potential difference between the reagent and solution and V is the volume of

reagent that has been added to the sample. The addition of reagent to the solution is

controlled by a stepper motor coupled to a precision micrometer buret. The stepper

motor and the voltage acquisition are driven through a LabVIEW program. After filling

the buret with reagent and placing the tip of the buret in the sample beaker, the entire

reaction is automated.

For the following work the sample sizes were ∼600 µL. The true size of the samples

was determined through weighing on a precision balance. The silver nitrate reagent had

a concentration of ∼0.23 M, which resulted in equivalence points at around 1.5 mL of

reagent added.

To determine the chloride concentration of an unknown sample, we weigh out a sample

and then titrate to the equivalence point. The concentration of an unknown sample is

calculated from the sample’s weight, the volumetric equivalence point and the concentra-

tion of the silver nitrate reagent. The approximate concentration of the silver nitrate is

determined during its preparation, but to have a more accurate and precise knowledge

of its concentration we calibrate the concentration by titrating against a known standard

3-5 times at the beginning of each measurement day. Our standard is the IAPSO P-Series

Normal Standard Seawater (S=35). Because there is high evaporation in Southern Cali-

fornia, once we break the factory seal on a standard, we store it with parafilm around the

top and inside a glass jar that is ∼1/3 full of water. We use a standard for a maximum

of two weeks. To check the continuing validity of this storage method, when we open a

new standard we compare the old values to the new ones. We also measure a consistency

standard in triplicate every measurement day to ensure that there is no significant evap-

oration of the standard. Our consistency standard is low salinity, ∼ 33 g kg−1, surface

seawater from the North Pacific, in the vicinity of Hydrate Ridge. Figure 4.4 shows the

temporal stability of this procedure.
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Figure 4.5: Standard and sample replicate precision

4.3 Results

There are two major challenges in comparing our Rhizon and squeeze sample results.

First, the depth profiles of chloride and stable isotopes at site U1385 neither have a

strong trend (increasing, decreasing) nor are they constant with depth, so our signal to

noise ratio is quite low. This issue exacerbates the second issue, which is that the Rhizon

and squeeze samples by necessity were taken at different depths. These issues combined

make it difficult to distinguish between offsets in the measurements due to noise vs. those

due to fractionation.

The problem with signal-to-noise ratio is specific to this site, as most sites of interest show

a strong depth dependent signal in both stable isotopes and chloride (see for example

Chapter 3). We expected that the signal-to-noise ratio would be high enough to overcome
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the problem of comparing values at different depths, but unfortunately this was not the

case.

One way around these problems is to consider the population of measurement offsets rather

than the individual offsets. For this we interpolate linearly between squeeze measurements

to find the hypothetical value that the Rhizon sample should record. We then subtract

the interpolated squeeze value from the Rhizon sample value to find the offset. The

majority of the following analyses rely on this technique. We note that if there were

a strong second derivative of chloride or isotopic content with depth in the profile, this

interpolation technique would be expected to give biased answers. However, the narrow

range of our measured values makes interpolation suitable for our case.

Another possible issue is that there could be an offset between the reported depth and

the actual depth the sample represents, as it is an average of 5–10 cm of sediment. For a

straight line profile that increases with depth, the average value would be higher than the

top depth’s value and lower than the bottom depth’s value. If the profile decreases with

depth, the reverse would be true. We find however that adjusting for this few centimeter

difference does not change the offset trend.

4.3.1 Stable isotopes

Visual inspection of the depth profiles of δ18O and δD, Figure 4.6, is uninformative. Many

of the δD Rhizon measurements seem to be to the right of the squeeze measurements, but

the noise in the δ18O profile obscures the relationship between Rhizon sample measure-

ments and squeeze sample measurements.

Figure 4.7 shows histograms for the δ18O and δD offsets. These histograms are a bit

ragged because the total number of measurements for each population is ∼ 100 and the

number of bins is 20. However, the mean and maximum likelihood are closely aligned,

as can be seen by the location of the mean relative to the bin with the highest number

of samples. The mean offset for δ18O is 0.04h while the mean offset for δD is 0.23h.

The error in the determination of each of these means is equal to
√
σ2/N , where σ is the
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precision of an individual measurement, assuming that the precision for each measurement

is the same. With a reported precision of 0.1h in δ18O and 0.5h in δD and 87 samples,

the error in the mean offset for δ18O is 0.01h while the error for the mean offset of δD is

0.05h. As compared to the reported measurement precision, these mean offsets are both

statistically significant.

Neither the offsets in δ18O nor those in δD show a clear trend with depth, as demon-

strated in Figure 4.8a and 4.8b. Instead this view of the data confirms that of the

histograms, which is that most of the Rhizon measurement values are greater than the

squeeze measurement values.
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Figure 4.6: Depth profiles of δ18O and δD measured in both squeeze and Rhizon samples
at site U1385

4.3.2 Chloride

In contrast, in the [Cl−] depth profile, Figure 4.9, the Rhizon measurements lie clearly to

the right of the squeeze measurements in the upper ∼80 m, although below that point
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Figure 4.7: Histograms of offset between Rhizon measurements and squeeze sample mea-
surements interpolated to the Rhizon positions. (a) δ18O, (b) δD
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Figure 4.8: Offset between Rhizon sample measurements and squeeze sample measure-
ments as a function of depth (mbsf). (a) δ18O, (b) δD

both profiles become noisier and the distinction between measurement techniques is less

clear.

The chloride offset histogram, Figure 4.10 is more narrow than both of the stable isotope

offset histograms. The mean and max. likelihood again are aligned and the mean offset

is 0.04 g kg−1. Considering only the points below 80 m, the offsets in chloride are almost

indistinguishable from zero. However, considering the offset in chloride vs. depth in

Figure 4.11, there does not seem to be a significant trend below 80 m. Instead it seems

that perhaps the change is due to an inflection point in the depth profile. Or, below 80

m there is so much noise that the interpolation technique is no longer valid. There is no

relationship between the age of the IAPSO standard and the offset in chloride, as shown

in Figure 4.12, confirming that the signal we see is real and not due to problematic storage

of our standard.
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4.4 Discussion

There is a significant offset between measurements on Rhizon samples and squeezed sam-

ples in both stable isotopes and chloride. There are several possible reasons for this

observed difference.

Rhizon samples were taken over an ∼3 hour period during which water evaporation may

have changed the isotopes and chloride concentration. We were unable to carefully control

for this time, which may be one contributor to the noisiness in the data.

In a similar way, the hydrophilic membrane of the sampler may have absorbed some of the

water, creating higher measured chloride concentrations, or caused diffusional fraction-

ation of the stable isotopes, which we expect would preferentially affect the δD relative

to δ18O as the relative mass difference, and thus the difference in diffusivity, between

hydrogen isotopes is greater than that between the oxygen isotopes.
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Figure 4.10: Histograms of the [Cl−] (g kg−1) offset between Rhizon sample measurements
and squeeze sample measurements interpolated to the depths of the Rhizon samples
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Figure 4.11: [Cl−] (g kg−1) offset between Rhizon sample measurements and squeeze
sample measurements as a function of depth
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Figure 4.12: Offset between Rhizon and squeeze sample [Cl−] as a function of the age of
the IAPSO standard (days) used to measure the Rhizon sample

Another possible source of the offset is drill fluid contamination. We inserted the porous

membrane such that it was within the sediment that should not have direct contact with

drill fluid, however, in many cases we observed that the sediment in which we placed

the samplers had pulled away from the liner by the time we removed the samplers. This

indicates that the water on the outside of the section may have been sucked into the

sampler as well. In our particular case, the drill fluid would have a higher concentration

of chloride than the pore fluids as the pore fluid concentration with depth decreases
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slightly at least in the upper ∼ 50 m of the depth profile. This could explain part of the

trend we see with depth in the chloride, specifically that the deeper chloride values are

saltier and thus a slight contamination with a saltier source has a smaller relative effect

on the measurement offset.

Evaporative fractionation has been intensively studied, and there are good theoretical

predictions for the relationship between δ18O and δD undergoing evaporation. We can

therefore compare the relationships between the stable isotopes and chloride to see if the

offset is consistent with evaporative fractionation.

Our case can be described best by open-system Rayleigh fractionation. The ratio of

heavy to light isotope, R, (i.e.
18O
16O

for oxygen or D
H

for hydrogen ) in a pool of water with

essentially infinite molecules and fixed conditions can be described by:

R = R0

(
N

N0

)(α−1)

. (4.1)

R0 is the initial isotope ratio, N is the total number of molecules remaining, N0 is the

original number of molecules and α is the fractionation factor. At 20◦C the evaporative

fractionation factor for 18O relative to 16O is 1.0098 and for deuterium relative to protium

is 1.084 (Gat, 1996).

Under evaporation the fraction of material left, N
N0

, is also known as f. f will be equal

for both pairs of isotopes, such that there is a linear relationship between the logs of the

element ratios, i.e.:
αH − 1

αO − 1
ln
RO

RO
0

= ln
RH

RH
0

. (4.2)

While the spectroscopic technique used in CRDS does not yield isotope ratios, the ratios

can be computed simply from the δ values as follows;

δ18O

1000
+ 1 =

R

Rstd

, (4.3)
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such that the relationship between δ18O and δD under evaporation is:

αH − 1

αO − 1
ln

 δ18Ofinal

1000
+ 1

δ18Oinitial

1000
+ 1

 = ln

 δDfinal

1000
+ 1

δDinitial

1000
+ 1

 . (4.4)

Substituting in the α values, this is:

8.5714 ln

 δ18Ofinal

1000
+ 1

δ18Oinitial

1000
+ 1

 = ln

 δDfinal

1000
+ 1

δDinitial

1000
+ 1

 . (4.5)

For our purpose, we assume the initial isotope ratio is that of the interpolated squeeze

measurement. The final isotope ratio is that measured in the Rhizon sample. The hy-

pothesis we test with these choices is that the Rhizon values are fractionated relative to

the squeeze values because they are left open to the atmosphere longer. It is important

to note that in some cases the squeeze samples do sit for ∼1 hour in the squeezers; thus,

we never have a perfect control on no evaporation.

The red line labeled evaporative fractionation in Figure 4.13 shows the assumed rela-

tionship between the oxygen and hydrogen isotope ratios. The 2-norm error of the data

relative to the prediction, assuming all the error is in the hydrogen measurements, is

0.0083 while the 1-norm error is 0.0574. The blue line is a linear fit to the logarithmic

data. The slope of the line is 4.557. The 2-norm error is 0.0071 and the 1-norm error

of this fit is 0.0502. If I propagate the precision of the hydrogen isotope measurements

through the Rayleigh equation, the theoretical 2-norm error must be greater than 0.0066

and the 1-norm error should be greater than 0.0622. Therefore the difference between the

evaporative fractionation and the empirically calculated relationship between hydrogen

and oxygen isotopes is indistinguishable.

The evolution of concentrations with evaporations can be described analogously to Rayleigh

fractionation, where f =
Vfinal

Vinitial
= [Cl−]initial

[Cl−]final
. Then the relationship between chloride con-
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Figure 4.13: Hydrogen isotope ratios vs. oxygen isotope ratios

centrations and δ18O can be written:

1

α− 1
ln

 δ18Ofinal

1000
+ 1

δ18Oinitial

1000
+ 1

 = ln

(
[Cl−]initial
[Cl−]final

)
. (4.6)

However, as shown in Figures 4.14 and 4.15, there is not a strong relationship between

the fractionation factor calculated from the chloride concentrations and that calculated

from the isotope ratios, nor does the fractionation of the isotopes and [Cl−] have a trend

with depth.

Since the fractionation signal in the [Cl−] is clearer than that in the stable isotopes, we

can consider whether the amount of fractionation, assuming it is evaporative, could be

expected to be detectable by the Picarro. The most fractionated chloride measurement

yields an f of 0.98. This would yield a ratio R
R0
|O of 0.9998. For a typical measured

δ18Ofinal equal to 0.4h, the measured δ18Oinitial would be equal to 0.6h which is greater

than the precision of the Picarro and therefore detectable. However, most of the [Cl−]

determined f values are greater than 0.99, which would yield a measured difference in δ18O

of less than 0.1h, indistinguishable from 0 given the measurement precision of the Picarro.

Because the relationship between isotope fractionation and chloride concentration due to
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evaporation is undetectable, we can not rule out that the observed fractionation in our

two sets of samples is at least in part evaporative.
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Figure 4.14: Chloride fractionation vs. isotope ratios (a) shows chloride vs. δ18O, (b)
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4.5 Conclusions

We found that Rhizons were unable to be used in the very deepest, highly compacted

ocean sediments. Near the Advanced Piston Core (APC) refusal depth, our attempts

to insert Rhizons into the sediments without pre-drilling the sediment were typically

unsuccessful. Even when pre-drilling the sediment, the sediment would quickly fill in,

crushing the Rhizon and leading to sub-optimal water extraction.

In less compacted sediments, the Rhizons caused contamination of the chloride concentra-

tion and oxygen isotope values. Our analysis indicates that this contamination is caused

either by evaporative or diffusive fractionation, rather than a blank in the Rhizon or

mixing with drill fluid.

In the future we need to find a way to markedly increase the number of high quality

measurements of sediment pore fluid chloride and oxygen isotopes, as we still lack suitable

alternative ways to reconstruct ocean temperature and salinity. Emerging technologies in

ocean sediment drilling, such as the MeBo, may afford an increase in spatial density of

pore fluid measurements.
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Chapter 5

The role of ocean cooling in setting
glacial southern source bottom water
salinity
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Abstract

At the Last Glacial Maximum (LGM), the salinity contrast between northern source deep

water and southern source bottom water was reversed with respect to the contrast to-

day. Additionally, Glacial Southern Source Bottom Water (GSSBW) was saltier than

Antarctic Bottom Water (AABW), over and above the difference implied by the mean

sea level. This study examines to what extent cold temperatures, through their effect

on ice formation and melting, could have caused these differences. Computational sensi-

tivity experiments using a coupled ice shelf cavity - sea ice - ocean model are performed

in a Weddell Sea domain, as a representative case study for bottom water formation

originating from Antarctic continental shelves. Ocean temperatures at the domain open

boundaries are systematically lowered to determine the sensitivity of Weddell Sea water

mass properties to a range of cool ocean temperatures. The steady state salinities differ

between experiments due to temperature-induced responses of ice shelf and sea ice melt-

ing and freezing, evaporation and open boundary fluxes. The results of the experiments

indicate that reduced ocean temperature can explain up to 30% of the salinity difference

between GSSBW and AABW, primarily due to decreased ice shelf melting. The smallest

and most exposed ice shelves, which abut narrow continental shelves, have the greatest

sensitivity to the ocean temperature changes, suggesting that at the LGM there could

have been a shift in geographical site dominance in bottom water formation. More sea ice

is formed and exported in the cold ocean experiments, but the effect of this on salinity is

negated by an equal magnitude reduction in evaporation.
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5.1 Introduction

Paleo reconstructions of deep ocean salinity and temperature at the Last Glacial Max-

imum (LGM; see Table 1 for abbreviations) indicate that ocean density gradients were

primarly set by salinity. Recent modeling studies (Bouttes et al., 2009, 2010) suggest that

this stratification could have had a significant impact on the rate of the mean overturning

circulation and the carbon cycle, but it is unknown whether or by what mechanism the

salinity/density gradient could have been created and maintained. We investigate to what

extent sea ice - ice sheet - ocean interactions over the Antarctic continental shelves could

explain this change in salinity structure.

At the LGM the sea level was around 125 m lower than it is today due to the expansion

of continental ice sheets, corresponding to an average ocean salinity increase of roughly

1.2 g kg−1. The salinity of Atlantic Glacial Southern Source Bottom Water (GSSBW) at

the LGM was 2.3 g kg−1 higher than that of modern Antarctic Bottom Water (AABW),

leaving 1.1 g kg −1 unexplained by a contraction of the oceans (Adkins et al., 2002).

Water at sites occupied by northern source intermediate/deep water was saltier as well,

but the salinity increase there roughly matched the average, or was slightly lower. Thus at

the LGM the Atlantic Ocean deep water masses were more stratified in salinity. As δ18O

measurements show that deep ocean temperatures were all similar and close to the freezing

point (Adkins et al., 2002, Malone et al., 2004, Schrag et al., 2002), density gradients

would have been primarily set by salinity. The observed glacial salinity stratification,

when compared to the modern temperature stratification, corresponds to a higher than

modern density stratification between northern and southern deep water. In addition,

the LGM version of NADW, Glacial North Atlantic Intermediate Water (GNAIW), was

fresher than GSSBW in the Atlantic, which is opposite in sign to the salinity difference

between NADW and AABW today.

In the modern, NADW is a precursor to AABW. AABW has a lower salinity than NADW

due to modifications that occur in the Southern Ocean. The properties of NADW help

determine these Southern Ocean processes and how they contribute to the final charac-

teristics of AABW. The salinity maximum that distinguishes NADW from other water



170

masses identifies it as the main contributor to Circumpolar Deep Water (CDW) (Reid and

Lynn, 1971). CDW interacts with water masses formed and modified over the Antarctic

continental shelves to eventually transform into AABW. In the Southern Ocean there is an

excess of precipitation over evaporation, and over the Antarctic continental shelves there

is an additional freshwater input from basal melting of marine-based ice sheets inside ice

shelf cavities. Brine rejection from sea ice combined with sea ice export compensates

for these freshwater fluxes over continental shelves, such that the salinity of continen-

tal shelf waters can be as high or higher than that of CDW. Antarctic continental shelf

water properties, in particular those in the Weddell and Ross Seas and on the Adélie

Coast, determine the properties of AABW. The details of how continental shelf waters

are transformed to AABW and the properties of AABW vary with location, but share

many general similarities. There is also evidence that water exported from the Weddell

Sea makes up more than half of AABW (Orsi et al., 1999). Therefore we consider the

modern Weddell Sea as a representative source of AABW formation in our study.

A detailed review of the modern processes responsible for water masses in the Weddell

Sea and how they contribute to bottom water formation can be found in Nicholls et al.

(2009) and references therein. Figure 5.1 shows the Θ0/S properties of water masses on

the modern Weddell Sea continental shelf. A subset of these water masses can be used to

illustrate the main processes that contribute to AABW properties. Brine rejection and

sea ice export in the Weddell Sea form High Salinity Shelf Water (HSSW: S > 34.5),

the highest density water formed on the continental shelf. Ice Shelf Water (ISW: Θ0 <

−1.9◦C), the second highest density continental shelf water mass, is formed in large part

from ice shelf meltwater. Overflows of ISW and HSSW entrain other water along their

paths to the abyssal Weddell Sea, primarily diluted CDW in the form of Warm Deep Water

and Modified Warm Deep Water (MWDW). The original properties of ISW, HSSW and

modified CDW are evident in Weddell Sea Bottom Water (WSBW) and Weddell Sea Deep

Water (WSDW), the deepest Weddell Sea water masses. The export of WSDW at the

northwest boundary of the Weddell Sea is the Weddell Sea’s main contribution to AABW

(Fahrbach et al., 1995, Foldvik et al., 2004, Gordon et al., 2010). Sea ice and ice shelves,

by determining the properties of ISW and HSSW, heavily influence the final properties

of AABW.
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Figure 5.1: Histogram of modern Weddell Sea continental shelf properties (figure after
Nicholls et al. (2009)). See Table 1 for water mass abbreviations. Continental shelf in this
figure is defined after Nicholls et al. (2009) as south of 70◦S and west of 0◦. Curved lines
are surface isopycnals separated by 0.1 kg m−3. Gray scale shows the base 10 logarithm
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In the balance of these processes, AABW is fresher than NADW, but the salinity dif-

ference between the two is slight (∼0.1 g/kg; Nicholls et al. (2009), Orsi et al. (1999),

Toggweiler and Samuels (1995)). While salinity plays a role in the local sinking of Antarc-

tic continental waters, the density difference between the two water masses is dominated

by temperature; AABW is denser than NADW because it is colder.

Why was the LGM deep Atlantic Ocean so salty and why did the contrast in salinity

between northern source and southern source deep waters switch? In addition to having

an increased ice volume, the glacial Antarctic ice sheet was characterized by a northwards-

shifted grounding line (Hall, 2009, Whitehouse et al., 2012). Further, it is likely that the

wind forcing of the Southern Ocean at the LGM differed from its present state (Toggweiler

et al., 2006). Undoubtedly these features had a significant role in setting glacial ocean
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circulation. However, long before the ice sheets expanded to their most recent maximum

extent, the mean deep ocean temperature had already cooled ∼ 1.5 − 2◦C below its

temperature during the last interglacial and during the modern periods (Chappell and

Shackleton, 1986, Cutler et al., 2003). The approach to the LGM ocean and ice sheet

states may have been initiated by this advance cooling and its resultant feedbacks.

In this study, we hypothesize that the cool ocean temperatures prior to and during the

LGM can account for a significant portion of the increased southern source bottom water

salinity observed at the LGM, due to a reduction in freshwater from ice shelf basal melting

and an increase in salinity from sea ice processes on the Antarctic continental shelves. To

test this hypothesis, we perform a set of numerical ocean cooling sensitivity experiments in

a regional Weddell Sea domain. We examine how ocean properties on the continental shelf

change in response to lower ocean temperatures and changes in ice - ocean interactions

in the Weddell Sea. We additionally consider the relative influence of ice shelves versus

sea ice in setting continental shelf water properties, and how the balance between the two

changes in response to increasingly cool temperatures.

As modern bottom water formation depends on the complex interaction between sea ice,

ice shelves and the ocean, our experiments use an ocean general circulation model (ocean

GCM) coupled to dynamic/thermodynamic sea ice and thermodynamic ice shelf cavity

models. While the ice sheet’s total contribution to the freshwater and thermodynamic

budgets plays a key role in setting modern deep water formation, the distributed locations

of meltwater injection and their interactions with ocean and sea ice dynamics cannot be

neglected (Hellmer, 2004). Further, due to the complex interactions of different compo-

nents of the ice-ocean-atmosphere system, it is difficult to predict how the system will

respond to a temperature change. For example, observed Antarctic sea ice area has not

decreased in response to warming ocean temperatures (Zwally et al., 2002).
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5.2 Methods

5.2.1 Model Setup

We use the Massachusetts Institute of Technology general circulation model (MITgcm;

Marshall et al., 1997a,b) in a regional domain configuration to investigate the effect of

ocean cooling on ice shelf and sea ice processes. The integration domain (Fig. 5.2) is

derived from a global cube sphere grid configuration with horizontal grid spacing of ∼18

km (Menemenlis et al., 2008); it encompasses the Weddell Sea and the ocean border-

ing Queen Maud Land, and it extends slightly into the Antarctic Circumpolar Current

(identified in the model by surface velocities greater than 0.5 m/s); it also covers a small

section of the Bellinghausen Sea west of the Antarctic Peninsula. Ocean bathymetry is

from the so-called S2004 blend (Marks and Smith, 2006). Ice shelf cavity bathymetry

for the Filchner-Ronne Ice Shelf (FRIS) and for the Larsen Ice Shelf in the Weddell Sea

as well as for the Eastern Ice Shelves are derived from BEDMAP (Lythe et al., 2001),

and ice shelf thicknesses are taken from DiMarzio et al. (2008) using firn corrections from

van den Broeke et al. (2008).

The MITgcm is a three-dimensional general circulation model, which solves the primitive

equations for fluid on a rotating sphere. Our MITgcm configuration uses the hydrostatic

and Boussinesq approximations. The effect of turbulent eddy transport and mixing are

parameterized by a combination of several schemes. There is a diffusive flux of properties

along isoneutral surfaces proportional to the local gradient of the properties as described

in Redi (1979). The advective component of turbulence is approximated using the Griffies

(1998) skew flux formulation of the Gent and McWilliams (1990) eddy transport velocity.

To account for vertical mixing due to boundary layer dynamics and to unresolved processes

such as shear instabilities, internal wave activity, and convection, we include the K-Profile

Parameterization (KPP) scheme (Large et al., 1994). Using the Gent-McWilliams/Redi

parameterization in combination with the KPP requires an additional flux/slope taper-

ing scheme to remove spurious interactions between the parameterizations (Large et al.,

1997). The physical equations are integrated using a finite volume discretization in locally

orthogonal curvilinear coordinates, with the vertical dimension described by level coordi-
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Figure 5.2: Computational domain and bathymetry. White area indicates floating ice
shelves and black area is land/grounded ice comprising the Antarctic continent. LIS:
Larsen Ice Shelf, RIS: Ronne Ice Shelf, FIS: Filchner Ice Shelf. We do not include ice
shelves east of the Antarctic Peninsula. Model domain bathymetry in meters is repre-
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front and the 1000-m contour as the continental shelf in order to include water in the
Filchner and Ronne depressions in our analysis. Note that water under the ice shelves
is not included, but the water found equatorward of the eastern Weddell ice shelves is
included.

nates. There are 50 vertical levels with thicknesses that increase monotonically from 10

m near the surface to 456 m at the deepest level. The bathymetry is represented using

the partial cell formulation of Adcroft et al. (1997) with a minimum fraction equal to 0.3.
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The ocean model is coupled to the dynamic and thermodynamic sea ice model described

in Losch et al. (2010). Our configuration assumes that the sea ice has no heat capacity, a

setup commonly described as a “zero-layer model” of the thermodynamics. Sea ice model

parameters are adjusted using a Green’s function approach (Menemenlis et al., 2005).

Data constraints include sea ice thickness from Upward Looking Sonar (ULS; Harms

et al., 2001) and ice motion from satellite passive microwave data (Kwok et al., 1998).

Optimized parameters include ocean albedo (0.15), dry ice albedo (0.88), wet ice albedo

(0.79), dry snow albedo (0.95), wet snow albedo (0.82), air/ocean drag (1.02), air/ice drag

(0.0012), ocean/ice drag (0.0055), ice strength P ∗ (12500 N m−2), and lead closing Ho

(1.0). See Nguyen et al. (2011) for a detailed description of the above parameters and of

the optimization methodology.

The thermodynamic ice shelf cavity model is that described in Losch (2008). The shape

and thickness of the ice shelves do not change as a result of melting or freezing at the

interface, but there is a time-dependent flux of heat and freshwater between the ice shelf

and the ocean. The fundamental melt-freeze process is defined by “three-equation ther-

modynamics” (Hellmer and Olbers, 1989, Jenkins et al., 2001).

Exchange of heat and freshwater between the base of the ice sheet and the ocean is param-

eterized as a diffusive turbulent tracer flux of temperature or salinity. Following Holland

and Jenkins (1999), turbulent diffusivities of temperature and salinity are, respectively,

γT = 10−4 and γS = 5.05× 10−7. Freshwater flux in kg is

q =
ρ cp γT
L

(Tb − T ) +
ρI cp,I κ

Lh
(Tb − Ts),

where positive q values indicate melting, ρ is the density of seawater determined by the

nonlinear equation of state of Jackett et al. (2006), ρI is the density of ice (917 kg m−3),

cp is the specific heat of seawater (3974 J kg−1 K−1), cp,I is that of ice (2000 J kg−1 K−1),

L is the latent heat of fusion (334 kJ kg−1), κ is the conductivity of heat through the ice

(1.54×10−6 m2 s−1), and h is the local thickness of the ice shelf, which varies in space but

is constant in time. T is in-situ ocean temperature in ◦C, computed as a volume-weighted

average of the two levels of ocean below the ice shelf grid cells, Tb is the temperature

at the ice interface, which is assumed to be at the in-situ freezing point, and Ts denotes
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the surface temperature of the ice shelf, here a constant −20◦C. While the water freezing

point in the ocean model is calculated from the non-linear equation of state of Jackett

et al. (2006),the in-situ freezing point in the ice shelf equations is determined from the

linearized equation of state:

Tb = 0.0901− 0.0575Sb − 7.61× 10−4 pb,

where Sb is the salinity and pb is the in-situ pressure in dBar of the water at the ice

interface. Pressure is computed using the hydrostatic approximation. The salt flux at the

interface is a virtual salinity flux calculated from:

q (Sb − SI) = ρ γs (Sb − S),

where S is ocean salinity computed in the same water volume as T . SI is the ice salinity,

which we take to be 0. The above three equations are solved for Sb, Tb, and q. The

contribution to the ocean is then given by an advective tracer flux to the ocean:

ρK
∂X

∂z
= (ρ γX − q)(Xb −X),

where X is the tracer, either T or S, and K is the vertical eddy diffusivity of the mixing

scheme (M. Losch, pers. com. 2010).

5.2.2 Salinity Tracers

In order to distinguish salinity changes originating from ice shelf basal melt or freeze

from those occurring at the surface ocean interface with sea ice and the atmosphere, we

augment our copy of the MITgcm code with two new three-dimensional tracers. One

tracer tracks changes in grid cell salinity from the ice shelf, while the other accumulates

salinity changes resulting from surface processes. In our model configuration, the ice shelf

and sea ice freshwater fluxes, in addition to salt rejected from sea ice, are applied to the

surface level of the salinity field as virtual salinity fluxes, that is, the freshwater flux is

converted to an equivalent salinity flux and does not change the volume of the grid cell
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to which it is added. Each tracer adds the values of its respective virtual salinity fluxes

to the top layer of a three-dimensional passive tracer field at each time step, which then

evolve in time and space in the same manner as the salt field. We do not separate surface

salt fluxes due to precipitation, evaporation, and runoff from those due to freezing and

melting of ice in our surface salt tracer for reasons discussed later in the text.

5.2.3 Boundary Conditions

The same year (1994) of lateral and surface boundary conditions is repeated for every

year of the 50-year control and sensitivity integrations in order to force the model to a

quasi-steady state, which is reached after about 30 model years. We consider steady state

to be the period in the integration after which the variations in yearly-mean change of

the domain-averaged salinity and temperature values are, respectively, less than 10−4%

and 10−2%, which corresponds to approximately 2 ×10−5 g kg−1 and 10−3 ◦C. Values we

report as steady state are averages over the final 10 years of each integration.

Lateral and surface boundary conditions for the control experiment are taken from year

1994 of an Estimating the Circulation and Climate of the Ocean, Phase 2 (ECCO2)

solution known as “cube78”. The cube78 solution was obtained using model Green’s

functions to adjust a global, eddying ocean and sea ice configuration of the MITgcm

(Menemenlis et al., 2008). The prescribed lateral boundary conditions are temperature,

salinity, velocity of water and sea ice, sea ice area, and sea ice thickness. Oceanic boundary

conditions are prescribed as monthly-mean values, which are interpolated in time to each

model time step (1200 s) in order to avoid temporal discontinuities. Sea ice boundary

conditions are interpolated to the model time step from daily-mean values.

Surface boundary conditions (six-hourly downwelling short wave and long wave radia-

tion, 10-meter wind velocity, 2-meter atmospheric temperature and humidity, and pre-

cipitation) used for the cube78 solution are primarily based on the European Centre for

Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40; Uppala et al.,

2005) except for precipitation, which is primarily based on the Global Precipitation Cli-

matology Project (GPCP; Adler et al., 2003). Surface atmospheric conditions remain the
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same throughout all the experiments; they are all forced with the cube78 surface atmo-

spheric conditions. However, because heat and water fluxes at the surface are diagnosed,

they are able to vary with changing surface ocean temperature. Specifically, surface heat

flux and evaporation are calculated using the Large and Pond (1982) bulk formulae and

surface wind stress is calculated using the drag coefficient parameterization of Large and

Yeager (2004).

All control and sensitivity experiments are initialized from rest and from temperature

and salinity values from the January World Ocean Atlas 2009 (WOA09; Locarnini et al.,

2010, Antonov et al., 2010) interpolated onto our model grid. Data used to construct

WOA09 are sparse in this region, particularly inside the ice shelf cavities, as ocean and

ice conditions limit observations.

5.2.4 Control Integration Comparison with Data

Our control integration generally resembles modern data in the Weddell Sea, despite some

significant deficiencies. We note that the modern data shown here are distinct from those

used as our initial condition; to our knowledge these were not incorporated in the WOA09

compilation. Also they were not available to optimize the global ECCO2 solution we use

for lateral boundary conditions. Figures 5.1 and 5.3 are logarithmic (base 10) histograms

of modern data and control experiment properties over the continental shelf. They are

plotted as histograms in order to highlight the water masses that are most typical, but

the scales are not comparable between figures.

Modern data sampling occurs during Southern Hemisphere summer; therefore the plot

of our control experiment shows points from October - June. Seasonal transitions in our

control may not correspond exactly to seasonal transitions in the modern, so our control

experiment might have more winter type water properties than the modern data. Taking

measurements near or under ice shelves is difficult, which is another source of differences

between the model results and the data. In our computational setup we can easily sample

at every point below the ice shelves. This is why our control ISW potential temperatures

have values as low as -3◦C, which corresponds to the in-situ freezing point at the deepest
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Figure 5.3: Histogram of control integration continental shelf properties. Weddell Sea
continental shelf is defined after Nicholls et al. (2009) to be south of 70◦S and west of
0◦. Gray scale shows the base 10 logarithm of the frequency of each value. Bin sizes are
0.001 in both S and Θ0.

points of the ice shelf base. HSSW in our integration is very low in salinity with respect to

modern values; maximum values are 34.5 g kg−1 as opposed to the observed 34.9 g kg−1.

One likely reason for this is that sub-grid-scale sea ice processes are parameterized, and a

faithful representation of their effect on salinity depends on parameter optimization. Sea

ice behaves differently in the presence of ice shelves such that the model parameters must

be re-optimized in their presence. However, even if the sea ice parameters were perfectly

optimized to reproduce modern continental shelf properties, there would be no guarantee

that these parameters would give a realistic solution under glacial conditions.

Our control experiment’s representation of WDW is slightly warmer than that observed.

WDW is a diluted version of CDW, so it is possible that our control experiment’s version is

simply less diluted in temperature. Additionally over the computational continental shelf
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we find more points with properties of modern Antarctic Surface Water than apparent in

the data, which typically is characteristic of the open ocean away from the continental

shelf. This could be because the Weddell Gyre intrudes further onto the shelf in the model

than observed, probably as a result of the grid discretization.

The control integration’s representation of WSDW and WSBW is very narrow in property

space and essentially determined by the boundary conditions. The absence of HSSW

explains in part the absence of typical WSDW and WSBW, as HSSW mixes with WDW

to form these two. Still, it is not necessary that HSSW take on its most extreme value in

salinity to form deep water; in fact both WDW and WSDW are higher in salinity than

WSBW but have lower densities than WSBW due to their warmer temperatures.

Although the control experiment produces low salinity HSSW, there is another reason

why we observe a gap in property space between the control HSSW and WDW. The

rapid increase of vertical grid size close to the depth of the shelf break, in combination

with the coarse horizontal resolution, cause shelf properties to mix away rapidly. As a

result, there is negligible transport from the shelf to the deep ocean in our experiments.

Resolution of dense overflows in the modern Weddell Sea requires ∆ z and ∆ h < 100

m (Legg et al., 2006, Winton et al., 1998), a grid several orders of magnitude finer than

ours. However, the grid that we use is already an order of magnitude finer than typical

coupled climate models. This is not merely an artifact of our regional computational

setup; a recent study diagnosing bottom water formation in ocean general circulation

models finds that MITgcm, even in the ECCO global configuration, forms its deepest

waters primarily through transformation of intermediate waters (Downes et al., 2011).

Other models have similar and sometimes worse problems. Improved representation of

bottom water formation, and its role in ocean ventilation changes under future and past

climate scenarios, will require very high resolution or development and implementation of

a sub-grid-scale parameterization.

The melt rate magnitude and patterns of the Filchner-Ronne and western Weddell Sea ice

shelves in our control experiment compare well with estimates from modern satellite data.

Recent estimates from interferometric synthetic-aperture radar (InSAR) data and flux-

gate modelling give a net melt rate of the combined western ice shelves in our numerical
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domain of 109 ± 24.8 km3 yr−1 (Joughin and Padman, 2003, Rignot et al., 2008). In our

control experiment the combined 10-year-averaged freshwater flux of these ice shelves is

111.6 km3 yr−1. In contrast the melt rates of the eastern ice shelves in our control experi-

ment are about an order of magnitude higher than recent data estimates; we compute an

average of 1071 km3 yr−1 compared to an estimate of 73 ± km3 yr−1 from available data

(Rignot et al., 2008). Although the control melt rates of the eastern ice shelves are likely

too high, this does not have a significant direct effect on the continental shelf properties

and property changes in our experiments, as discussed later. Most of this meltwater is

exported as buoyant surface water. However, the anomalously high meltwater flux to the

surface ocean could have a damping effect on the sea ice response in our experiments. In

the control, the overproduction of ice shelf meltwater could insulate the sea ice from the

underlying ocean conditions. The ocean cooling in our experiments causes and thus coin-

cides with the removal of this anomalous ice shelf freshwater, such that the sensitivity of

the sea ice model in this region to changes in ocean conditions might be underestimated.

5.2.5 Experiments

Eight numerical cooling experiments are done by changing the ocean open boundary

temperatures only. The experimental boundary conditions in potential temperature, Θe,

are defined as

Θe = Θc − η(Θc −Θfr)

where Θc is the boundary potential temperature of the control integration, Θfr is the

salinity and pressure-dependent freezing point, and η ranges from 0.1 to 0.8. Thus η = 0.1

corresponds to the least cooling, while η = 0.8 represents the experiment with the most

cooling. Note that each boundary grid cell can take on a different value; the boundary

conditions are not homogeneous.

Modification of the boundary temperatures alters the density of the boundary points with

respect to those of the control. To ensure that our experiments are examining the effect

of thermodynamic rather than dynamic changes, we also perform a separate set of eight

“density-compensated” integrations. In addition to the temperature changes described
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above, in the density-compensated integrations we change the salinity of the boundary

conditions; to retain the control densities with colder temperatures requires decreasing

the salinity of each point. We use a local linear approximation of ∂ρ
∂S

at each point to

compute the change in salinity necessary to restore the density of the point to that of the

control. The density compensated integrations result in ice melt patterns and magnitudes

virtually indistinguishable from those of the non-compensated experiments, however they

display a very large freshening flux from the boundaries that confuses the interpretation

of our results. For this reason we discuss only the non-compensated experiments.

5.3 Results and Discussion

We find large changes in the properties of water masses formed over the continental shelf

in response to our cooling experiments. Modern water masses such as ISW, HSSW, and

WDW/CDW are identified by their potential temperature and salinity. These identifying

properties are exactly the properties that change with each cooling experiment. For

this reason, instead of using Θ0/S cutoff values to define water masses, we examine how

properties change in fixed locations of interest. The locations which would tell us the most

about modification of AABW properties would be the bottom of the Weddell Sea and the

deep levels of the ocean near the northwestern edge of the Weddell Sea. However, the lack

of a properly resolved or parameterized bottom boundary layer in the model restricts us

to examining experimental results on and near the continental shelf.

With these considerations in mind, our essential result is illustrated in Fig. 5.4, which

shows the Θ0/S properties of water for the control and for two representative cooling

sensitivity experiments at their annual salinity maxima, the time at which we expect

the largest quantity of HSSW. In order to highlight changes in water masses over the

continental shelf that can lead to significant changes in bottom water formation, we

plot water properties of the two bottom-most layers of the domain down to the 1700-

m depth cutoff and water properties inside the ice shelf cavities. Together these two

layers represent, on average, ∼150 m of vertical thickness. Below ∼1700 m the water

properties of the control experiment are dominated by the boundary conditions. The



183

Salinity (g kg-1)

Θ
0 

   
   

   
  

  (
°C

)

34 34.1 34.2 34.3 34.4 34.5 34.6 34.7 34.8 34.9 35
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

η=0.8
η=0.4
Control

Figure 5.4: Θ0/S properties of water in two layers along domain bottom down to 1700 m
from the control and from two sensitivity experiments at their annual salinity maxima.
Together these two layers represent, on average, ∼150 m of vertical thickness. The open
ocean and the shelf region west of the Antarctic Peninsula are excluded. All potential
temperatures are referenced to the surface. Curved lines are isopycnals. The distance
between the isopycnal lines is 0.1 kg m−3

signal of continental shelf processes, a combination of Θ0 and S, deepens by almost 1000

m in our sensitivity experiments as the domain produces denser water able to descend

futher down the continental slope; however, comparison across experiments requires a

fixed-depth cutoff. The potential temperature of water in the ice shelf cavities (ISW) is

already closely constrained by the in-situ freezing point in the control experiment and

does not change noticeably in the experiments. Water masses that correspond to modern

ISW and HSSW increase significantly in salinity, up to a maximum of about 0.3 units

in response to the maximum cooling experiment. At the surface freezing point, which is

the temperature of HSSW, this change in salinity corresponds to an increase in surface

density of 0.24 kg/m3. This increase in surface density is equal to the modern surface
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density contrast between HSSW and WDW.

Plotting down to the 1700-m depth encompasses the water that lies along the base of

continental shelf and somewhat below the shelf break. This enables us to examine the

density contrast of shelf water with the water it entrains as it descends the slope and how

the contrast changes with cooler temperature experiments. There is a slight increase in

salinity in the warmer, deeper water masses, but the increase is small relative to that of

shelf waters. For this reason, the increase in density on the shelf in our experiments is

almost identical to a change in surface density contrast between HSSW and WDW. As

the continental shelf water overflows the shelf, its density contrast with the surroundings

would tend to increase due to the thermobaric effect (Killworth, 1977). Even without

thermobaric considerations, a surface density increase of 0.24 kg/m3 is more than double

the modern density difference between NADW and AABW of about 0.1 kg/m3.

However, the density contrast between the overflow and the overlying water would also

tend to decrease due to entrainment. In the modern Weddell Sea, the effect of entrainment

on density contrast is small due to the weak density stratification of the water column.

An increase in water column stratification, particularly if there is a large density gradient

at the shelf break, can counteract the increase in overflow source density and reduce the

ability of a high salinity signal to migrate from the continental shelf to the abyssal ocean

(Price and O’Neil-Baringer, 1994). Even if the density (and salinity) at the shelf break is

increased, it does not guarantee an increase in bottom water density.

5.3.1 Diagnosis of Water Mass Changes – Net Salinity Fluxes

and Changes

Figure 5.5 demonstrates that the relationship between domain-averaged S and domain-

averaged Θ0 is linear, with a slope of - 0.006 g kg−1/◦C and a maximum decrease of 0.016

g kg−1. This maximum is an order of magnitude smaller than the changes in HSSW

implied by Fig. 5.4. This is because Figure 5.4 does not include properties of the deep or

surface ocean, nor does it account for the volume associated with each water property

pair. Salinity changes in our experiments are concentrated in particular regions of the
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Figure 5.5: Sensitivity of volume-averaged domain salinity to volume-averaged domain
potential temperature. All values are 10-year averages. Each experiment is represented
by one point. The control experiment is at Θ0 = 0.5

domain.

To identify the mechanisms that contribute the most to our experimental results, we

consider salinity fluxes to the domain from distinct sources. While in the real ocean many

of these salinity fluxes are freshwater fluxes (evaporation, precipitation, and melting), we

use a volume conserving configuration of MITgcm. In this light, it is more sensible to

discuss salinity fluxes, keeping in mind that they have the opposite sign to freshwater

fluxes.

For reference, Figure 5.6 shows the absolute values of the salinity fluxes that contribute

to the salinity of the whole domain. The bulk of our discussion will demonstrate the

importance of changes in ice shelf fluxes over that of changes in sea ice fluxes across the

experiments. However, it is important to keep in mind that the average salinity of water

in each experiment is determined primarily by the salinity of water entering and exiting

the domain and by the sea ice and surface fluxes. In the modern Weddell Sea, for example,

water masses such as HSSW are higher in salinity than NADW/CDW because of sea ice

formation and export. The control experiment ice shelf contribution is about an order of

magnitude smaller than the sum of the other terms (Fig. 5.6). In contrast, changes in

the ice shelf salinity flux are an order of magnitude larger than changes in the large salt
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Figure 5.6: Magnitude of salinity fluxes integrated over the entire domain. E–P–R =
evaporation − precipitation − runoff. For reference, 1010 g s−1 = 6.5 m yr−1 of sea
ice exported (assuming a spatial cover of the total domain ocean area), so the variation
between the sea ice export between the control and the coldest sensitivity experiment is
∼ 0.82–1.03 m yr−1. Precipitation and runoff are prescribed in our experiments, so the
change in E–P–R is due to a change in evaporation only. The magnitude of the sea ice and
evaporation contributions to domain salinity are 0.5 – 1 order larger than the magnitude
of the ice shelf contribution in all experiments. However, the sea ice is much less sensitive
to ocean temperature change than the ice shelves.

fluxes.

Figure 5.7 is the change in salinity flux in the sensitivity experiment with respect to that

of the control. Salinity is able to change in our experiments as a result of changes in

evaporation, ice melting, ice freezing, and fluxes at the boundaries. Precipitation and

runoff (not shown) are prescribed and do not change throughout the experiments. At

first glance it seems that changes in multiple processes contribute equal magnitudes to

the total salinity flux change. However, several of these processes are not independent

and have a negligible combined effect.
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Figure 5.7: Change in salinity fluxes integrated over the entire domain. Each experiment
is represented by the domain steady state volume-averaged potential temperature. All
values are 10-year averages. For reference, 109 g s−1 = 0.65 m yr−1 of sea ice exported
(assuming a spatial cover of the total domain ocean area). Sea ice and evaporation
are of approximately equal magnitude but opposite sign; their combination is an order
of magnitude smaller than all other fluxes, that is, they essentially cancel each other’s
contribution.

Evaporation and sea ice changes have opposite sign but are of roughly equal magnitude;

that is, evaporation decreases with cooling but sea ice brine rejection and freshwater

export both increase with cooling. When we calculate the evaporative flux normalized by

open ocean area, we find that it is a constant for all experiments. Therefore the decrease

in evaporation is primarily due to increasing sea ice cover; water under the ice can not

evaporate. The sum of evaporation and sea ice changes, shown as triangles in Fig. 5.7,

contributes an order of magnitude smaller change to the domain changes in salinity than

those due to changes in ice shelf and boundary fluxes.

Salinity fluxes from the boundaries are due to the experimental setup. The water in the
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experimental domain becomes increasingly saltier with each experiment, but the velocities

at the boundaries are prescribed. This leads to an increased flux of salt out of the domain

of the same order of magnitude as the increase in salt flux to the domain from reduced

net melting of the ice shelves, the primary source of experimental salinity flux changes.

In the global ocean the exported salt would either recirculate into the Weddell Sea or be

deposited at another location. The salinity stratification of both the Weddell Sea and the

global ocean depends on the destination of this salt. However, because our integrations

are done in a regional domain and our domain boundaries are non-interactive, the effect

of this large quantity of salt is completely unknown and appears to us as a loss of salt.

The ice shelf changes in melting and freezing, which have a salinifying effect on the domain

as it is cooled, are an order of magnitude larger than the combined changes in surface

processes, which are co-dependent. The increased boundary flux of salinity depends on

the increase in domain salinity, so it is a result of the ice-shelf-induced salinity increase

rather than a competing process.

5.3.2 Diagnosis of Water Mass Changes – Regional Variations

and Salinity Flux Tracers

There is significant spatial variation in the salinity fluxes that contribute to the domain

means. Salinity fluxes due to ice shelf melting and freeze-on occur only where there are

ice shelves. Perhaps less obvious is the non-uniformity in sea ice and evaporative fluxes.

While in the domain average the temperature-induced increase in sea ice is balanced by

a decrease in evaporation, this is not true everywhere. Figure 5.8 shows that in our

sensitivity experiments, changes due to sea ice dominate the changes in surface salinity

flux over the continental shelf. This is because in all of our experiments, and in the modern

ocean, the continental shelf is almost completely covered with sea ice year-round. In our

experiments there is a small increase in sea ice cover over the continental shelf, as shown

in Figures 5.9a and 5.9b, which leads to a small decrease in evaporation with increasingly

cool ocean temperatures. However, the increase in area and thickness of sea ice formed

over the continental shelf contributes a more significant quantity of salt. In total, the
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Figure 5.8: Change in surface salinity fluxes over the continental shelf, computed as
sensitivity minus control experiment. Each experiment is represented on the x-axis by
the domain steady state volume average potential temperature. All values are 10-year
averages. The boundaries of the continental shelf are taken as the 1000-meter depth
contour, excluding land to the north and/or west of the Antarctic Peninsula. For reference,
10−7 g s−1 is equivalent to the export of 0.11 m yr−1 from the entire continental shelf.
E–P–R = evaporation − precipitation − runoff. The only change in E–P–R across the
experiments is due to evaporation. Salinity flux changes due to sea ice dominate the
change in surface fluxes over the continental shelf.

change in sea ice over the continental shelf is quite small relative to the domain change,

as can be seen by comparing the y-axes of Fig. 5.8 and Fig. 5.7. We have not investigated

the cause of the constant sea ice flux in the warmest three experiments, but one possibility

is that it results from slight differences in the lateral path of the deep Weddell Gyre, which

we observe in the experiments. It might also be related to the meltwater overproduction

of the eastern ice shelves in the control experiment discussed previously. While the change

in sea ice is important relative to other surface salinity fluxes over the continental shelf,
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Figure 5.9: (a) Minimum sea ice area for three experiments, from left to right: η = 0,
η = 0.4, η = 0.8. (b) Maximum sea ice area for three experiments, from left to right:
η = 0, η = 0.4, η = 0.8. The color scale indicates grid cell concentration and is unitless.
All values represent a 10-year average and a weekly average during the week in which the
total sea ice volume is at its yearly maximum. The 1000-m depth contour is overlain to
indicate the continental shelf break. Grounded ice is indicated by hash marks and floating
ice shelves are adjoined to the grounded ice and colored white.

it is small when compared to the ice shelf flux changes. Also, a change in salinity flux

over the continental shelf is not equivalent to a change in continental shelf salinity.

Regional variations in salinity fluxes and their distribution result in a pattern of salinity

change quite different than that implied by the domain mean. With the salinity tracers

described in the Methods section, we are able to determine how different processes con-

tribute to changes in properties across experiments and where changes are concentrated

geographically. To review, we have one salinity tracer that tracks salinity fluxes from the

ice shelves and a second tracer that tracks the salinity fluxes from the surface. The latter

is a combination of atmospheric fluxes and sea ice fluxes. However, since we showed in

the previous section (3.1) that the changes in atmospheric fluxes are due to the sea ice,
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it is appropriate to think of our surface tracer as equivalent to a sea ice tracer. For these

analyses we define the continental shelf as the region between the ice shelf front and the

1000-m depth contour. We use 1000 m rather than 500 m in order to include water inside

the Filchner and Ronne depressions on the continental shelf.

We find that the majority of the salinity change on the continental shelf is due to a

reduction in ice shelf melting, as shown in Figures 5.10 and 5.11. The total salt flux over

the continental shelf in our experiments is dominated by the sea ice, as observed today,

but the change in salt flux across experiments is dominated by changes in ice sheet basal

melting. Figure 5.10 shows the change in distribution of the surface and ice shelf tracers

as vertical integrals for a representative (40% cooling) experiment. Overall, the maximum

change is largest in the ice shelf salinity tracer.

The effect of the ice shelf melt changes are not only larger but also concentrated on the

continental shelf. Figure 5.10 demonstrates that most of the change in ice shelf tracer

in our experiments occurs over the continental shelf and near the shelf break, with a

particularly high concentration of change inside and in the outflow from the Filchner

Depression.

If we consider water lying along the bottom of the continental shelf instead of the vertical

integral, we find that the salinity change of bottom water precursors is predominantly due

to a net reduction in ice shelf melting. Figure 5.11 is the evolution of salinity tracers on the

bottom of the continental shelf as temperature decreases in the numerical experiments.

The bottom is the partially or fully water-filled grid cell above a completely land-filled

cell. The computation of salinity changes in Fig. 5.11 accounts for grid-cell volume,

unlike the salinity change implied by Fig. 5.4. We do not consider water inside ice shelf

cavities, as typically this water is significantly modified by the time it reaches the shelf

break. After applying these filters, the water we consider is a layer on average 67 m

thick. For reference, typical observed overflow plume thicknesses in Antarctica can be

anywhere from 30 to 200 m (Muench et al., 2009). In Θ0/S space, this continental shelf

water roughly corresponds to the high salinity water lying along the surface freezing line

shown in Fig. 5.4 — analogous to modern ISW and HSSW. The 0.3 g kg−1 change in

salinity as suggested by Fig. 5.4 might not have represented a large volume of water, but
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when volume is accounted for, the bottom water increase in salinity is still 0.3 g kg−1.

Together Figs. 5.10 and 5.11 demonstrate that, in our experiments, cooling continental

shelf source waters increases the salinity of bottom water precursors, and this is primarily

due to reduced net ice shelf basal melting.

In contrast, the majority of the changes in the sea ice tracer occur away from the con-

tinental shelf and are due to an increase in average sea ice area and thickness in this

region. Sea ice changes dominate the changes in salinity north of the shelf break. This

increased sea ice cover north of the continental shelf break salinifies the water that would

be entrained into the continental shelf overflow on its path to the bottom of the sea,

although model issues prevent us from seeing how this evolves. This would reduce the

density contrast between continental shelf water masses and open ocean water, and would

mitigate the freshening effect of entrainment. That is, an increase in salinity off the shelf

would help retain the high salinity signature of the shelf water masses throughout the

shelf overflow’s transformation to bottom water. In the control integration (and modern

ocean) the continental shelf is perennially covered in sea ice, so the surface ocean is al-

ready at the freezing point. Under these conditions, decreasing the ocean temperature

further does not have a large effect on sea ice thickness.

Over the continental shelf, significant changes in sea ice, and the resultant salinity mod-

ifications, would require a large decrease in atmospheric temperature or an increase in

export velocity. Lower atmospheric temperature and higher wind stress would increase

the bulk heat flux between ocean and atmosphere, enabling an increase in the thickness

or formation rate of sea ice. Alternatively the higher wind stress could remove thicker

sea ice with the same area, or could enable faster removal of sea ice from the continental

shelves, either of which would increase the net freshwater export rate. Both scenarios are

certainly possible at the LGM. Atmospheric temperature and export velocities of sea ice

are the same for all experiments, so the primary way for ice export to increase in our

experiments is through an increase in ice thickness.
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Ice Shelf Salt Tracer

Sea Ice Salt Tracer

−50 0 50 100 150 200

Figure 5.10: Depth integrated salt tracer fields for the sensitivity experiment in which
the boundaries are cooled 40% towards the freezing point from the control experiment
(η = 0.4). Color values are in m g kg−1 and represent the difference between the sensitivity
and control experiments. All are 10-year averages. Black shaded area is land, white shaded
area is ice shelves and the black contour line represents the location of the 1000-m bottom
depth contour.
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Figure 5.11: Ice shelf and sea ice salinity tracer values integrated over the bottom water-
filled layer on the continental shelf. All values represent the 10-year-averaged difference
between sensitivity and control. The boundaries of the continental shelf are taken as
the area between the ice shelf front and the 1000-m depth contour, shown in Fig. 5.2,
excluding land to the north and/or west of the Antarctic Peninsula.
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5.3.3 Diagnosis of Water Mass Changes – Regional Differences

in Ice Shelves

Although the shapes and sizes of the ice shelves are fixed in our experiments, they

vary across the numerical domain. The smaller, shallower, ice shelves to the east of

the Filchner-Ronne Ice Shelf are more sensitive to changes in the boundary temperature

forcing. Comparing the total melt rate of the large ice shelves with that of the smaller ice

shelves in the east of our numerical domain (Fig. 5.12), we find that there is a greater

cumulative flux of meltwater from the small eastern shelves than from the large shelves,

except in the coldest experiment. This does not mean that all of this water makes it into

the Weddell Sea proper; the majority is so buoyant that it rises to the surface and is

exported from the domain.

The large change in freshwater flux from the eastern shelves is not the determining factor

in our results. With our current tools we can not distinguish the geographical source of

the ice shelf salinity forcing in our salt tracers. However, we can compute the reduction in

freshwater flux from different regions required to cause the changes in salt tracers on the

continental shelf. The volume of water we consider to define the continental shelf (up to

the 1000-m contour) is 3.77 ×1013 m3. Assuming a typical density of salt water of 1027.5

kg m−3 and that of glacial meltwater of 999.8 kg m−3, a maximum change in salinity of

0.3 g kg−1, and using the model salt-to-freshwater conversion factor of 33.4 g kg−1, we

find that a net 3.48 ×1011 m3 of meltwater is required to explain the maximum difference

in salinity between the control and the coldest experiment. If the residence time of these

waters on the shelf is one year, that corresponds to a difference in freshwater input of 3.48

×1011 m3 yr−1. If instead the continental shelf water is completely renewed only every

10 years, the difference in freshwater flux required to maintain this salinity difference

between the two experiments is an order of magnitude smaller. The maximum difference

in freshwater flux magnitude from the western ice shelves is only 2.83×1010 m3 yr−1, which

means that unless the residence time of water on the shelf is more than 10 years, some

change in freshwater flux from the eastern ice shelves is necessary to explain the observed

changes in our experiments. This is expected, because our definition of the continental

shelf includes the shelf directly in front of the eastern ice shelves. The combined shelf
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Figure 5.12: Comparison of time-averaged and spatially-integrated volume melt rate of
ice shelves in western and eastern sectors of domain. The western sector corresponds to
the Filchner-Ronne Ice Shelf and all ice shelves in the Western Weddell Sea. The eastern
sector is all ice shelves to the east of the Filchner-Ronne Ice Shelf. All values represent
the 10-year-average of a spatial integration.

area in front of the eastern ice shelves is only 1/3 of the continental shelf area lying inside

the Weddell Sea, so for the eastern shelf change to impose a bias on our average result,

there would need to be an excessive change in salinity. However, our average continental

shelf answer is not biased by a large change over the eastern continental shelves. Rather

the maximum (coldest experiment) average change in ice shelf salinity tracer over the

continental shelf abutting the eastern ice shelves is only 0.25 g/kg, whereas over the main

continental shelf in the Weddell Sea proper, the change is 0.33 g/kg.

Hypothetically, if a reduction in eastern melt rates was large enough, the increase in

salinity, besides affecting western shelf processes, could also enable direct bottom water
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formation from the eastern continental shelves. Today, water formed through interactions

with the eastern ice shelves does find its way onto the continental shelves in the Weddell

Sea. By preconditioning the water properties that enter the Weddell Sea, the eastern shelf

interactions indirectly affect the bottom water formation processes to the west, although

the relative magnitude of the eastern shelf contribution is still uncertain (Nicholls et al.,

2009). However, the extremely low salinity in front of the eastern ice shelves suppresses

direct bottom water formation (Fahrbach et al., 1994).

5.3.4 Relevance to Glacial Oceans

We do not simulate the LGM. As such, it is difficult to compare our sensitivity exper-

iments to data, because we have purposely not modified a large number of important

variables. However, we believe that the sensitivity experiment that is most appropriate to

compare to LGM data is our most extreme temperature scenario. First, the temperature

changes of interest to the LGM ocean are not as large as the domain-averaged temper-

ature suggests. The temperature change on the shelf is much smaller than the average

temperature change of the whole domain, which is significant because a large volume of

deep water in our domain does not interact with the continental shelf. Using the same

definition of continental shelf as for the salinity tracers, we find that the average poten-

tial temperature on the continental shelf in our most extreme experiment is -2.00◦C. In

comparison, the average potential temperature on the continental shelf in our control is

-1.65◦C. The sensitivity of continental shelf salinity to continental shelf temperature is

thus much higher than the sensitivity of the whole domain salinity to whole domain tem-

perature: 0.875 g kg−1/◦C as opposed to 0.006 g kg−1/◦C. Given these considerations, a

0.3 g kg−1 change in salinity due to a continental shelf potential temperature decrease of

0.13◦C is reasonable. It does not require unphysically cold temperatures. With a sim-

ple change in temperature we can account for 30% of the difference in salinity contrast

observed between GNAIW and GSSBW.

We do not address how the temperature at the boundaries of our computational Weddell

Sea domain could be depressed to such low levels. There are two possibilities: (i) either
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the temperature of WDW/CDW was lower or (ii) relatively warm CDW did not intrude

onto the continental shelves. Our setup does not favor one or the other of these hypotheses

— we simply make the water colder. So, even if northern source deep water was not a

precursor to GSSBW at the LGM, the fact that the ocean was cooler still explains a

significant fraction of the high measured bottom water salinity.

5.3.5 The Effect of Unmodelled Processes

In order to focus on the sensitivity of bottom water formation to ocean temperature,

we do not simulate the LGM. As previously discussed, a change in wind stress and/or

atmospheric temperature could have an important role in changing the bottom water prop-

erties. In addition, there is evidence that both atmospheric temperature over Antarctica

(Petit et al., 1999) and sea surface temperature in the Southern Ocean (Gersonde et al.,

2005) were lower at the LGM than they are today. All of these factors could contribute

to increasing the sea ice export. Increased sea ice export from LGM deep water formation

sites probably played a larger role in increasing the salinity of LGM bottom water than

it does in our experiments, but we specifically did not simulate that.

Another factor that we do not consider is a change in bathymetry of the land or ice shelf

cavities. However, in our experiments the smaller ice shelves showed the greatest change

in melt rate in the experiments. Isolated ice shelf cavity process studies also indicate

that ice shelf basal melting depends strongly on ice sheet morphology (Little et al., 2009).

This is significant to inferred ice shelf conditions at the LGM. Reconstructions of the

LGM Antarctic ice sheet extent suggest that the grounding line was located further north

(Anderson et al., 2002) , which could mean that the ice shelves at the LGM were configured

similarly to the small ice shelves located to the east of the Weddell Sea in our experiments:

either shallow and abutted by a narrow continental shelf or overhanging the continental

shelf break. The fact that melt rates of these smaller ice shelves are more sensitive

to temperature could mean that temperature played a greater relative role in setting

shelf water salinity than it does with the modern shelf configuration that we used in our

experiments. In short, given the correct ice sheet and ice shelf shapes at the LGM, small
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perturbations in temperature might generate a larger ice shelf salinity response.

It is important to remember that the ice sheet morphology dynamically responds to

changes in ocean conditions, a factor we have neglected by using fixed-shape ice shelf

cavities. The inclusion of tides, which are influenced by ice shelf cavity and continental

shelf shapes, could change the total Filchner-Ronne ice shelf melt rate by an order of

magnitude (Makinson et al., 2011). It is also possible that the outward migration of

the ice sheet grounding line meant that there was no Antarctic continental shelf or ice

shelves, in which case the bottom water formation process at the LGM would have been

fundamentally different (Paillard and Parrenin, 2004).

Besides water properties, bottom water formation depends heavily on the rate of produc-

tion and movement off the shelf. The modern production rate suggests that the residence

time of high density water on the continental shelf is between 5 and 7 years (Gill, 1973,

Gordon et al., 2010). While water does leave our domain, the open boundary configuration

fixes its export rate.

5.4 Conclusions

Cooling the ocean has a significant effect on the salinity of the water lying on the con-

tinental shelf of the Weddell Sea, water that in the modern is a precursor to Antarctic

Bottom Water. Pore fluid measurements find that the salinity gradient between GSSBW

and GNAIW was 1.1 units greater than the gradient between AABW and NADW. With

ocean cooling alone, we can explain as much as 30% of this change in salinity stratifica-

tion. Almost all of this change is due to a reduction of basal melting from marine-based

ice sheets over and in the vicinity of the Weddell Sea continental shelf, but a small portion

can also be attributed to the export of thicker sea ice. Similar changes in ice shelf basal

melting could have occurred over the other Antarctic continental shelves at the LGM,

which in addition to transport and recirculation of circumpolar water masses, might have

increased the contribution of this particular effect. The effect we observe in our experi-

ments is due primarily to thermodynamics and not to a dynamic (i.e., buoyancy-driven)
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response to temperature changes; while ocean temperature can not account for all of

the measured salinity difference between GSSBW and AABW, it is of the same order of

magnitude and must be considered as one of several important salinity drivers.

While this is a significant number, it can not explain all of the change in salinity. Among

the candidates for explaining the remaining 70%, ice shelf shape and wind-driven changes

in sea ice processes are likely to have significant roles. Bathymetric changes at the LGM,

including the shape and exposure of the continental shelf and ice shelves, as well as their

effect on tidal mixing, may have been important in setting the salinity of GSSBW. In our

experiments, small ice shelves, such as those that may have existed at the LGM, were

more sensitive to changes in ocean temperature than the larger ones, perhaps due to their

greater exposure to open ocean conditions. In the modern ocean, this sensitivity and

exposure to warm ocean conditions contribute to blocking direct bottom water formation

in front of the small ice shelves, such that processes over smaller continental shelves, in

front of smaller ice shelves, have only an indirect role in bottom water formation. In a

reduced open ocean temperature environment this constraint might have been lifted, such

that significant bottom water formation could have occurred in front of small ice shelves.

With a narrow and more spatially homogeneous continental shelf ringing the Antarctic

continent, bottom water formation may have been more geographically distributed than it

is today. Decreased atmospheric temperature and increased wind stress near the Antarctic

continent also may have contributed to an increased salinity flux from sea ice formation

and export. Our experiments show that a decrease in ocean temperature alone does

not significantly increase the ocean salinification due to sea ice export, in part because

greater sea ice cover reduces ocean evaporation. Due to the limitations of a regional model

in representing water export rates, future studies on this subject should investigate the

feedback between changes in property (Θ0, S) and density stratification in a circumpolar

or global configuration.
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Table 5.1: Abbreviations used in text

Abbreviation Full Name Description

AABW Antarctic Bottom Water bottom water originating from Antarctica traced
to 40 ◦N

ACC Antarctic Circumpolar
Current

ocean current system that circumnavigates the
Antarctic Continent

ASW Antarctic Surface Water surface water around Antarctica that interacts
directly with the atmosphere

CDW Circumpolar Deep Water intermediate water mass of ACC

ESW Eastern Shelf Water product of CDW and meltwater from the eastern
Weddell ice shelves

FRIS Filchner-Ronne Ice Shelf largest ice shelf in Weddell Sea, largest ice shelf
(by volume) in Antarctica

GNAIW Glacial North Atlantic
Intermediate Water

northern source intermediate water that existed
during the LGM - corresponds roughly to modern
NADW, but existed at shallower depths with
modified properties

GSSBW Glacial Southern Source
Bottom Water

southern source bottom water that existed during
the LGM

HSSW High Salinity Shelf Water water formed on continental shelves of Antarctica
through sea ice formation, S > 34.5

ISW Ice Shelf Water water formed in sub-ice shelf cavities - defined as
water with potential temperature lower than the
surface freezing point (<≈ −1.9◦C)

LGM Last Glacial Maximum time period corresponding to most recent relative
maximum of continental ice sheet size, ≈ 20,000
years before present

MWDW Modified Warm Deep Water transition water mass between WW and WDW,
likely source of continental shelf water masses

NADW North Atlantic Deep Water water mass that originates from North Atlantic,
identifiable in global ocean data sets as a deep
salinity maximum

WDW Warm Deep Water modified form of CDW found in Weddell Sea
identified by temperature and salinity maximum
around 300–600 m

WSDW Weddell Sea Deep Water water in Weddell Sea that lies above WSBW and
outflows to become AABW

WSBW Weddell Sea Bottom Water deepest water mass in Weddell Sea, densest and
coldest water mass around Antarctica, contributes
eventually to AABW after mixing upward to
become WSDW

WW Winter Water water mass defining winter mixed layer of Weddell
Sea formed from underlying WDW and brine
rejection
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Chapter 6

Concluding remarks

In this thesis, we used a combination of idealized ocean modeling, geological records, and

both traditional regularized least squares optimization and Bayesian MCMC parameter

estimation inverse methods to shed light on an outstanding puzzle about past ocean

density stratification.

With inferences from sediment pore fluid profiles of [Cl−] and δ18O, Adkins et al. (2002)

inferred that the LGM ocean had a wider range of densities than the modern ocean, and

that the ocean density stratification was set by salinity. In contrast, the modern ocean

stratification is controlled by temperature. This result was a major scientific advance, as it

provided the first evidence that the ocean was more physically stratified in the past. Such

strong physical stratification could explain other records showing major spatial contrasts

in ocean chemistry at the LGM.

While Adkins et al. (2002)’s results were revolutionary, they left many questions unanswered.

How did the deep ocean’s density, which today is controlled by temperature, become a

function of salinity? What did this imply about the ocean circulation? How did the ocean

density stratification evolve from the LGM to the present? By answering these questions

we could make significant progress towards understanding how the ocean interacts with

the climate system over long timescales. We have sought to answer these questions in this

thesis.

How could density variations in the ocean be primarily determined by salinity, and
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are LGM temperatures and salinities linked? Using a state-of-the-art ocean model, we

investigated whether ocean temperature, through its effect on ice–ocean interactions,

could induce the inferred LGM salinity stratification. Using the Weddell Sea as a case

study, we explored the impact of lower ocean temperatures on Antarctic ice–ocean interactions.

We found that changes in ice-shelf–ocean interactions due to temperature alone lead to

a significant increase in the salinity of water that feeds the deepest ocean. Our results

show that the maximum possible salinity due to temperature change could only account

for part of the inferred deep ocean salinity stratification in Adkins et al. (2002), which

means one of several possibilities. Another process, such as increased export of sea ice

due to a change in wind patterns, may have contributed to the inferred high salinity

bottom water. While it is very likely that the sea ice export was greater at the LGM due

to changes in the wind, wind patterns are even more difficult to reconstruct than deep

ocean temperature. Alternatively, the model may not properly represent the cold ocean

state. Finally, the inferred salinity at the LGM may have been overestimated. That said,

our work demonstrates that ocean temperature, through its interaction with ice shelves,

can have a significant role in changing the salinity and density stratification of the deep

ocean. This insight is new; previously the interaction between ice shelves and the ocean

had been largely ignored as an important player in past ocean stratification changes.

The evidence for glacial salinity stratification presented in Adkins et al. (2002) is a

sparse data set. To determine whether this small set of points is representative of

the entire ocean, we have worked to increase the number of and our ability to make

measurements. Obtaining high depth resolution sediment pore fluid samples for [Cl−]

and δ18O measurement and inversion is limited by the current interstitial water recovery

method, which destroys large sections of ocean sediment cores, disrupting the chronology

of other records. We tested whether Rhizon samplers, a non-destructive tool developed

for terrestrial soil sampling, can recover water from deep ocean sediments at high depth

resolution. Rhizons were unable to be used in the very deepest, highly compacted ocean

sediments. In less compacted sediments, the Rhizons caused contamination of the chloride

concentration and oxygen isotope values, making them unsuitable for our purposes.

Oxygen isotopes and chloride concentration in ocean sediment interstitial fluid record the
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integrated history of the water properties at the water–sediment interface, not only those

at the LGM, and the effects of diffusion and advection in the sediments. Thus, recovery of

LGM bottom water properties requires inverting the profiles. Previous inversion methods

applied to this problem led to a systematic offset between data and model, indicating

possible errors in the reported solutions. Further, these previous approaches only allowed

for the solution of the salinity or δ18O at the LGM, despite the fact that the profile is

set by the temporal evolution of bottom water and not solely the value at the LGM. We

aimed to find a robust inverse method that would allow us to extract the full information

content of the pore fluid profiles, including the evolution of [Cl−] and δ18O from the LGM

to present.

We showed that traditional regularized least squares inverse methods are unsuitable for

this task as they recover only one solution to a non-unique problem, are very sensitive

to noise in the data, and it is impossible to robustly quantify the error associated with

the solution they recover. We instead turned to Bayesian Markov Chain Monte Carlo

parameter estimation methods to reconstruct the histories of δ18O and [Cl−] from modern

pore fluid profiles. Relying on a highly parallelized sampler, CATMIP, we can solve

simultaneously for unknown sediment properties, such as diffusivity, in addition to the

history of δ18O and salinity. Our new Bayesian approach is a major improvement over

the previous method, because it weaves our uncertainty about past physical parameters

into the fabric of the problem, and is much less sensitive to noise than regularized least

squares inversions.

Our preliminary results suggest that that the deep ocean was indeed more salinity stratified

at the LGM, however the LGM salinity stratification may have been smaller than previously

reported. Encouragingly, [Cl−] and δ18O between the LGM and present day can be

reconstructed with even higher confidence than their values at the LGM. Our current

evidence hints at a striking dichotomy between the Pacific and Atlantic in their deep

ocean water mass evolution during the deglaciation and Holocene. Measurements at more

ocean sediment core sites will improve our ability to constrain the global water mass and

deep ocean density evolution between the LGM and today.

We need to find a way to markedly increase the number of high quality measurements of
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sediment pore fluid chloride and oxygen isotopes, as we still lack suitable alternative ways

to reconstruct ocean temperature and salinity. We expect that increased use of emerging

remotely operated ocean drilling technologies, such as the MeBo, will afford a marked

increase in the global spatial density of pore fluid profiles.
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Appendix A

Titration methods for [Cl−]
measurement

A.1 Theory

The [Cl−] of each sample is measured by titration against silver nitrate. I measure the

progression of this reaction potentiometrically. The basic reaction is:

[Cl−] + [Ag+] 
 [AgCl](s) . (A.1)

The chloride concentration of the sample is determined by the equivalence-point of the

reaction: when an equivalent amount of silver nitrate reagent to the amount of chloride

in solution has been added. There is an electrode in the titrant and the sample solution,

and I measure the voltage difference across these two. To close the circuit, the tip of

the titrant buret is placed in the sample beaker, which also protects against issues with

surface tension. That is, as the micrometer is advanced, a drop of solution does not have

to separate from the tip of the buret to enter the sample. At any given time, the voltage

drop measured across the two solutions is equal to the difference in potential on each

electrode, defined by the Nernst equation

E = −RT
nF

lnQ , (A.2)
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where R is the gas constant, T the absolute temperature, n is the number of electrons

reacting at the electrode, F is the Faraday constant (charge on one gram equivalent of an

ion) and Q is proportional to the activity of the ion to which the electrode is sensitive.

The electrodes used are almost pure silver, which are sensitive to the silver ion activity

through the surface reaction

Ag(s) 
 Ag+ + e− . (A.3)

As the titration reaction proceeds in the beaker, the silver ion activity goes from ∼ 0 to

a larger number, controlled by equilibrium with the silver chloride that precipitates out.

The result of this increase in silver ion activity in my sample mean that the voltage drop

across the electrodes is decreasing throughout each measurement. In my methodology,

the practical difference between activity and concentration is negligible.

A.2 Equipment

The voltage drop progression is measured using a National Instruments USB-6210 Multifunction

DAQ. I sample the measurements using LabVIEW. Because there is a significant amount

of background noise in our lab, I filter by averaging 80 samples taken at a frequency of

800 Hz. This is not a unique choice, but it should bypass the typical building power

frequency noise at 50 or 60 Hz.

The micrometer is attached to an Applied Motion stepper motor. The motor is also driven

through LabVIEW, allowing me to automate the titration procedure except for loading

the sample and titrant.

During the titration, the solution is stirred using a mini stir bar and plate.
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A.3 Standards

To determine the chloride concentration of an unknown sample, I weigh out a sample and

then titrate to the equivalence point. Once I know the volume of silver nitrate added to

the sample and the weight of the sample, determining the concentration simply requires

knowing the precise concentration of silver nitrate.

I know the rough concentration of the silver nitrate from preparation, but to have a more

precise knowledge of its concentration I calibrate my silver nitrate by titrating a known

standard.

My standard is the IAPSO P-Series Normal Standard Seawater (S=35). Because there is

high evaporation in Southern California, once I open a standard I store it with parafilm

around the top and inside a glass jar that is ∼ one third full of water. I use a standard

for a maximum of 2 weeks. When I open a new standard I compare the old values to

the new ones. I also measure a consistency standard in triplicate every day that I am

making measurements to ensure that there is no significant evaporation of my standard.

My consistency standard is low salinity ∼ 33 g kg−1 surface seawater from the N. Pacific,

in the vicinity of Hydrate Ridge.
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