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Abstract: Several acoustic and optical techniques have been used for characterizing natural and
anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based
methods for bubble stream observation have become an important tool, as they help estimating flux
and bubble sizes under certain assumptions. However, they record only a projection of a bubble into
the camera and therefore cannot capture the full 3D shape, which is particularly important for larger,
non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger
or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties.
In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that
overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated
cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration
and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are
crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for
single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation
based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and
evaluate the wide baseline stereo measurement model using a controlled test setup with ground
truth information.

Keywords: bubbles; methane; 3D reconstruction; stereo; underwater photogrammetry; flux; size
distribution; rise speed

1. Introduction

The oceans’ seafloors host significant amounts of the greenhouse gas methane in the form of solid
gas hydrate, dissolved in sedimentary pore water, or as free gas. The occurrence of free methane gas
in the seabed and respective release into the water column in the form of rising gas bubbles represents
a global phenomenon termed gas seepage (cf. to [1,2], see also Figure 1).
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Figure 1. The shape and speed of gas bubbles rising in a liquid depends on the bubbles’ volume
and surface area and other (physical and chemical) properties of gas and liquid [3]. For instance,
air bubbles in water are almost spherical up to millimeter size (small bubbles to the left), become
approximately ellipsoidal in the several millimeter range and can be irregularly shaped when much
larger. The image to the right shows an area in the North Sea where methane is released from the
ocean floor and forms distinct bubble streams. Measuring the flux, the rise speed, and the bubble size
distribution is of crucial importance for larger scale ocean and atmosphere models.

Methane, however, represents a strong greenhouse gas on Earth. Consequently, if methane
release from the seabed migrates towards the atmosphere, it then represents a threat in terms of
global warming [2,4], but even very rough estimates for the oceans’ contributions to the atmosphere’s
methane budget are very challenging. The majority of known marine gas seepages originates from
microbial degradation of organic matter into methane. Subsequently, the major fraction of methane
is filtered in situ by a complex microbial community on the seabed [5]. However, gas bubbles
bypass this benthic filter enabling a highly efficient transport of CH4 from the sediment into the
water column and ultimately to the atmosphere. To a lesser degree, the release of gas from the
seafloor is associated with sub-seabed volcanic activity and emission of abiotic CO2, methane, and
H2S gas [6]. Recent work also discusses anthropogenic contributions of gas leakage from the seafloor
by marine oil or gas exploitation activities, carbon storage and enhanced oil recovery facilities, gas
pipelines, and abandoned wells [7,8]. After gas bubbles release from the seafloor into the water
column, the bubbles undergo diffusion with ambient seawater. During their rise with decreasing
hydrostatic pressure, gas bubbles may lose large amounts of their initial amounts of moles, e.g.,
driven by undersaturation of seawater with methane. Numerical models are available to predict the
diffusion and dissolution of gas bubbles in seawater and allow for calculation of bubble lifetime, mole
fractions, and rise height of seepage gas bubbles [9,10]. The input parameters initial gas bubble size,
water depth, gas mole fraction, and environmental properties of the ambient seawater are required for
modeling the chemical bubble evolution and lifetime. However, only a very limited number of studies
investigated the crucial parameter of bubble size distribution so far [11,12]. So called gas hydrate
skin effects at water depths greater than approximately 500 m further complicate the physicochemical
behavior and lifetime modeling of gas bubbles [13]. Shipborn acoustic echosounding represents the
state-of-the-art technique to remotely sense marine seepage. Until recently, singlebeam echosounders
were operated to reliably sense gas seepage sites even beyond 2000 m water depth [14]. Today,
wide coverage multibeam echosounder systems can be used for more efficient in situ and shipborn
bubble detection [15–17] and even allow for bubble rise velocimetry adapted from visual computer
vision [18]. However, the acoustic absolute quantification of seepage flux remains a very challenging
task, and without the knowledge of bubble size distributions and rise velocity, the inversion of
single frequency echosounder data into gas flux estimates remains ambiguous [19]. Moreover,
acoustic analyses of individual bubble shape, small-scale bubble trajectory, rising speed, surface
characterization, exact bubble size determination, and upwelling phenomena of ambient seawater
are limited due to wavelength and resolution. This shortcoming can be overcome by high resolution
in situ visual sensors that allow for measuring the bubble size distribution of a stream and the rise
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velocity of bubbles (see e.g., [20–22]). These numbers can then again be used to enhance acoustic
inversion and bubble lifetime modeling and support regional acoustic inversions. In this contribution,
we present first investigations towards a novel 3D sensor called bubble box to quantitatively
investigate natural gas seepage bubbles in the oceans. It can be deployed on or towed across the
seafloor using a TV-guided frame or an ROV (remotely operated vehicle) and is depth rated up to
6000 m. The goal of this work is automated determination of bubble size distribution and rise velocity
as well as overall gas flux. The bubble box in its current design (see Figure 2 for sample images) allows
for flux validation by capturing a reference volume at the top. It is equipped with a wide baseline
stereo camera system and background illumination to capture the 3D shape of rising bubbles in order
to obtain bubble characteristics for a certain vent, or ultimately, the statistics of vents in an entire area.

Figure 2. Three views of the bubble box, from left to right: box without cameras during development,
box on ROV Phoca before being deployed (research cruise on RV Poseidon) and box in shallow water
near Panarea, an area with heavy carbon dioxide release.

State of the Art in Visual Characterization of Bubble Streams

Mechanical installations such as inverted funnels can help estimating an average flux but cannot
provide the rise speed or bubble size distribution required by diffusion and dissolution models
as discussed above. This information is also an input parameter of inverse acoustical methods to
compute flux from large scale sonar surveys. On the other hand, in visual data it is possible to
distinguish and track bubbles for rise speed and size distribution analyses, so that we discuss the
state of the art in visual characterization of bubble streams in the next paragraphs.

Several visual systems have been presented for in situ measurement of bubbles in the ocean.
The systems differ in whether they are intended for shallow water and waves [20], for moderate
depth [12,23] or for the deep sea [21]. Besides dedicated sensors, bubbles have also been analyzed
from ROV cameras [24]. These systems have been primarily designed for capturing good data and
require a lot of interactive manual work to process the data afterwards. All systems referenced above
rely on a monocular camera. Monocular cameras are well suited for observing spherical bubbles,
when the distance of the bubble to the camera is exactly known. However, even if the distance to
the seepage source is measured carefully, the camera distance to individual bubbles in a stream may
vary, as bubbles can show zig-zag motion or oscillation (cf. to [3]) and several bubbles can appear
next to each other. By the intercept theorem from elementary geometry, it can be understood that
an error of 25% in assumed distance results also in an error of 25% in estimated sphere radius and
a volume error of almost 100% (cf. Figure 3). In order to remedy this problem, recently Wang and
Socolofsky [22] have presented a stereo-camera system. The use of two cameras allows for measuring
the distance of each bubble to the camera more precisely, even if it is not exactly in the center of an
assumed corridor. Then, for spherical bubbles, the 3D sphere size can be computed from the observed
circle in the image. As we will outline in the next section, the stereo configuration can however be
improved for analysis of ellipsoidal bubbles (see Figure 1 for different shapes).
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Figure 3. Different settings to observe bubbles: (a) For a monocular camera a large distant bubble
looks the same as a small bubble closeby; (b) A small baseline stereo camera system can measure
the distance of spherical bubbles, but the extent of ellipsoidal bubbles in viewing direction is very
uncertain; (c) A wide baseline stereo system can determine the ellipsoidal shape well.

The problem is also related to image processing based on particle tracking in lab environments.
Here, [25] compute the rise speed of the center of mass of bubbles in an aquarium using a mirror but
do not perform volume or sizes estimates. Bian et al. [26] estimate a restricted ellipsoid model for
a single bubble. Both studies do not report on how they handle the refraction at the air-glass-water
interfaces, which has to be considered properly in multi-media photogrammetry (cf. e.g., to [27]).
Towards this end, recently, novel techniques for modeling and calibration of distance, thickness, and
normal of the interface of the camera housing have been proposed [28,29]. We carefully analyze the
calibration issues for the proposed bubble box sensor. In terms of pure 2D image processing, [30]
presents automated detection and shape estimation as well as tracking using a monocular camera.
In the next section, we will present the details of our system and outline the design considerations.

2. Bubble Box Design and Calibration

The visual sensor that we entitle bubble box can be seen in Figure 2. The goal of the sensor is
to measure rise speed, flux, shape, and bubble size distribution at the source position of methane
or carbon dioxide seeps at the ocean floor. For this, the system must be both mobile and robust,
such that it can be deployed by a remotely operated vehicle (ROV) from a research vessel. The body
therefore consists of a steel frame of a 30 cm by 30 cm footprint on the ground (plus surrounding plate
for carrying batteries), with approximately 1 m height.

2.1. Design Considerations

The box provides a vertical corridor where a bubble stream can rise through. To avoid
horizontal drift of bubbles due to currents, the corridor is protected to the sides by acrylic glass.
The corridor width of 20 cm was chosen to minimize boundary effects for thin bubble streams with
a distinct source, when the box is centered on the source. Two of the four outer vertical faces of
the corridor are made of white acrylic glass with strong scattering and little attenuation properties
(6 mm polymethylmethacrylate, “Perspex”). These are illuminated from the back and function as
bright, white background plates when the box is in operation (different illumination setting tests,
e.g., from the front, from the top and from the back can be seen in Figure 4, and compare also to [21]).
The two other vertical faces use transparent acrylic glass and contain a camera each. The system
has been designed to carry robust deep sea cameras (1024 × 1024 pixel resolution machine vision
cameras with 70◦ field of view, controlled by a mini computer, in titanium housings with 10 cm
diameter dome ports). Both cameras are triggered using a separate micro controller and send the
images via a gigabit Ethernet connection to a small computer inside the pressure housing. Images are
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finally stored on a shock resistant 1 TB solid state disk. The system can be powered by the ROV that
deploys it or as a standalone system and requires approximately 60 W (including lighting) during
operation and negligible power during standby. Storage and power are sufficient for single day
missions of many deployments on several seeps but are currently a limiting factor for long term
monitoring. We have also built a light-weight version using (1280 × 720 pixel resolution) GoPro
Hero3 cameras in Polyoxymethylene housings for shallow water). The cameras are arranged in a
way that they observe the bubble corridor from a distance of 10 cm and from two approximately
orthogonal perspectives. This way, each dimension of a bubble is observed by at least one of the
cameras. In contrast, in standard stereo settings, where both cameras are next to each other and share
almost the same perspective, noisy observations of bubble rims lead to high uncertainty of the bubble
extent in viewing direction (see also Figure 3).

The target capture rate of the system is 120 Hz. The observation corridor is approximately 20 cm
high, which means that a bubble rising with 25 cm/s (compare [9] for a thorough discussion on rise
speeds) in the center of the corridor will be photographed approximately 100 times. Faster bubbles
will be photographed slightly less frequently but can still be evaluated. The exposure time has to be
selected such that a bubble moves less than half a pixel. In the scenario above, this is approximately
0.1 mm and leads to an exposure time of less than 5 ms. We are generally interested in observing
bubbles larger than 0.5 mm in diameter (that have enough buoyancy to detach from the sediment and
rise towards the surface). The minimum bubble size both camera systems can observe is therefore in
the order of 0.5 mm in diameter. If smaller bubbles need to be observed (e.g., created from exploding
bigger bubbles), different lenses or cameras with higher resolutions could be used, but this is out of
scope of this article.

The acrylic glass walls are each illuminated by a high-powered LED from the back, which is
synchronized to output all energy during the exposure time of the cameras. To make the system
more lightweight/mobile, it is also possible to illuminate from the back using e.g., ROV lights or
diver-provided illumination.

Figure 4. Different lighting configurations. By far the best results are achieved by back lighting, i.e.,
using a diffuse light source behind the bubbles. This causes the bubbles to appear as dark contours.
When using a diffuse light source from the same direction as the camera, the bubbles are less well
distinguishable from the background. Using non-diffuse front lighting causes the bubbles to have
shadows, which complicates the detection process. Another interesting option can be top lighting,
which can be seen in the right image.

2.2. Calibration

In this contribution, the term camera calibration stands for geometric calibration, i.e.,
determining which pixel corresponds to which 3D ray in water. In the case of a stereo camera rig,
where the cameras are rigidly mounted, this means that the cameras need to be synchronized in
order to gain corresponding images of the bubble stream at the same time. This, in turn, allows for
determining the extrinsic parameters, i.e., the position and orientation of one camera with respect to
the other. Additionally, intrinsic parameters like focal length, but also of the underwater housing
need to be calibrated.
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2.2.1. Synchronization

The deep sea camera system is hardware triggered and will capture images at the same time.
In order to temporally calibrate the lightweight stereo system of GoPros, and later to match bubbles
across a stereo pair, the two video streams need to be synchronized with an accuracy down to
a single frame even at frame rates of 120 frames per second. The GoPro Hero 3 black edition does
not allow synchronized capture with that accuracy. To allow temporal alignment of the videos in
postprocessing, a short blinking light (flash) is presented such that both cameras can see it. Then,
the streams are synchronized manually by importing both streams into the open source video editing
software cinelerra (http://cinelerra.org) and aligning the light on/off frames. The corresponding
left and right images were put together into a single (synchronized) stereo image that was then
later used for further processing for calibration and bubble measurement. This method allows to
synchronize the streams but requires some manual work.

2.2.2. Stereo Calibration

The perspective camera model in air describes how a camera projects 3D points into the
image plane, after intersecting the center of projection (single-view-point camera). In this work,
a standard model with focal length, principal point, and radial distortion [31] is used and calibration
is performed according to the method described in [32]. It relies on checkerboard images that are
captured from different points of view, including different distances from the camera and different
angles relative to the camera’s optical axis.

When using a camera underwater, it needs to be enclosed in an underwater housing viewing
the scene through a glass port. In case of flat ports, the different media (water, glass, air) cause
the light to be refracted, and hence the perspective camera model to become invalid, introducing
a systematic measurement error. The magnitude of this systematic measurement error depends on the
camera-glass configuration and the distance of objects. Dome ports, semi-spherical glass housings,
do not suffer from refraction, when the camera center is aligned with the sphere center. On the
other hand, cameras behind flat ports that are centimeters away from the glass, possibly even with
an inclination angle between camera and glass, produce a large measurement error if refraction is
ignored. Each such underwater camera system that is to be used for measurements needs to be
carefully evaluated to see if refraction needs to be modeled explicitly (refer for example to [28,33,34]
for calibration methods). Treibitz et al. [33] showed that the caustic size is a measure for deviation
from the single view point camera model. In particular, for the center bubble area in a low resolution
GoPro mounted very close to the interface, the caustic is negligible and perspective calibration can
be used. This however depends on the actual camera and housing used as well as on the setup and
the introduced error has to be analyzed carefully. In any case, the cameras need to be calibrated by
capturing a set of underwater checkerboard images as in Figure 5. Then, depending on the expected
caustic size, either the perspective calibration method is used (not explicitly modeling refraction [35])
or a refractive method, e.g., [28] can be used to determine housing parameters like glass distance
and inclination.
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Figure 5. Calibration in water, sample input images from different points of view.

Afterwards, the relative translation and rotation between the two cameras need to be determined
by using checkerboard images that are completely visible in both cameras.

3. Bubble Stream Characterization

The previous section described the hardware and the calibration routines for the bubble box.
Once a set of bubble images has been captured, automated methods for image processing are required
that estimate properties like overall volume, rise velocity, and size distribution. In a preprocessing
step, the images’ regions of interest (ROI) are determined and in an optional step, possible blur is
removed. Then, the bubbles are detected and matched across the stereo image pairs. This allows for
computing ellipsoids for each bubble. Finally, it is of interest to track bubble streams over time to
determine 3D bubble paths and to compute rise velocities. Refer also to Figure 6 for an overview of
the method.
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Figure 6. Flow diagram of the stereo bubble box data processing steps.

3.1. Preprocessing—Automatic Region of Interest Selection

It is assumed that only the bubbles move within the images and that they occupy a fairly constant
region of interest (ROI). However, bubble detection is based on gradients within the images and will
also fire on other possible structures like, for example, markers for measurement as can be seen on
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the diffuse acrylic plates in Figure 2. Therefore, it is important to have a region of interest in both
images that contain the bubble plume only. This can either be determined manually or by utilizing
the assumption that the only moving objects in the images are the bubbles. This movement can then
be detected using optical flow methods [36]. The areas of the images, where movement is measured
over time are then accumulated in a heat map and the region of interest showing the bubbles to be
measured is the resulting surrounding rectangle (refer to Figure 7). For the evaluation presented
in this article, a static ROI has been computed for each sequence and was not changed during the
sequence. In addition to determining the ROIs, computing the heat map by using optical flow
methods allows to initially predict bubble motion between consecutive frames, which will be used
for tracking bubbles across time. However, the optical flow estimation results contain outliers due
to sporadic large bubble displacements, such that the results usually cannot be utilized directly for
bubble tracking over time.

Figure 7. Heat map showing the automatically determined bounding boxes (white) for bubble
detection in the left and right stereo images.

3.2. Preprocessing—Bubble Deblurring

As already stated in the introduction, the frame rates for capturing gas bubbles need to be high
and exposure times need to be short in order to avoid motion blur in the images. Consequently,
the capture of bubble streams requires strong illumination. For long term observations with limited
energy at the sea floor, or for lightweight deployment of the system without integrated lighting and
battery (i.e., mobile lights from divers), too little light might be available for good quality images.
To some extent, this can be compensated by longer exposure times that lead to moderate motion blur
or a larger aperture that leads to a smaller depth of field [37]. However, larger apertures can cause
the bubble to be outside the depth of field and will hence cause defocus blur.

Both blur effects skew the measurements of the bubble’s shape and size, which are important
measures in bubble box applications. The fidelity of images acquired under less-than-perfect
conditions can be improved by blind deconvolution techniques with a gradient sparsity prior.
This will compensate for the influence of motion and defocus blur to some extent. This section focuses
on the practical application of the algorithm, for more details, see results already published in [38].

Blind deconvolution is based on the following image model. The observed image O is formed
from the undisturbed image S, convolved with the blur kernel or point spread function (PSF) B and
additional noise n:

O = S⊗ B + n (1)

Blind deconvolution means that both S and B have to be recovered from a single measurement
O. This problem of recovering these two unknowns (S, B) from one measurement (O) is ill-posed in
general as shown in [39]. However, by using additional constraints or exploiting special properties,
solutions can be found [39,40]. For instance, [41] uses a heavy tailed gradient sparsity prior, designed
for the restoration of natural images [39]. Bubble box images typically show a uniform background
with low gradient values and bubbles with a stronger gradient rim. Consequently, also for
bubble sharpening, a MAP (Maximum a posteriori)-estimation gradient sparsity blind deconvolution
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algorithm (cf. to [41]) is suitable. The formulation is based on the Bayesian framework and uses the
Maximum a posteriori (MAP) principle as its foundation. For the MAP principle, the latent distribution
of the observed image O is denoted as P(O). P(S) and P(B) denote the a priori distributions of the
undisturbed image and of the blur kernel, both with applied priors. The algorithm recovers the
undisturbed image S and the blur kernel B, by finding their MAP, dependent on O:

P(S, B|O) =
P(O|S, B)P(S, B)

P(O)

∝ P(O|S, B)P(S, B) = P(O|S, B)P(S)P(B)
(2)

while P(O|S, B) follows a Gaussian distribution with parameter γ that encapsulates the Gaussian’s
standard deviation:

P(O|(S, B)) ∝ e−
γ
2 ‖S⊗B−O‖2

(3)

On the recovered signal S and the blur kernel B, the regularizers Q(S) and R(B) are employed.
Q controls the gradient sparsity prior on the image and R the assumptions on the blur kernel.
This allows the recovery of the blur kernel and sharp image from the blurred image. For a more
detailed description of the algorithm, see [41].

3.3. Bubble Detection

Within the region of interest in an image, the bubbles are to be detected and tracked
automatically (refer to [30] for a more detailed description of the bubble detector and tracker).
For this, the images are interpreted as a function mapping a gray value to each pixel. In this
function, gradients can be computed and used for line-detection with the Canny edge-detector as
in [21]. The edges are then used to determine the bubble contours by tracing the convex hull of the
connected components. Extra contours inside the bubbles are rejected, by checking for overlapping
detections. The final ellipses are fit into the remaining contours using a method by [42]. Figure 8
shows intermediate and final results of bubble detection.

At this point, the image ellipses around the detected bubbles would allow the calculation of the
volume by assuming that each bubble is a rotationally symmetric, 3D ellipsoid. This method based on
a monocular camera only is often used in the literature for bubble volume estimation. An additional
assumption required in this case is that the distance between camera and bubble is constant and
known, thus allowing to convert the measured volume to metric units, i.e., computing a factor, which
determines how many pixels correspond to one millimeter. This method works well if the bubble box
contains only one bubble plume at a precisely known distance to the camera. However, deviations
from the assumed distance affect the estimated volume with an error in the third power of the error
of the distance, resp. conversion factor (see Figure 3).

left image right image

input edges

contours
(with overlap)

final result

Figure 8. Detected bubbles in image ROIs. In cyan: contour around the bubble rim. In blue: rectangles
describing the ellipse.
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3.4. Stereo Matching and Ellipsoid Triangulation

In the case of more than one bubble plume being measured in the bubble box or in case the
distance between bubbles and camera is not known with high accuracy, a wide-baseline stereo camera
rig is used to accurately triangulate 3D bubble positions and reconstruct their ellipsoidal shape
approximation. This is achieved by utilizing the knowledge about the calibrated rig to compute 3D
cones of sampled rays for each bubble rim, which can then be intersected. Consequently, the exact
distance of each bubble from the two cameras is computed. This allows not only precise volume
measurements, but also to reconstruct the 3D information of single bubbles in the plume and track its
3D movement upwards.

The method then works as shown in Figure 6. The stereo rig calibration and a series of input
images serve as input. In each image pair, the bubbles are detected with the method described
in Section 3.3. Due to the wide baseline, it is not possible to match the bubbles according to their
shape (refer to Figure 8), so matching has to rely on two-view geometric constraints. For perspective
cameras, this can be done using epipolar geometry [43], based on the idea that a point in one image
has to lie on a corresponding line in the second image. However, in presence of refraction, epipolar
lines become curves. In this case, we use piecewise, linear approximations of the epipolar curve.
Note that for this kind of geometric matching, the rig calibration needs to be very accurate, otherwise,
the computed epipolar lines will not intersect the matching bubbles. The distances to the epipolar
lines are used as weights. Then, the two sets of bubbles form the two sets of a weighted, bipartite
matching problem (see Figure 9 for results).

With the stereo correspondences, the 3D position and ellipsoidal shape of the bubbles are
triangulated, by utilizing the calibration information about the camera configuration. For the purpose
of shape reconstruction, different approaches are feasible. [26] uses an analytic approach of calculating
the parameters, which delivers exact results and also requires exact synchronization. Note that
shape-from-silhouette approaches [44] are also an interesting alternative in general; however, they
usually require a large number of projections of 3D points into the images. When using a refractive
camera model, such approaches are prohibitively expensive. Therefore, the described system
intersects the bubbles’ viewing cones: for each bubble correspondence in a stereo image pair, the
outer contour is sampled discretely and for each sample, the corresponding ray in space is computed.
The set of 3D rays for each bubble contour forms a characteristic cone (see Figure 10). The bubble
is then reconstructed by fitting an ellipsoid on the inside of the cone intersection. Note that in the
presence of noisy observations, this kind of cone intersection is more ambiguous in small baseline
stereo camera setups than in our wide-baseline setting (compare to Figure 3).
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Figure 9. Exemplary results for stereo matching. Top: few bubbles, matching works very well.
Bottom: many bubbles with overlap, where the matching procedure will make some errors.

left camera right camera 

glass  
interface 

reconstructed  
bubble 3D rays  

in water 

3D rays 
in air 

image ellipses 

Figure 10. Left: ellipsoids are computed by determining the boundary rays corresponding to the
contours in the images. Right: when viewed in 3D, so-called boundary cones are defined when
discretely sampling the points on the contours in the images. The red cone is from the first camera and
the green cone from the second camera. The blue ellipsoid is fitted to lie inside the cone intersection.
Note that the computation of 3D rays does not require the projection of 3D points into the images,
which is infeasible when using the refractive camera model.

Compared to estimating the bubble volume by assuming certain fixed distance for each bubble
from the camera, the approach described in this section triangulates the 3D bubble position and
determines its 3D ellipsoidal shape. From the ellipsoid, the bubble’s volume can be computed
directly. In case of failed matching, the bubble volume can still be approximated from one of the
stereo images by assuming a rotationally symmetrical bubble at an average distance (traditional
monocular assumption).

3.5. Bubble Tracking

To reconstruct the motion of the bubbles, they are tracked over the image sequence, i.e., over
time. Due to the bubble usually following a constant upwards motion with certain deviations to
the left and right, it is possible to specify an upwards and a sideways motion constraint, thus
allowing the determination of a set of possible matching candidates between two consecutive images.
The matching candidates are assigned a weighting factor based on the motion constraints, which
leads to a minimum-weighted, bipartite matching problem, which is a classical graph problem and
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can be solved by the Hungarian algorithm [45]. When combining the correspondences over time, the
entire trajectory of the individual bubbles can be inferred.

4. Assessment

Before evaluating the performance of the presented system, results of the optional deblurring
step will be shown. Then, the described method will be evaluated on synthetic and real data.

4.1. Deblurring

Figure 11 shows results of the gradient sparsity algorithm as suggested in [41], which produces
good results on the input image with only slight defocus (Figure 11a).

(a) Original (b) Blind
deconvolution

Figure 11. Experimental results of blind deconvolution on an input image with defocus: (a) shows the
input image and (b) the result of gradient sparsity blind deconvolution.

For motion-blurred images, the deblurring of [41] also shows a good improvement in sharpness,
but remains incomplete, see Figure 12b. Clearer contours can be achieved as described in [38], i.e., by
using 2.5 times the weight for the sparsity prior of the blur kernel (compare Figure 12b,c). In addition,
notice the strong halo artifacts around the bubbles caused by this parameter setting. However, they
do not disturb the bubble detection, due to the gradient on the bubble rim being increased, while the
gradient between background and halo is low in comparison. Therefore, to compensate motion blur,
these specialized parameters should be employed for bubble images.

The correct restoration is confirmed by the recovered PSFs in Figure 13 with its characteristic
shapes for defocus (cf. to Figure 13a) and upwards motion blur (cf. to Figure 13b)

The results of deconvolution indicate that the fattening of bubble contours caused by motion
and defocus blur, which leads to an overestimation of the bubble size, can be reduced. This has also
been confirmed in a detailed analysis in [38]. Blind deconvolution is computationally expensive and
the run-time for the gradient sparsity algorithm in a Matlab implementation is up to 10 s on an image
with 261 pixels width and 612 pixels height. A hybrid approach that uses blind deconvolution to
estimate the PSF once and uses a non-blind deconvolution with a lower run-time for the following
images, is a feasible and practical approach.
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(a) Original (b) Standard
parameters

(c) Specialized
parameters

Figure 12. Cropped results of blind deconvolution on an input image with motion blur: (a) shows the
cropped original image; (b) gradient sparsity blind deconvolution with standard; (c) gradient sparsity
blind deconvolution, with a specialized parametrization for bubble box images, see Section 4.1
for details.

(a) Defocus blur (b) Motion blur

Figure 13. Blur kernels recovered by blind deconvolution, (a) shows the 15× 15 blur kernel recovered
from the defocused image in Figure 11a, while restoring Figure 11b; (b) shows the 32× 32 blur kernel
recovered from image with motion blur in Figure 12a, while restoring Figure 12b. Values between
0 (black) 1 (white), values scaled for better visibility.

4.2. Bubble Simulator

In order to verify the developed algorithms on ground truth data, a bubble simulator was used
that rendered synthetic images with known ground truth. For this, a simplified model for the bubbles
is implemented. Randomized 3D ellipsoids are generated that move upwards on a randomized path.
Additionally, the length of the ellipsoids’ main axes change from frame to frame without changing
the volume. Thus, for each frame to be rendered, a known 3D representation with ellipsoids is known
in addition to the exact 3D path a bubble took.

For rendering the images, we aim to simulate the back-lighting of the bubbles as shown in
Figure 4. Bubbles do not follow the standard computer graphics Blinn–Phong shading model [46],
but instead feature a darker rim and a bright core (see Figure 1). The reason for this darker rim is that
while light reaching a bubble surface is refracted according to Snell’s law, if the angle of incidence
is small, total internal reflection occurs. Our approximation of this process is to model the color of
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the bubbles with the angle of incidence of the cast viewing ray. This allows rendering reasonable test
images using a simple raycaster, without requiring the complexities of a full, non-sequential raytracer.

For comparison, the bubble stream is rendered from three points of view. The first two views
are set in the wide baseline scenario with a 90◦ angle, while the first and the third camera feature the
small-baseline scenario with a 20◦ angle. All three cameras view the same set of bubbles, and hence
the simulator allows for the comparison of performances of the proposed wide-baseline scenario,
the small-baseline scenario, and the use of a monocular camera. Each camera observes the bubbles
using the refractive camera model and during bubble size computation, refraction at the underwater
housing is modeled explicitly.

Using the simulator, we generated a sequence of 100 images with three bubble plumes. For each
bubble, the ground truth position, volume, and size are known, therefore, the performance of the
proposed system can be evaluated on this data. Figure 14 shows an exemplary input image of the
simulator on the left, followed by a bubble detection result, a matching result, and a 3D view of the
bubble plumes.

(a)
Input

(b)
Detection

(c) Matching (d) 3D-View

Figure 14. Exemplary simulator images. From left to right: input image, bubble detection result,
matching result, and 3D view of the original 3D bubbles. In case of the matching image (c), the
blue line indicates matching bubbles and the yellow lines indicate the local approximations of the
epipolar lines.

Table 1 shows a summary of the results over all images for the wide-baseline scenario (WB),
the small-baseline scenario (SB), and using the monocular camera with an assumed pixel-to-mm
conversion ratio (Mono). The ground truth volume of the bubble stream is higher than the
estimate for the wide-baseline scenario by our algorithm due to some mismatches and therefore
missed bubbles. Note that the average bubble volume was estimated accurately, showing that the
ellipsoid computation at the 90◦ configuration yields good results. The velocity of the generated
bubbles was higher than in real bubble scenarios, but was also estimated accurately. The results
of the small-baseline scenario demonstrate the major problem of this method. Matching accuracy
was comparable in both scenarios, but when computing the ellipsoid, bubble size is usually
over-estimated due to ambiguities in bubble shape. This is demonstrated on an exemplary bubble
in Figure 15, where the left image shows the ellipsoid in the wide-baseline scenario and the right
image shows the ellipsoid computed in the small-baseline scenario (compare also to Figure 3).
The histogram of bubble volumes in Figure 16 confirms this observation. While the results of the
wide-baseline scenario match the ground truth histogram well, in the small-baseline setting the
bubble volume in general is overestimated in our experiment. Table 1 also gives some results using
a monocular camera. In this case, a fixed pixel-to-mm conversion ratio is assumed, to estimate
bubble volume with the assumption that all bubbles have the same distance to the camera and are
rotationally symmetric.
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Table 1. Results on synthetic data. The first column shows the ground truth results. WB stands for
wide-baseline scenario, SB for small-baseline scenario and Mono shows an estimate for using one
camera only based on a pixel-to-mm conversion ratio.

Ground Truth WB SB Mono

Synthetic Data
volume 127,85.72 mm3 11,391.93 mm3 18,823.21 mm3 15,028.2 mm3

average volume 42.62 mm3 39.83 mm3 66.04 mm3 52.18 mm3

average velocity 35.94 cm·s−1 36.00 cm·s−1 36.16 cm·s−1 -
# bubbles 300 286 285 288

Figure 15. Ellipsoid triangulation from wide and small baseline. Left: wide baseline scenario, where
blue shows the computed ellipsoid and black the ground truth ellipsoid. The green and red lines show
the 3D cone limiting the ellipsoid. Right: small baseline scenario. Note how the blue ellipsoid cannot
be determined uniquely due to the elongated intersection of the red and green viewing cone.
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Figure 16. Histogram showing the bubble volume distribution on synthetic data computed in the
wide-baseline scenario and the small-baseline scenario compared to ground truth.

4.3. Test Setup with Air Bubbles in Water

The camera setup of the bubble box has been tested prior to building the actual box using lab
experiments in a fish tank filled with water (refer to Figure 17). Inside of the water, three bubble
streams were produced. Note that in order to test the automated data processing algorithms, a simple
stream of air coming out of a flexible tube is sufficient for which the actual overall volume was
measured using a measuring cup. In order to illuminate the bubble streams, two adjoining glass walls
of the fish tank were equipped with white acrylic glass that strongly diffuses the light. Both acrylic
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planes were lit with 1000 W halogen lamps. Inside the fish tank, two GoPro 3 cameras were set at
a 90◦ angle at a distance of about 25 cm to the bubble streams. The GoPro cameras have a very
small distance between glass and camera and the cutouts used in this example only utilize a small
opening angle of the overall image. For this cutout, the caustic and therefore the deviation from the
single-view-point camera model is very small and the cameras were calibrated perspectively using
checkerboard images captured underwater.

By manipulating the tube, it is possible to create many or few, small or large bubbles (refer to
Figure 17). However, for our real-world applications, we are mainly interested in bubble sizes of
several millimeters, which maintain approximately ellipsoidal shapes.

lamps
(1000W)

diffuse acrylic
plates

cameras

tube

left image right image

Figure 17. Left: test setup for evaluation of the system. Two back-illuminated planes provide a bright
background behind an air bubble stream generated by a small tube. The cameras are arranged
in a wide baseline setting viewing the scene from 90◦ different perspectives. Middle and right:
exemplary images showing the produced bubble streams with small, ellipsoidal bubbles and large
bubbles with arbitrary shapes.

The system was evaluated on a sequence of 600 stereo images and the summarized results
can be seen in Table 2. The proposed method underestimates the flux, which can be explained
by bubbles that could not be detected properly and are therefore very difficult to match with the
geometric matching procedure and need to be discarded. In the last column, we therefore present
an approximate estimation of the flux of the missed bubbles. This flux was estimated using the
monocular approach, i.e., by assuming a constant distance between camera and bubbles and a known
pixel-to-mm conversion ratio. Note, however, that, in this case, the distance between camera and
bubbles is unknown and differs between the bubbles inside a plume but also between the three
different outlets, and we therefore can only roughly estimate the volume. Additionally, bubbles that
were not detected individually, but were overlapping are not compensated for.

Figure 18 shows histograms of the bubble volume distribution and the bubble velocity.
Throughout the sequence, there were three bubble streams one of which consisted of larger bubbles,
while the other two contained smaller bubbles. This is reflected in the one-sided volume histogram.
The velocity is normal distributed for all bubbles and Figure 19 shows three different views of the
reconstructed 3D bubbles.

Table 2. Results on real data image sequence.

Measured Results Comment

Real Data
flux 4.177 mL·s−1 2.504 mL·s−1 estimated volume of missed bubbles 0.291–0.7488 mL·s−1

velocity - 36.135 cm·s−1 -
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Figure 18. Histogram showing volume and velocity distribution of the bubbles.

(a) Front view (b) Left view (c) Top view

Figure 19. 3D-Reconstruction of a bubble stream.

5. Discussion

The first results presented in the previous section show that the system has the potential for fully
automated computation of bubble size distribution, volume, and rise velocity. In case of non-ideal
lighting conditions, the images can be improved by the deconvolution method to avoid biased size
estimates.

When considering the bubble stream characterization results, it can be seen that the proposed
method works well on the synthetic image sequence, while it over-estimates bubble size when using
the small-baseline camera setting on the same bubble stream.

On real data however, the proposed method under-estimates the bubble flux, which is due
to bubbles not being detected properly mainly due to overlap and stereo matching ambiguities.
Overlapping and occluding bubbles in the images are a challenge for all bubble quantification
methods, and some examples are shown in Figure 20. In the future, we plan to improve our image
processing methods to further disambiguate those cases. For example, we plan to experiment with
active contour methods for separating partially overlapping bubbles (refer to [30]). Additionally,
the wide baseline camera setup can be utilized to detect bubbles that are completely occluding each
other in one image. In those cases, both individual bubbles should be visible in the second image
and our ellipsoid intersection method should be able to compute a fairly good estimate of both
bubble volumes by intersecting the viewing cones. However, for this, the two bubbles in the second
image need to be correctly matched to the overlapping bubble in the first image, i.e., one-to-many
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and many-to-many matches need to be handled. Additionally, looking at longer bubble trajectories
rather than a single stereo pair could allow to further disambiguate overlap or occlusion situations
in the future. It should, however, be noted that, compared to a single camera or small baseline
system, chances for resolving occlusion scenarios are much better as one of the cameras will see the
occluded bubble.

Figure 20. Exemplary bubble detection results. Green shows the detected contours, cyan, the convex
hull, and the blue rectangle the final ellipse fitted around the detected contour. From left to right:
erroneous detection on synthetic image; correct detection on real image; erroneous detection of two
or three bubbles as one on real image; detection of two bubbles as one on real image; detection of
two bubbles as one on real image with additional inner contours.

Where previous 2D methods had to assume a certain symmetric ellipsoid model, it could be
shown that it is possible to drop this requirement and rather exploit the two different perspectives
onto the ellipsoid, in order to estimate shape and volume. Although the wide baseline stereo setting
requires slightly more calibration and synchronization efforts, the approach of using a monocular
camera has its own disadvantages: in practical applications, it is very difficult or even impossible to
estimate the correct factor for converting pixels into millimeters because this factor depends on the
distance between camera and bubbles (20 cm× 20 cm corridor in the bubble box). However, errors in
this factor are reflected with the third power in the resulting bubble volume (see Figure 3).

6. Conclusion

In conclusion, the proposed method still has some shortcomings in case of dense and multiple
bubble plumes, where a lot of bubbles overlap in the images, but we suggest our measurement
and automation will operate with high accuracy and reliability at single bubble seepage sites.
Additionally, the hardware setting has the potential to disambiguate overlapping bubbles in the
images. Future work will therefore focus on improving bubble detection and stereo matching. Also,
the amount of available storage space is one of the limiting factors of the system. A long-term goal
is therefore to do as much data processing as possible on site in order to eliminate the need of saving
complete images.

Acknowledgments: The design of the bubble box was supported by discussions with Nikolaus Bigalke and
Lisa Vielstädte. We highly appreciate the construction and manufacturing skills of Matthias Wieck and the
support from Eduard Fabrizius (electronics) and Jan Sticklus (lighting). Adaptions for proper handling with
the work class ROV PHOCA were supported by Martin Pieper. We would also like to thank the crew of R/V
POSEIDON and the GEOMAR ROV team. For the design, construction, and field work we received funding
from the SUGAR II (BMBF and BMWi, grant 3G819), and by the FUTURE OCEAN project (DFG) with grant
CP1207. Data processing and algorithm development were developed in the frame of the project QUABBLE
(FUTURE OCEAN, grant CP1331).

Author Contributions: All authors contributed to writing the article. Jens Schneider and Kevin Köser were
responsible for the hardware design of the bubble box, Anne Jordt, Claudius Zelenka, Reinhard Koch and
Kevin Köser for the algorithmic design and setup evaluation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fleischer, P.; Orsi, T.; Richardson, M.; Anderson, A. Distribution of free gas in marine sediments: A global
overview. Geo-Mar. Lett. 2001, 21, 103–122.

2. Judd, A. Natural seabed gas seeps as sources of atmospheric methane. Environ. Geol. 2004, 46, 988–996.
3. Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops, and Particles; Academic Press: Waltham, MA, USA, 1978.

30733



Sensors 2015, 15, 30716–30735

4. Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.;
Heimann, M.; et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change; Cambridge University Press: New York, NY, USA, 2013.

5. Sommer, S.; Pfannkuche, O.; Linke, P.; Luff, R.; Greinert, J.; Drews, M.; Gubsch, S.; Pieper, M.; Poser, M.;
Viergutz, T. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from
sediments containing shallow gas hydrates at Hydrate Ridge. Glob. Biogeochem. Cycles 2006, 20, 650–664.

6. Chadwick, W.W.; Merle, S.G.; Buck, N.J.; Lavelle, J.W.; Resing, J.A.; Ferrini, V. Imaging of CO2 bubble
plumes above an erupting submarine volcano, NW Rota-1, Mariana Arc. Geochem. Geophys. Geosyst. 2014,
15, 4325–4342.

7. Vielstädte, L.; Karstens, J.; Haeckel, M.; Schmidt, M.; Linke, P.; Reimann, S.; Liebetrau, V.; McGinnis, D.F.;
Wallmann, K. Quantification of methane emissions at abandoned gas wells in the Central North Sea.
Mar. Pet. Geol. 2015, in press.

8. Schneider von Deimling, J.; Linke, P.; Schmidt, M.; Rehder G. Ongoing methane discharge at well site 22/4b
(North Sea) and discovery of a spiral vortex bubble plume motion Mar. Pet. Geol. 2015

9. Leifer, I.; Patro, R.K. The bubble mechanism for methane transport from the shallow sea bed to the surface:
A review and sensitivity study. Cont. Shelf Res. 2002, 22, 2409–2428.

10. McGinnis, D.F.; Greinert, J.; Artemov, Y.; Beaubien, S.E.; Wüest, A. Fate of rising methane bubbles in
stratified waters: How much methane reaches the atmosphere? J. Geophys. Res. Oceans 2006, 111, 141–152.

11. Leifer, I.; Boles, J. Measurement of marine hydrocarbon seep flow through fractured rock and
unconsolidated sediment. Mar. Pet. Geol. 2005, 22, 551–568.

12. Leifer, I.; Culling, D. Formation of seep bubble plumes in the Coal Oil Point seep field. Geo-Mar. Lett. 2010,
30, 339–353.

13. Rehder, G.; Brewer, P.W.; Peltzer, E.T.; Friederich, G. Enhanced lifetime of methane bubble streams within
the deep ocean. Geophys. Res. Lett. 2002, 29, 21-1–21-4.

14. Merewether, R.; Olsson, M.S.; Lonsdale, P. Acoustically detected hydrocarbon plumes rising from 2-km
depths in Guaymas Basin, Gulf of California. J. Geophys. Res. Solid Earth 1985, 90, 3075–3085.

15. Greinert, J. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system
GasQuant. J. Geophys. Res. Oceans 2008, 113, 827–830.

16. Schneider von Deimling, J.; Brockhoff, J.; Greinert, J. Flare imaging with multibeam systems: Data
processing for bubble detection at seeps. Geochem. Geophys. Geosyst. 2007, 8, 57–77.

17. Colbo, K.; Ross, T.; Brown, C.; Weber, T. A review of oceanographic applications of water column data from
multibeam echosounders. Estuar. Coast. Shelf Sci. 2014, 145, 41 – 56.

18. Schneider von Deimling, J.; Papenberg, C. Technical Note: Detection of gas bubble leakage via correlation
of water column multibeam images. Ocean Sci. 2012, 8, 175–181.

19. Veloso, M.; Greinert, J.; Mienert, J.; de Batist, M. A new methodology for quantifying bubble flow
rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard.
Limnol. Oceanogr. Methods 2015, 13, 267–287.

20. Leifer, I.; de Leeuw, G.; Cohen, L.H. Optical Measurement of Bubbles: System Design and Application.
J. Atmos. Ocean. Technol. 2003, 20, 1317–1332.

21. Thomanek, K.; Zielinski, O.; Sahling, H.; Bohrmann, G. Automated gas bubble imaging at sea floor—A new
method of in situ gas flux quantification. Ocean Sci. 2010, 6, 549–562.

22. Wang, B.; Socolofsky, S.A. A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of
natural seep bubble and droplet characteristics. Deep Sea Res. I Oceanogr. Res. Pap. 2015, 104, 134–148.

23. Leifer, I. Characteristics and scaling of bubble plumes from marine hydrocarbon seepage in the Coal Oil
Point seep field. J. Geophys. Res. Oceans 2010, 115, 45–54.

24. Sahling, H.; Bohrmann, G.; Artemov, Y.G.; Bahr, A.; Brüning, M.; Klapp, S.A.; Klaucke, I.; Kozlova, E.;
Nikolovska, A.; Pape, T.; et al. Vodyanitskii mud volcano, Sorokin trough, Black Sea: Geological
characterization and quantification of gas bubble streams. Mar. Pet. Geol. 2009, 26, 1799–1811.

25. Xue, T.; Qu, L.; Wu, B. Matching and 3-D Reconstruction of Multibubbles Based on Virtual Stereo Vision.
IEEE Trans. Instrum. Measur. 2014, 63, 1639–1647.

26. Bian, Y.; Dong, F.; Zhang, W.; Wang, H.; Tan, C.; Zhang, Z. 3D reconstruction of single rising bubble in water
using digital image processing and characteristic matrix. Particuology 2013, 11, 170–183.

30734



Sensors 2015, 15, 30716–30735

27. Kotowski, R. Phototriangulation in multi-media photogrammetry. Int. Arch. Photogramm. Remote Sens.
1988, 27, B5.

28. Jordt-Sedlazeck, A.; Koch, R. Refractive Calibration of Underwater Cameras. In Computer Vision–ECCV 2012;
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Springer: Berlin, Germany, 2012; Volume
7576, pp. 846–859.

29. Jordt, A. Underwater 3D Reconstruction Based on Physical Models for Refraction and Underwater Light
Propagation. Ph.D. Thesis, Kiel University, Kiel, Germany, 2013.

30. Zelenka, C. Gas Bubble Shape Measurement and Analysis. In Pattern Recognition, Proceedings of the
36th German Conference on Pattern Recognition, (GCPR 2014), Münster, Germany, 2–5 September 2014;
pp. 743–749.

31. Brown, D.C. Close-range camera calibration. Photogramm. Eng. 1971, 37, 855–866.
32. Schiller, I.; Beder, C.; Koch, R. Calibration of a PMD-camera using a planar calibration pattern together with

a multi-camera setup. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 21, 297–302.
33. Treibitz, T.; Schechner, Y.Y.; Kunz, C.; Singh, H. Flat Refractive Geometry. IEEE Trans. Pattern Anal. Mach.

Intell. 2012, 34, 51–65.
34. Agrawal, A.; Ramalingam, S.; Taguchi, Y.; Chari, V. A theory of multi-layer flat refractive geometry.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence,
RI, USA, 16–21 June 2012; pp. 3346–3353.

35. Harvey, E.S.; Shortis, M.R. Calibration stability of an underwater stereo-video system: Implications for
measurement accuracy and precision. Mar. Technol. Soc. J. 1998, 32, 3–17.

36. Farnebäck, G. Two-frame Motion Estimation Based on Polynomial Expansion. In Image Analysis,
Proceedings of the 13th Scandinavian Conference, Halmstad, Sweden, 29 June–2 July 2003; Springer-Verlag:
Berlin, Germany, 2003; pp. 363–370.

37. Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light,
6th ed.; Pergamon Press: Oxford, UK; New York, NY, USA, 1980.

38. Zelenka, C.; Koch, R. Blind Deconvolution on Underwater Images for Gas Bubble Measurement. Int. Arch.
Photogramm. Remote Sens. Spa. Inf. Sci. 2015, XL-5/W5, 239–244.

39. Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Understanding Blind Deconvolution Algorithms. IEEE Trans.
Pattern Anal. Mach. Intell. 2011, 33, 2354–2367.

40. Perrone, D.; Favaro, P. Total Variation Blind Deconvolution: The Devil Is in the Details. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA,
23–28 June 2014; pp. 2909–2916.

41. Kotera, J.; Šroubek, F.; Milanfar, P. Blind deconvolution using alternating maximum a posteriori estimation
with heavy-tailed priors. In Computer Analysis of Images and Patterns; Springer: Berlin, Germany, 2013; pp.
59–66.

42. Fitzgibbon, A.W.; Fisher, R.B. A Buyer’s Guide to Conic Fitting. In Proceedings of the 6th British Conference on
Machine Vision; BMVA Press: Surrey, UK, 1995; Volume 2; pp. 513–522.

43. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press:
New York, NY, USA, 2003.

44. Forbes, K.; Nicolls, F.; de Jager, G.; Voigt, A. Shape-from-silhouette with two mirrors and an uncalibrated
camera. In Computer Vision–ECCV 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 165–178.

45. Kuhn, H.W. The Hungarian method for the assignment problem. Naval Res. Logist. 2005, 52, 7–21.
46. Angel, E. Interactive Computer Graphics: A Top-down Approach Using OpenGL; Pearson/Addison-Wesley:

Boston, MA, USA, 2009.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

30735


	Introduction
	Bubble Box Design and Calibration
	Design Considerations
	Calibration
	Synchronization
	Stereo Calibration


	Bubble Stream Characterization
	Preprocessing—Automatic Region of Interest Selection
	Preprocessing—Bubble Deblurring
	Bubble Detection
	Stereo Matching and Ellipsoid Triangulation
	Bubble Tracking

	Assessment
	Deblurring
	Bubble Simulator
	Test Setup with Air Bubbles in Water

	Discussion
	Conclusion

