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Abstract. The Baltic Sea is a seasonally ice-covered

marginal sea located in a densely populated area in northern

Europe. Severe sea ice conditions have the potential to hinder

the intense ship traffic considerably. Thus, sea ice fore- and

nowcasts are regularly provided by the national weather ser-

vices. Typically, the forecast comprises several ice properties

that are distributed as prognostic variables, but their actual

usefulness is difficult to measure, and the ship captains must

determine their relative importance and relevance for optimal

ship speed and safety ad hoc.

The present study provides a more objective approach by

comparing the ship speeds, obtained by the automatic identi-

fication system (AIS), with the respective forecasted ice con-

ditions. We find that, despite an unavoidable random compo-

nent, this information is useful to constrain and rate fore- and

nowcasts. More precisely, 62–67 % of ship speed variations

can be explained by the forecasted ice properties when fitting

a mixed-effect model. This statistical fit is based on a test re-

gion in the Bothnian Sea during the severe winter 2011 and

employs 15 to 25 min averages of ship speed.

1 Introduction

The Baltic Sea is a seasonally ice-covered marginal sea lo-

cated in a densely populated area in northern Europe with

important shipping routes crossing the regularly ice-covered

regions. The ice season lasts up to 7 months (Vihma and Haa-

pala, 2009). The maximum ice extent is typically reached in

late February, showing large interannual variations between

12.5 and 100 % (Leppäranta and Myrberg, 2009). In regions

with long wind fetch the ice cover is often broken up and the

ice is forced into motion (Uotila, 2001). Thus, the ice cover-

age here is not uniform but consists of ice floes of variable

sizes, leads and deformed ice patches (Leppäranta and Myr-

berg, 2009). Ships have to find their way through this “drift

ice landscape”.

Since sea ice potentially hinders winter navigation, de-

tailed forecasts of the ice conditions are in demand and reg-

ularly provided by the local weather services. A typical ice

forecast contains several prognostic variables, for instance

ice concentration, thickness and prognosticated ice drift. Ad-

ditional variables are occasionally included, e.g., ridged ice

fraction, which refers to the most important deformed ice

type. Ridges can form substantial obstacles to winter nav-

igation and thus receive increasing attention from the re-

search community (e.g., Haapala, 2000; Kankaanpää, 1988;

Leppäranta and Hakala, 1992; Leppäranta et al., 1995; Löp-

tien et al., 2013). The forecast of the Swedish Meteorolog-

ical and Hydrological Institute (SMHI) provides additional

information about convergence of the ice drift field (i.e., re-

gions where the ice is compacting are marked). In regions

with convergent ice motion, large ice stresses can occur, the

ships might get stuck and, in the worst case, even damaged

(e.g., Suominen and Kujala, 2014; Pärn et al., 2007).

Based on spatial maps of the sea ice properties described

above, ship captains, supported by the national maritime ad-

ministrations, must choose the supposedly best route. Rat-

ing the relative importance of the forecasted variables in

terms of ship speed and safety depends on the expertise of

each captain. Also, a typical forecast model has a horizon-

tal resolution that ranges from 1 to 3 nm (nautical miles;

1 nm= 1852 m) and important processes acting on the ship

scale (i.e., a scale of a few hundred meters) might not be re-

solved.

The present study provides an objective assessment of

how a typical ice forecast (provided by SMHI) compares

to the ship scale and how the various ice properties affect
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Figure 1. The test region considered in this study is indicated by

the black box. Blue shading refers to the average number of ships in

the test region per day and 3× 3 nm (= 5556× 5556 m) model grid

box in winter 2011 (January–April). Gray shading and contour lines

depict the average ice concentrations in percent during that winter

(SMHI forecast). Contour intervals are 10 %.

ship speed. The study focuses on a test region in the north-

ern Bothnian Sea (62.8–63.6◦ N and 19.8–21.0◦ E, Fig. 1),

which is regularly passed by ships and known for its severe

ice conditions. The region is located south of the so-called

Kvark Strait (Green et al., 2006), a narrow passage with lit-

tle space to circumnavigate problematic areas. The mean ice

drift in the test region is generally directed towards the north-

east (Fig. 2), but, in the presence of high ice concentrations

in the Bothnian Bay, the northward flow is limited (or even

blocked). As the ice concentrations in the Bothnian Bay de-

crease, e.g. in March and April, the transport through Kvark

Strait accelerates. Still, the narrowness of the passage leads

to an accumulation of sea ice in the test region. This accumu-

lation of sea ice makes it impossible for ships to fully avoid

severe ice conditions and makes the region particularly in-

teresting as a test region. The corresponding ship speed ob-

servations are obtained by the automatic identification sys-

tem (AIS). While the AIS comprises an unavoidable random

component (e.g., ship captains might reduce speed due to

reasons not related to sea ice), this large-scale comprehen-

sive data set is available for research purposes without any

extra costs. Due to the large amount of ships which have

a tight schedule and aim to keep a relatively constant high

speed, we anticipate that the noise might well be on a rel-

atively low level and test the applicability of AIS-derived

ship speeds for the evaluation of sea ice fore- and nowcasts.

We explore to what extent observed ship speeds can be re-

constructed based on the forecasted ice properties by fitting

a mixed-effect model. This statistical model resembles a mul-

tilinear regression but allows additionally for the inclusion of

(construction-related) differences between individual ships.

A detailed description of the underlying data as well as the

statistical method is given in the following section. Section 3

shows the results of our data exploration and the statistical

fit, followed by a conclusive summary in Sect. 4.

2 Methods

We compare ship speed observations to the corresponding

(forecasted) ice properties. Both the ship speed observations

and the ice forecast model, inclusive of evaluation, are de-

scribed in this section (Sects. 2.1 and 2.2, respectively). Af-

ter a preceding data exploration, we fit a statistical model.

This so-called mixed-effect model is described in detail in

Sect. 2.3.

2.1 Ship speed observations

The automatic identification system (AIS) was developed in

the 1990s and is an automatic tracking system for identify-

ing and locating ships. The system is based on an electronic

exchange of data with other ships nearby, AIS base station

and satellites. The major aim is to avoid collisions by supple-

menting ship radars (Berking, 2003; Harati-Mokhtari et al.,

2007). Additionally, it enables maritime authorities to mon-

itor vessel movements. The “International Maritime Organi-

zation’s International Convention for the Safety of Life at

Sea” requires AIS to be installed aboard international voy-

aging ships with a tonnage of 300 t and more, as well as

on all passenger ships. AIS data contain, inter alia, a unique

identification (MMSI number), position, course and speed of

a vessel. Since the data coverage has increased considerably

during the past 2 decades, the data set is increasingly used

for scientific purposes (e.g., Montewka et al., 2010, assessed

the collision risk of vessels; Jalkanen et al., 2009 and Miola

et al., 2011 estimated the emissions of marine traffic).

The present analysis is based on a test data set, collected

during the severe winter of 2011 (January–April). We fo-

cus on a test region in the Bothnian Sea (62.8–63.6◦ N and

19.8–21.0◦ E, Fig. 1), with generally severe ice conditions

and intense ship traffic. No harbors are included in this test

area. Ship speed and direction are calculated from the ship

locations every 5 min. All observations ±1 h around an ice

forecast (which is provided four times daily) are analyzed.

Ships close to icebreakers (within a rectangle of 0.2 nm

(= 370.4 m)) as well as icebreakers themselves are excluded

from the analysis (as they add an unforeseeable random com-

ponent). Note that, nevertheless, icebreaker channels and ice-

breaker fragmentation of the ice pack might persist. The data

table, without icebreakers, comprises of 16 407 entries. Since

we could not detect any systematic drop of ship speeds at ice

concentrations below 60 %, those data are not considered.

We also exclude all ships that only remained in the test re-
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Figure 2. (a)–(d) Forecasted monthly mean ice concentration and ice drift in winter 2011. The squares mark the test region considered in

this study.

gion for 25 min or less (since mixed-effect model requires

a sufficient amount of available data per ship).

Ultimately, the analyzed data set consists of observations

from 319 different ships, with an average duration of stay

in the test region of 215 min. Overall, ∼ 14 000 observations

were included into the statistical analysis.

2.2 Ice forecast model

The ice forecasts are based on the operational coupled

ocean–ice forecast model HIROMB (High Resolution Op-

erational Model for the Baltic) of SMHI. It includes a three-

dimensional, baroclinic ocean model, covering the Baltic Sea

and North Sea (Funkvist and Kleine, 2007). The ocean model

is coupled to a Hibler-type sea ice model (as described by

Wilhelmsson, 2002; extensions by Kotovirta et al., 2009 and

Axell, 2013). The horizontal resolution ranges from 3 nm

(nautical miles; 3 nm= 5556 m) in the North Sea to 1 nm

(= 1852 m) in the Skagerrak–Kattegat area.

The forecasts include data assimilation of salinity, temper-

ature and various ice properties. These latter are provided

by the operational ice service at SMHI and comprise ice

concentration, level ice thickness and “degree of ridging”

(which is used to approximate ridge density, following the

approach of Lensu, 2003). The data are based on in situ mea-

surements, estimates from voluntary ships and icebreakers as

well as satellite observations. The degree of ridging is a num-

ber describing how heavily ridged a region is (as perceived

by the ice analyst). Based on the approach of Lensu (2003),

this number is tentatively converted to the more common

measure “ridge density” (= number of ridges per kilometer).

Note, this number is approximate only.

Apart from the assimilated ice properties described above,

the model output covers ice drift in u and v directions as well

as divergence of the ice motion. Divergence is defined as the

sum of the derivatives of the ice flow field in u and v direc-

tions. As such negative values stand for areas where the ice

is compacting (i.e., convergent ice motion). Auxiliary clas-

sifications of the ice thickness are available but not included

into the following analyses since they do not provide new

independent information.

To evaluate the sea ice model independently of the AIS

data, ideally large-scale observations, which are not already

included in the data assimilation, are needed. Ice thickness

and concentration are available as digitized ice charts, which

are provided daily by the Finnish Meteorological Institute

(FMI). The charts summarize the available ice information

for shipping, based on the manual interpretation of satellite

data and ground truth. The underlying observations are pro-

vided, e.g., by icebreakers, voluntary observing ships, ports

and station observation stations of the Baltic ice services, and

are in large parts independent of the Swedish observations

(which are assimilated into HIROMB). The generally close

match of observed and simulated ice thickness and concen-
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Figure 3. Mean forecasted and observed (a, b) level ice thickness and (c, d) ice concentrations during winter 2011 (JFMA). The squares

mark the test region considered in this study. (a) and (c) were generated by using MyOcean Products.

tration (Fig. 3) is not surprising, given the assimilation of

these relatively well-observed variables. It is, however, diffi-

cult to find reliable observations of other ice properties. One

recent attempt estimates ice drift based on synthetic aperture

radar (SAR) images (Karvonen, 2012). The data are pro-

vided within the MyOcean Project. Despite the known un-

certainties and sparseness of the provided data, the data set

is still unique regarding its spatial coverage. According to

Karvonen (2012), the ice drift direction is relatively well es-

timated, while the magnitude might often be biased. The data

set consists of ice displacement (in meters), estimated from

two successive SAR images over the same area. Two exem-

plary snapshots of the derived velocities at times with a rela-

tively high data coverage are shown in Fig. 4. As ice drift is

not directly assimilated, and given the uncertainty in the ob-

servations, it seems reasonable that the agreement between

modeled and observed ice drift is not as close as between

thickness and concentration. Particularly, the simulated sea

ice is more mobile than implied by the SAR estimates, while

the ice drift direction and the major patterns agree rather

well. An overestimation of ice drift speed in coastal regions

was expected as land-fast ice is not considered by the model.

Nevertheless, one should bear in mind that, even though ice

drift is not directly assimilated, this occurs to a certain degree

indirectly as it can not evolve completely freely due to the

constraints given by assimilating ice thickness and concen-

tration. Unfortunately, the SAR estimates seem too patchy

for reliable estimates of divergence.

2.3 Statistical analysis

After some preceding data exploration, we aim to test how

well we can reconstruct the ship speed observations by the

forecasted ice properties. For this purpose, we fit a mixed-

effect model (e.g., Zuur et al., 2007). A mixed-effect model is

an extension of a common multilinear regression, which ac-

counts for the differences between individual ships (depend-

ing on ice class, shape and size of a vessel, engine power,

etc.). A multilinear regression alone would not be able to

capture these often substantial differences. In matrix notation

a mixed-effect model can be written as

yi = Xiβ +Ziui + εi . (1)

Here, i = 1, . . .,N indexes the MMSI numbers and yi de-

notes a vector of observations per ship (= dependent vari-

able), which consists here of the square root of the speed of

individual vessels during consecutive 5 min time steps. The

square root is taken to bring the data closer to normality.
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Figure 4. (a, c) Two exemplary SAR-based ice drift estimates compared to (b, d) the forecasted ice drift. The arrows depict ice drift, and the

colors indicate the respective vector lengths. (a) refers to the SAR-based estimates of sea ice displacement during the time period between

the 20 January, 20:17 UTC, and the 21 January, 16:12 UTC, interpolated on the model grid. (b) depicts an average of all 6-hourly forecast

model outputs included in this period. Likewise, (c) refers to the SAR-based estimate during the time period between 1 February, 15:51 UTC,

and the 3 February, 05:03 UTC. (d) refers to the corresponding average of 6-hourly model snapshots. Observe the different arrow lengths in

(a) and (b) (resp., c and d). (a) and (c) were generated by using MyOcean Products.

The vector β stands for the “fixed effects” and has the

same value for all ships. u is a vector of so-called “random

effects” (with mean 0), by which entries are allowed to vary

between individual ships (which are uniquely identified by

the MMSI numbers).

X and Z denote matrices of regressors, relating the obser-

vations to β and u. When omitting the term Zui , the for-

mula corresponds to a common multilinear regression. Since

generally not every single ship-dependent regression param-

eter in u is of interest but rather the overall properties are

(e.g., variations and covariability), u is termed “random”.

The matrices X and Z may, or may not, contain the same

explanatory variables. In the present study, we chose X to

contain ice concentration, level ice thickness, ridge density,

ice drift speed, convergence and the angle at which the ship

is moving relative to the ice movement (factorized as ex-

plained in Sect. 3.1). To keep the number of estimated pa-

rameters as low as possible and to avoid overfitting, we in-

cluded only those variables in Z which showed, in a preced-

ing data exploration, indications of large variations among

the ships (cf. Sect. 3.2) and merely ice concentration, level

ice thickness and ridge density were considered here. Addi-

tionally, we allow for a ship-dependent intercept (i.e., points

where the regression lines cross the y axis), accounting for

the different mean speeds of individual vessels. As usual, εi

represents a random-noise component (εi ∼N(0,
∑

i), iid).

3 Results

3.1 Data exploration

First, we explore the distribution of ship speeds for differ-

ent ice concentrations, ice thicknesses and ridge densities

(Fig. 5). To visualize the large amount of data, the ice proper-

ties are binned into several classes and subsequently the ship

speed distributions are analyzed per ice property class. This

analysis shows that the median ship speed per bin, as well

as the upper quantiles, decreases strongly with increasing ice

concentration (Fig. 5a). While the median speed is around

14 kn (knots; 14 kn= 7.2 ms−1) for ice concentrations be-

tween 60 and 65 %, this value decreases to 4–5 kn (≈ 2–

2.6 ms−1) at ice concentrations between 95–100 %. For level

ice thicknesses below 30 cm, a similar decrease in the me-

dian ship speed occurs with increasing ice thickness. Inter-

estingly, no further systematic speed drop occurs for thick-

nesses above 30 cm (Fig. 5b). Also, it is interesting to note

www.the-cryosphere.net/8/2409/2014/ The Cryosphere, 8, 2409–2418, 2014
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Figure 5. (a)–(c) Observed ship speed distribution under several (binned) ice conditions, described by box plots. The bottom and top of the

boxes are the first and third quartiles, while the thicker band inside the boxes depicts the median. Lines extending vertically from the boxes

(whiskers) depict ship speeds within 1.5 times the interquartile range of the box. Outliers are plotted as individual points. (a) refers to ice

concentration, (b) to ice thickness and (c) to ridge density.

that the variability in observed ship speeds increases with

both increasing ice concentration and thickness. We antici-

pate that the increased spread of ship speeds with decreas-

ing median reflects the varying abilities of differing vessels

to cope with the ice conditions. As ice concentration and

thickness increase, small ships will in general experience

very large speed drops, while big ships with strong engines

are less affected. We conclude that all variables with a pro-

nounced increase in the spread of ship speeds with decreas-

ing median might strongly benefit from a random component

when fitting the mixed-effect model. In addition to ice con-

centration and thickness, such a link between median ship

speed and variability also exists for the amount of ridged

ice. Figure 5c shows a considerable decrease in median ship

speed in combination with an increase in variability as ridge

density exceeds a value of 1 ridge/km (from ≈ 13 to ≈ 8 kn

or ≈ 6.7 to ≈ 4 m s−1) but no clear drop as ridge density in-

creases further. Note that the latter result might partly be due

to the uncertainties in the precise values of the assimilated

ridge densities.

Figure 6 shows a similar analysis as Fig. 5 but focuses

on strong nonlinear and factorized relationships. Note that in

contrast to the prognostic variables analyzed in Fig. 5, these

factors are based on prognostic variables which are not as-

similated into HIROMB. The first investigated factor covers

convergence in the ice drift field. As in the released forecast

product, we distinguish convergent from nonconvergent ice

motion and do not consider the magnitude. Figure 6a illus-

trates that the ship speed distributions are surprisingly simi-

lar under convergent and nonconvergent ice motion. In con-

trast, simulated ice drift speed is influential while the impact

is nonlinear (Fig. 6b). Particularly, very slow-moving, almost

stationary ice is related to a considerable median speed drop,

but fast-moving ice also seems to affect ship traffic. To fac-

torize this nonlinear relationship for the following statistical

fit (Sect. 3.2), we distinguish four (nonequidistant) ice veloc-

ity classes: stationary ice (0–0.04 m s−1), slow-moving ice

(0.04–0.1 m s−1), medium speed (0.1–0.3 m s−1) and fast-

moving ice (> 0.3 m s−1). Another particularly problematic

situation for ships is illustrated in Fig. 6c. Very slow-moving

ice in combination with a drift angle close to 90◦ relative to

the ship movement is related to a reduction in median ship

speed to values close to 0 (Fig. 6c). This finding is in line

with the experiences of naval architects (K. Riska, consulting

and engineering company ILS Oy (Finland), personal com-

munication, 2012), who report that ship routes on which ice
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Figure 6. (a)–(c) The distribution of observed ship speeds under various ice-related factors. As in Fig. 5 the respective distribution of ship

speeds is depicted by box plots. (a) refers to convergent and nonconvergent ice motion, (b) explores various classes of ice drift speed and (c)

refers to the specific situation where the ice is drifting very slowly (< 0.1 m s−1) and, additionally, the ice drift angle is close to 90◦ relative

to the ship course. (Naturally, only data sets with ship and ice speeds > 0 could be considered.)

drifts towards the side of the ship generally result in closure

of the ship channels as the ice might cause considerable pres-

sure on a ship’s hull on a large contact surface. At the same

time, high ice pressure is generally related to high ice con-

centrations and, accordingly, slow ice drift.

3.2 Mixed-effect modeling

After the purely heuristic data exploration, fitting a statistical

model allows us to investigate the relation between the var-

ious ice properties and ship speeds systematically. The aim

is to test how well we can reconstruct the ship speed ob-

servations using the forecasted ice properties. The statistical

significance is tested by using a t test. A good agreement be-

tween this ship speed reconstruction and observed ship speed

implies that the noise level in the ship speed observations is

sufficiently small to use the data for model evaluation. At

the same time it illustrates the actual usefulness of the ice

forecast to estimate delays in the time schedule of ships.

As described above, we fit a mixed-effect model based on

ice concentration, level ice thickness, ridge density, ice drift

speed and the factor according to Figure 6c (cf. Sect. 2.3). Di-

vergence was excluded from the final statistical model since

the impact of simulated convergent ice motion appeared, in

agreement with the foregoing data analysis, not to be statis-

tically significant at the 5 % level. Similarly, all interactions

among the above variables could not score any remarkable

improvement of the statistical fit (according to the Akaike

information criterion (AIC)) and were not considered. Ran-

dom intercept and slope are included for ice thickness, ice

concentration and ridge density as the preceding data explo-

ration of these variables revealed a pronounced increase in

the variability of ship speeds with decreasing median.

The reconstruction of ship speed based on the mixed-effect

model yields a remarkably close relation with the original

observations: the correlation between the square root of ob-

served ship speed and reconstruction is 0.7, which implies

that ≈ 50 % of the variance in ship speed can be explained

by the modeled ice properties. When smoothing the data with

a running mean of 15 min, this correlation increases consid-

erably to 0.79. For a running mean over 25 min, we obtain

a correlation of 0.82, which refers to an explained variance

of 67 %. Typical examples of the corresponding multilin-

ear regressions for individual ships are shown in Fig. 7. In

agreement with the foregoing data exploration, the impacts

of ice concentration, level ice thickness and ridge density ap-

pear to be highly significant (as the p values in Table 1 are

clearly below 0.05). The forecasted ice concentrations seem

www.the-cryosphere.net/8/2409/2014/ The Cryosphere, 8, 2409–2418, 2014
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Figure 7. (a)–(d) Observed (red lines) and reconstructed (black lines) ship speeds for typical vessels in the test region: (a) general cargo,

120 m; (b) oil tanker, 140 m; (c) cargo, 117 m; (d) Ro-Ro, 166 m. The reconstructions are based on a multilinear regression of forecasted ice

concentration, level ice thickness, ridge density, ice speed and an additional factor which is based, inter alia, on the angle at which the ship

is moving relative to the ice movement (parameterized as described in Fig. 3c).

to have the largest impact among the continuous variables as

the estimated mean slope has the largest amplitude among

the normalized continuous variables (−1.01; cf. column 1,

Table 1). Ice drift speed appears significant as well, while the

relation is nonlinear, in agreement with the foregoing data

exploration. The strongest factor affecting ship speed is the

relatively rare situation were the ice drift is very slow and

the ice drift is directed towards the side of the ship (accord-

ing to Table 1 the estimated impact of this factor is −0.63).

Note that the effects of ridges and level ice thickness can not

be fully separated since both quantities appear to be corre-

lated at 0.53. This relatively high correlation is reasonable

since thin-level ice will raft rather than form ridges when de-

formed. Additional weakly negative correlations occur be-

tween ice drift speed and ice thickness (−0.3) as well as with

ice concentration (−0.14). These correlations do not impact

the validity or forecast suitability of the statistical model but

rather complicate the interpretation of the impact of the re-

spective variables. That is to say, the impact of two highly

correlated variables can not be distinguished.

Table 2 provides information about the random compo-

nents. The standard deviations are listed in column 1 and

amounts to 1.02 for the residuals. The random intercept has

a standard deviation of 1.71, while the standard deviation

ranges from 1.37 to 2.22 for the random slopes. The remain-

ing columns in Table 2 refer to the correlations among the

random slopes (columns 3–4) and the correlations of the ran-

dom slopes with the random intercept (column 2). The cor-

relation between the random intercept and the random slope

related to ice concentration is −0.79, indicating that faster

ships are generally less impacted by high ice concentrations.

The same holds for ice thickness and ridge density – but here

the relation is somewhat weaker (correlations with the ran-

dom intercepts are −0.57 and −0.43, respectively).

4 Conclusions

Our analysis illustrates that, for a test data set, a large part

of observed ship speed variations can be well reconstructed

by the corresponding forecasted ice properties (Fig. 4), and,

on average, 62–67 % of the ship speed variations can be ex-

plained (when considering 15–25 min averages). These large

explained variances have two major implications. First, the

ship speed observations obtained from the AIS system ap-

pear to be useful for evaluating sea ice fore- and nowcasts

– despite an unavoidable random component inherent in this

data set. This finding might be of great interest, in partic-

ular as ship traffic in the Arctic, and thus the demand for
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Table 1. Summary of the parameters obtained by fitting the mixed-effect model.

Value SE p Value

Intercept 3.96 0.13 0.0000

Normalized Ice Concentration −1.01 0.12 0.0000

Normalized Ice Thickness −0.85 0.17 0.0000

Normalized Ridge Density −0.63 0.12 0.0000

Factor:Ice Speed 0.04–0.10 m s−1 0.38 0.03 0.0000

Factor:Ice Speed 0.10–0.3 m s−1 0.45 0.03 0.0000

Factor:Ice Speed >0.30 m s−1 0.12 0.04 0.0028

Factor:Ice Speed <0.40 m s−1 and Angle ∼ 90◦ −0.63 0.12 0.0000

Table 2. Random components of the mixed-effect model.

Corr. Corr. Corr.

SD Intercept Conc. Thick.

Intercept 1.72

Normalized Ice Concentration 1.62 −0.79

Normalized Ice Thickness 2.22 −0.57 0.10

Normalized Ridge Density 1.37 −0.45 0.31 −0.04

Residual 1.02

sea ice forecasts, increases. Specifically, the need for fore-

casted ice properties exceeds information on ice concentra-

tion and thickness, which are difficult to evaluate otherwise.

Note, however, that we regard our study as a pioneer study

and the stability of the results for other regions, ship types,

etc., remains to be tested in studies to come.

The second implication of the close fit is a proven useful-

ness of the respective ice forecast for shipping. Despite the

fact that the regression parameters vary strongly from ship to

ship (Tables 1 and 2), the good correspondence between ship

speed observations and ice forecast is remarkable since the

impact of nonresolved small-scale processes was not entirely

clear. The impact of all provided prognostic variables, apart

from convergence, appears to be significant. The surprisingly

weak relation between ship speed and convergent ice drift

might be related to shortcomings in the modeled ice drift,

which amplify when deriving convergence. A well-known

problem in this context, yet to be solved, is the often poor

simulation of the ice drift related to the land-fast ice zone.

As illustrated in Löptien and Dietze (2014) (their Fig. 6), our

test region might well be affected by this problem.

Another somewhat surprising result is that median ship

speeds level out at 30 cm, i.e., they do not decrease further

with increasing ice thickness (Fig. 5b). We speculate that

this finding is related to icebreakers: even though icebreak-

ers are excluded from our analysis, they create (under non-

convergent ice motion) persistent channels which facilitate

the progress for ships. We thus anticipate that our parameter

estimates might change when the method is applied in re-

gions outside the Baltic Sea, where icebreaker assistance is

less frequent. An alternative explanation for the above find-

ing is that some of the thickest ice occurs in the land-fast ice

zone. Ships benefit from the fact that convergent ice motion

or ice deformation is typically absent in such ice conditions.

Thus another potential subject of future research is an exten-

sive analysis of the land-fast ice zone.
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