Speed Analysis in Pinned Photodiode CMOS Image Sensors based on a Pulsed Storage-Gate Method

A. Pelamatti¹, V. Goiffon¹, A. Chabane¹, P. Magnan¹, C. Virmontois², O. Saint-Pé³, M. Bréart de Boisanger³

¹ ISAE, Image Sensor Research Team, Univ. of Toulouse, 31055 Toulouse, France
² CNES, 18 av. Edouard Belin, 31055, Toulouse, France
³ Airbus Defence&Space, 31 Rue des Cosmonautes, 31400, Toulouse, France

ESSDERC 16/09/2015
CMOS Image sensors

- **CMOS Image sensors (CIS): main technology for commercial imaging applications:**
 - Driven by massive development of consumer electronics (smart-phones, tablet ..)
 - Multibillion $ market
 - Technological breakthroughs announced every year

- **Scientific imaging applications:**
 - XX_{st} century: mainly Charge Coupled Devices (CCDs)
 - Thanks to the introduction of the Pinned Photodiode (PPD) technology, CIS now compete with CCDs in terms of:
 - Sensitivity
 - Low noise
 - With all the advantages of CIS technology:
 - Lower cost, smart functions integration, random access capabilities ...
Structure and operation principle

- Cross-section of a PPD pixel

Transfer Gate (TG) V_{TG} V_{FD}

- PPD
- Floating Diffusion (FD)

- **Based on a transfer of charge:**
 - TG off
 - TG on

- **Low dark current, good sensitivity**
- **Enables correlated double sampling**
 - Very good SNR performances

- **Good candidate for high temporal resolution applications (such as Time of Flight applications)**

- **Requirements of high resolution applications:**
 - Fast sampling of the incoming light waveform \rightarrow SPEED
 - Readout of extremely low signal levels \rightarrow VERY GOOD SNR
Temporal resolution in PPD CIS

- Limiting temporal resolution = time to transfer electrons from PPD to FD
- Charge Transfer Inefficiency (CTI):
 - measures the ability of transferring the collected charge in a given time

Main Question: Which design/operation parameters affect the CTI?

Road-map:
- Modeling and simulation of main charge transport mechanisms in PPD CIS
- Experimental measurements on dedicated Pulsed Storage-Gate pixels
- Identification of bottle-neck in terms of CTI by comparing the effect of different parameters on data and simulations

Goal of this study: Provide tools to users and designers to find optimum trade-off between parameters to reach good CTI
How to fairly compare CTI?

- Hard to compare CTI in pixels with different size and geometries
 - Different charge level and initial charge distribution

- Pulsed Storage-Gate pixels enable comparison:
 - With same charge level and same initial charge distribution
 - Reproducing a worst case transfer condition
Simulations: Charge Diffusion

- **PPD Potential is mainly flat:**
 - Diffusion = main transport mechanism
- **Model:** Montecarlo simulation of the random walk of single carriers.
- **The arrival time of electrons is not deterministic**
 - Transfer time = time to reach a given CTI

Simulated of random walk for ≠ PPD lengths (L_{PPD})

- Transfer time increases L_{PPD}^2.

Boundary conditions:
- perfect absorbing well
- perfect reflecting wall
- PPD
- TG
- FD

![Graph showing simulated random walk](image)

- Random walk simulation
 - $y \sim k_{diff} x^2$
Experimental results: effect of L_{PPD}

- With respect to simulations:
 - Same behavior (increases with L_{PPD}^2)
 - Almost 2 orders of magnitude larger than what predicted without design traps
Simulation: Design traps

- There can be “design traps” along the charge transfer path (potential barrier/pocket)
 - Usually located at the PPD-TG interface
 - Electrons can
 - “cross” the barrier by **thermionic emission**
 - or “bounce” on the barrier
 - The probability of crossing is an exponential function of the barrier height (Φ_b)

Simulation of random walk with $\neq \Phi_b$

- Design traps significantly affect the transfer time
 - Worsening of several orders of magnitude
Simulation: reducing effect of design traps with TG biasing potential (V_{HTG})

- Φ_b can be reduced by increasing the TG biasing voltage during transfer (V_{HTG})

\begin{itemize}
 \item But... a too high V_{HTG} can result in a degradation of CTI due to charge partition phenomena
 \begin{itemize}
 \item Trade-off
 \end{itemize}
\end{itemize}
Experimental results: effect of V_{HTG}

- CTI is significantly affected by VHTG
 - even at typical biasing levels ($V_{TG}=3.3V$)
- These results have been confirmed by other measurements which also indicated that CTI is limited by a potential barrier at the PPD-TG interface
Conclusion and Outlook

- Charge transfer mechanisms have been studied based on Montecarlo simulations and TCAD simulations
- Experimental measurements on dedicated pulsed storage-gate structure
 - Enable fair CTI comparisons (on PPD lengths up to 32μm)
- This study showed that for this commercial technology CTI is limited by design traps even for long PPDs.
- This same approach can be used to identify the CTI bottleneck on other technologies

- Solutions to improve transfer time:
 - Increasing V_{TG} during transfer
 - Increasing probability of crossing barrier by keeping electrons close to the TG

 - By introducing a drift field
 - PPD TG FD
 Drift field
 - e-

 - With a collection well
 - PPD TG FD
 Collection well
Thank you for your attention!
Any questions?