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a b s t r a c t

Multiphase flow in porous media provides a wide range of applications: from the environmental un-
derstanding (aquifer, site-pollution) to industrial process improvements (oil production, waste man-
agement). Modeling of such flows involves specific volume-averaged equations and therefore specific
computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase
flow in porousmedia with OpenFOAM R©, an open-source platform for CFD. The underlying idea of this ap-
proach is to provide an easily adaptable tool that can be used in further studies to test newmathematical
models or numerical methods. The package provides themost common effective propertiesmodels of the
literature (relative permeability, capillary pressure) and specific boundary conditions related to porous
media flows. To validate this package, solvers based on the IMplicit Pressure Explicit Saturation (IMPES)
method are developed in the toolbox. The numerical validation is performed by comparison with analyt-
ical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more
complex configuration.

Program summary

Program title: porousMultiphaseFoam

Catalogue identifier: AEUR_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUR_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: GNU General Public License

No. of lines in distributed program, including test data, etc.: 36355

No. of bytes in distributed program, including test data, etc.: 1106569

Distribution format: tar.gz

Programming language: C++.

Computer: Any x86.

Operating system: Generic Linux.

Classification: 12.

External routines: OpenFOAM R© (version 2.0 and superior)

Nature of problem:

This software solves multiphase flow in porous media.

Solution method:

The numerical approach is based on the finite-volume method (FVM). Mass conservation equations for
each fluid phase are reformulated into a pressure–saturation system. The generalized Darcy’s law is used
to compute phase velocities in the porous medium. The pressure–saturation is solved using a segregated

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
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method based on the IMPES method. Parallel computing can be performed using the standard domain
decomposition method of OpenFOAM R©.

Running time:
The Buckley–Leverett examples provided only take a few seconds to run.

1. Introduction

Simulation of multiphase fluid flow in heterogeneous porous
media is of great importance in many areas of science and engi-
neering including:

• hydrology and groundwater flow,

• oil and gas reservoirs,

• gas–liquid contactors,

• waste management, biodegradation, and so on.

In this work, only the common features of these different flows
are considered, i.e. an isothermal and incompressible two-phase
flow with capillary effects. Others physical features such as phase
changes or compressibility of phases are not in the scope of this
paper but are possible further developments of the presented tool-
box. Due to the high complexity of the solid structure and possible
large dimensions of the computational domain, the common strat-
egy consists of defining volume averaged balance equations with
effective properties such as permeabilities, porosity, etc., which
take into account the microscopic flow morphology of the stud-
ied problem. With such an approach, a cell of the grid contains
both fluid and solid. As usually done for the multiphase flow in
porous media, the concept of ‘‘saturation’’ is defined as the volu-
mic filling rate of a fluid phase (gas or liquid) with the void space
of this cell and all properties, phase velocities, phase pressures, etc.
are considered homogeneous within the computational cell. Read-
ers interested in the averaging process can be referred to Das and
Hassanizadeh [1] where a state-of-the-art in modeling and experi-
mental techniques to studymultiphase flow phenomena in porous
media has been done with a focus on upscaling.

In the last decade, several open-source simulators dedicated to
porous media flows have been developed such as, for example,
Dumux [2], MRST [3], OpenGeoSys [4] and PFlotran [5]. The open-
source platform used in this work, OpenFOAM R© [6,7], does not
belong to this list since it has not been conceived as a specialized
simulation tool but as a general toolbox for solving partial differen-
tial equations. However, with growing community and popularity,
the use of OpenFOAM R© to simulate flow through porous materi-
als becomes more and more prevalent. In the usual OpenFOAM R©

solvers, porous medium flows are modeled by adding viscous
and inertial resistance terms in the Navier–Stokes momentum
equation to obtain, in the porous domain, the commonly called
Darcy–Forchheimer law [8]. A mask function allows to define
both ‘‘porous’’ areas with Darcy and Forchheimer coefficients, and
‘‘free’’ areaswhere the classicalmomentum equation is solved. The
porous medium model is generic and can therefore easily be used
to developnewOpenFOAM R© solvers. It has beenused, for example,
to study compressible reacting flows [9], mass transfer in solid ox-
ide fuel cells [10] or interaction of waves and coastal porous struc-
tures [11,12]. However, the current porous medium handling in
OpenFOAM R© does not allow to simulate the common features of
multiphase flow in porousmedia, mainly because it lacks some es-
sential elements to this modeling, such as, phase saturations, rela-
tive permeabilitymodels, capillaritymodels, and specific boundary
conditions.With an efficiency demonstrated inmany fields of fluid

mechanics, it seems therefore an appealing possibility to develop,
in theOpenFOAM R© standards, a dedicated toolbox that could serve
as a basis for the study of multiphase flow in porous medium.

In this paper, we present a toolbox to simulate multiphase
flow in porous media. Instead of solving a modified Navier–Stokes
system, we solve the mass conservation equations for each fluid
where the phase velocities are expressed using a generalization of
Darcy’s law [13]. Comprehensive reviews of the numerical meth-
ods available to solve this kind of problem can be found in the
literature (see for example Aziz and Settari [14], Gerritsen and
Durlofsky [15] or Chen et al. [16]). Two main methods can be re-
tained to treat multiphase flow in porous media: (i) a sequential
approach, IMplicit Pressure Explicit Saturation (IMPES) and (ii) a
coupled approach, i.e. the ‘‘fully-implicit’’. The IMPES methodol-
ogy treats all terms that depend on saturation, except the transient
terms, as explicit functions of saturation. This allows saturation
to be decoupled from the pressure, resulting in a smaller system
of equations to be solved implicitly. This reduces significantly the
computational effort. However, because IMPES involves some ex-
plicit terms, integration may be numerically unstable. As a result,
the computational time saved by reducing the size of the system of
nonlinear equations can be lost in small time stepping to solve sat-
urations and could lead to numerical instabilities, or in some cases,
to non-convergence. The ‘‘fully-implicit’’ approach solves the same
equations as the IMPES method, except that it treats pressure and
saturation variables implicitly. Thus, the ‘‘fully-implicit’’ method is
unconditionally stable. One could refer to Cao [17] to have a large
overview of the different formulations.

Given the sequential nature of OpenFOAM R©, we have adopted
the IMPES method to develop a dedicated toolbox for multiphase
flow in porous media. This package, called porousMultiphaseFoam,
includes two solvers impesFoam and anisoImpesFoam (for iso- and
anisotropic porousmedium, see Section 2.1), themost widely used
porous multiphase models for relative permeabilities and capillar-
ities and a new boundary condition to impose phase velocities.

The paper is organized as follows. In Section 2, we present
the mathematical model and its implementation in OpenFOAM R©.
Then in Section 3,we describe the content of the porousMultiphase-
Foam package. Finally, in Section 4 the toolbox is validated over
several tests and the parallel performance is evaluated on a clus-
ter.

2. Mathematical model

2.1. Mass–momentum conservation equations

When considering porous medium at the macro-scale, the flow
is governed by volume averaged equations. Each computational
cell contains both solid and void space (or pore-space) which is
represented at the macro-scale as the porosity

ε =
Vvoid

Vcell

, (1)

where Vvoid is the volume occupied by the void space and Vcell the
volume of the cell. To deal with multiphase flow, we have to intro-
duce the notion of saturation Si defining the filling rate of the phase



iwithin the pore-space of a computational cell

Si =
Vi

Vvoid

, (2)

where Vi represents the volume occupied by the i-phasewithin the
computational cell. From their definitions, saturations vary in the
range [0; 1]. In thiswork, we study the flow of a non-wetting phase
a andwetting phase b through the porousmedium. Saturations sat-
isfy the following relationship for fluid saturated media

Sa + Sb = 1. (3)

Considering an incompressible multiphase flow in a porous
medium, the macro-scale mass balance equation for each phase i
reads:

ε
∂Si

∂t
+∇ · Ui = qi, (4)

where Ui stands for the superficial velocity and qi is a source term,
used for injection or extraction wells.

In the generalized Darcy’s model [13], the superficial velocity of
each phase i is computed as

Ui = −
Ki

µi

· (∇pi − ρig) , (5)

where the apparent permeability Ki is expressed as follows

Ki = Kkri(Sb). (6)

K is the permeability tensor of the porousmedium and kri(Sb) is
the relative permeability of the phase i, whose value between 0 and
1depends on the local saturation of thewetting phase Sb. Thismod-
eling suggests that the presence of another fluid reduces the pore
space available, and therefore, reduces the permeability. The two
most widely used relative permeability correlations (Brooks and
Corey [18], VanGenuchten [19]) are detailed in themodels’ presen-
tation (see Section 2.4) and implemented in the library. Two solvers
are developed in the toolbox depending on the porous medium
considered, isotropic or anisotropic. In the numerical validation,
the porous medium is considered as isotropic which means that
the tensor K can be replaced by a scalar K . Note that in both cases
the permeability field can be heterogeneous, i.e. whose value vary
in space (the permeability is defined as a tensor field K or a scalar
field K ). Both solvers are useful as the isotropic solver requires less
memory and computation time.

Due to capillary effects inside the porous medium, we do not
have equality between averaged pressure fields of each phase. In
classical multiphase porous medium approach, we generally de-
fine a macro-scale capillary pressure pc depending on the satura-
tion Sb [20]

pc(Sb) = pa − pb.

The pc values depending on the considered flow and porous
medium properties are usually obtained experimentally and then
correlated on a capillary pressure model. The three most widely
used capillary pressure correlations (Brooks and Corey [18], Van
Genuchten [19] and linear model) are detailed in Section 2.5 and
implemented in the library. The capillary pressure correlation
eliminates an unknown of the system and the mass conservation
equations read:

−ε
∂Sb

∂t
+∇ ·

(

−
Kkra (Sb)

µa

(∇pa − ρag)

)

= qa, (7)

ε
∂Sb

∂t
+∇ ·

(

−
Kkrb (Sb)

µb

(∇pa − ρbg−∇pc(Sb))

)

= qb, (8)

with pa and Sb the system variables.

2.2. The IMPES method

The system described by the mass conservation equations (7)
and (8) has strong non-linearities due to relative permeabilities
and capillary pressure correlations. Then, the resolution of the
coupled system requires the use of non-linear solver (Newton–
Raphsonmethod for example) and consequently involves substan-
tial computation time. As explained in the introduction, the IMPES
algorithm used in this work and proposed first by Sheldon et al.
[21] is an alternative method consisting in a segregated resolution
of the coupled equations. This method needs a new model formu-
lation detailed below.

2.2.1. Model formulation

The mass conservation equations are reformulated into a pres-
sure–saturation system by summing Eqs. (7) and (8). The system
then reads:

∇ ·

(

−
Kkra (Sb)

µa

(∇pa − ρag)

)

+∇ ·

(

−
Kkrb (Sb)

µb

(∇pa − ρbg−∇pc(Sb))

)

= qa + qb, (9)

ε
∂Sb

∂t
+∇ · Ub = qb. (10)

The principle of this approach is to solve implicitly the global mass
conservation, i.e. the pressure equation (9), while the saturation
equation (10) is explicitly solved. The detailed algorithm as imple-
mented in the toolbox is presented in Section 2.2.4.

2.2.2. Implemented formulation

To simplify the formulation, we define phase mobility Mi and
gravitational contribution Li as follows:

Mi =
Kkri (Sw)

µi

, (11)

Li =
Kkri (Sw)

µi

ρi. (12)

Even if in the generalized Darcy’s law the relation Li = ρiMi is
satisfied, we have found it convenient to separate each contribu-
tion. Actually, it must be noted that more complex models involv-
ing viscous resistance terms between phases for instance [22,23]
could be written using this generic formulation. Therefore, the
same solver basis could be used for further investigations with
more sophisticated multiphase flow models.

Moreover, assuming that the capillary pressure only depends
on saturation, the capillary term ∇pc can be reformulated as

∇pc =
∂pc

∂Sb
∇Sb, (13)

which allows to express the pressure equation (9) as a Poisson-type
equation

∇ · ((Ma +Mb)∇pa) = −∇ ·

(

(La + Lb) g−Mb

∂pc

∂Sb
∇Sb

)

+ qa + qb, (14)

and the saturation equation as

ε
∂Sb

∂t
+∇ ·

(

−Mb∇pa + Lbg+Mb

∂pc

∂Sb
∇Sb

)

= qb. (15)

To improve code readability, three fluxes depending on different
contributions (pressure gradient, gravity and capillary pressure)



are defined on each face of the computational grid:

φp =
(

Ma,c→f +Mb,c→f

)

∇pa · Sf , (16)

φg =
(

La,c→f + Lb,c→f

)

g · Sf , (17)

φpc = Mb,c→f

(

∂pc

∂Sb
∇Sb

)

c→f

· Sf , (18)

where the operator c → f indicates that face-centered values are
interpolated from cell-centered value using a numerical scheme
detailed in Section 2.2.5. The global flux is computed as follows

φ = φp + φg + φpc , (19)

and the flux of phase b can be expressed

φb =
Mb,c→f

Ma,c→f +Mb,c→f

φp +
Lb,c→f

La,c→f + Lb,c→f

φg + φpc . (20)

2.2.3. Time-step limitations

To determine the time step for pressure equation, two con-
ditions can be used in the provided solvers. The first limitation
is directly inherited from the classical OpenFOAM R© multiphase
solvers [6,24] and is related to the Courant number Co, defined for
the incompressible phasei

Coi = max
∀cell











0.5

m
∑

f=0

|φi|

Vcell











∆t, (21)

with m the number of neighbor faces f to the considered cell. The
coefficient for time-step change is then expressed

c∆t =
Cofixed

max (Coa, Cob)
. (22)

To avoid sudden and too large increases of the time-step which
could lead to numerical instabilities, we define the time-step of
pressure equation (9) as follows

∆t∗p = min (min (c∆t , 1+ 0.1c∆t) , 1.2) ∆tlast , (23)

that limits to a maximum increase of 20%. Several tests show that
it is necessary to impose Cofixed ≦ 0.1 to ensure stability to the
numerical simulations.

The second possible limitations for pressure equation the
most commonly used in the IMPES method is the CFL condition
discussed by various authors [25–27]. It has been implemented in
the provided toolbox and is defined as follows

CFL = max
∀cell

×

[

∆t

εVcell

(

2
∂pc

∂Sb

MaMb

K (Ma +Mb)

m
∑

f=0

Tf +
∂Fb

∂Sb

m
∑

f=0

φ

)]

, (24)

where Fb is the fractional flow

Fb =

krb
µb

kra
µa
+

krb
µb

, (25)

and Tf the transmissivity of the face f

Tf =
Kf ‖Sf ‖

∆xf
, (26)

where ∆xf is the distance between the centers of two neighboring
cells. The coefficient for time-step change, used in Eq. (23), is then
expressed

c∆t =
Cmax

CFL
, (27)

with Cmax 6 1. Note that to ensure stability for the various test
cases provided in the toolbox, Cmax is set to 0.75.

The stability for both conditions, CFL or Co, is not ensured if
source/sink term are present since they are not take into account
in these formulations.Moreover, if we consider further code devel-
opments in the conservation equations, stability will probably not
be ensured. In anticipation of these potential changes, we added
a limitation related to an user-defined maximal variation of sat-
uration ∆Sb,max. Then, the variation of Sb between two time steps
should satisfy

∆Sb,n→n+1 ≤ ∆Sb,max, (28)

which can be reformulated as

∆t∗Sb = min













Vc∆Sb,max

ε

(

−
m
∑

f=0

Ub · Sf + Vcqb

)













. (29)

Then, the global time-step for the next iteration is given by

∆tn = min
(

∆t∗Sb , ∆t∗p
)

. (30)

2.2.4. Algorithm

1. ∆tn+1 is computed from the two conditions (Co or CFL and
∆Sb,max).

2. Saturation Sn+1
b is explicitly computed using the last known

flux field φn
b

ε
Sn+1
b − Snb

∆tn+1

+∇ · φn
b = qb. (31)

3. Properties depending on the saturation (Mn+1
a , Mn+1

b , Ln+1
a ,

Ln+1
b and (

∂pc
∂Sb
∇Sb)

n+1) and related fluxes (φn+1
g and φn+1

pc
) are up-

dated.
4. Pressure field pn+1 is implicitly computed solving the pres-

sure equation

−∇ ·
(

Mn+1
a,c→f +Mn+1

b,c→f

)

∇pn+1 +∇ · φn+1
g +∇ · φn+1

pc

= qa + qb. (32)

5. Then φn+1
p and, therefore, φn+1 and φn+1

b can be updated for
the next time step.

2.2.5. Numerical schemes

As the saturation has great influence on relative permeabilities
and capillary pressure, it is necessary to use numerical schemes
suitable to ensure robustness and stability to the segregated solver.

In the provided solver impesFoam, each field (kri, K and
∂pc
∂Sb

) has a

user-defined interpolation scheme that can bemodified in the sim-
ulation configuration files. In the following numerical validation of
the solver (Section 4), we use the classical numerical schemes of
the IMPES method which are:

• Relative permeability kri: first order upwind scheme for stability
in the presence of a saturation front.

• Intrinsic permeability K : harmonic average for high hetero-
geneities.

• Derivative of the capillary pressure
∂pc
∂Sb

: linear interpolation.

We should note that the generic implementation of interpolated
field in the impesFoam solver allows the use of all the numerical
schemes proposed by OpenFOAM R© (high order, TVD, NVD, etc.
[6,7,24]).

2.3. Wellbore models

In this work, we do not focus on the wellbore modeling in
porousmediawhich is not trivial and has been discussed by several



authors [14,28]. We set up a simple structure in the software to
allow the subsequent development of more complex models. For
that, we consider constant injection and extraction flow rates of
wellbores in the developed solver. Two mask functions, defined in
the domain, are used to set up the positions of injection and extrac-
tion points (1 indicates the presence of a wellbore, 0 the absence).
The user-defined global flow rate is equally divided between all
the computational cells occupied by the wellbores, depending on
their volume.We consider that wellbores inject wetting phase and
extract the two phases, depending on themobility. Under these as-
sumptions, the source–sink terms for each phase can be expressed
as:

qa = −
Ma

Ma +Mb

Qextraction, (33)

qb = Qinjection −
Mb

Ma +Mb

Qextraction. (34)

2.4. Relative permeability models

Two relative permeability models are provided in the devel-
oped library. Both models involve the notion of effective satura-
tion, which is a normalized saturation of the wetting phase. The
effective saturation reads

Sb,eff =
Sb − Sb,irr

1− Sa,irr − Sb,irr
, (35)

where Sa,irr and Sb,irr are the user-defined irreducible (minimal)
saturations of the phases a and b respectively.

Both correlations depend on the effective saturation Sb,eff , the
power coefficient m, and the maximal relative permeabilities,
kra,max and krb,max (set to 1 if not specified by the user).

Brooks and Corey Model [18].

kra
(

Sb,eff
)

= kra,max

(

1− Sb,eff
)m

(36)

krb
(

Sb,eff
)

= krb,maxS
m
b,eff . (37)

Van Genuchten Model [19].

kra
(

Sb,eff
)

= kra,max

(

1− Sb,eff
)

1
2

(

1−
(

Sb,eff
)

1
m

)2m

(38)

krb
(

Sb,eff
)

= krb,maxS
1
2
b,eff

(

1−

(

1− S
1
m
b,eff

)m)2

. (39)

2.5. The capillary pressure models

As for the relative permeability models, the capillary pressure
correlations are based on the notion of effective saturation. How-
ever, themacro-scale capillary pressure tends to infinity when sat-
uration Sb tends to Sb,irr (and its derivative when Sb tends to Sb,max

in the Van Genuchten model). To accept irreducible and maximal
saturations in numerical simulations, we define the effective satu-
ration for capillary pressure Sb,pc as follows

Sb,pc =
Sb − Spc ,irr

Spc ,max − Spc ,irr
, (40)

where the minimal Spc ,irr is a user-defined parameter that should
satisfy

Spc ,irr < Sb,irr . (41)

For the Van Genuchten model, the maximal saturation Spc ,max

should satisfy

Spc ,max > Sb,max. (42)

Brooks and Corey Model [18]. The correlation for capillary pres-
sure reads

pc
(

Sb,pc
)

= pc,0S
−α
b,pc

, (43)

where pc,0 is the entry capillary pressure and
1
α
the pore-size distri-

bution index. Deriving the Eq. (43), the capillary term in the pres-
sure (14) and saturation (15) equations can be expressed

∂pc

∂Sb,pc

(

Sb,pc
)

= −
αpc,0

Spc ,max − Spc ,irr
S−α
b,pc

. (44)

Van Genuchtenmodel [19]. The correlation for capillary pressure
reads

pc
(

Sb,pc
)

= pc,0

(

(

Sb,pc
)− 1

m − 1

)
1
n

, (45)

where pc,0 is the entry capillary pressure andm the Van Genuchten
coefficient. The coefficient n is generally correlatedwithmwith the
following relationship:

1

n
= 1−m. (46)

In the provided toolbox, this relationship is used to compute
the n coefficient when it is not explicitly defined. Deriving the
Eq. (45), the capillary term in the pressure (14) and saturation (15)
equations can be expressed as

∂pc

∂Sb,pc

(

Sb,pc
)

= −
1−m

m

pc,0

Spc ,max − Spc ,irr

×

(

(

Sb,pc
)− 1

m − 1

)−m
(

Sb,pc
)− 1+m

m . (47)

Linear model. The linear model is also available with

pc
(

Sb,pc
)

= pc,0 +
(

1− Sb,pc
) (

pc,max − pc,0
)

, (48)

where pc,0 and pc,max respectively the minimal and maximal capil-
lary pressure. The capillary term in pressure and saturation equa-
tions is then given as follows

∂pc

∂Sb,pc

(

Sb,pc
)

= −
(

pc,max − pc,0
)

. (49)

2.6. ‘‘Darcy velocity’’ boundary condition

In the IMPES method, solving the pressure equation implies
some limitations in terms of boundary conditions. For example, it
is not straightforward to impose phase velocities on boundaries. To
make it possible in the impesFoam solver, we developed a suitable
Neumann boundary condition (called darcyGradPressure in
the toolbox) for the pressure field. Assuming fixed phase velocities
on the considered boundary, the total velocity can be expressed

Ufixed = Ua,fixed + Ub,fixed

= − (Ma +Mb)∇pa + (La + Lb) g−Mb

∂pc

∂Sb
∇Sb. (50)

Then, we can expressed the Neumann boundary condition on
the pressure field

n.∇pa

= n.

[

(Ma +Mb)
−1

(

Ufixed − (La + Lb) g+Mb

∂pc

∂Sb
∇Sb

)]

, (51)

wheren denotes the normal to the face boundary. A similar bound-
ary condition called darcyGradPressureAniso is defined for
the anisoImpesFoam solver. Note that in that case, the tensor K

needs to be invertible.



Fig. 1. Structure of the OpenFOAM R© porous multiphase toolbox.

Fig. 2. Example of a transportProperties file.

Fig. 3. Example of pressure p file (left) and velocity Ub file (right) for darcyGradPressure boundary condition.

3. Description of software components

The global organization of the porousMultiphaseFoam tool-
box is depicted in Fig. 1.

The toolbox is divided in 4 parts: porousModels, porous
BoundaryConditions, impesFoam and tutorials.

3.1. porousModels

This block compiles the libporousModels.so library con-
taining the relative permeability, capillary pressure and phase
models (see Sections 2.4 and 2.5). Model parameters needed
by the classes should be defined in the usual configuration file
transportProperties. An example of a configuration file for
a Brooks and Corey correlation is presented in Fig. 2.

3.2. porousBoundaryConditions

This block compiles libporousBoundaryConditions.so
library containing two newboundary conditions as detailed in Sec-

tion 2.6 and derived from the OpenFOAM R© basic boundary condi-
tion fixedGradientFvPatchField. The boundary condition is
called in the pressure file p as depicted in Fig. 3(left) while the ve-
locities have usual Dirichlet boundary conditions (see an example
of Ub file in Fig. 3(right)).

3.3. impesFoam

The solver impesFoam solves equations described in the Sec-
tion 2.2 considering isotropic porous medium (permeability K is
a scalar field). This solver is used in the numerical validation of
the developed library. It can be used as a development basis to
integrate other features of multiphase flow in isotropic porous
media.

3.4. anisoImpesFoam

The solver anisoImpesFoam solves same equations described as
the impesFoam except that the intrinsic permeability K is a tensor
field. Two injection cases are available in the provided toolbox. It



Fig. 4. Saturation profiles for the Brooks and Corey model (left) and the Van Genuchten model (right). Dash lines are theoretical saturation profiles.

can be used as a development basis to integrate other features of
multiphase flows in anisotropic porous media.

3.5. tutorials

This block contains the validation tests presented in the Sec-
tion 4: Buckley–Leverett and capillary validation. An injection/
extraction test case is also provided to ensure the proper imple-
mentation of the source/sink terms.

4. Numerical validations

The toolbox is validated using the solver impesFoam, i.e. the
isotropic version of the IMPES method. However, numerical meth-
ods are the same for anisotropic solver and two injection test cases
are provided in the tutorials to show an example of the use of
the anisotropic solver anisoImpesFoam.

4.1. Buckley–Leverett

We consider the simplified case of Buckley–Leverett, i.e. a two-
phase flow in a 1D domain (length L = 1 m, porosity ε = 0.5,
intrinsic permeability K = 1 × 10−11 m2, 400 computation cells)
without capillary effects. This simplified case allows to develop a
semi-analytical solution to get the shock saturation (saturation at
the front), the front velocity and the saturation profile behind the
front [29].

In the following tests, three fluids are considered (air, water
and oil) whose properties are summarized in Table 1. The domain
is initially fully saturated with the non-wetting fluid (air or oil
depending in this case, Sb = Sb,irr and Sa = Sa,max,) and we
inject the wetting fluid (water) with a fixed constant velocity Ub =
1× 10−5 m s−1.

The numerical validation is performed for the two relative per-
meabilities models, considering a water–air system for the Brooks
and Corey model and a water–oil system for the Van Genuchten
model. Model and algorithm parameters are summarized in
Table 1. The comparison between numerical and semi-analytical
results is shown in Fig. 4. A good agreement is foundwith somemi-
nor numerical diffusion mainly due to the ‘‘upwind’’ scheme used
for the relative permeability computation.

The case of the gravity regime is also studied, considering
vertical injection of water in a air-saturated system for both
models. Except the gravity contribution, the simulationparameters
remain unchanged. In the gravity regime, i.e. when the flow rate
injection is low, the front saturation is given by solving

Ub −
Kkrb(Sb,front)

µb

ρbgy = 0, (52)

Table 1

Parameters for: (a) fluid, (b) model and (c) algorithm.

(a)

Fluid ρ (kg m−3) µ (Pa s)

Air 1 1.76× 10−5

Water 1000 1× 10−3

Oil 800 1× 10−1

(b)

Model m

Brooks and Corey [18] 3

Van Genuchten [19] 0.5

(c)

Variable Value

pa tolerance 10−12

CFL 0.75

∆Sb,max 0.01

which gives Sb,front = 0.467 for Brooks and Corey model and
Sb,front = 0.754 for the Van Genuchten model. The computed front

velocities are respectively 4.28 × 10−5 and 2.65 × 10−5 m s−1.
The good agreement between numerical and analytical results is
shown in Fig. 5.

4.2. Capillary–gravity equilibrium

We now consider a two-phase flow (air/water), with capillary
pressure effects in a vertical 1D domain, similar to the previous
section (H = 1 m). The bottom boundary condition is now a fixed
wall (‘‘Darcy velocity’’ boundary condition with Ua = Ub = 0m/s)
and the top boundary condition is a Dirichlet condition with fixed
reference pressure p = 0 Pa and irreducible saturation Sb = Sb,irr .
We initialize the lower half of the domain with Sb = 0.5. Then
we simulate the flow over a long period (2 × 106 s) to allow the
establishment of a saturation profile along the vertical axis. When
the stationary state is reached, we have

Ua = Ub = 0, (53)

and then we can write:

∂pa

∂y
= ρagy, (54)

∂pc

∂y
= ρbgy −

∂pa

∂y
. (55)

The capillary pressure gradient can be therefore simply ex-
pressed in term of gravity contribution

∂pc

∂y
= (ρb − ρa)gy. (56)



Fig. 5. Saturation profiles in the gravity regime for the Brooks and Corey model (left) and the Van Genuchten model (right). Dash lines are theoretical saturation profiles.

Fig. 6. Saturation profiles (left) and gradients (right) depending on the capillary pressure model (top: Brooks and Corey, bottom: Van Genuchten).

Therefore, the final saturation field should satisfy

∂Sb

∂y
=

(ρb − ρa) gy
∂pc
∂Sb

(Sb)
, (57)

where
∂pc
∂Sb

(Sb) follows a given correlation described in Section 2.5.

Algorithm parameters are identical to the previous test case (cf.
Table 1) and the model parameters are summarized in Table 2.

Saturation profiles at the capillary–gravity equilibrium are
presented in the Fig. 6 (left). The comparison between theoretical
and numerical evaluations of saturation gradients (depending on
the saturation) validates the numerical implementation of the
presented models (see Fig. 6).

Table 2

Model parameters for capillary validation.

Model pc,0 m α

Brooks and Corey [18] 1000 0.5

Van Genuchten [19] 100 0.5

4.3. Performance test: viscous fingering in a heavy oil reservoir

We now consider a water injection (Ub = 1 × 10−4 m.s−1) in
a horizontal oil saturated system (see fluid properties on Table 1).
The size of the reservoir is 1×0.4 m2 (1.6× 106 computation cells
with a 2000×800mesh). The permeability of the two-dimensional
domain is heterogeneous by blockswith a value between 1×10−13



Fig. 7. Heavy oil reservoir permeability field and boundary conditions.

Fig. 8. Viscous fingering in a heavy oil reservoir (Water saturation field Sb).

and 4 × 10−13 m2 (see Fig. 7). The Van Genuchten model is used
for relative permeability and capillary pressure withm = 0, 5 and
pc,0 = 5 Pa.

In this condition, we observe the emergence of multiple insta-
bilities in the saturation front area (see Fig. 8(a)). The development
of these instabilities leads to a so called ‘‘viscous fingering’’ (see
Fig. 8(b)), a phenomenon due to the important viscosity ratio be-
tween the two fluids [30].

The viscous fingering presents an important challenge to oil
industry and needs to be accurately understood and modeled
because these instabilities decrease the efficiency of oil recovery
processes.We do not focus in this study on these phenomena char-
acterization and the reader interested could refer to previous ex-
perimental [30–34] and numerical studies [35–38]. Actually, the
number of ‘‘viscous fingers’’ depends on the reservoir properties
but also on numerical parameters such as grid refinement and al-
gorithm tolerance. Therefore, the complete characterizationwould
require a thorough study that is not in the scope of this paper. How-
ever, it is an interesting illustration of the possibilities of the solver
by simulating a complex multiphase flow where the saturation
front occupies almost the whole domain. A unique configuration is
tested and used to evaluate the parallel performance of our solver.

In OpenFOAM R©, the parallel algorithm is based on the domain
decomposition method. Before the simulation, the whole domain
is decomposed in n small domains, n being the number of com-
putational cores used for the simulation. Then, each core solves
a smaller linear system and information exchanges at bound-
aries between cores are done using the Message Passing Interface
(MPI) communications protocol. Several decomposition methods
are available in OpenFOAM R© (simple, scotch, manual, etc.) and can
be used independently of the considered solver. We use in our
simulations the simple method which decomposes the domain in
nx × ny × nz equal parts, where ni are user-defined values. The

Fig. 9. Log–log representation of the speedupwith the impesFoam solver (reference

is 16 cores and linear solver is PCG).

pressure equation (14) is solved with the standard preconditioned
conjugate gradient (PCG) solver with a fixed tolerance of 10−6.

The ‘‘viscous fingering’’ phenomena is simulated on the Hyper-
ion clusterwhich consists of 368 computationnodes of 2 quad-core
Nehalem EX processors at 2.8 GHz with 8 MB of cache per proces-
sor. TheMPI version installed on the cluster is theMPT-2.04, a spe-
cific version of MPI optimized for SGI clusters. Simulations were
performed from 16 (the reference) to 1024 cores. The cluster was
charged during the simulations and allocates randomly computa-
tion nodes, whose 8 cores are fully dedicated to the requested task.
The total simulation, i.e. 4000 s of physical time, takes around 700 h
of CPU time. The speedup σ for a simulation with n cores is com-
puted as follows:

σn =
T16

Tn
(58)

where Tn is the computation time for n cores. The parallel efficiency
ǫn is defined:

ǫn =
16

n
σn. (59)

The results in term of speedup are presented in Fig. 9. The numer-
ical results show a super linear speedup until 256 cores (ǫ256 ≈
1.58). This is not an unusual behavior since it has already been ob-
served on standard OpenFOAM applications, see for example the
3D cavity flow simulations performed by the IT Center For Sci-
ence [39]. In that study, Navier–Stokes equations are solved on 10
millions computation cells and the parallel efficiency can reach ǫ ≈
1.6. In our case, we assume that the explicit part of the resolution
(saturation equation and the flow properties computation at each
time step) can partly explain this observation. Indeed, increasing
the number of processors decreases the number of computation
cells and then RAM memory necessary for each processor. As the
explicit treatment need low computation but high access mem-
ory (RAM and cache), this could lead to a high parallel efficiency
superior to 1. This effect decreases above 256 cores, because par-
tial linear systems become smaller and the information exchange
between cores takes relatively more computation time. A linear
scaling is reached for 512 cores (ǫ512 ≈ 0.97). Then, the parallel
efficiency for 1024 cores is low (ǫ1024 ≈ 0.59) because the linear
system for each core become very small (only 1560 cells per core).

Parallel efficiency has also been tested using the OpenFOAM R©

multi-grid solver (GAMG) on shorter simulations (tstart = 1000 to



tend = 1010 s) from 16 to 512 cores. For the reference case (16
cores), the GAMG solver reduces the global computational time
of the simulation from 679 s (PCG) to 436 s (GAMG). The GAMG
solver exhibits also a super linear speed-up until 256 cores but
lower than the PCG solver (respectively ǫ256 ≈ 1.09 and ǫ256 ≈
1.58). This results in a similar computational time for both solvers
(T256 ≈ 26 s) when using 256 processors and slower simulations
above (T512 ≈ 19 s for GAMG and T512 ≈ 14 s for PCG). Note that
the optimization of theGAMGsolver parametrizationmay improve
global efficiency and should require a thorough study.

5. Conclusion

A toolbox for the simulation of multiphase flow in porous me-
dia has been developed using the standards of OpenFOAM R©. This
toolbox includes libraries for porousmodels (relative permeability,
capillary pressure and phase model) and a specific porous bound-
ary condition. A classical IMPES solver has been developed to vali-
date the providedmodels by comparison with analytical solutions.
A study on the parallel efficiency (up to 1024 cores) has also been
performed on a complex multiphase flow. The presented solver
shows a satisfactory speedup, provided to solve a sufficiently large
problem. The provided solver can serve as a basis to develop other
features, such as new multiphase or improved wellbore models.
Moreover, the easily modifiable nature of the OpenFOAM R© plat-
form can be useful to test, for example, new numerical schemes or
solution methods.
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