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Increasing interest is devoted to carbohydrates for their roles in plant immunity.
Some of them are elicitors of plant defenses whereas other ones act as signaling
molecules in a manner similar to phytohormones. This review first describes the main
classes of carbohydrates associated to plant immunity, their role and mode of action.
More precisely, the state of the art about perception of “PAMP, MAMP, and DAMP
(Pathogen-, Microbe-, Damage-Associated Molecular Patterns) type” oligosaccharides is
presented and examples of induced defense events are provided. A particular attention
is paid to the structure/activity relationships of these compounds. The role of sugars as
signaling molecules, especially in plant microbe interactions, is also presented. Secondly,
the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity
for crop protection against diseases are discussed, with focus on the roles of the leaf
cuticle and phyllosphere microflora.
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INTRODUCTION
Plants possess an immune system that allows defending them-
selves against a wide range of microorganisms including bac-
teria, oomycetes and fungi (Gomez-Gomez and Boller, 2000;
Nürnberger et al., 2004; Zipfel and Felix, 2005; Boller and Felix,
2009). Activation of defense reactions implies the essential step of
the microorganism detection by highly conserved molecular pat-
terns called PAMPs (Pathogen Associated Molecular Patterns) or
MAMPs (Microbe Associated Molecular Patterns) (Nürnberger
et al., 2004; Chisholm et al., 2006; Jones and Dangl, 2006; Boller
and Felix, 2009) which are secreted by microorganisms or released
from their cell wall by hydrolytic enzymes during interaction
with the plant. Their perception during pathogen infection trig-
gers defense reactions known as PAMP-triggered immunity (PTI)
(Jones and Dangl, 2006). So they are considered as general elic-
itors i.e., compounds able to induce plant defenses (Ebel and
Cosio, 1994). These general elicitors can also derive from the plant
cell walls during plant microbe interactions after hydrolysis by
pathogen cell wall degrading enzymes (Vidal et al., 1998; Boudart
et al., 2003) and are therefore called DAMPs (Damage-Associated
Molecular Patterns). General elicitors belong to various biochem-
ical classes including carbohydrates, lipids, (glyco)peptides and
(glyco)proteins. In this paper, attention is paid to “PAMP, MAMP
and DAMP type” carbohydrates, their perception by plants and
the induced defense events.

In plants, carbohydrates produced by photosynthesis are well
known for their essential role as vital sources of energy and
carbon skeletons for organic compounds and storage compo-
nents. Additionally, a pivotal function as signaling molecules, in a

manner similar to hormones, has become apparent (Koch, 1996,
2004; Sheen et al., 1999; Rolland et al., 2006; Smeekens et al.,
2010) and is nowadays largely investigated. Hence, as they inter-
act with diurnal changes, abiotic and biotic stresses, and hormone
signaling, sugars are considered as actors of a complex communi-
cation system necessary for the coordination of metabolism with
growth, development, and responses to environmental changes
and stresses (Rolland et al., 2002, 2006). Sugars, especially the
disaccharides sucrose and trehalose, raffinose family oligosaccha-
rides and fructans also play a role regarding ROS produced by
plants in response to abiotic stresses. Known plants antioxidants
are enzymatic scavengers (superoxide dismutase, ascorbate per-
oxidase, glutathione peroxidase) and non-enzymatic metabolites
(ascorbate, glutathione, α-tocopherol). In addition, there is grow-
ing evidence for a role of sugars as antioxidants as they possess
ROS scavenging properties. Sugars could therefore be considered
as key components of an integrated cellular redox network. As
this role was recently reviewed in details by Keunen et al. (2013),
it was not developed here.

In plant microbe interactions, sugars are essential to fuel the
energy required for defenses and serve as signals for the regulation
of defense genes (Ehness et al., 1997; Roitsch et al., 2003; Bolton,
2009). The potential key roles of some sugars regarding plant
immunity have recently led to the “sweet Immunity” and “sugar-
enhanced defense” concepts (Bolouri-Moghaddam and Van Den
Ende, 2013).

Regarding their roles in plant immunity, the question is to
determine whether carbohydrates could be helpful in control-
ling plant diseases in field conditions (Delaunois et al., 2014).
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Elicitor-induced resistance against pathogens is a strategy of crop
protection under investigation (Walters et al., 2013). Hence, pes-
ticides remain largely used to prevent crops from diseases but the
secondary effects of some of them regarding the environmental
quality, human health, and selection of resistant strains stimu-
late research for the development of new strategies in a context of
sustainable crop production. Various carbohydrates are presently
studied and experimented for their possible role as resistance
inducers. Among the biggest challenges of this strategy are their
low level of penetration through the cuticle, which limits their
perception, and their possible alteration and/or metabolism by
microorganisms of the phyllosphere.

CARBOHYDRATES AND PLANT IMMUNITY
MAIN CLASSES OF CARBOHYDRATES INVOLVED IN PLANT IMMUNITY
Mono- and disaccharides such as glucose, sucrose or trehalose
are the smallest carbohydrates, generally referred as sugars.
Oligo- and polysaccharides are naturally occurring complex car-
bohydrates formed by chains of sugar residues interconnected
by glycosidic linkages and with biological regulatory functions
(Albersheim et al., 1983). Different structural patterns have been
reported and described for oligo-and polysaccharides, including
β-glucans, chitin- and chitosan oligomers, oligogalacturonides,
alginates, fucans, carrageenans, and ulvans (Côté and Hahn, 1994;
Klarzynski et al., 2000, 2003) (Table 1).

Beta-glucans are ubiquitous in plant and fungal cell walls. The
β-1,4 glucan cellulose is one of the most abundant glucans in
plants. Among β-1,3 glucans, laminarin, a storage polysaccha-
ride from the brown algae Laminaria digitata, has an average
degree of polymerization (DP) of 25–33 glucose units with up to
three single β-glucose branches at position 6 (Read et al., 1996;
Lepagnol-Descamps et al., 1998; Klarzynski et al., 2000).

Chitin is the second most ubiquitous natural polysaccharide
after cellulose. It is not a pure homopolymer but rather an het-
eropolymer of β-1,4-linked N-acetylglucosamine with a varying
percentage of deacetylated glucosamine (Merzendorfer, 2011).
Chitin is a major component of fungal cell walls and is also
present in the cuticle of non-vertebrates such crustacean shells,
insect exoskeletons, and in eggs of parasitic nematodes, protists,
algae (Bueter et al., 2013). Chitosan, the deacetylated derivative
of chitin produced by chitin deacetylases, is a less common nat-
ural polysaccharide. It is notably found in zygomycete cell walls
(Mohammadi et al., 2012).

Pectin is the most complex plant cell wall polysaccharide
due to the numerous sugar monomers and types of linkages
involved in the branched rhamnogalacturonans I and II domains,
and to the variable level of esterification of the homogalacturo-
nan domain. Oligogalacturonides (OGAs) are linear molecules
composed of oligomers of α-1,4-linked galacturonosyl residues
more or less esterified with methyl groups, generated by par-
tial acid hydrolysis or by the action of pectinase or pectate lyase
(Nothnagel et al., 1983).

Fucans and carrageenans are sulfated polysaccharides present
in brown and red algae whereas ulvans are heteropolysaccharides
found in green algae Ulva spp. (Stadnik and De Freitas, 2014). The
main constituents of ulvan are sulfated rhamnose residues linked
to glucuronic acids, resulting in a repeated disaccharide unit

β-D-glucuronosyl-(1,4)-α-L-rhamnose 3-sulfate, called aldobi-
ouronic acid (Lahaye and Robic, 2007).

Alginates, the main extracellular matrix polysaccharides of
brown algae, are constituted by poly-D-mannuronic acid (M
blocks), poly-D-guluronic acid (G blocks), and alternated
residues of D-mannuronic acid and D -guluronic acid (GM
blocks).

“PAMP, MAMP AND DAMP TYPE” CARBOHYDRATES
Perception
PAMPs, MAMPs, and DAMPs are recognized by PRR receptors
(Zipfel, 2008; Macho and Zipfel, 2014). Based on the anal-
ysis of the Arabidopsis genome, the array of putative PRRs
encoded in plants is much higher than in mammals. PRRs for
chitin and OGAs have been identified but cognate receptors
of other OS, including β-glucans, chitosan, fucan, etc., are yet
unknown.

Plant PRRs are receptor-like kinases (RLKs) or receptor-like
proteins (RLPs), which are localized at the plasma membrane
and possess extracellular domain for ligand recognition. The
major PRR types carry leucine rich repeats (LRR) or lysine
motifs (LysM), while others can carry C-type lectin or EGF-like
ectodomain (Shiu and Bleecker, 2003). LysM-RLKs and RLPs
recognize β-1,4-linked N-acetylglucosamine units containing gly-
cans and aminosugars present on microbial surface, such as
fungal chitin and bacterial peptidoglycan, or lipochitooligosac-
charides secreted by beneficial microorganisms (Gust et al., 2012).

In Arabidopsis thaliana, the chitin elicitor receptor kinase
1 (CERK1) is the key chitin binding and signaling compo-
nent (Miya et al., 2007; Wan et al., 2008; Petutschnig et al.,
2010). AtCERK1, a LysM-RLK with three LysM domains in the
ectodomain, binds chitin directly without any requirement for
interacting proteins and initiates signaling via its cytoplasmic
Ser/Thr kinase domain (Miya et al., 2007; Wan et al., 2008;
Iizasa et al., 2010; Petutschnig et al., 2010). In the monocot
rice, fungal chitin is recognized by the LysM-RLP Chitin elicitor-
binding protein (CEBiP) (Kaku et al., 2006; Hayafune et al., 2014;
Kouzai et al., 2014). OsCEBiP is a specific chitin receptor (Kouzai
et al., 2014) which cooperates with the chitin elicitor receptor
kinase 1 (OsCERK1), the closest homolog of AtCERK1 in rice
(Miya et al., 2007; Shimizu et al., 2010; Hayafune et al., 2014).
They form a transient hetero-dimer: OsCEBiP for chitin binding
and OsCERK1 for initiation of the signal transduction (Shimizu
et al., 2010; Hayafune et al., 2014). In wheat, another mono-
cot crop, homologs of CERK1 and CEBiP are both required for
chitin-induced defenses (Lee et al., 2014), suggesting conserved
CEBiP/CERK1 perception in monocots.

Some PRRs for DAMPs perception have also been identi-
fied. The OG receptor identified is the wall-associated kinase
1 (WAK1), a trans-membrane receptor protein kinase belong-
ing to a family of 5 members (WAK1–5) in the Arabidopsis
genome (Kohorn and Kohorn, 2012). In this gene family, only
the transcripts of WAK1 are significantly up-regulated at 1 and
3 h after OGA treatment (Denoux et al., 2008). By using a
chimeric approach, Brutus et al. (2010) elegantly showed that
WAK1 can bind OGAs, thus leading to the activation of its
intra-membrane kinase domain to finally trigger plant immune
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responses. Moreover, the binding of OGA to the ectodomain of
WAK1 seems to need a specific confirmation of “egg-boxes” com-
plexes formed by calcium bridges (Decreux and Messiaen, 2005;
Cabrera et al., 2008).

Induced defenses and resistance
From what we know, PRRs are often associated with other
RLKs or RLPs to form molecular complexes (Böhm et al.,
2014). Such formations can improve the ligand recognition,

Table 1 | Structures of the main di- and oligosaccharides reported as elicitors of plant defenses and/or resistance inducers against pathogens.

Carbohydrate Structure or repetitive units References reporting induction of

defenses and/or plant resistance

Sucrose Rolland et al., 2002; Morkunas et al.,
2005; Gómez-Ariza et al., 2007; Wind
et al., 2010; Bolouri-Moghaddam and
Van Den Ende, 2012, 2013

Trehalose Reignault et al., 2001; Muchembled
et al., 2006; Renard-Merlier et al., 2007;
Fernandez et al., 2010; Singh et al., 2011

β-1,3 glucans: example of laminarin Kobayashi et al., 1993; Inui et al., 1997;
Cardinale et al., 2000; Klarzynski et al.,
2000; Aziz et al., 2003; Renard-Merlier
et al., 2007; Fu et al., 2011; Gauthier
et al., 2014

Sulfated β-1,3 glucans Example of the
sulfated laminarin PS3 (Phycarin Sulfated 3)

Ménard et al., 2004; Ghannam et al.,
2005; Ménard et al., 2005; Trouvelot
et al., 2008; Steimetz et al., 2012;
Gauthier et al., 2014

Fucans Lizzi et al., 1998; Klarzynski et al., 2003

Carrageenans Patier et al., 1995; Bouarab et al., 1999;
Mercier et al., 2001; Sangha et al., 2010;
Vera et al., 2012

Ulvans Cluzet et al., 2004; Abreu et al., 2008;
Araújo et al., 2008; Borsato et al., 2010;
Jaulneau et al., 2010, 2011; Freitas and
Stadnik, 2012; Araújo and Stadnik, 2013;
Delgado et al., 2013; Stadnik and De
Freitas, 2014

(Continued)
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Table 1 | Continued

Carbohydrate Structure or repetitive units References reporting induction of

defenses and/or plant resistance

Alginates (G blocks: poly
D-glucuronic acid) (M
blocks: poly
D-mannuronic acid) (GM
blocks: alternate
D-glucuronic and
D-mannuronic acid)

Potin et al., 1999; Akimoto et al., 2000;
Chandía et al., 2004; An et al., 2009

Chitin Pearce and Ride, 1982; Kuchitsu et al.,
1993; Kaku et al., 2006; Eckardt, 2008;
Hamel and Beaudoin, 2010; Sharp, 2013

Chitosan Köhle et al., 1985; Doares et al., 1995;
Lafontaine and Benhamou, 1996;
Vasyukova et al., 2001; Cabrera et al.,
2006; Amborabe et al., 2008; Iriti and
Faoro, 2009; Vasil’ev et al., 2009;
Cabrera et al., 2010; El Hadrami et al.,
2010; Hamel and Beaudoin, 2010; Li
et al., 2014

Oligogalacturonides Hahn et al., 1981; Davis et al., 1986;
Davis and Hahlbrock, 1987; Cabrera
et al., 2008, 2010; Galletti et al., 2008;
Rasul et al., 2012; Ferrari et al., 2013

signal transduction or perform a regulatory role (Monaghan and
Zipfel, 2012). Notably RLP receptors interact with RLKs for sig-
nal transduction. The recognition of MAMPs/DAMPs leads to
the activation of the PRR kinase domain, which initiates phos-
phorylation and the subsequent complex cascade of signaling
events that leads to defense gene activation. Defense gene expres-
sion allows the synthesis of pathogenesis-related (PR) proteins
(such as the hydrolytic enzymes β-1,3-glucanases and chitinases,
cationic defensin, peroxidases, proteinase inhibitors or lipid-
transfer proteins), the accumulation of phytoalexins, and cell wall
strengthening.

The first identified elicitor-active oligosaccharides (OS) were
β-glucans produced from Phytophthora megasperma pv. sojae
(Ayers et al., 1976). Thereafter, eliciting activity of OS has
been largely studied (Table 1). As examples, β-1,3-glucans elicit
defense responses in many species (Sharp et al., 1984; Côté and
Hahn, 1994; Côté et al., 1998; Ebel, 1998; Shibuya and Minami,
2001). In particular, laminarin induces defense responses in rice
(Inui et al., 1997), tobacco cell suspensions (Klarzynski et al.,
2000), alfalfa (Cardinale et al., 2000) and grapevine (Aziz et al.,
2003). OGAs also induce various defense responses (Ferrari et al.,
2013), such as the synthesis of phytoalexins in soybean and

bean (Nothnagel et al., 1983; Dixon et al., 1989), the expres-
sion of protease inhibitors in tomato leaves (Farmer et al., 1991),
defense genes in Arabidopsis (Denoux et al., 2008), lignification
in cucumber hypocotyls (Robertsen, 1986) or the production of
active oxygen forms in many plant species (Legendre et al., 1993;
Rouet-Mayer et al., 1997; Binet et al., 1998; Stennis et al., 1998;
Galletti et al., 2008). Chitin derivatives induce lignification in
wheat (Barber et al., 1989), ion fluxes and phosphorylation events
in tomato cell suspensions (Felix et al., 1993), chitinase activity
in melon (Roby et al., 1987) and the expression of glucanase in
barley cells (Kaku et al., 1997). In rice, chitin triggers the MAPK
cascade (Yamaguchi et al., 2013), and biosynthesis of phytoalexins
and lignin (Kawano and Shimamoto, 2013).

In tomato and Commelina communis, Lee et al. (1999)
showed a H2O2-dependent induction of stomatal closure by
chitosan and OGA, as in response to ABA. It was later con-
firmed in grapevine using β-glucans and OGA (Allègre et al.,
2009) and in tobacco using β-glucans (Fu et al., 2011). These
results unambiguously show that OS can be also perceived
by guard cells (Figure 1), thus leading to signaling, defense
activation, and also stomatal movements (generally a stom-
atal closure). Experiments performed with grapevine leaves also
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FIGURE 1 | Outcome of natural/sprayed carbohydrates at the leaf

surface. Carbohydrates have to penetrate through the hydrophobic cuticle to
reach epidermal or guard cells to be perceived by PRR receptors and trigger
signaling events and defense reactions (immune responses). They could also

enter the leaf along the surfaces of the stomatal pores. Microorganisms
living in the phyllosphere secrete enzymes susceptible to hydrolyze OS.
Depending on their structure, released fragments may induce defense
signaling and responses or not.

showed a higher responsiveness of guard cells to OS, com-
pared to epidermal cells (Trouvelot et al., 2008; Allègre et al.,
2009).

Numerous papers have therefore described the capacity of
oligosaccharides to induce plant defenses. However, few of them
have reported induced resistance of plants against pathogens.
OGAs induce resistance of Arabidopsis against Botrytis cinerea
(Aziz et al., 2004; Ferrari et al., 2007). Laminarin confers protec-
tion of grapevine against Plasmopara viticola and Botrytis cinerea
and of tobacco against tobacco virus mosaic (TVM) (Klarzynski
et al., 2000; Aziz et al., 2003). Treatment with chitin reduces the
susceptibility of rice to Magnaporthe oryzae (Tanabe et al., 2006).
Curiously, the effect of chitin treatment on resistance remains
rather mild whereas chitosan induces a strong resistance of dif-
ferent plant species to fungal pathogens (Sharp, 2013). However,
besides its elicitor activity (Benhamou et al., 1994), chitosan
also possesses antifungal properties (El Ghaouth et al., 1994;
Trotel-Aziz et al., 2006).

Structure/activity relationships of carbohydrates
The biological activity of oligosaccharides is highly dependent on
their degree of polymerization (DP) and pattern. Fu et al. (2011)
have reported that β-1,3-glucans with low DP (2–10) induce more
rapid responses than laminarin with high DP (25–40) in tobacco
cells. Interestingly, they observed the opposite for induced resis-
tance: high DP β-1,3-glucans being more active than low DP ones
against TVM. The highest activity of chitin was generally reported
for heptamers and octamers and little or no activity for shorter
oligomers (Vander et al., 1998; Hamel and Beaudoin, 2010). For
chitosan, oligomers with a DP ranged between 7 and 10 are usu-
ally the most active (Hadwiger, 2013). Dissimilar size-depending
biological response were also reported for OGAs (Reymond et al.,
1995). DP between 10 and 16 are indeed often referred to as
optimal size to induce defenses (Navazio et al., 2002; Galletti
et al., 2008; Vorhölter et al., 2012). For shorter OGAs with 2–6
DP, the activity is highly dependent on pathosystems. Whereas
they induce defense reactions in tomato or potato (Weber et al.,
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1996; Simpson et al., 1998), they suppress the elicitor-induced
responses in wheat leaves and hypersensitive resistance reaction
in genetically resistant plants (Moerschbacher et al., 1990).

Some studies mentioned that plants may have developed the
ability to react to structurally different β-glucans. In particular,
soybean and rice recognize only branched β-glucans (Cheong and
Hahn, 1991; Yamaguchi et al., 2000) whereas tobacco reacts to
linear β-1,3-glucans. As example, the β-1,6-β-1,3-heptaglucoside
elicits phytoalexin accumulation in soybean (Sharp et al., 1984)
but is inactive in tobacco (Klarzynski et al., 2000).

Acetylation and methylation also impact OS activity. The
chitin acetylation status is crucial for CERK1 binding as AtCERK1
can weakly bind the partially deacetylated chitosan whereas
it possesses no affinity for fully deacetylated chitooligomers
(Petutschnig et al., 2010). Chitosan heptaose and octaose do not
elicit ROS burst and cell death in rice, suggesting that also rice
requires acetylated ligands for immune activation (Kaku et al.,
2006; Kishimoto et al., 2010). For OGAs, acetylation is also
important since both acetylated and unacetylated ones induce
defense events in wheat whereas only acetylated ones lead to
an increase in papilla-associated fluorescence and to a reduc-
tion of formed fungal haustoria of Blumeria graminis f. sp. tritici
(Randoux et al., 2010). The degree of methyl esterification of
OGAs, modulated by pectin methylesterases (PME), is crucial for
their activity (Pelloux et al., 2007). As example, a reduction of
B. cinerea symptoms was observed in Arabidopsis plants overex-
pressing the specific inhibitor of PME (PMEIs) (Lionetti et al.,
2007). Conversely, the overexpression of PME in strawberry leads
to a reduced degree of methyl esterification of OGA, an increase
of defense genes expression and an improved resistance against
B. cinerea (Osorio et al., 2008).

Biomolecules substituted with sulfate groups are involved in
major physiological functions in plants and animals. The pres-
ence of sulfate groups and the degree of sulfation (DS) can
modulate the biological activities of oligosaccharides. Laminarin
was therefore sulfated to improve its activity, providing PS3
with a DS of 2.4 (Ménard et al., 2004). The addition of a sul-
fate moiety to glucose residues in the chain is likely to modify
the three-dimension structure of the molecule and consequently
change its affinity to the assumed receptor (Ménard et al., 2005).
Moreover, it confers PS3 resistance to degradation by endo-β-1,3-
glucanases and exo-glucanases. PS3 induces increased resistance
responses of tobacco infected with TMV (Ménard et al., 2004)
and inhibits both virus infection and multiplication whereas
laminarin inhibits only virus infection (Ménard et al., 2005),
suggesting two distinct perception systems for laminarin and
PS3. Moreover, PS3-enhanced resistance of grapevine herbaceous
plantlets against Plasmopara viticola is more efficient than with
laminarin (Trouvelot et al., 2008). Interestingly, PS3 acts by prim-
ing in this interaction whereas laminarin directly elicits defense
events (Trouvelot et al., 2008; Gauthier et al., 2014). A structure-
activity study was also conducted for laminarin sulfates having
different degrees of sulfation (ranging between 0.4 and 2.4), based
on PR-protein activation in tobacco (Ménard et al., 2004). A
DS higher than 0.4 is required to trigger PR proteins and the
activity increases with increasing DS. Moreover, the maximal elic-
iting activity is obtained for DS of at least 1.5 and seems to be

independent of the chain length (ranging from a DP of 15 to 25
in this study).

SUGARS AS SIGNALING MOLECULES
Sugars are also involved in plant immunity as signaling molecules
(Sheen et al., 1999; Rolland et al., 2006); this has led to the “sweet-
immunity” and “sugar-enhanced defense” concepts (Bolouri-
Moghaddam and Van Den Ende, 2013). It concerns “small sugars”
i.e., mono-, di- and small oligosaccharides (saccharide-like) such
as sucrose, trehalose, raffinose or galactinol able to activate plant
defense responses and increase plant resistance to pathogens. As
examples, sucrose induces isoflavonoids synthesis as a defense
response against Fusarium oxysporum in lupine (Morkunas et al.,
2005). Galactinol stimulates the accumulation of defense-related
gene transcripts in tobacco plants, enhances resistance against
Botrytis cinerea and Erwinia carotovora and is a signaling com-
ponent of the induced systemic resistance caused by Pseudomonas
chlororaphis (Kim et al., 2008). Trehalose induces PAL and perox-
idase activities associated with partial resistance of wheat against
powdery mildew (Reignault et al., 2001). In Arabidopsis cell sus-
pensions, sucrose or glucose induces the expression of several PR-
genes and accumulation of the corresponding proteins PR-2 and
PR-5 through a SA-dependent pathway (Thibaud et al., 2004).
Conversely, sucrose, glucose, and fructose induce the PR-protein
transcripts PR-Q and PAR-1 in tobacco in a SA-independent path-
way (Herbers et al., 1996b). As reviewed by Bolouri-Moghaddam
and Van Den Ende (2012), other sugars such as psicose or
D-allose can stimulate plant immunity and upregulate defense
genes expression. It is tempting to think that some sugars could be
considered as elicitors. However, plants may respond to changes
of extracellular levels of sugars rather than sugars themselves.

How plants perceive sugars is highly complex and needs to be
further investigated. The perception of hexoses is achieved by hex-
okinases (Granot et al., 2013; Tiessen and Padilla-Chacon, 2013)
such as the intracellular glucose sensor HXK 1 of Arabidopsis
(Jang et al., 1997; Sheen et al., 1999; Smeekens, 2000; Rolland
et al., 2006). However, hexokinase independent pathways were
also reported (Lalonde et al., 1999; Sheen et al., 1999). Sucrose
and other disaccharides seem to be perceived at the level of the
plasma membrane (Goddijn and Smeekens, 1998; Rolland et al.,
2002, 2006; Schluepmann et al., 2003). However, sucrose can also
be hydrolyzed by apoplastic invertases, providing hexoses that
will be perceived by membrane or cytosolic sensors (Sheen et al.,
1999). Research on sugar transporters is also in progress and will
help to decipher the mechanisms associated to sugar perception.

The relationship between plant carbohydrate status and
defense/resistance against pathogens has been known from a long
time as the “high sugar resistance” (Horsfall and Dimond, 1957).
Several papers have since reported changes in apoplastic/cell sugar
content, source to sink transition, increase in cell-wall invertase
activity and also changes in the sucrose/hexose ratio in plants
challenged by pathogens (Bolouri-Moghaddam and Van Den
Ende, 2012). Such changes are perceived by plants and allow
induction of defenses (Herbers et al., 1996a; Tang et al., 1996;
Ehness et al., 1997; Schaarschmidt et al., 2007; Kocal et al., 2008).
Invertases, enzymes that catalyze the conversion of sucrose to glu-
cose and fructose, are essential for the modulation of apoplastic
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sugar content (Roitsch et al., 2003; Roitsch and Gonzalez, 2004).
Despite their role as simple soluble sugar suppliers (Bolouri-
Moghaddam et al., 2010; Xiang et al., 2011), they play a key role
in the regulation of source/sink relations of plants and response
to pathogens (Ehness et al., 1997). This is particularly true for
apoplastic invertases considered as PR-proteins (Roitsch et al.,
2003). Overexpression of a yeast invertase in the apoplast of
tobacco hence induces production of PR proteins and increases
resistance against virus infection (Herbers et al., 2000). Transcript
accumulation and/or increased activity of extracellular invertase
were reported in response to glucose, sucrose, non-metabolizable
sucrose analogs (Roitsch et al., 2003) and polygalacturonic acid
(Godt and Roitsch, 1997). Metabolizable sugars and defense
related stimuli (including chitosan) were shown to coordinately
regulate source/sink relations and defense responses (Ehness
et al., 1997). Such a regulation could contribute to provide energy
for defenses and improve the defense response against pathogens
(Roitsch et al., 2003). Interestingly, some pathogens seem to be
able to bypass this signaling system. Hence, Wahl et al. (2010)
have characterized the membrane–localized sucrose transporter
Srt1 from the corn fungal biotrophic pathogen Ustilago maydis.
Srt1 is sucrose specific and acts as a virulence factor as sucrose
is directly taken up in the apoplast and not hydrolyzed with the
subsequent release of monosaccharides able to induce defenses.

APPLICATION OF OLIGOSACCHARIDES FOR PLANT
PROTECTION
A STILL LIMITED USE
As stated above, many OS are able to induce plant defenses and, in
some cases, plant resistance against pathogens in lab conditions.
This has opened the way to applications in crop protection. In this
context, OS are attractive candidates as resistance inducers since
they are mostly non-toxic, safe to the environment and can be
extracted from renewable sources. Numerous field trials with OS
have been performed but few of them lead to positive and repro-
ducible results, probably explaining why published results still
remain scarce. The following part of this review presents a non-
exhaustive list of experimental data representative of the present
situation of OS in crop protection.

The glucan laminarin was shown to reduce severity of downy
mildew and gray mold in grapevine in lab tests (Aziz et al.,
2003). Unfortunately, vineyard trials yielded inconsistent results
that precluded further applications for this crop. The situation is
seemingly more successful with other interactions. Indeed, in field
conditions, several sprays of laminarin on strawberry allowed the
control of powdery mildew up to 70–80 and to 50% for leaf spot
and gray mold.

Chitosan has been studied as plant protectant for more than
30 years and a wealth of publications is available. It is the OS that
has given rise to the greatest number of applications (Hadwiger,
2013) in a wide array of plant-pathogen interactions and the
induced protection was found to range from significant to null.
For example, Iriti et al. (2011) assessed the efficacy of a com-
mercial preparation of 85% deacetylated chitosan with a high
DP (MW of 20–30 KDa) against grapevine powdery mildew. The
solution was sprayed weekly at 40 mg/l during the susceptibil-
ity period of the fruits. The treatment eventually reduced the

disease by more than 90% and increased the polyphenol con-
tent of berries, which suggests that this chitosan had affected the
secondary metabolism of grapevine. With another commercial
formulation, Sharathchandra et al. (2004) recorded up to 65%
of protection against pearl millet downy mildew. According to
our own experience, no efficacy of high DP chitosan prepara-
tions was observed against grapevine downy mildew in vineyard
experiments (Daire, unpublished) whereas 100% protection was
obtained in greenhouse conditions. Most preparations possess a
strong antimicrobial activity due to the polycationic nature of the
deacetylated glucosamine. Chitosan therefore has a dual role and
it is often difficult to establish whether the observed protectant
effect relies on the eliciting or on the antimicrobial property or
both. In addition one can take advantage of biofilm forming prop-
erties of chitosan for post-harvest protection of fruits (Hadwiger,
2013).

Curiously, no published data of crop protection are available
for OGAs alone while their eliciting properties have been exten-
sively studied. Chitosan oligomers (both in the decamer range)
were combined to OGA in order to stabilize the egg box confor-
mation of the latter and the complex was shown to be a potent
elicitor of defense reactions in Arabidopsis (Cabrera et al., 2010).
This mixture also elicited defenses in tomato and, in greenhouse
conditions, several spray applications achieved 80% protection
against cucumber powdery mildew under high disease pressure.
The treatment proved also effective against grapevine powdery
mildew in a vineyard experiment in Spain. In this experiment,
six sprays throughout the growing season, delivering only 35 g/ha
of OS each, allowed to reduce disease severity from 54% in con-
trol to 13% in the treated plots (Van Aubel, 2013). Such results are
in agreement with similar trials carried out previously in France
(Daire, unpublished).

In spray application, oligosaccharide-induced resistance is
often found to be dose dependent. For example, during green-
house protection tests with sulfated laminarin against grape
downy mildew, maximum disease reduction rate reached 85%
with 5 g.l−1 of oligosaccharide while it was only 57% when the
dose was lowered to 1.25 g.l−1 (Trouvelot et al., 2008). This dose-
dependent effect was also observed in field trials with this OS
against powdery mildew (Daire, unpublished data).

As the effectiveness of OS treatments as crop protection against
diseases generally still suffers inconsistency (Delaunois et al.,
2014), the role of factors susceptible to impact the level of OS-
induced resistance of plants is presently investigated to develop
this strategy (Walters et al., 2013). Among them are the cuticular
barrier and the phyllosphere microflora.

THE CUTICULAR BARRIER
Once sprayed, elicitors have to go through the cuticular barrier to
reach the cell wall and plasma membrane to be perceived. The
cuticle, present at the surface of plant aerial organs (Riederer
and Müller, 2006) prevents water losses (Riederer and Schreiber,
2001). It is a continuous structure (0.1–10 μm thick) formed by
a combination of cutin, waxes and polysaccharides (Holloway,
1982; Jeffree, 1996). Due to its chemical properties, cuticle is per-
meable to lipophilic compounds (Schreiber, 2006) but represents
a diffusion barrier to polar ones such as carbohydrates. Polar
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molecules can penetrate the leaf by transcuticular hydrophilic
pores, the nature of which remains unclear (Schönherr, 2006;
Schreiber, 2006), or through a stomatal pathway in which sub-
stances most likely move along the surfaces of the stomatal pores
(Eichert and Goldbach, 2008) (Figure 1). The cuticular pathway
has rather low size exclusion limits (around 2 nm, compatible
with diffusion of small carbohydrates such as sucrose) whereas
the stomatal one enables entry of much greater molecules (over
43 nm in diameter) (Eichert et al., 2008). However, only a limited
number of stomata seems to participate in this diffusion (less than
10% of all stomata in the case of Allium porrum L.; Eichert and
Burkhardt, 2001). In the case of sucrose, penetration rate deter-
mined for an array of plant species was shown to range between
1% for astomatous cuticles and 4% for stomatous ones (Eichert
and Goldbach, 2008). Therefore, in hypostomatal plant species,
sucrose uptake across the abaxial surface was at least more than
two times higher than that across the adaxial side. It is likely that
penetration rate of OS, greater in size than sucrose, is even lower.
These observations could account for variable and limited effec-
tiveness of OS application as foliar sprays. For these reasons, it
should be important to investigate formulation that can improve
bioavailability of OS in leaf tissues (Liu et al., 2004; Fernández and
Eichert, 2009).

THE PHYLLOSPHERE IS PROBABLY NOT PASSIVE REGARDING OS
APPLICATION
Leaf surfaces of nearly all higher plants form the phyllosphere
(Ruinen, 1961), habitats for epiphytic microorganisms including
bacteria, yeasts and fungi (Vorholt, 2012). These leaf-associated
microbes use resources such as carbohydrates, amino acids, and
organic acids (Tukey, 1970; Derridj, 1996; Leveau and Lindow,
2001; Van Der Wal and Leveau, 2011) passively leaked by plants.
Photoassimilates like sucrose, fructose, and glucose found in
abundance (0.2–2.0 μg per leaf) on uninhabited bean leaf sur-
faces, were indeed readily consumed and converted into biomass
by the inoculated bacterium Pseudomonas fluorescens (Mercier
and Lindow, 2000). Bacterial and fungal colonization of the phyl-
losphere does not occur evenly across the leaf (Kinkel et al.,
1995). Hence, bacteria are more likely to be found clustered
in crevices between epidermal cells (anticlinal cell walls), near
the base of trichomes, in the proximity of and in stomata, and
along veins (Mansvelt and Hattingh, 1987; Davis and Brlansky,
1991). This location corresponds to putative cuticular diffusion
sites of hydrophilic oligosaccharides. In this context, it is per-
tinent to wonder about the durability of oligosaccharides once
sprayed onto the leaf surface. However, bacteria of the phyllo-
sphere secrete biosurfactants (Cooper and Zajic, 1980; Neu, 1996;
Rosenberg and Ron, 1999) that increase the wettability of leaf
tissues (Bunster et al., 1989; Schreiber et al., 2005) or directly
alter the leaf surface permeability (Schreiber et al., 2005), so one
could expect that they contribute to enhanced diffusion of xeno-
biotics (such as OS) through the cuticle and along stomatal pores
(Eichert and Goldbach, 2008).

In another way, it is well known that microbes, especially epi-
phytic fungi and bacteria surviving on crop plants produce and
secrete a range of enzymes, especially glycoside hydrolases that
degrade cell wall polysaccharides (Culleton et al., 2013). Among

them are pectinases (most notably polygalacturonases), pectin
and pectate lyases and pectin esterases directed against the homo-
galacturonan domain, as well as rhamnogalacturonases (Alghisi
and Favaron, 1995; Chen et al., 1997; Abbott and Boraston, 2008).
Other microorganisms could produce chitinases and also glu-
canases, alginate or ulvan lyases (Lahaye et al., 1997; Da Costa
et al., 2001; Urquhart and Punja, 2002; Dahiya et al., 2006). By
this way, one could hypothesize different possible scenarios for a
sprayed OS: i- it is not altered by the phyllosphere microflora, ii-
it is partly altered and hydrolyzed by the phyllosphere microflora,
resulting in a lower active quantity bioavailable for defense induc-
tion and in the release of iii- small fragments having a higher
elicitor activity or iv- inactive small fragment or v- small sugars
acting as signaling molecules (especially in the case of β-glucan)
(Figure 1). Phyllosphere microflora thus undoubtedly plays a role
regarding oligosaccharidic bioavailability, although it remains
difficult to describe it precisely.

CONCLUSION
It is now undeniable that carbohydrates play a role in plant
immunity. However, their actual significance in plant-microbe
interactions still remains partly unknown because of the high
complexity of the mechanisms involved. As far as their use in
crop protection is concerned, examples of successful applications
demonstrate the potential of OS-based induced resistance as a
strategy. However, OS treatments generally still suffer inconsis-
tency. Many reasons can account for this situation among which
a lack of suited formulation or degradation by epiphytic microor-
ganisms can be hypothesized. Conversely to pesticides that act
directly on pathogens, elicitor-induced resistance implies the elic-
itor perception by the plant and a subsequent plant response
undoubtedly influenced by various factors. Progress in the identi-
fication of plant PRRs would guide the choice of the best OS can-
didates for crops and could be used as a criterion in plant breeding
programs. PRR encoding genes could also have interest for trans-
formation of plants lacking the corresponding PRR. The influence
of various factors susceptible to modulate the plant response, such
as the plant developmental stage, host and pathogen genotypes,
abiotic stresses or nutrition factors, is still partially or unanswered
and will require specific research. This should help OS to become
part of disease control management, in combination with other
strategies and reduce the use of pesticides.
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