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Optimal streaks in the circular cylinder wake and
suppression of the global instability

Gerardo Del Guercio1,2, Carlo Cossu1,† and Gregory Pujals2

1CNRS – Institut de Mécanique des Fluides de Toulouse (IMFT), Allée du Pr. Camille Soula,
F-31400 Toulouse, France

2PSA Peugeot Citroën, Centre Technique de Velizy, 2 Route de Gisy,
78943 Vélizy-Villacoublay CEDEX, France

The steady, spanwise-periodic, symmetric (varicose) optimal blowing and suction
that maximizes energy amplification in the circular cylinder wake is computed at
Reynolds numbers ranging from 50 to 100. It is found that the cylinder wake
can sustain large energy amplifications that are associated with the generation by
the optimal blowing and suction of streamwise vortices near the cylinder, which
then induce the transient spatial growth of high-energy streamwise streaks further
downstream. The most amplified perturbations have spanwise wavelengths ranging
from five to seven times the cylinder diameter at the Reynolds numbers considered,
with the corresponding optimal streaks reaching their maximum amplitude in the near
wake, inside the pocket of absolute instability which sustains the global instability.
The optimal blowing and suction is shown to stabilize the global linear instability.
The most stabilizing spanwise wavelengths are in good agreement with previous
findings. The amplitude of optimal blowing and suction required to suppress the
global instability decreases when the Reynolds number Re is increased from 75
to 100. This trend reveals the key role played by the non-normal amplification of
the streaks in the stabilization process, which is able to overcome the increase of
the uncontrolled global growth rate with Re. Finally, it is shown that the global
instability can be suppressed with control amplitudes smaller than those required
by 2-D (spanwise-uniform) control. This result is not what would be expected
from first-order sensitivity analyses, which predict a zero sensitivity of the global
instability to spanwise-periodic control and, in general, a non-zero sensitivity to
spanwise-uniform control.

Key words: absolute/convective instability, instability control, wakes/jets

1. Introduction

There is continuing interest in the control of self-sustained oscillations in bluff-body
wakes, the archetype of which is the circular cylinder wake. The steady flow around
a circular cylinder undergoes a Hopf bifurcation at Reynolds number Re ≈ 48, leading
to robust periodic self-sustained oscillations in the wake associated with the shedding
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of two-dimensional (spanwise-uniform) von Kármán vortices. The Hopf bifurcation
occurs in correspondence to a linear global instability driven by a pocket of local
absolute instability in the near wake (Chomaz, Huerre & Redekopp 1988; Monkewitz
1988). Different approaches to suppressing these self-sustained oscillations have been
studied, which can be classified into 2-D (spanwise-uniform) and 3-D (typically
spanwise-periodic) control (Choi, Jeon & Kim 2008). Examples of 3-D control
were given by Tanner (1972), Tombazis & Bearman (1997), Bearman & Owen
(1998) and Darekar & Sherwin (2001), among others, who have shown that suitable
spanwise-periodic modulations of the bluff-body geometry weaken and can even
suppress the vortex shedding in the wake. Kim & Choi (2005) obtained similar
results using spanwise-periodic blowing and suction (the reader is referred to the
article by Choi et al. 2008 for a complete review of these results).

In addition to early interpretations of the stabilizing effect of 3-D control on
2-D wakes in terms of vortex dynamics, arguments based on general linear stability
concepts have been advanced recently. In particular, it has been shown by Hwang,
Kim & Choi (2013) that the local absolute growth rate of standard wake profiles can
be reduced with suitable spanwise-periodic modulations of the streamwise velocity.
This stabilizing effect is observed for shapes and spanwise wavelengths which are in
agreement with previous observations.

A mathematically similar, but physically different, application of 3-D control is
encountered in boundary layers where the 3-D spanwise-periodic modulations of the
streamwise velocity are called ‘streamwise streaks’. Kachanov & Tararykin (1987)
found that streamwise streaks have a stabilizing effect on the primary 2-D instability
of the flat-plate boundary layer. In the context of wall-bounded shear flows, it is well
known that a very efficient way to generate streamwise streaks is to force low-energy
streamwise vortices that fuel the growth of the streamwise streaks through the lift-up
effect (see Moffatt 1967; Ellingsen & Palm 1975; Landahl 1990). In this process
the energy of the vortices can be amplified by a factor proportional to Re2 to give
high-energy streaks (Gustavsson 1991). The precise shape of optimal vortices leading
to optimally amplified streaks can be computed using standard optimization techniques
and is associated with very large energy amplifications. Cossu & Brandt (2002, 2004)
proposed using optimal vortices to force the stabilizing streaks, and showed that the
primary 2-D instability of flat-plate boundary layers can be strongly stabilized in this
way. The experiments of Fransson et al. (2006) show that transition to turbulence can
be delayed by using this 3-D control technique.

Seeking to extend the approach used for boundary layers to bluff-body wakes, we
recently computed the optimal streamwise uniform perturbations sustained by parallel
absolutely unstable wakes (Del Guercio, Cossu & Pujals 2014a) and showed that, also
in wakes, the optimal input consists of streamwise vortices and the optimal output
consists of greatly amplified streamwise streaks. These optimally amplified streaks
were shown to reduce the absolute growth rate and for sufficiently large amplitudes
to completely suppress it, suggesting that global instabilities could be suppressed by
quenching the wave-maker region in the near wake. To confirm this intuition, non-
parallel model wakes with a finite region of absolute instability have been considered
in a follow-up study (Del Guercio, Cossu & Pujals 2014b). Optimal downstream
energy amplifications of steady perturbations were computed for these model wakes.
It was found that inlet steady vortices (the control) can give rise to greatly amplified
streaks downstream and that these streaks have a stabilizing effect on the global
instability, leading to its suppression with sufficiently large control amplitudes.

By considering idealized non-parallel model wakes (as done in Del Guercio et al.
2014b), it is possible to analyse the streak generation and the global instability control



independently of the specific body generating the wake. However, this approach does
not address the issue of how optimal steady vortices can be forced in practical
applications. Some interesting questions therefore remain unanswered. Can large
spatial energy amplifications be obtained by using a control device placed on the
cylinder surface at low Reynolds numbers, e.g. ranging from 50 to 100? How do
these optimal amplifications relate to those obtained for the idealized non-parallel
wake? Does an optimally amplified finite spanwise wavelength exist in this case?
If so, what is its value and how does this value compare to spanwise wavelengths
that minimize the control energy? What is the minimum energy required to stabilize
the global instability at Reynolds numbers ranging from, e.g., 50 to 100? How does
the distribution of optimal blowing and suction compare with distributions used in
previous investigations? How much can the control energy be reduced by using
optimal forcing?

Another issue which has been addressed only partially by previous investigations
is the comparative efficiency of spanwise-uniform (2-D) and spanwise-periodic (3-D)
control for stabilization of the global instability. Hwang et al. (2013) had shown that
the sensitivity of the absolute growth rate of parallel wakes to 3-D modulations of
the basic flow is zero, whereas it is in general not zero for 2-D modulations. They
therefore suggested that the higher efficiency of 3-D control, as observed by Kim &
Choi (2005), for example, should be attributed to the higher efficiency of the forcing
of 3-D perturbations as compared to 2-D ones. Del Guercio et al. (2014b) extended
these sensitivity analysis results to global instabilities, showing that the first-order
sensitivity of the global growth rate to 3-D modulations of the basic flow is also
zero. They found that, despite this prediction, optimal 3-D perturbations are more
efficient than 2-D ones in reducing the global growth rate in terms of both control
energy and streak amplitude. It is currently unknown whether these conclusions can
be extended to ‘real’ highly non-parallel wakes where the streaks would be forced
by perturbations applied to the bluff-body surface.

The present study aims to answer the questions discussed above. To this end, we
compute the optimal spanwise-periodic distributions of steady blowing and suction
applied to the cylinder surface which maximize the perturbation energy at selected
downstream stations. This approach is different from those where optimal initial or
inflow conditions leading to the optimal temporal energy amplification are sought (see,
e.g., Abdessemed et al. 2009 for the specific case of the circular cylinder). As detailed
in § 2.1, the 3-D optimal blowing and suction and the associated optimal streaks are
computed using a subspace reduction technique based on a set of independent
simulations of the linearized Navier–Stokes equations. The results of the optimization,
as well as their dependence on the spanwise wavelength and the Reynolds number,
are discussed in § 3. The effect of finite-amplitude optimal blowing and suction on the
growth rate of the unstable global mode is analysed in § 4. To this end, streaky wake
basic flows are first computed by using finite-amplitude optimal forcing in nonlinear
simulations; then, their linear stability is assessed by integration of the Navier–Stokes
equations linearized near these streaky basic flows. The control sensitivity and
efficiency are also discussed in § 4. Finally, nonlinear simulations are performed to
validate the results of the linear stability analysis, as reported in § 4.6. The results
and their implications are discussed in § 5.

2. Problem formulation

2.1. Mathematical formulation

We consider the flow of an incompressible viscous fluid of density ρ and kinematic
viscosity ν past a circular cylinder of diameter D whose z axis is orthogonal to the



free-stream velocity U∞ex (where ex is the unit vector oriented parallel to the x axis).
The Navier–Stokes equations governing the flow read as follows:

∇ · u = 0, (2.1)

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u, (2.2)

where u and p and the dimensionless velocity and pressure fields and Re = U∞D/ν
is the Reynolds number. The velocity, pressure, lengths and times have been made
dimensionless with U∞, ρU2

∞, D and D/U∞, respectively. On the cylinder surface we
enforce a radial velocity distribution uw = u(r = 1/2, θ, z) = uw(θ, z)er, where er is the
radial unit vector.

The reference basic flow U2D(x, y) is obtained as a steady solution of the Navier–
Stokes equations (2.1) and (2.2) in the case where no velocity is forced on the cylinder
surface (uw = 0); U2D = U(x, y)ex + V(x, y)ey is invariant with respect to translations
and reflections in the spanwise coordinate z and is therefore two-dimensional (2-D).

In the first part of our study, which deals with linear optimal spatial perturbations
of U2D, we consider steady perturbations u′ of U2D obtained by forcing a steady
small radial velocity distribution u′

w(θ, z)er on the cylinder surface. These perturbations
satisfy the Navier–Stokes equations rewritten in perturbation form, i.e.

∇ · u′ = 0, (2.3)

∂u′

∂t
+ u′

· ∇U + U · ∇u′ + u′
· ∇u′ = −∇p′ +

1

Re
∇2u′, (2.4)

using U = U2D as the basic flow and neglecting the nonlinear term u′
· ∇u′, which

makes the perturbation equations linear. In the following, we will consider steady,
spanwise-periodic perturbations of wavelength λz, which are of particular interest in
open-loop flow control applications.

The (input) kinetic energy density per spanwise wavelength of the radial flow forced
at the cylinder boundary is, in dimensionless form,

e′
w =

1

2πλz

∫
λz

0

∫ 2π

0

(u′
w)2 dθ dz, (2.5)

while the (output) local perturbation kinetic energy density at the station is

e′(x) =
1

πλz

∫ ∞

−∞

∫
λz

0

u′
· u′ dy dz. (2.6)

The optimal spatial energy amplification of wall-control forcing is

G(x) = max
uw

e′(x)

e′
w

. (2.7)

To compute G(x) and the associated optimal wall perturbation, we follow an approach
similar to the one recently applied to synthetic non-parallel wakes (Del Guercio et al.
2014b), which is summarized below. The control radial velocity enforced at the
cylinder surface u′

w(θ, z) is decomposed using a set of linearly independent functions
b(m)

w , in practice limited to M terms, as

u′
w(θ, z) =

M∑

m=1

qmb(m)
w (θ, z). (2.8)



If the perturbation velocity field obtained using b(m)
w (θ, z) as the input perturbation is

denoted by b(m)
(x, y, z), from linearity it follows that

u′(x, y, z) =

M∑

m=1

qmb(m)
(x, y, z), (2.9)

where the coefficients qm are the same ones as in (2.8). The optimal energy growth,
defined in (2.7), can therefore be approximated by

G(x) = max
q

qT H(x)q

qT Hwq
, (2.10)

where q is the M-dimensional control vector and the components of the symmetric
matrices H(x) and Hw are

Hmn(x) =
1

πλz

∫ ∞

−∞

∫
λz

0

b(m)
(x, y, z) · b(n)

(x, y, z) dy dz, (2.11)

Hw,mn =
1

2πλz

∫
λz

0

∫ 2π

0

b(m)
w (θ, z) b(n)

w (θ, z) dθ dz. (2.12)

The G(x) in (2.10) is easily found as the largest eigenvalue µmax of the generalized
M × M eigenvalue problem µHww = Hw. The corresponding eigenvector q(opt) is the
set of optimal coefficients maximizing the kinetic energy amplification at the selected
streamwise station x, and the corresponding optimal blowing and suction is given by

u′ (opt)
w (θ, z) =

∑M

m=1 q(opt)
m b(m)

w (θ, z). The maximum growth is then defined as Gmax =

maxx G(x).
In the second part of the study, the effect of forcing three-dimensional finite-

amplitude optimal perturbations on the global stability is investigated. To this end,
first a set of increasingly three-dimensional basic flows U3D(x, y, z; Aw) is obtained by
computing steady solutions of the nonlinear Navier–Stokes equations with boundary
conditions uw = Awu′ (opt)

w (θ, z) er (where u′ (opt)
w is normalized to unit energy so that

e′
w = A2

w). The global linear stability of the U3D basic flows is then analysed by
integrating in time the linearized form of the Navier–Stokes equations (2.3) and
(2.4) with U = U3D and enforcing u′

w = 0. For sufficiently large times, the leading
global mode emerges, inducing an exponential growth or decay of the solution. In
this regime, the global growth rate is deduced from the slope of the global energy
amplification curve.

2.2. Numerical methods

Numerical simulations of both the nonlinear and the linearized Navier–Stokes
equations were performed using OpenFoam, an open-source finite volume code
(see http://www.openfoam.org). The flow is solved in a C-type domain centred on the
cylinder with Lx streamwise, Ly transverse and Lz spanwise extensions (see figure 1).
Several preliminary tests guided us to the choices Lx = 70 and Ly = 80, with Lz = λz

for the computation of optimal perturbations and nonlinear streaky wakes and Lz = 2λz

for the global stability analyses and nonlinear direct numerical simulations used to
confirm that the control is effective. The grid density is increased in the x–y plane
in regions of high shear. We used Nx = 300 and Ny = 200 points in the streamwise
and transverse directions, respectively, with 1xmin = 0.01, 1xmax = 0.2, 1ymin = 0.01
and 1ymax = 0.2 in the internal mesh blocks. A uniform grid spacing was used in
the spanwise direction, always with 1z ≈ 0.25, and the number of points used with
each Lz is summarized in table 1. The PISO (Pressure Implicit with Splitting of



D

Lx

Ly

FIGURE 1. Numerical solution domain. For clarity, only the boundaries of the mesh blocks
are shown.

Lz 12.57 8.37 6.28 5.03 4.20 3.60 3.14

Nz 48 34 24 20 16 14 12

TABLE 1. Spanwise extension Lz of the solution domain and the number of points Nz used
in the spanwise direction for computation of the basic flows and optimal perturbations; Lz

and Nz are doubled for the global stability analysis and for the nonlinear simulations.

Operators) algorithm is used to advance the solution in time. We have verified that
with the chosen mesh, the length of the recirculation region of steady symmetric
solutions and the drag coefficient both match, within 1 % accuracy, those found by
Kim & Choi (2005) and Giannetti & Luchini (2007) in the 2-D case for the range of
Reynolds numbers considered. Extending the domain size in the streamwise direction
to Lx = 100 or in the transverse direction to Ly = 100 does not significantly improve
the precision of these results. For 3-D simulations we have verified, in a few selected
cases with active blowing and suction, that the perturbation energy (from which
global growth rates are computed) does not change by more than 1 % when the
number of grid points is doubled in the spanwise direction.

3. Optimal spatial energy amplifications sustained by the 2-D wake

The 2-D cylinder wake steady solution U2D is the usual one computed in a number
of previous studies (see, e.g., Dennis & Chang 1970; Fornberg 1980). It is found
that U2D is stable for Re < Rec ≈ 48. Here, U2D is computed in the linearly unstable
regime, for Re = 50, 75 and 100, by enforcing the y-symmetry of the solutions in
direct temporal integrations of the Navier–Stokes equations. We have verified that the
length of the recirculation bubble and the value of the separation angle are in good
agreement with those found in previous studies.

Distributions of optimal blowing and suction uw(θ, z) which maximize the spatial
amplification of perturbation energy are computed following the procedure described
in § 2.1. As the basic flow U2D is spanwise invariant and the equations are linear,
single-harmonic spanwise-periodic perturbations can be considered without loss of
generality, i.e. u′

w(θ, z) = f (θ) sin(2πz/λz). A number of previous studies have shown
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FIGURE 2. (Colour online) Convergence at Re = 75 of (a) the optimal energy growth G(x)
for λz = 2π and (b) Gmax(λz), as the number M of linearly independent distributions of
wall blowing and suction is increased. Well-converged results are obtained with M = 6.

that varicose perturbations (which are mirror-symmetric with respect to the y = 0
plane) are the most efficient for control (see, e.g., Darekar & Sherwin 2001; Kim &
Choi 2005; Choi et al. 2008; Hwang et al. 2013; Del Guercio et al. 2014a,b), even
if they are slightly less amplified than sinuous ones (Del Guercio et al. 2014a). We
therefore enforce f (−θ) = f (θ), which leads to varicose streaks. A standard cosine
series expansion in θ is used, leading to the choice b(m)

w (θ, z) = cos(m θ) sin(2πz/λz)

(m = 0, . . . , M) for the set of linearly independent inflow conditions used in (2.8).
Optimal energy growths have been computed by increasing M until a precision of
1 % or better on Gmax was achieved for a set of spanwise wavelengths λz. Typical
G(x) and Gmax(λz) obtained for Re = 75, along with their convergence histories, are
reported in figure 2. From the figure one can see that the optimal growths have
converged with better than 1 % precision with only M = 6 terms.

The computations have been repeated at Re = 50 and 100. The convergence of the
results with increasing M is similar to that in the Re = 75 case. As shown in figure 3,
the main effect of an increase in Re is to increase both the maximum amplification
Gmax and the position xmax at which this maximum is attained. The large amplifications
found are consistent with those found in our previous investigations (Del Guercio et al.
2014a,b) and with those of Abdessemed et al. (2009), who found optimal temporal
energy amplifications of the order of 10–102 for initial perturbations with 4 . λz . 8
at Re = 45. From figure 3(b) it is also seen that xmax is an increasing function of λz.
The most amplified wavelengths are found to be λz = 6.5 for Re = 50, λz = 5.7 for
Re = 75 and λz = 6.1 for Re = 100, with corresponding optimal streamwise stations
xmax = 3.4, xmax = 3.5 and xmax = 3.6.

The radial distributions ũ(opt)
w (θ) of the optimal blowing and suction ũ(opt)

w (θ)×

sin(2πz/λz) are shown in figure 4. They correspond to spanwise-periodic blowing
and suction with a maximum near θ ≈ ±90◦ and minima at the bow and the stern
of the cylinder. The variations of ũ(opt)

w (θ) with λz and Re are small and may be
neglected in a first approximation. As shown in figure 5, this spanwise-periodic
optimal blowing and suction induces counter-rotating streamwise vortices which
decay downstream while forcing the growth of varicose streamwise streaks. Also in
this relatively complicated flow, therefore, the main mechanism at play seems to be
the lift-up effect. The facts that ũ(opt)

w (θ) is maximal at θ ≈ ±90◦ (and not at, e.g.,
θ = 0 and θ = 180◦) and that the local (in z) net mass flux is not zero (the M = 0
harmonic has an important contribution) suggest that the main effect of the optimal
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blowing and suction is to force the streamwise vortices that will best exploit the
lift-up effect.

The existence of a finite optimal value of λz is probably the most important
difference from our previous results pertaining to parallel and non-parallel synthetic
wakes, where Gmax was a monotonic increasing function of λz (Del Guercio et al.

2014a,b). This difference is due to the fact that in those previous investigations
the optimal perturbations could assume any admissible shape in y, and indeed their
y-extension increased with λz. In the present case, because the velocity forcing
is localized on the cylinder surface, only a finite effective extension in y can
be efficiently attained, and therefore a maximum value of Gmax is attained in
correspondence to the λz values for which the effective maximum y-extension of
the forced functions is reached.

Finally, it is instructive to compare the effects of the optimal distribution of blowing
and suction here and the θ -localized one used by Kim & Choi (2005). Simulations of
the linearized Navier–Stokes equations show that the maximum energy gain attained
with localized blowing and suction located at θ = 90◦ is 75 times smaller than the
maximum energy gain obtained by using optimal blowing and suction. The two gain
curves are, however, nearly indistinguishable if renormalized by the maximum gain
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vortices, arrows) is the same in all panels. The reference 2-D basic flow streamwise
velocity U2D(y) is represented in grey-scale with light grey corresponding to the freestream
velocity and dark grey corresponding to the minimum velocity (wake centreline).

(not shown), meaning that streaks with essentially the same shape are forced. The
main effect of using optimal perturbations is therefore to reduce the input energy for
forcing these streaks.

4. Stabilizing effect of finite-amplitude optimal streaks

4.1. A family of steady nonlinear streaky wake basic flows

Non-parallel streaky (3-D) wake basic flows U3D(x, y, z; Aw) are computed by
enforcing at the wall the boundary condition Uw(θ, z) = Awu′ (opt)

w (θ, z) and then
computing the corresponding steady solution of the nonlinear Navier–Stokes equations,
as explained in § 2.1. Symmetry with respect to the y = 0 plane is enforced to compute
steady solutions which may be unstable. A few cases with increasing Aw are selected
and listed in table 2. We consider the intermediate Reynolds number Re = 75 and
the spanwise wavelength λz = 2π, which is chosen slightly (≈10 %) larger than its
optimal value 5.7 so as to approach the value that minimizes the control energy, as
discussed below.

The reference two-dimensional wake profile U2D is called case A, and cases B, C
and D correspond to increasingly streaky wakes, as shown in figure 6. The local streak
amplitude is measured with the standard formula of Andersson et al. (2001),

As(x) =

max
y,z

(U3D − U2D) − min
y,z

(U3D − U2D)

2U∞

. (4.1)

The evolutions As(x) associated with the velocity fields U3D corresponding to the four
cases are plotted in figure 7(a), and the corresponding maximum streak amplitudes
As,max are listed in table 2. It is interesting that the maximum streak amplitudes are
naturally reached inside the region of absolute instability of the reference 2-D wake,
which almost coincides with the recirculation region (x . 5 at Re = 75). This is good
news. Indeed, the global instability has been shown to be sustained by the region
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Case A B C D

Aw 0 0.0031 0.0048 0.0080

uw,max (%) 0 0.75 1.2 2.1

As,max (%) 0 10.45 16.16 25.44

TABLE 2. Nonlinear streaky wakes considered in this study: Aw is the finite amplitude of
the optimal blowing and suction corresponding to the root-mean-square (r.m.s.) value of
the blowing or suction velocity; uw,max is the maximum absolute value of the blowing or
suction velocity; As,max is the maximum streak amplitude reached in the wake. Values of
As,max and uw,max are given as percentages of U∞. Case A corresponds to the reference
2-D wake, while cases B, C and D are for increasing values of Aw and correspond
to increasingly streaky wakes. All the data refer to the parameter settings Re = 75 and
λz = 2π.



of absolute instability, which acts as a wave-maker (see, e.g., Huerre & Monkewitz
1990); this is therefore the region where it is useful to reduce the absolute growth
rate. As this reduction is proportional to the square of the streak amplitude, as shown
by Hwang et al. (2013) and Del Guercio et al. (2014a), having large-amplitude streaks
in the wave-maker region is therefore expected to induce a high control efficiency.

4.2. Global linear stability of the streaky wakes

The global linear stability of the nonlinear streaky basic flows is examined by
integrating with respect to time the Navier–Stokes equations (2.3) and (2.4), linearized
with respect to the U3D considered. The linearized equations are integrated over a
domain including two basic flow streak spanwise wavelengths (Lz = 2λz) to take into
account the potential subharmonic nature of the dominant absolute mode (see Hwang
et al. 2013; Del Guercio et al. 2014a,b). For the reference 2-D wake (case A), a
random solenoidal perturbation velocity field u′ is chosen as initial condition and
the integration is continued in time until the emergence of the unstable global mode.
This global mode is then renormalized to a small amplitude and used as the initial
condition for all the cases under consideration. We then monitor the evolution of the
global perturbation kinetic energy density E′ = (1/V )

∫
V

u′
· u′ dx dy dz, where V is

the fluid control volume. As shown in figure 7(b), E′(t) grows exponentially in time,
after the extinction of the initial transient. In this regime, the exponential growth
rate of E′ is twice that of the most unstable global mode. At the Reynolds number
considered, Re = 75, it is already well known that the reference 2-D wake (case A)
is linearly unstable. In the presence of increasing amplitudes of optimal blowing and
suction and, therefore, increasing amplitudes of the streaks, the growth rate of the
global mode is initially reduced (cases B and C), becoming negative for case D. These
results confirm for a ‘real wake’ the scenario already observed in non-parallel model
wakes (Del Guercio et al. 2014b) and associated with the weakening or complete
suppression of the pocket of absolute instability, in accordance with the conclusions
of Hwang et al. (2013) and Del Guercio et al. (2014a).

4.3. Sensitivity of the global growth rate to the 3-D control amplitude

Let us now examine the dependence of the growth rate sr on the control amplitude at
Re = 75, shown in figure 8 for a selected set of spanwise wavelengths. The amplitude
of the control is reported in terms of both the optimal blowing and suction amplitude
Aw and the maximum streak amplitude As,max. In all the computed cases, the data sr(A)
are well approximated by the quadratic fit sr(Re, λz, A) = sr,2D(Re) − C(Re, λz) A2,
where sr,2D is the growth rate of the uncontrolled 2-D reference wake, A is the
amplitude and C is a constant. Such a quadratic dependence is expected from
first-order sensitivity analyses, which predict that for spanwise-periodic basic flow
modulations, dsr/dA|A=0 = 0 (see, e.g., Del Guercio et al. 2014b for the global mode
sensitivity analysis). That the first-order sensitivity is zero could also have been
inferred by observing that changing the sign of A in a spanwise-sinusoidal basic flow
modification simply corresponds to a spanwise shift of λz/2 in physical space, and
therefore we must have sr(A) = sr(−A), implying a zero first-order derivative at the
origin.

4.4. Comparison of the control efficiency of 3-D and 2-D perturbations

Since for 2-D modulations of the basic flow the first-order sensitivity is in general
not zero (see, e.g., Bottaro, Corbett & Luchini 2003; Chomaz 2005), it might be
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FIGURE 8. (Colour online) Dependence of the global mode growth rate sr on (a) the
optimal blowing and suction amplitude Aw and (b) the maximum streak amplitude As,max.
A spanwise-uniform (2-D) perturbation has also been considered for comparison. The
symbols represent data points, while the lines are best fits to the data points using
quadratic interpolation for the 3-D data and linear interpolation for the 2-D data.

expected that 2-D perturbations are more effective than 3-D ones in quenching the
global instability. To check whether this is actually the case, we computed the growth
rate variations induced at Re=75 by spanwise-uniform (2-D) wall blowing and suction
with m=1 azimuthal dependence Uw =A2D cos(θ), which has zero net mass flux and is
associated with bleeding in the wake, and is known to efficiently reduce the absolute
growth rate (Monkewitz 1988). The sr,2D(A2D) curves pertaining to the 2-D control
are also plotted in figure 8 for comparison with the 3-D control. The analogue of the
streak amplitude is defined for the 2-D perturbation as the maximum of the basic flow
streamwise velocity variation induced by the 2-D suction.

As expected, the sr,2D(A2D) curve has non-zero slope at A2D = 0 and is well
approximated by a straight line. The 2-D perturbations considered are more stabilizing
than the optimal 3-D ones only for As,max . 14 %, corresponding to the negligible
Aw ≈ 0.005. As already observed by Del Guercio et al. (2014b), a higher efficiency
of 3-D perturbations is expected in terms of Aw, because such perturbations can
exploit the energy gain associated with the lift-up effect, which is a 3-D mechanism.
The fact that these 3-D perturbations are also more efficient in terms of basic flow
deformation is not a priori obvious. We have verified that qualitatively similar results
are obtained for a few other shapes of the 2-D forcing.

4.5. Optimal spanwise wavelengths and amplitudes required for suppression of the

global instability

The dependence on the spanwise wavelength λz of the critical amplitudes Ac for
which the global instability is suppressed is illustrated in figure 9 in terms of both
Aw and As,max. At Re = 75, the spanwise wavelength minimizing the control amplitude
necessary for the stabilization of the global instability is λz ≈ 6. The value minimizing
Aw (λz = 6.2) is slightly larger than that minimizing As,max (λz = 5.9). When the
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Reynolds number is increased to Re = 100, the spanwise wavelength minimizing the
control amplitude is reduced to λz ≈ 5.3, with the value minimizing Aw (λz = 5.4)

being very slightly larger than the one minimizing As,max (λz = 5.3). These results
are in very good agreement with those of Kim & Choi (2005), who found that
the minimum drag is achieved for λz = 5–6 (but at the fastest rate for λz = 6) at
Re = 80, and for λz = 4–5 (but at the fastest rate for λz = 5) at Re = 100. Less
energy is required to suppress the global instability when using optimal blowing and
suction instead of localized blowing and suction (0.62 % instead of 8 % of U∞ in
terms of maximum blowing/suction velocity, and 5.6 × 10−5 instead of 1.2 × 10−3

in terms of the momentum coefficient of forcing Cµ = 2πA2
w at Re = 100), which is

also confirmed by nonlinear simulations (not shown). This is not surprising given the
observed large differences in energy gains obtained using these different distributions
of blowing and suction. Despite its higher efficiency, however, the optimal distribution
of blowing and suction may be more difficult to realize experimentally than localized
blowing and suction.

For all the spanwise wavenumbers considered, larger streak amplitudes are required
to stabilize the global instability at Re = 100 than at Re = 75. This is to be expected,
because at Re = 100 the global mode is more unstable than at Re = 50, and hence
larger streak amplitudes are needed to quench it. However, the amplitudes of the
optimal blowing and suction required to stabilize the global instability are smaller
at Re = 100 than at Re = 75, for all the λz considered. The increase in energy
amplification of the control due to the lift-up associated with an increase in Reynolds
number (see figure 3a) therefore overcomes the larger control action necessary to
quench the more unstable global mode. In other words, the results reported in
figure 9(a) confirm the essential role played by the non-normal amplification of
streaks in stabilization of the global instability.

4.6. Nonlinear simulations

Finally, the stabilizing effect of optimal blowing and suction 3-D optimal perturbations
is assessed in the fully nonlinear regime. The same cases examined with linear
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simulations (see § 4.2) are re-examined by switching on the nonlinear terms in
the numerical simulations and integrating the equations until a permanent regime
develops. In all the cases considered, the permanent regime is periodic in time,
except for sufficiently large amplitudes of the optimal blowing and suction, where, as
expected from the linear analysis, self-sustained oscillations are quenched. Figure 10
shows that for increasing Aw, the mean value of the global perturbation kinetic energy
E′ in the permanent regime is reduced (cases B and C) and is eventually driven to
zero for case D. The increasingly three-dimensional nature of the controlled wakes
in the permanent regime can be appreciated from figure 11.

5. Summary and conclusions

In the first part of this study, a subspace reduction method was introduced for the
computation of steady, spanwise-periodic, symmetric (varicose) optimal blowing and
suction that maximizes the energy amplification at selected streamwise stations in
the circular cylinder wake. It has been shown that the energy of the optimal blowing
and suction can be greatly amplified in the wake and that the maximum energy
amplification and the position at which it is reached are both increasing functions of
the Reynolds number.

The azimuthal distribution of the optimal blowing and suction displays a maximum
near θ = 90◦, in accordance with the results of Kim & Choi (2005), who found that
the optimal position of θ -localized spanwise-periodic blowing and suction is near
θ = 90◦. The optimal blowing and suction induces streamwise vortices, which in turn
induce the transient spatial growth of highly amplified streamwise streaks. The most
amplified spanwise wavelengths λz range from 5D to 7D at the Reynolds numbers
considered, with the corresponding optimal streaks reaching their maximum amplitude
at approximately λz/2 downstream in the wake, well inside the pocket of absolute
instability sustaining the global instability. The existence of a finite optimal spanwise
wavelength is one of the most notable differences between our results and the case
of synthetic wakes studied by Del Guercio et al. (2014b), where the generation
mechanism of the optimal vortices by actuation on the body surface was not taken
into account.
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3-D perturbations (case D), the periodic oscillations are completely suppressed and only
the forced stable streaks are visible in the wake.

We then investigated the effect on the global linear instability of forcing optimal
blowing and suction with finite amplitudes. First, nonlinear simulations were used to
compute nonlinear streaky wake basic flows with increasing finite-amplitude optimal
blowing and suction. Then, the global stability of these nonlinear streaky wakes was
investigated using the linearized equations.

The global mode growth rate is shown to be reduced proportionally to the square
of the optimal blowing and suction amplitude and to the square of the maximum
amplitude of the associated streaks. Complete stabilization of the global mode is
achieved with blowing and suction amplitudes much smaller than those required
by 2-D (spanwise-uniform) blowing and suction. This result is not expected from
first-order sensitivity analyses, which predict the opposite. Predictions based on
first-order sensitivity analyses are therefore to be treated with extreme caution
when considering spanwise-periodic controls and, more generally, when far from the



instability threshold. Indeed, higher-order terms are likely to become more important
than linear terms when moderate control amplitudes are considered.

We also show that the optimal blowing and suction amplitude Aw required to
suppress the global instability decreases when the Reynolds number is increased from
75 to 100, despite the fact that the global instability is stronger at Re = 100 than at
Re = 75. This reveals the essential role played by the lift-up effect, which amplifies
the control energy with an efficiency that increases with Re; this efficiency increase
probably explains why 3-D control of 2-D wakes remains effective far from the
critical Reynolds number, and even in the turbulent regime. The spanwise wavelength
for which the stabilization is obtained with minimum amplitude is found to decrease
from λz ≈ 6 to λz ≈ 5 as Re is increased from 75 to 100, in good agreement with the
results of Kim & Choi (2005).

The present study also pinpoints the relevance of the role played by streamwise
vortices in the very near wake. Indeed, although the analyses of Hwang et al. (2013)
show that a key stabilizing role is played by the streaks, here and in our related
previous investigations of parallel and non-parallel model wakes (Del Guercio et al.
2014a,b), we show that forcing optimal vortices instead of directly forcing the streaks
is much more efficient and that the energy amplification associated with this process
plays a key role in the stabilization. In this sense, the present results extend to 2-D
wakes the rationale already implemented in boundary layers, where optimal or nearly
optimal streamwise vortices were forced to induce streaks able to delay the 2-D
Tollmien–Schlichting instability and delay transition to turbulence (Cossu & Brandt
2002, 2004; Fransson et al. 2005, 2006). Current effort is directed at extending the
present approach to the control of turbulent wakes, in the same spirit as Cossu,
Pujals & Depardon (2009), Pujals, Cossu & Depardon (2010a) and Pujals, Depardon
& Cossu (2010b).
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