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a  b  s  t  r a  c  t

A  continuous process combining  an alkaline  thermo-mechano-chemical  pretreatment  neutralization

step,  followed  by injection  of enzymes  into  the  twin-screw  extruder, was developed  using sweet  corn

co-products  as a biomass model.  The implementation  of the continuous process  is described.  Particular

attention  is paid to the  influence of the bio-catalytic  action  of enzymatic  hydrolysis  on the deconstruction

of  annual  plant  material in the  twin-screw  extruder (a  process  called  “bioextrusion”).  The  use  of a twin-

screw  extruder allows working  with  high consistency (20%),  in  a high shear environment,  for  a  short  time

(∼2  min).  In the  present  work,  the  nature of the  ligno(hemi)cellulosic  material transformations,  covering

solubilization  and  extraction  of saccharides  and modification  of cellulosic  fibers, were  investigated.  41%

of  hemicelluloses  and  14% of  lignin are  extracted by the  alkaline pretreatment.  Hydrolytic enzymes  are

not  deactivated  during bioextrusion,  which  has a destructing  effect on the fiber. It leads to a change of

rheological  properties  and induces  an increase  of sugars  released  in the form of  mono  and polysaccha-

rides  (up  to  13%/DM of total  sugars)  with  longer chains than  in the  case  of a batch reactor. At  the same

time,  the  degree of  polymerization decreases  and a shortening of the  cellulose  chains  occurs.

1. Introduction

The lignocellulosic materials from agriculture and forest

by-products represent an important source of renewable and

carbon-neutral energy. These resources are clean, cheap, available

in large quantities, and are independent of geographical location,

plus they are carbon neutral and renewable. However, the lignocel-

lulosic biomass is a  complex assembly of cellulose, hemicelluloses

and lignin whose extraction and conversion requires the use of a

refining process (Himmel et al., 2007).

These transformation processes are actually studied worldwide

and many reviews exist on the subject (Van Dyk and Pletschke

2012). They are typically realized in two steps: one of pretreatment

intended to improve the accessibility of the cellulose and a  second

allowing hydrolysis of the cellulose by enzymatic action. Sun and

Cheng, 2002, Mosier et al. (2005), Zheng et al.  (2009), Harmsen et al.

(2010) and Alvira et al. (2010) have reviewed pre-treatment tech-

∗ Corresponding  author  at: Université de  Toulouse,  INP, Laboratoire  de  Chimie

Agro-Industrielle, ENSIACET,  4  Allée  Emile Monso,  BP  44362,  31030 Toulouse  Cedex

4, France.  Tel.: +33  5  34  32  35  49; fax:  +33 5  34  32  35  99.

E-mail  address:  Virginie.Vandenbossche@ensiacet.fr  (V. Vandenbossche).

nologies for a bioethanol production process based on enzymatic

hydrolysis. Most cited pretreatments, among which dilute acid pre-

treatment (Saha et al., 2005), steam explosion (Oliva et al., 2003;

Cara et al., 2006; Varga et al., 2004; Ballesteros et al., 2006) and

ammonia fiber explosion (Galbe and Zacchi, 2007) are the most well

known, are penalized by implementation constraints, technology

or reagent costs, or inhibitor production for enzymatic hydrolysis

or ethanolic fermentation.

Soft  alkaline pretreatment is one approach that has several

potential advantages compared to other pretreatment processes,

including lower operating cost, reduced degradation of holocel-

lulose, and subsequent formation of inhibitors for downstream

processing (Carvalheiro et al., 2008; Kumar et al., 2009; McIntosh

and Vancov, 2011; Taherzadeh and Karimi, 2008). The main mech-

anisms of soft alkaline pretreatment are  hydroxyl group solvation,

leading to the rupture of intra or inter molecular hydrogen bonds,

and the breakdown of ester bonds with cleavage of linkages in the

lignocellulosic cell wall matrix, all of which lead to  the alteration

of the lignin structure, the hydrolysis of the lignin–hemicellulose

complex,  cellulose swelling, and the partial decrystallization of the

cellulose (Bobleter, 1994; Sun and Cheng, 2002).

A way to  improve process costs is to  increase the solid con-

centration of biomass in each unit operation. Such high solid

http://dx.doi.org/10.1016/j.indcrop.2015.01.041



Fig.  1. Schematic  representation  of  the sequences of  the  process  carried out in  two successive  twin screw extruders with recirculation of the bioextrudate in the  second  twin

screw  extruder with  or  without a filtration  module.

concentrations dramatically increase economic viability, reducing

operating costs due to decreased volumes. However, increasing

solid concentration increases the apparent viscosity of biomass

slurries, making mixing and conveying operations more challeng-

ing. Among the processes used to carry out pretreatment with

a minimum number of steps, twin-screw extrusion technology

has many advantages and allows working with high solid con-

centrations. It  produces a  high shear, rapid heat transfer, and

effective and rapid mixing, in a  continuous operation, with good

adjustability of treatment steps.

Co-penetrating and co-rotating twin-screw extruders are most

common (Dziezak, 1989), and a very wide choice of screw elements

is available. The screw profile is defined by the arrangement of the

different screw elements and their characteristics (pitch, length,

number and shape of screw, and angle between two successive

elements in case of paddle screws) in different positions and spaced

differently.

The performance of twin-screw extrusion and the influence of

the operating parameters have been studied on biomass fraction-

ation from poplar (N’Diaye and Rigal, 2000), Miscanthus sp. (De

Vrije et al., 2002), sugar beet pulp (Rouilly et al., 2006), sunflower

(Evon et al., 2007; Kartika et al., 2006), soybean hulls (Yoo et al.,

2011), rice straw (Chen et al., 2011), and wheat straw and bran

(Marechal et al., 2004; Zeitoun et al., 2010; Vandenbossche et al.,

2014a).

More particularly, twin-screw extrusion can be used to pre-

treat different biomasses for the production of sugars, and several

authors have reported this type of application over the last few

Fig.  2. Screw  configuration  for  the combined  process of  pretreatment  and  bioextrusion  with or without  liquid/solid separation zone. (T2F  =  trapezoidal double-thread  screw;

C2F  = conveying  double-thread screw;  BB =  bilobe  paddle screw; CF2C  =  reversed  double-thread  screw. The  numbers following  the type of  the screw  indicate  the pitch of  T2F,

C2F,  and  CF2C screws  or  the angle  between  two successive  elements  in case  of BB screws).



Table  1

Operating  conditions.

Profile  Constraintelements  SS T NaOH/DM  H3PO4/DM  pHex L/S  FR  I Stability

(rpm)  (◦C) (%)  (%) (kg h−1/kg h−1)  (A)

A 1 CF2C  -25 110  100  32.4  36.6  7.0 10.3  0.06  9  Instability of  dynamic plug

100 100  10.7  13.1  6.5  3.6 0.20  23  Instability

filtration maintained  but

irregular

110  100  9.4  11.0  6.0 7.6 0.08  17  Instability

filtration maintained  but

irregular

A  2 CF1C  -25 110  100  10.5  11.8  6.0 8.2 0.07  17  Stable

110  100  12.1  29.4  5.0 8.4 0.08  21  Stable

110  100  18.6  28.0  5.5  8.1 0.07  14  Stable

Constraint  elements  and operating conditions  for  Alkaline pre-treatment (CF2C  = reversed double-thread  screw,  CF1C  =  reversed simple-thread screw,  DM  is  the dry  matter

of  inlet  sweet  corn, Ss is  the  screw rotation speed (rpm),  pHex is  the pH of the extrudate,  L/S  is  the liquid/solid  ratio,  FR is the extruder  filling ratio, I  is the  current  feeding the

motor  (A).

Table  2

Constraint  elements  and operating conditions  for  Bioextrusion  step.

Profile  Constraint elements  SS T  Enzyme/DM  L/S  FR Stability

(rpm) (◦C) (%)  (kg h−1/kg h−1)

B 1 CF2C -33  (25)  280  50  4.0  2.5  0.01 Instabilityof  dynamic  plug

B 2 CF2C -33  (50) 280  50  4.0  2.5  0.01 Instabilityof  dynamic  plug

B 3 CF2C -16  (25)  200  50  4.1  2.5  0.01 Stable

B  4 DM  -45◦ (5  × 5)  200  50  4.6  2.5  0.01 Stable

CF2C  = reversed  double-thread screw,  DM  = monolobe  paddle-screw,  the length of the screws  is  indicated  in  brackets, FR = extruder  filling ratio.

years. Zheng and Rehmann (2014) provide an overview of the

extrusion pretreatment of lignocellulosic biomass.

Lamsal et al. (2010) first showed that extrusion led to higher

reducing sugar yields compared to grinding, and they studied the

process on wheat bran in two steps: impregnation with water

followed by mechanical treatment (grinding or extrusion). A com-

bination of both extrusion and alkaline pretreatment has been

explored more recently (Zhang et al., 2012; Karunanithy and

Muthukumarappan, 2011; Duque et al., 2013; Um et al., 2013; Kang

et al., 2013; Han et al., 2013). Karunanithy and Muthukumarappan,

2013 provide an overview of this type of thermo-mechanical

pretreatment, including the mechanism influencing extruder and

feedstock parameters, plus evaluation of pretreatment efficiency. A

continuous process combining alkaline thermo-mechano-chemical

pretreatment, followed by injection of enzymes into the twin-

screw extruder, called “bioextrusion” was developed and tested

on different biomass such as sweet corn residue (SC), blue agave

bagasse, oil palm empty fruit bunch as residue from palm oil man-

ufacture, and barley straw (Vandenbossche et al., 2014b; Duque

et al., 2014). This new process leads to excellent mixing of the

enzymes with the pretreated biomass at high concentrations, and

allows saccharification to begin during bioextrusion.

The implementation of the continuous process, and the

influence of the bio-catalytic action of hydrolytic enzymes on

deconstruction of annual plant material in the twin-screw extruder

during “bioextrusion”, is studied here in case of a  weakly lignified

material: the sweet corn co-products.

2. Experimental

2.1. Materials

2.1.1. Feedstocks

Dehydrated sweet corn co-products, provided by SARL Soupro+,

came from an industrial corn grain cannery. It  was milled using

a hammer mill fitted with a 6 mm screen, and contained 4% ash,

39% cellulose, 36% hemicelluloses and 4% lignin (all expressed in

%/dry matter and determined according to the French standard NF

V 03-322 and ADF-NDF method cited in Section 2.3).

2.1.2. Enzymatic cocktails
Enzymatic saccharification was conducted using the Saccha-

rised C6 cocktail from Advanced Enzyme Technologies (India) in

a citrate buffer (300 mM, pH 4.8). A solution of 1% of saccharised

C6 cocktail is characterized by: protein content of 9  mg/ml, cellu-

lose activity of 5s 5FPU/ml, endoglucanase activity of 1940nkat/ml,

xylanase acivity of 16,900nkat/ml, and b-glucosidase activity of

310nkat/ml. The protein content was measured after acetone

precipitation with Bio-Rad DC protein assay kit, cellulose and

endoglucanase activity according to Ghose (1987), xylanase activity

according to  Bailey et al. (1992) and b-glucosidase activity accord-

ing to Bailey and Nevalainen (1981).

A preliminary study showed that the mixture of advance

enzyme had an optimum temperature at 54 ◦C. Beyond 56 ◦C

enzyme activity begins to decrease, to keep a safety margin we

placed at 50 ◦C for the bioextrusion trials.

2.2. Twin-screw extruder

Thermo- mechano-chemical alkaline pre-treatment and the

neutralization phase, were conducted using a co-penetrating and

co-rotating Clextral BC 45 twin-screw extruder. For the bioex-

trustion phase a Clextral BC 21 is used. Both BC 45 and BC 21 had

seven modular barrels, each of these measuring 200 mm in length

for BC 45 and 100 mm for  BC21. Both extruders were equipped

with different segmental screw elements. The metallurgy is, respec-

tively, CLX200 for BC45 and hastelloy for BC21. Both are corrosion

resistant. Modules were thermo-regulated by thermal induction

for BC45 and by heater band for BC21; module cooling was by

water circulation. A filter section was used to enable the filtrate

to be collected and consisted of six hemispherical dishes with con-

ical holes (1 mm entry, 2  mm exit). The outputs of extruders were

not equipped with die. Schematic representation of the sequence

of steps for the process carried out in two successive twin-screw

extruders is  shown in Fig 1. Screw configuration for the combined

process of pretreatment and bioextrusion is shown in Fig 2. After

alkaline pretreatment and neutralization in twin-screw extruder

BC 45, the extrudate was stored frozen and defrosted just before

being introduced into BC 21 for the bioextrusion.



Table  3

Operating  conditions  for  alkaline  pre-treatment  and bioextrusion.

Alkaline  pretreatment  Bioextrusion

SS (rpm) 110  SS (rpm)  200

T (◦C) 100  T  (◦C) 50

QS (Kg/h) 8.8  QS (Kg/h) 3.29

DMs  (%) 90 DMs  (%) 39.6

QLAlk (Kg/h)  20.7  QT+Ez (kg/h)  1.95

QNaOH (Kg/h) 0.8  QEz (g/h) 60

QLAc (Kg/h)  51.6

QH3PO4 (Kg/h) 0.9

NaOH/DM (%) 10.5 Enzyme/DM  (%) 4.6

H3PO4/DM (%) 11.7

L/S (kg.h−1/kg.h−1) 7.6  L/S  (kg  h−1/kg h−1)  2.5

Qext (kg/h) 16.5 Qbioext (kg/h) 5.29

DMext 40.7  DMbioext 29.0

Qfil (kg/h)  62.4

DMfil 4.7

pHext 6

pHfil 5.5

I (A) 17

SME  (Wh/kg)  141

Where  SS is the  screw  rotation  speed (rpm); T  is  the set  temperature  of  the heating

modules  (◦C); Qs and  DMS are the  feed  rate (kg/h) and dry  matter (%)  of sweet

corn;  QLAlk and QLAc are  respectively  the inlet  flow rate  of alkali solution  (kg/h)

and  acid  solution  (kg/h);  QNaOH and  QH3PO4 are the inlet  flow of NaOH  and H3O4;

NaOH/DM  and  H3PO4/DM  are  the reagent  to  sweet corn  dry matter  ratio  (%); L/S  is

the liquid/solid ratio;  Qext ,  Qbioext and Qfil are,  respectively,  the flow rate  of extrudate,

bioextrudate  and filtrate (kg/h);  DMext ,  DMbioext and DMfil are, respectively,  the dry

matter  of  extrudate, bioextrudate  and filtrate. I is the  current  feeding the motor (A);

SME is  the  specific  mechanical  energy  consumed  by  the motor per unit weight of

solid matter (Wh/kg).

2.2.1. Alkaline thermo-mechano-chemical pre- treatment and

neutralization phase

The  alkali used for the pretreatment is sodium hydroxide

(NaOH), and the neutralization step uses phosphoric acid (H3PO4).

Operating conditions are described in Tables 1 and 3.

Feedstocks were fed into the extruder’s first module and the

alkaline solution injected using a  piston pump. A first zone of

mechanical pressure, consisting of a succession of bilobal paddles,

ensures grinding and good mixing of the material with this alkaline

solution. An acid solution was then injected using a piston pump,

to neutralize the medium and reduce the viscosity of the matter to

ensure good filtration. A second zone of mechanical pressure guar-

antees good mixing with the medium, and fast neutralization. The

filtration zone situated in module 6  was carried out by a third zone

of mechanical pressure using reversed pitch screws to ensure the

formation of a  dynamic plug, and thus the pressing of the mixture.

Table  4

Composition  and  enzymatic hydrolysability  of  the pretreated coproduct of  sweet

corn.

Composition

DM (%)  40,7

MM (%/DM)  7,3

OM  (%/DM) 92,7

Hot  water  soluble  (%/DM) 31,4

Cellulose  (%/DM)  46,4

Hemicelluloses  (%/DM)  28,8

Lignin  (%/DM)  4,8

Glucose  (%/DM)  54,4

Xylose (%/DM)  22,3

Arabinose  (%/DM)  3,0

Galactose  (%/DM)  0,7

Mannose  (%/DM)  0,1

Enzymatic  hydrolysability

(%/DM)  35

DM  = dry  matter; MM =  mineral matter;  OM  = organic  matter.

2.2.2. Bioextrusion

Bioextrusion consists of introducing an enzyme cocktail into the

extruder, and then using a  succession of compression and expan-

sion steps to facilitate the penetration of these enzymes into the

matter. Operating conditions are shown in Tables 2 and 3.

2.3.  Analytical methods

2.3.1.  Dry matter and parietal compounds

Moisture contents were determined according to  the French

standard NF V 03-903 and mineral contents according to the French

standard NF V 03-322. An estimation of the three parietal con-

stituents (cellulose, hemicelluloses, and lignins) contained in the

solids, was made using the ADF-NDF method of Van Soest and Wine

(1967, 1968). All determinations have been carried out in triplicate

and standard deviation was less than 1.5% for all measurements.

An estimation of the hot water-soluble components contained,

was made by measuring the mass loss of the test sample after 1  h in

boiling water. This method has been adapted using standard TAPPI

204 cm-97 on the Fibertec Tecator M1017 apparatus. All determi-

nations were carried out in duplicate.

2.3.2. Sugars

Reducing sugars were determined using the DNS method

(Miller, 1959).

Total sugars were determined after acid hydrolysis using a

method adapted from NERL (Sluiter et al., 2008). 10 ml of filtrate

was mixed with 1.25 ml 72% H2SO4. Hydrolysis kinetics were car-

ried out in sealed tubes between 30 and 90 min at 100 ◦C. After

cooling, samples were neutralized with 3.6 ml NaOH 32%(m/v),

diluted and filtered (0.45 mm). Analysis was then made using high-

performance liquid chromatography (HPLC).

Free and total sugars were measured using HPLIC (DIONEX ICS-

3000 coupled with pulsed amperometric detection (PAD) and fitted

with a  Carbopac PA1 column).

Enzymatic hydrolysability was determined by enzymatic

hydrolysis in 50 mM citrate phosphate buffer (pH 4.6) in the pres-

ence of Advanced enzymes (2.5%/DM substrate) at 50 ◦C for 48 h. It

has been calculated as the percentage of reducing sugars released

by enzymatic hydrolysis, relative to dry matter.

Sugars released after bioextrusion were measured on water sol-

ubles extracted from bioextrudates. The latter, obtained after 1, 3, 5

or 7 passages in the BC21 twin-screw extruder, were first diluted in

water with a  Liquid/Solid ratio of 20 and then filtered onto a glass

filter (porosity grade: 2).

2.3.3.  Degree of polymerization (DP) of oligosaccharides

The degree of polymerization (DP) of oligosaccharides was

determined in high performance anion-exchange chromatography

equipped with a  pulsed amperometric detector and an eluent gen-

erator EluGen® (HPAEC-PAD, ICS-3000, Dionex). The analyses were

carried out with an anion exchange column (250 mm Carbopac

PA200) and used a mixture of two eluents (A:100 mM sodium

hydroxide and B:100 mM sodium hydroxide with 1 M sodium

acetate) with a  gradient from 100% of A  at t = 0 to  75% of A and

25% of B at t  = 35 min. The flow rate of the column was fixed at

0.35 mL/min.

2.3.4.  Residence time distribution (RTD)

Sweet corn particles colored with Erythrosin were placed

quickly (<2s) on the first screw element. This dye was chosen as

a tracer for its neutral characteristics with respect to the process

and because of its good colorization of most vegetable matter,

itself often highly colored (N’Diaye, 1996). Samples of extrudate

are taken every 5 s  at the solid outlets of the extruder. All sam-

ples are dried at 103 ◦C and ground to homogenize the color and
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to eliminate large size particles which affect measurements. The

‘a’ coordinate of colored outlet samples in the CIE (L*a*b) system,

is read directly using a  spectrophotocolorimeter (Model CM 500i,

Minolta, Japan, illuminant: D65, observer angle: 2◦). The RTD data

are examined through typical distribution versus time plots. RTD is

defined as:

Ei =

Ci
n∑

i=1

Ci × Dt

where Ci is the tracer concentration in each sample and Dt is the

sampling period. Typical curves are shown on (Fig. 3).

2.3.5. Dynamic viscosity

Viscosity values were determined in accordance with TAPPI

Standard T 230 om-94 “viscosity of pulp” (capillary viscometer

method). In our case, the sample was solvated with cupriethylene-

diamine and passed through a  canon-fenske Viscometer, type 150

at 25 ◦C. The viscometer readings were performed three times for

each sample.

3.  Results and discussion

The  process of deconstruction of lignocellulosic plant material

is carried out using two consecutive extruders BC 45 and BC 21.

It included three different parts: an alkaline pre-treatment (in BC

45), a neutralization phase (in BC 45), and an enzyme impregnation

phase (bioextrusion, in BC 21) during which the hemicelluloses and

cellulose saccharification began. (Figs. 1 and 2).

3.1. Alkaline pre-treatment and neutralization phase

The first step of the process is  the destructuration of cellulosic

material under alkaline conditions.

The alkaline extraction conditions for hemicelluloses and lignin

in twin-screw extruders have been widely studied, for instance on

sorghum and poplar wood fibers (N’Diaye et al., 1996) or on wheat

straw (Magro, 1995; Marechal, 2001; Zeitoun et al., 2010), and this

previous work has allowed us to define the configuration and screw

profiles used in this study. The aim of this first step is to  open

up the complex structure of the biomass, and facilitate access of

the hydrolytic enzymes to polysaccharides, by increasing the sur-

face area (Karunanithy and Muthukumarappan 2011) and porosity

(Zhang et al., 2012; Vandenbossche et al., 2014b).

The thermomechanical effect of the flow restricting elements of

the screw profile, ensures physical disintegration of the material

by separating the fiber bundles. The presence of sodium hydrox-

ide ensures additional chemical destructuration by solubilization

of  organic matter, especially hemicelluloses and lignin, depending

on the amount used.

The  neutralization phase is  necessary to obtain a pH compati-

ble with effective enzyme activity during bioextrusion. Phosphoric

acid is used in this step because it is triprotic and so limits the

mass of acid needed. This neutralization step also decreases the

viscosity of the matter via a change of pH and a dilution effect,

which facilitates filtration and plays a part in developing friction,

shear, and impacts residence time. The effectiveness of the filtration

step depends on the formation and stability of the “dynamic plug”

formed in module 7,  and to the presence of constraint elements

(Fig. 2). The selection of these constraint elements is important for

the formation of a  stable “dynamic plug”. The use of a  C2FC -25

reversed double-thread screw failed to  achieve a  stable filtration

despite varying the operating conditions, including a  change in the

amount of sodium hydroxide, in the liquid–solid ratio, or  in the

degree of filling (Table 1). Indeed, in the presence of insufficient

backpressure, the operation of the extruder as a liquid/solid sepa-

rator may be cyclic, with an accumulation of fluid in the filtration

zone resulting in a loss of dynamic plug structure. Liquid separa-

tion is  less effective and the solid is insufficiently pressed. This is

accentuated in the presence of high levels of sodium or high liq-

uid/solid ratios and can explain the worst results, obtained with a

NaOH/DM ratio of 32.4%. A change in extruder configuration, con-

sisting of replacing the C2FC -25 reversed double-thread screw with

a reversed simple-thread screw C1FC -25, has achieved a steady

state for a  L/S ratio close to 8, a filling ratio (Q/S) of 0.07–0.08 and

for a  range of NaOH/DM ratios between 10% and 19%. The reversed

simple-thread screw C1FC -25 ensured better back pressure than

the C2FC -25 reversed double-thread screw. For subsequent work a

minimum NaOH/DM ratio of 10.5% has been retained. Under these

conditions, 8% of the cellulose is driven into the filtrate, and 41%

of the hemicelluloses plus 14% of the lignins are extracted by the

alkaline pretreatment including neutralization step (Table 4). The

pH of the filtrate and of the extrudate at the end of this step is,

respectively, of 5.5 and 6.

3.2. Development of  the impregnation profile on BC 21

After the alkaline pretreatment and the neutralization step,

enzymes are introduced into the conveying zone of the bioextru-

sion step (Fig. 2), and impregnation of the material is ensured by the

use of a series of mechanical pressure and relaxation zones. Four

constraint zones are implemented in modules 10, 12–14. The first

three consist of a series of bilobe paddle screws, the first mounted

at an angle of 90◦ (no conveying effect), and the last two at −45◦

(retention effect on the material). The fourth zone is formed either

by a reversed screw or by a  monolobe paddle screw mounted at

an angle of −45◦.  These constraint elements provide good mix-
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Fig.  4. Enzymatic  hydrolysability  kinetics  of the extrudate  produced  by  profile  B3

and B4.

ing of the material. Between these areas of mechanical pressure,

conveying elements with decreasing pitch ensure the transport of

the mixture. In order to  increase the residence time and optimize

the biomass – enzyme contact, different constraint elements have

been tested in module 14 (Tables 1 and 2). The reversed double-

thread screws C2FC -33 generated insufficient backpressure to

form a stable “dynamic plug”, whatever the length tested. Reversed

screws with shorter pitch or monolobe paddle-screws were used

and allowed a  steady state to  be achieved. The determination of

the residence time distribution of the matter in the extruder for

these two profiles B 3 and B 4, showed that the use of monolobe

paddle-screws resulted in a lower axial dispersion of residence time

as well as a  slight shortening thereof. However, in both cases the

retention time is very similar, close to two minutes (Fig. 3). Com-

parison of the yields of sugars released by enzymatic hydrolysis at a

low concentration (2.5%,) without adding fresh enzymes, revealed

no significant difference after 48 h (Fig. 4). At most, the hydrolysis

kinetic was initially slightly accelerated. This result also showed

that the implementation of a  shearing element such as  reversed

screws, does not cause significant deactivation of the enzymes.

3.3.  Increase in the residence time of the enzyme impregnation

step: bioextrusion

As  can be seen from Fig. 3  the residence time of the material in

the BC 21 for the bioextrusion step is very close to 2 min whatever

the  restricting element used. This is  very low compared to  the

times required for a  significant increase in enzymatic hydrolysis for

release of the monosaccharides. Thus, to understand and validate

the action of enzymes in the extruder it is necessary to extend their

action time during bioextrusion. The increased extruder contact

time is simulated by recirculating the bioextrudate in BC21. The

operation is undertaken using the same configuration and the

same screw profile as for the first passage (Figs. 1 and 2), but

without further addition of enzyme solution. It is  as if the duration

of the contact time was multiplied by the number of passages

through the extruder.

The  material is worked on more and more with successive

passages through the extruder, and becomes sticky. This pasty con-

sistence is less and less textured, the material is liquefied gradually,

and its rheological properties change. And this change in rheology

tends to  prove that a fiber destructuring effect is  occurring during

bioextrusion, which was also observed by Samaniuk et al. (2011),

who have shown a synergistic relationship between mixing and

enzyme activity during enzymatic hydrolysis. And by using a torque

rheometer, they demonstrated that the torque required for mixing

biomass samples with 20% solid dry matter, decreases in the pres-

ence of enzymes as  a function of time, and this is  accompanied by

an increase in glucose converted.

3.4. Nature of the transformations of the lignocellulosic material

in  the twin-screw extruder during enzyme impregnation

3.4.1. Solubilization and extraction of saccharides

To study the impact of bioextrusion on the evolution of the mat-

ter destructuration, an analysis of dissolved compounds during this

bioextrusion is  made. To this end, samples of bioextrudate are col-

lected after each passage through the BC 21 extruder, and then

diluted in water, with a  liquid/solid ratio (L/S) of 20. They are then

pressed and filtered. Free sugars, reducing sugars and total sugars

are then measured in the recovered filtrates.

To compare the thermomechanical effects with the thermome-

chanical effects coupled to enzymatic action, a test is carried out

without the addition of enzyme, maintaining a solid liquid ratio

of 2.5 by addition of water. Analysis of the resultant filtrate from

the tests without enzyme, shows that very few saccharides are

extracted during extrusion whatever the number of bioextrusion

passages (Fig. 5). The thermomechanical effect generated by extru-

sion under these operating conditions does not act on the release

of sugars, either in free form or in polysaccharide form.

0

2

4

6

8

10

12

14

16

TMO TM1 TM3 TM7 TME1 TME3 TME5 TME7 Con trol

S
u

g
a
rs

 (
%

/D
M

)

Free  suga rs

Redu cing  suga rs

Total suga rs

Fig.  5. Sugar  released  in  bioextrudate  after  1, 3, 5  or  7 passages through  the twin  screw extruder  with only  thermomechanical  effects  (TM) or  with thermomechanical  effects

coupled  to enzymatic  action (TME),  compared  with  biomass  treated  in  a stirred  reactor  in the presence  of  advanced  enzymes, 4.6%/ms, consistency  of 30%,  70 min, T:  50 ◦C

(control).  TMO  corresponds  to  the  alkalin  pretreated  coproduct of  sweet corn.



-50

0

50

100

150

200

250
1 - 110502 #22 [modified by Administrateur, 4 peaks manually assigned]

ED_1

nC

1

Az

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0 2 - 110502 #25 malto 51.7 ED_1

nC

min

2

Fig.  6.  HPAE-PAD analysis  of oligosaccharides  released  into the filtrate in  the seventh  cycle  of bioextrusion  compared with the maltodextrine  standard.

During the bioextrusion, free sugars appear, which means that

the enzymes are active in  the extruder and that monosaccharides

are released (1–2% of dry matter introduced). Analysis of the reduc-

ing sugars and of the total sugars in the wash filtrates reveals

the presence of sugars released by enzymes in the twin-screw

extruder. These sugars are in the form of free sugars, oligosac-

charides and polysaccharides, and their proportion increases with

the number of  passages through the BC21 extruder. Looking at

the difference between the proportion of reducing sugars and of

total sugars derived from the different determination methods, the

DNS method quantifies only the reducing ends of mono, oligo and

polysaccharides, whereas the method by acid hydrolysis covers all

the monosaccharides in these sugars.

A control is prepared in order to compare the enzymatic action

during bioextrusion with the enzymatic action in a stirred reactor.

Alkali pretreated biomass is placed in contact with the enzymes

in a stirred reactor under the same operating conditions as for the

bioextrusion (T: 50 ◦C, enzyme rate: 4.6%, L/S: 2.5) for 70 min. The

latter corresponds to the time necessary to achieve the seven pas-

sages including the dead time between two successive ones. The

sugar released by enzymes after this time in the stirred reactor, is

the same in terms of reducing sugars and less in terms of total sug-

ars or free sugars, compared to those obtained in the twin-screw

extruder. This reflects the fact that in the case of bioextrusion,

the sugars are released in greater amounts in the form of longer

chains or in the form of monosaccharides. The difference in the

total amount released and the length of sugar chain would seem

to show a  difference of hydrolytic enzyme action. However, this is

probably related to  the mixing intensity in the extruder, inducing

better penetration of endoglucanases inside the material. Analysis

by ion chromatography HPAE-PAD with a Dionex CarboPac PA200

column, confirms the presence of polysaccharides released during

bioextrusion (Fig. 6). Compared to standard maltodextrins, these

would be oligomers with a  low degree of polymerization (DP <6–7).

During the bioextrusion, the solubilization of the saccharides is

accompanied by a  destructuration of the biomass, resulting in an

increase in insoluble fine particles carried along in the filtrate when

washing the bioextrudate (Fig. 7). This increases with increasing

number of passages, and may reflect the effect of breakdown of

the biomass by hydrolysis of polysaccharides. Its proportion nearly

Fig. 7. Fine  particles  produced  by extrusion and bioextrusion  in  single and multipass

mode.

doubled when extrusion was performed in the presence of enzymes

for 7 successive passages.

Similarly, the amount of hot water soluble components mea-

sured in the bioextrudates increases. It  doubles after 7 passages in

the presence of enzymes compared to extrusion without enzymes

(Fig. 8), confirming the effect of these hydrolytic enzymes in  the

extruder.

3.4.2. Modification of ligno(hemi) cellulosic fibers

The structural modification of the fibers is  observed under an

electron microscope throughout the pretreatment and bioextru-

sion steps in the twin-screw extruder (Fig. 9). After pretreatment,

the fiber structure appears much wrinkled (Fig. 9b), showing that

the fiber surface has released its extractable compounds, and a  part

of the hemicelluloses and lignin.

Fig. 8. Hot water solubles after  extrusion and bioextrusion  in  single and  multipass

mode.



Fig.  9. Scanning electron  microscopy (SEM)  of fiber  observed  in case  of raw sweet

corn coproduct (a), of alkaline  pretreated  sweet  corn coproduct (b), of bioextruded

sweet  corn  coproduct (c).

This extraction of hemicelluloses and lignin is clearing the cel-

lulose microfibrils on the fiber surface.

Following bioextrusion, the action of enzymes in the twin-screw

extruder is visible on the surface of the fibers (Fig. 9c), and they

appear to be damaged. The enzymes attack the surface of the fiber

giving a “peeling” effect caused by a partial depolymerization of the

cellulose.

3.4.3. Modification of the degree of polymerization (DP) of

cellulose

In  the paper industry, the degree of polymerization of the cel-

lulose is conventionally evaluated by measuring the viscosity after
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Fig. 10. Evolution  of the dynamic viscosity  of  the  sweet corn  co-products  at  different

stages  of treatment.

dissolving the paper pulp in cupriethylenediamine solution. The

greater the degree of polymerization the higher the viscosity of the

resulting solution. According to TAPPI T 230 om 94 standard, the

relationship between the viscosity (intrinsic and dynamic) and the

DP is calculated according to the following equations:

DP = (0.75 × V ′)
1.105

withV ′
=  (954 × logV) − 325

andV =  c × d × t

where

c = constant of the viscometer used;

d  =  density of the working solution, given by the TAPPI T 230 om

94;

t = measurement duration (s);

V′ = intrinsic viscosity (dm3 kg−1);

V = dynamic viscosity (mPa s).

However, this method, designed for pure cellulose fibers, is

not intended to be applied directly to complex materials as is the

case for sweet corn coproducts. To minimize interference with

the non-cellulosic compounds, materials obtained at each step

were purified to isolate their holocellulosic fraction and solubilize

the water-solubles and the lignin. The protocol for measuring the

viscosity directly in the cupriethylene diamine, applied to holo-

cellulosic fractions of raw material, pretreated extrudates and the

bioextrudates, revealed that the viscosity of the solutions increase

sharply with the pre-treatment and then gradually decrease with

the number of bioextrusion passages (Fig. 10). During pretreatment

in the twin-screw extruder, a proportion of hemicelluloses is dis-

solved, whereas cellulose is not affected, and this proportion of

hemicelluloses to cellulose decreases. Nonetheless, hemicelluloses

are characterised by a significantly lower degree of polymerisa-

tion than cellulose (3–20 times lower) (Klemm et al., 2005; Girio

et al., 2010). This results in a higher value of DP for pretreated

extrudates compared to  raw matter, and explains the higher vis-

cosity measured for the holocellulose from the pretreated biomass.

Therefore the decrease in measured viscosity observed with bioex-

trusion, essentially reflects a shortening of the cellulose chains and

confirms the enzyme action during bioextrusion.

4. Conclusion

The implementation of a  new process of deconstruction of

annual plant material in a  twin-screw extruder is  described using

sweet corn co-products. The choice of the profile is explained.

The process has been investigated to better understand enzymatic

action in the bioextrusion step, and the results obtained in this

study prove the hydrolytic action of the enzymes in the extruder.



The material becomes sticky and less and less textured with

successive passages through the extruder. Its rheological properties

change and it gradually liquefies. The proportion of sugar released

increases with the number of passages.

Oligosaccharides with a  low degree of polymerization (DP <6–7)

were released during the bioextrusion. The content of hot water

soluble components measured in the bioextrudates, increases.

Partial  depolymerization of the cellulose induced a “peeling” on

the fiber surface.

The enzyme action during bioextrusion was confirmed by a

decrease in measured viscosity of the solubilized bioextrudate in

cupriethylenediamine, reflecting in fact a shortening of the cellu-

lose chains.

These results prove that enzymes are active in the extruder and

that the process of deconstruction of annual plant material using

this apparatus is highly advantageous and could be a very attractive

pre-treatment for the production of bioethanol. It enables work-

ing with a high consistency, in a high shear environment, over a

short time, and initiating enzymatic hydrolysis without excessive

dilution. In a subsequent study, the process will be adapted and

optimized in one continuous step.
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