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Variational Bayes Phase Tracking for Correlated

Dual-Frequency Measurements with Slow Dynamics

Stéphanie Bidona,∗, Sébastien Rochea

aInstitut Supérieur de l’Aéronautique et de l’Espace, 10 av. Edouard Belin 31055 Toulouse,

France

Abstract

We consider the problem of estimating the absolute phase of a noisy signal when
this latter consists of correlated dual-frequency measurements. This scenario
may arise in many application areas such as global navigation satellite system
(GNSS). In this paper, we assume a slow varying phase and propose accordingly
a Bayesian filtering technique that makes use of the frequency diversity. More
specifically, the method results from a variational Bayes approximation and
belongs to the class of nonlinear filters. Numerical simulations are performed
to assess the performance of the tracking technique especially in terms of mean
square error and cycle-slip rate. Comparison with a more conventional approach,
namely a Gaussian sum estimator, shows substantial improvements when the
signal-to-noise ratio and/or the correlation of the measurements are low.

Keywords: Absolute phase tracking, phase unwrapping, cycle slips,
multifrequency signal, nonlinear Bayesian filtering, variational Bayes
approximation

1. Introduction

Over the last few decades signal phase measurement has become an active
area of research. Indeed, in many applications, the carrier phase of a transmit-
ted or reflected wave conveys information of primary interest to the operator.
Phase measurement is directly related to surface height in interferometric syn-
thetic aperture radar (InSAR) [1] and to the target radial velocity in radar [2]
whereas in navigation it provides a highly-precise range measurement between
the satellites and the receiver [3], to name a few examples.

Phase measurement is however by nature ambiguous. For instance, esti-
mating the phase via a conventional four-quadrant inverse tangent leads to a
wrapped observation in the principal interval [−π, π]. Without additional infor-
mation, retrieving the absolute phase is thus an ill-posed problem.
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To remove ambiguity, prior knowledge about the phase dynamics is usu-
ally injected into the estimation problem. For instance, in case of low value
phase-gradient, an efficient unwrapping technique may be obtained simply by
integrating the phase difference between two samples. However this method,
which is based on restrictive assumptions [4], fails in case of noisy samples or
when the phase dynamics increases locally and causes aliasing. Phase jumps,
known also as cycle slips, arise then in the estimation process. A thorough de-
scription of this phenomenon can be found in [5] for phase-locked loops (PLL).
To avoid cycle slips, more advanced techniques are usually required. Among
them statistical modeling offers a flexible way to proceed. In particular, Markov
random fields (MRF) have been widely used since they can guarantee a certain
continuity between phase samples [6, 7, 8].

In addition to injecting prior knowledge about the phase dynamics, frequency
diversity has been advocated as a complementary means for phase disambigua-
tion [9]. Frequency diversity is obtained when the sensing system is able to
observe the scene with different frequencies. The phase is then measured, up to
a known frequency ratio, as many times as there are frequencies. The redun-
dancy in the observations helps therefore to reduce cycle slips while reconstruct-
ing the absolute phase. This principle can be found in many application areas:
in InSAR with the use of multiple interferograms [10], in radar with OFDM
waveforms [11] or with the use of multiple pulse repetition frequencies [12], in
navigation with the use of multifrequency receiver [13, 14, 15], in robotics with
time-of-flights cameras [16], etc. Interestingly, a very related approach to re-
move phase ambiguity consists in using jointly the information conveyed by the
envelope and the carrier frequency of the signal. Phase unwrapping techniques
have been accordingly developed, e.g., in GNSS [17], in wideband radar [18] and
for communication systems [19].

In this paper, we restrict our attention to dual-frequency measurements and
propose in Section 2 a model to estimate the absolute phase for in-line processing
applications. Particularly, the phase dynamics is assumed to be smooth enough
to be represented by a first order MRF while some correlation is introduced
between the amplitudes of both frequencies. Based on this model a Bayesian
filtering technique is developed in Section 3. The method uses a variational
Bayesian approximation [20] and results into a nonlinear filtering algorithm [21].
Numerical results are provided in Section 4 to illustrate the performance of the
proposed absolute phase estimator. The latter is compared to a benchmark
algorithm that belongs to a more conventional nonlinear filtering approach,
namely a Gaussian sum estimator.

2. Signal Model

Herein we propose a signal model suited for correlated dual-frequency mea-
surements. It is inspired mostly from [22] where a Bayesian approach is devel-
oped for absolute phase estimation in interferometric SAR. Our model is adapted
here to take into account the proportional relationship residing between the two
carrier phase measurements.
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2.1. Measurement model

We consider the signal received on a single sensor that observes the same
scene at two different carrier frequencies. The signal is demodulated with respect
to (wrt) each carrier frequency on two independent RF chains. Assuming a
unique and synchronized sampling rate, the baseband signal at the instant k
can be expressed as

y1(k) = α1(k)e
jφ(k) + n1(k)

y2(k) = α2(k)e
jγφ(k) + n2(k)

where

(.)1,2 are subscripts that refer to the first and second frequencies (or channels)
respectively;

α1,2(k) is the received amplitude per channel;

φ(k) is the carrier phase of the first channel;

γ is the ratio between the second and first frequencies which are assumed or-
dered such that γ > 1;

n1,2(k) is the noise component per channel.

In the following, an equivalent vector notation is used for convenience, i.e.,

yk = αk ⊙
[

ejφk

ejγφk

]

+ nk (1)

where φk , φ(k), ⊙ is the Hadamard product and each 2-length vector gathers

the information received on both channels, e.g., yk =
[

y1(k) y2(k)
]T

.

2.1.1. Likelihood function

Due to the independence between the RF chains, the noise components n1(k)
and n2(k) are modeled as independent random variables. Moreover, they are
supposed to be identically distributed according to a classical Gaussian proba-
bility density function (pdf), viz

nk|σ2
n ∼ CN

(

0, σ2
nI2

)

(2)

where σ2
n represents the noise power per sample per channel and I2 is the 2-by-2

identity matrix. The likelihood is thus given by

f(yk|αk, φk, σ2
n) = π−2σ−4

n exp

{

−σ−2
n

∥

∥

∥

∥

yk −αk ⊙
[

ejφk

ejγφk

]
∥

∥

∥

∥

2

2

}

(3)

where ‖.‖2 is the Frobenius norm. Note that, at this stage, the signal model (3) is
not informative enough to define a maximum likelihood estimate of φk. In what
follows, we propose to consider the measurement equation obtained from the
marginalization of the likelihood function (3) over the nuisance parameter αk.
To do so, we need first to specify the distribution of the amplitude vector αk.
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2.1.2. Marginal likelihood function

Amplitude. The complex amplitudes α1(k) and α2(k) received by the sensor
differ most likely from one another due to, for instance, some decorrelation
process arising during propagation. A simple way to represent this decorrelation
is to model the vector αk as a centered Gaussian random vector with the same
power1 σ2

α per channel and a correlation coefficient ρ ∈ [0, 1] between channels.
This is denoted by

αk|σ2
α, ρ ∼ CN (0,Rα) (4)

where the 2× 2 matrix Rα does not depend on k and is given by

Rα = σ2
α

(

1 ρ
ρ∗ 1

)

.

The prior pdf of αk|σ2
α, ρ is thus given by

f(αk|σ2
α, ρ) =

1

π2|Rα|
exp

{

−αHk R−1
α αk

}

where |Rα| = σ4
α(1− |ρ|2).

Expression of the marginal likelihood function. Using (3) and (4) the marginal
likelihood function can be obtained as

f(yk|φk) =
∫

f (yk|αk, φk) f(αk) dαk

= π−2|Ryk
|−1 exp

{

−yHk R−1
yk

yk

}

where

Ryk
=

(

σ2
n+σ

2
α σ2

αρe
−jγ̃φk

σ2
αρ

∗ejγ̃φk σ2
n+σ

2
α

)

(5)

with γ̃ = γ − 1 . It is still a Gaussian distribution, viz yk|φk ∼ CN
(

0,Ryk

)

,

that can be rewritten as follows

f(yk|φk) ∝ exp

{

− (σ2
n + σ2

α)

(σ2
n + σ2

α)
2 − |ρ|2σ4

α

yHk yk

}

exp

{

βk cos

(

γ̃

[

ϕk
γ̃

− φk

])}

(6)

where










βk = 2
σ2
α

[σ2
n + σ2

α]
2 − |ρ|2σ4

α

|zk|

ϕk = ∠zk

and zk = ρy∗1(k)y2(k) (7)

1For some applications, e.g., for GNSS multifrequency signals, this assumption may not be
true. The model proposed should then be refined by assuming a channel dependent power.
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with ∠zk = arctan(ℑ{zk}/ℜ{zk}) the angle of zk that lies between [−π,+π].
ℜ{} and ℑ{} denote respectively the real and imaginary parts. Note that in (6)
the parameter ϕk/γ̃ is a marginal maximum likelihood (MML) estimate of the

absolute phase φk and lies in the interval
[

−π
γ̃ ,+

π
γ̃

]

. In the remaining, it is

denoted as

ψ̂mml
k ,

ϕk
γ̃

. (8)

Distributions of ψ̂mml

k and βk. Before continuing to describe the signal model, it
is worth noticing from (6) that the measurement of interest is entirely described
by the parameter zk in (7), which is (up to the factor ρ) the product of the
signal received on both frequencies. As a consequence, the performance of the
absolute phase estimator proposed in the next Section will strongly depend on
the distribution of zk. More specifically, it will be useful to know the joint
distribution of βk, ψ̂

mml
k |φk as well as the distributions of βk|φk and ψ̂mml

k |φk.
Using results gathered in [23], the following expressions can be obtained

f(βk, ψ̂
mml
k |φk) =

γ̃

2π

1− |̺|2
|̺|2 βk exp

{

βk cos
(

γ̃[ψ̂mml
k − φk]

)}

K0

{

βk
|̺|

}

(9a)

f(ψ̂mml
k |φk) =

γ̃

2π

1− |̺|2
(1− c2)

[

1− c arccos(c)√
1− c2

]

I[−π
γ̃
,π
γ̃ ]
(ψ̂mml
k ) (9b)

f(βk|φk) =
1− |̺|2
|̺|2 I0{βk}K0

{

βk
|̺|

}

(9c)

where c = −|̺| cos
(

γ̃[ψ̂mml
k − φk]

)

and

Iq{},Kq{} are the modified Bessel functions of, respectively, the first and sec-
ond kind at the qth order;

II() denotes the indicator function of the set I, (i.e., II(x) = 1 if x ∈ I and
II(x) = 0 otherwise).

In (9), ̺ is the correlation coefficient associated with the 2-length vector yk|φk.
According to (5), its modulus is

|̺| = |ρ|
1 + SNR−1

(10)

with SNR being the signal-to-noise ratio defined as

SNR =
σ2
α

σ2
n

.

It is already interesting to note that the joint distribution (9a) depends only on
the phase process φk and the parameters γ̃ and |̺|; the latter being the actual
correlation coefficient between the two carrier frequencies weighted by the SNR.
We see in Fig. 1 that |̺| is always less than |ρ| and can be strongly degraded by
a low SNR.
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Figure 1: Correlation coefficient |̺| (10) as a function of the SNR.

2.2. Phase process

We continue herein to describe the signal model and discuss to that end
the phase process. Since we are interested in estimating the absolute phase
φk recursively in time, it is necessary to assume a phase dynamic model that,
hopefully, will avoid any ambiguity to arise during estimation (i.e., no cycle
slip). To that end, the phase evolution is modeled by a Markov random field.
Here, we assume a first order Gaussian MRF to ensure a certain smoothness
for the phase from sample k − 1 to k [8]. A causal distribution is considered
since our primary interest is devoted to inline processing. More specifically, the
initial state φ1 is supposed to be uniformly distributed over a symmetric set I
while the phase at time k > 1 is thought to be Gaussian distributed with mean
φk−1 and variance σ2

φ, i.e.,

φ1 ∼ UI (11a)

φk|φk−1 ∼ N
(

φk−1, σ
2
φ

)

(11b)

which leads to the following distributions

f(φ1) ∝ II (φ1) (12a)

f(φk|φk−1, σ
2
φ) =

1
√

2πσ2
φ

exp

{

− [φk − φk−1]
2

2σ2
φ

}

. (12b)

Values for the endpoints of the interval I is discussed later in Section 3.2. Note
also that the parameter σ2

φ monitors the degree of smoothness of the unwrapped
phase.
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2.3. Hyperparameters

In this work, the parameters σ2
n, σ

2
α, ρ and σ2

φ are supposed to be determin-

istic known constants2.

3. Restricted variational Bayesian filtering

3.1. Bayesian filtering formulation

Equations (6) and (11) form a conventional Bayesian filtering problem where
the former equation defines the measurement model and the latter represents the
dynamic model. The optimal filtering is tantamount to recursively estimating
in two stages the filtering distribution f(φk|Y k) where Y k =

[

y1 . . . yk
]

as
follows [24]

• Time update

f(φ1|Y 0) , f(φ1) (k = 1)

f(φk|Y k−1) =

∫

f(φk|φk−1)f(φk−1|Y k−1)dφk−1 (k > 1)

where the subscript 0 denotes the set of no measurements

• Data update

f(φk|Y k) ∝ f(yk|φk)f(φk|Y k−1) (k ≥ 1)

Given the state space model (6)-(11), the optimal filtering seems intractable and
one is left with evaluating suboptimal filtering distribution [21]. We propose to
use herein a restricted variational Bayes (RVB) approximation [20]. As shown
in what follows, this approach allows the nonlinear nature of the measurement
equation to be preserved and leads to explicit expression of the filtering distri-
bution which is very attractive on the implementation point of view.

3.2. Principle of the RVB filtering

The RVB-based method proposed stems from two approximations intro-
duced in the optimal filtering problem. Following [20] a local variational ap-
proximation is firstly made. Applied to our model, it consists in imposing that
the phases φk and φk−1 are independent conditionally to Y k. Using the varia-
tional Bayes approximation leads then to recursively evaluating an approximate
filtering distribution f̃(φk|Y k) as follows [20]

2Constant terms are omitted in the conditional terms in the remaining of the paper for
notational convenience.
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• Time update

f̃(φk|Y k−1) ∝ exp
{

〈log (f(φk|φk−1))〉f̃(φk−1|Y k)

}

with

f̃(φk−1|Y k) ∝ exp
{

〈log (f(φk|φk−1))〉f̃(φk|Y k)

}

f̃(φk−1|Y k−1)

• Data update

f̃(φk|Y k) ∝ f (yk|φk) f̃(φk|Y k−1) (13)

where 〈g(θ)〉f(θ) =
∫

g(θ)f(θ)dθ is the expectation value of the function g(θ) wrt

the distribution f(θ). Then, to make the filtering problem tractable, a second
approximation is introduced [20]. The distribution f̃(φk−1|Y k), which depends
itself “undesirably” on the approximate posterior pdf f̃(φk|Y k), is replaced with
the fixed variational Bayes (VB) distribution f̃(φk−1|Y k−1) so that the time and
data update stages become respectively

f̃(φk|Y k−1) ∝ exp
{

〈log (f(φk|φk−1))〉f̃(φk−1|Y k−1)

}

f̃(φk|Y k) ∝ f (yk|φk) f̃(φk|Y k−1).

Using (6) and (11), the RVB filtering can be finally formulated as

• Time and data updates for k = 1

f̃(φ1|Y 0) , f(φ1) (14a)

f̃(φ1|Y 1) ∝ f(φ1) exp
{

β1 cos
(

γ̃[ψ̂mml
1 − φ1]

)}

(14b)

• Time and data updates for k > 1

φk|Y k−1 ∼̃
f
N

(

〈φk−1〉f̃(φk−1|Y k−1)
, σ2
φ

)

(15a)

f̃(φk|Y k) ∝ exp











βk cos
(

γ̃[ψ̂mml
k − φk]

)

−

[

φk − 〈φk−1〉f̃(φk−1|Y k−1)

]2

2σ2
φ











.

(15b)

Thanks to the RVB approximation, the functional forms of both the prediction
and filtering distributions are now preserved from one iteration to another [20].

In light of the expression (14b) we set I = [−π/γ̃;π/γ̃] which ensures that
the VB filtering distribution at k = 1 lies in the family of the Tikhonov (or von

Mises [25]) distribution thereby facilitating the derivation of φ̂rvb1 .
Additionally it is worth noticing that for k > 1 the functional form of the VB

8
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Figure 2: Pdf of the concentration parameter βk in (9c) for different value of |̺|.

filtering distribution (15b) has been encountered in other statistical phase un-
wrapping problems, e.g., [26, 6, 22]. It is a periodic function that, restricted
to one period, is the product of a von Mises distribution3 (with mean direction

ψ̂mml
k and concentration parameter βk) and a Gaussian distribution (with mean

〈φk−1〉f̃(φk−1|Y k−1)
and variance σ2

φ). Due to the periodic component, multiple

modes can arise when βkγ̃
2σ2
φ > 1 (see Appendix A where the exact number of

modes and their location within an interval are given in closed form). Conven-
tionally, to deal with this possible multimodality, techniques based on Gaussian
sum approximations are developed [27]. For instance in [26, 6], the von Mises
distribution is approximated by a train of Gaussian functions. If this scheme is
precise enough for high concentration parameters βk, it is much less accurate
for lower values of βk [25, p.38]. Practically, the latter case will most likely hap-
pen when the correlation coefficient |̺| (10) is low (see Fig. 2) or equivalently
whenever |ρ| or the SNR is low (see Fig. 1). As a consequence we propose to
pursue designing our estimation scheme while using the filtering distribution as
it is.

3.3. RVB estimator

The recursive propagation of the posterior density, given by (14)-(15), re-
quires exclusively the evaluation of the mean of φk wrt to the VB filtering
distribution f̃(φk|Y k). In other words, to obtain the filtering distribution, it
is necessary and sufficient to derive the minimum mean square error (MMSE)
estimator of φk wrt to the VB posterior. The latter is referred in the following
to as the RVB estimator

φ̂rvbk , 〈φk〉f̃(φk|Y k)
=

∫

φkf̃(φk|Y k)dφk. (16)

3Up to the scale parameter γ̃.
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Note that once (16) is derived, the entire VB filtering distribution is known
and one could define other estimators, e.g., the maximum a posteriori (MAP)
estimator. In any event, one should focus its attention first on the evaluation
of (16). It is shown in Appendix B and Appendix C that the RVB estimator
can be expressed as an infinite discrete sum as follows, for k = 1

φ̂rvb1 =
2

γ̃

+∞
∑

q=1

(−1)q+1 Iq{β1}
I0{β1}

sin(qγ̃ψ̂mml
1 )

q
(17)

and for k > 1

φ̂
rvb

k = φ̂
rvb

k−1 + 2γ̃σ2

φ

∑

∞

q=1
qIq{βk} sin

(

qγ̃[ψ̂mml

k − φ̂rvb

k−1]
)

e−
σ2
φ
γ̃2q2

2

I0{βk}+ 2
∑

∞

q=1
Iq{βk} cos

(

qγ̃[ψ̂mml

k − φ̂rvb

k−1
]
)

e−
σ2
φ
γ̃2q2

2

. (18)

In practice, since Iq{x} decreases rapidly wrt I0{x} when q increases for all x,

we propose to implement a truncated version of (17) and (18) where the index
q varies in a given interval {1, . . . , qmax}.

From (17) and (18) it is worth noticing that the RVB approximation yields a
nonlinear algorithm that estimates the absolute phase φk via the use of not only
the wrapped phase ∠zk but also the modulus |zk| where zk , ρy∗1(k)y2(k) has
been defined in (7). In other words, the RVB estimator uses the measurement
of both the phase difference and the product of the amplitude between the two
carriers. Furthermore from (18) one can appreciate the nonlinear nature of
the RVB estimator updating compared for instance to a conventional Kalman
filter [21].

Remark 1 (Implementation of the RVB estimator). To avoid numerical
problems one should use at high SNR (where βk can have large values) a scaled
version of the modified Bessel function, i.e., Iq{βk} exp(−βk) [28]. Furthermore,
very rarely the denominator of (18) becomes very small numerically. This case

may arise when φ̂rvbk−1 is approximately halfway between the two nearest modes

of exp(βk cos(γ̃[ψ̂
mml
k −φk])). In that case, we replace locally the RVB estimator

by the MAP estimator. The latter can be derived with standard optimization
algorithms since the number of modes and their location within an interval are
known (see Appendix A).

4. Numerical simulations

We now present various numerical examples illustrating the performance
of the RVB estimator and the role that the process noise power σ2

φ plays. In
the remaining, data are generated according to the model (1), (2) and (4).
The truncation value qmax = 50 is chosen to implement (18) as it offers a
convenient, though not optimized, compromise between the computation load
and the truncation error induced in the RVB estimator (18) for a wide variety
of scenarii.
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4.1. Observation of single realizations

To gain some insight into the behavior of the RVB estimator (18), its re-
sponse is depicted in Figure 3 for a single realization when the phase input
is successively a step, a ramp or an acceleration. Typical behavior pertaining
to absolute phase estimators can be observed. First, the estimator requires a
certain amount of time to obtain lock. This is well illustrated on the phase
step response, where about 150 samples are needed for the absolute value of the
phase error process, namely ǫrvbk , φk − φ̂rvbk , to remain under a certain thresh-
old. From the acquisition mode, the process enters then the tracking mode.
Secondly, the phenomenon of cycle slipping is well identifiable: for instance,
on the phase ramp-response, the RVB estimator loses its equilibrium around
the 700-th sample and the phase error process augments by one cycle before
returning to steady-state. Note that for the acceleration input the estimator
constantly skips cycles beyond a given time. This is expectable since the RVB
estimator (18) is designed, so far, for a first order dynamics and cannot endure
an increasing variance. In the remaining, we will mainly focus our attention
to step- and ramp-responses, i.e., otherwise stated the absolute phase process
will have the following functional form: φk = φ0 + φ̇0k where φ0 and φ̇0 are
respectively the initial phase and initial phase rate.

4.2. Performance metrics

To assess more precisely the performance of the proposed RVB algorithm,
the statistical behavior of the phase error process ǫrvbk is studied as for any
absolute phase estimator [29, 30, 31]. To that end, three classical metrics are
considered, namely [32]:

• the acquisition time; evaluated here as the time necessary for the modulo-
2π/γ̃ error phase process to attain a constant root mean square error
(RMSE);

• the precision of estimation; evaluated here by the RMSE of the modulo-
2π/γ̃ error phase process (denoted as RMSE-mod);

• the cycle slip rate which is the average number of cycle slips per track;
in our simulations a cycle slip is said to be detected as soon as the phase
error crosses a new equilibrium line 2pπ/γ̃, p ∈ Z.

Though the expression of the RVB estimator (17)-(18) and that of the joint pdf

of βk, ψ̂
mml
k |φk (9a) are known explicitly, the calculation in closed form of these

three metrics seems intricate. We thus turn to numerical simulations and use
5000 Monte-Carlo runs. Nevertheless, from the expressions (17)-(18) and (9a),
we can conclude beforehand that the performance of the RVB estimator depends
only on the phase process φk, the ratio frequency γ, the process noise power σ2

φ

and the correlation coefficient |̺| defined in (10). In the remaining, the studied
scenarii are thus described wrt the parameter |̺| instead of the pair (ρ, SNR);
keeping in mind that a given value of |̺| refers to an infinite number of scenarii
where (ρ, SNR) verifies the formula (10) (see also Fig.1). Furthermore, as for
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Figure 3: Phase responses of the RVB estimator to a step-, ramp- and acceleration-input:
(left column) phase process φk and φ̂rvb

k
; (right column) phase error process φk − φ̂rvb

k
. One

cycle corresponds to 2π/γ̃ radians. |̺| ≈ 0.25 (e.g., SNR=0 dB, ρ = 0.5), γ = 1.25, σφ = 0.8
half-cycle.

any Bayesian filtering technique, the tuning of the process noise power σ2
φ is a

very important task. Therefore, in the next two Sections performance of the
RVB estimator is displayed as a function of this parameter4 so as to give a mean
to select adequately its value in practice.

Finally, note that the proposed RVB estimator is implemented jointly with
the Gaussian sum (GS) estimator proposed in [26] for comparison purposes (the
so-called multiplication, agglutination and elimination parameters have been set
respectively to 3, (0.1×2π/γ̃)1/2, and 0.01 according to [26, 6]). We can already
underline that in terms of computational complexity the RVB technique presents
advantages over the GS method. Indeed, according to (18), implementing the
former requires only basic operations (e.g., sum, division, use of modified Bessel
functions that have efficient routines [33]) whereas the latter entails a time
consuming procedure to keep the filter dimension within reasonable limits.

4To facilitate the interpretation σφ is expressed in the graphs in half-cycle (h.c.), i.e.,
σφ/(π/γ̃).
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4.3. Phase-step response

Fig. 4 shows the evolution of the RMSE of the modulo 2π/γ̃ process wrt to
the time for a phase-step input. For both the RVB and GS estimators, it can be
observed that the RMSE-mod reaches a constant value after a given time and
this for each value of σφ considered. This acquisition time is assessed numerically
and is represented as a function of the standard deviation σφ in Fig. 5(a). The
RMSE-mod at steady state is also depicted in Fig. 5(b) as well as the cycle
slipping rate in Fig. 5(c). From these curves, we see that the RVB estimator
attains lower RMSEs at steady state and much lower cycle slip rates than the
Gaussian sum estimator. However, this is most of the time at the price of a
slower convergence. Nonetheless, contrary to the Gaussian sum approach, the
RVB can, subject to an appropriate choice for the value σφ, offer an appealing
compromise wrt the three metrics under consideration. For instance, in this
scenario with low correlation coefficient |̺|, the value σφ = 0.2 cycle or σφ = 0.7
cycle is a suitable choice to obtain in a few samples a precise phase estimator
that has a probability of cycle slip near to zero. In any event, it is worth noticing
that the performance of the RVB estimator is much less sensitive to the tuning of
the process noise power σ2

φ than the GS estimator. Particularly, it is interesting
to acknowledge the behavior of the RVB estimator wrt the parameter σφ: both
RMSE-mod, cycle-slip rate and convergence rate decrease when either σφ tends
to zero or increases towards infinity. A possible explanation is that the process
noise power σφ appears in two opposite ways in (18):

1. as a multiplicative term that tends to reduce the contribution of the in-
novation when σφ decreases (in that case σ2

φ plays a similar role to that
of the loop bandwidth of a PLL);

2. in an exponential term that tends to reduce the contribution of the inno-
vation when σφ increases.

The scenario studied so far in Figs. 4 and 5 corresponds to a challenging setup
where the actual coefficient correlation |̺| is low (i.e., when the SNR and/or
the correlation coefficient |ρ| are low). To assess the influence of this parameter,
Figs. 6 and 7 depict the performance of the RVB and GS estimators for higher
values of |̺|. Increasing |̺| leads all in all to higher convergence rate, lower
RMSE-mod and lower cycle slipping rate for both estimators. Furthermore, it
is important to note that the benefit of the proposed RVB method compared
to the GS approach is then less pronounced. This result may be expectable
since the approximation of the von Mises distribution, appearing in the filtering
pdf (15b), by a train of Gaussian functions becomes very accurate for high
concentration parameter βk; which arises most likely when |̺| comes close to 1
(see end of Section 3.2).

4.4. Phase-ramp response

In the last Section we have observed that, in case of a phase-step process,
the RVB estimator is more performant than the GS approach especially when
the actual coefficient correlation |̺| is low. Herein we extend the performance
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Figure 4: RMSE-mod as a function of the time index for a phase-step process. |̺| ≈ 0.25
(e.g., SNR=30 dB, ρ = 0.25), γ = 1.25, φ0 = .25 cycle, φ̇0 = 0 cycle/sample. (a) Proposed
RVB estimator. (b) GS estimator of [26].

study to a phase-ramp process. Contrary to a phase-step input and though not
depicted in this paper, we can observe that for some values of σ2

φ the RMSE-
mod of both estimators has an oscillatory behavior wrt to the time. In other
words, for certain values of the process noise power, the phase estimator never
gets in lock. For instance, if σ2

φ is too small the contribution of the innovation
is then too limited to compensate for the phase rotation taking place during the
estimator updating. As a consequence, we choose to concentrate our attention
mostly on the cycle slipping rate metric and depict also the RMSE-mod wrt to
the time for some values of σ2

φ where lock has been obtained. From Figs. 8, 9
and 10, we can see that for both estimators there is a distinct range of values
σ2
φ for which the cycle slipping rate is significantly lower than everywhere else.

This range is roughly located in the interval [φ̇0, π/γ̃] (rad). Outside this range,
the prediction pdf (15a) is either not enough broaden (i.e., σ2

φ is too small) or

too much broaden (i.e., σ2
φ is too large) to ensure a correct data update and thus

a correct estimation. Note that for both estimators, the lower the correlation
coefficient |̺|, the narrower this range. Moreover, it is worth noticing that
the RVB technique offers again lower cycle slipping rate and lower RMSE-mod
compared to the GS approach. As in the case of a phase-step input, the benefit
of the RVB estimator is more perceivable for low correlation coefficient |̺|.

4.5. Phase response for GNSS applications

To finish, we present results when the phase process φk is generated accord-
ing to a realistic GNSS scenario while the rest of the signal is still generated
according to the model (1), (2) and (4). More specifically, the signal received
on a GPS-receiver is synthetized with a realistic satellite-to-receiver dynamics.
The phase to be tracked is then obtained as the angle of the prompt correla-
tor of a conventional DLL-FLL (Delay Lock Loop/Frequency Lock Loop) [3,
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Figure 5: Performance of the proposed RVB estimator and the GS estimator of [26] for a
phase-step process. |̺| ≈ 0.25 (e.g., SNR=30 dB, ρ = 0.25), γ = 1.25, φ0 = .25 cycle, φ̇0 = 0
cycle/sample. (a) Acquisition time. (b) RMSE-mod after acquisition. (c) Cycle slip rate.
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Figure 6: Performance of the proposed RVB estimator and the GS estimator of [26] for a
phase-step process. |̺| ≈ 0.5 (e.g., SNR=30 dB, ρ = 0.5), γ = 1.25, φ0 = .25 cycle, φ̇0 = 0
cycle/sample. (a) Acquisition time. (b) RMSE-mod after acquisition. (c) Cycle slip rate.

ch.5]. The latter remains in lock during the whole estimation process. In GNSS
applications, signals are emitted in the L band. Herein two conventional fre-
quencies are considered namely the L1 = 1575.42 MHz (frequency for which
the received signal is synthetized) and L2 = 1227.6 MHz frequencies so that
the carrier frequency ratio is γ = fL1/fL2 ≈ 1.28. The signal-to-noise den-
sity ratio and the correlation time of the DLL-FLL are chosen respectively as
CN0 = 17 dBHz and T = 20 ms which is equivalent to a signal-to-noise ratio
equal to SNR=CN0× T = 0 dB. The SNR is assumed to be identical on both
frequencies whereas the delay introduced by the ionosphere between the two
frequencies is assumed to be compensated for. Finally, the level of correlation
between the two frequencies is assumed to be equal to ρ = 0.9.

Fig. 4.5 depicts the true phase process as well as the phase estimated by
the proposed RVB algorithm and that of the GS method. The process noise
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Figure 7: Performance of the proposed RVB estimator and the GS estimator of [26] for a
phase-step process. |̺| ≈ 0.75 (e.g., SNR=30 dB, ρ = 0.75), γ = 1.25, φ0 = .25 cycle, φ̇0 = 0
cycle/sample. (a) Acquisition time. (b) RMSE-mod after acquisition. (c) Cycle slip rate.

power σ2
φ is chosen for each estimator among the range of values that minimize

the cycle slip rate (graph not depicted here), e.g., σφ = 0.3 h.c. for the RVB
estimator and σφ = 0.1 h.c. for the GS estimator. As can be observed, on
this specific track, only the RVB algorithm succeeds in estimating the absolute
phase. Indeed, it does not endure any cycle slip whereas the GS estimator is
subject to two cycle slips between the 5th and 10th second of the tracking.

5. Conclusion

In this paper we have proposed a signal model suited for correlated dual-
frequency measurements having a slow time varying phase. Accordingly, a
Bayesian filtering technique has been described to estimate sequentially the
absolute phase of the measurements. The method is obtained by applying a
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Figure 8: Performance of the proposed RVB estimator and the GS estimator of [26] for a
phase-ramp process. |̺| ≈ .25 (e.g., SNR=30 dB, ρ = 0.25), γ = 1.25, φ0 = 0 cycle, φ̇0 = .005
cycle/sample. (a) Cycle slip rate. (b) RMSE-mod as a function of the time index.
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Figure 9: Performance of the proposed RVB estimator and the GS estimator of [26] for a
phase-ramp process. |̺| ≈ .5 (e.g., SNR=30 dB, ρ = 0.5), γ = 1.25, φ0 = 0 cycle, φ̇0 = .005
cycle/sample. (a) Cycle slip rate. (b) RMSE-mod as a function of the time index.

local variational Bayes approximation in the filtering problem. The resulting
filtering distribution has a simple functional form which consists of the product
of a von Mises pdf with a Gaussian pdf. Respectively, we have derived in closed
form the minimum mean square error estimator. More precisely, the latter,
denoted as the RVB estimator, is obtained via a nonlinear updating equation.
Numerical simulations have shown that the RVB filter can be advantageous over
a more conventional approach, namely a Gaussian sum approximation, in terms
of RMSE and cycle slip rate especially at low SNR and/or for low correlation
coefficient. Additionally, the tuning of the process noise power has been proven
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Figure 10: Performance of the proposed RVB estimator and the GS estimator of [26] for
a phase-ramp process. |̺| ≈ 0.75 (e.g., SNR=30 dB, ρ = 0.75), γ = 1.25, φ0 = 0 cycle,
φ̇0 = .005 cycle/sample. (a) Cycle slip rate. (b) RMSE-mod as a function of the time index.
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Figure 11: Phase process with a realistic dynamics for GNSS applications (true phase, pro-
posed RVB estimator with σφ = 0.3 h.c., GS estimator of [26] with σφ = 0.1 h.c.). |̺| = 0.45
(e.g., ρ = 0.9 and SNR=0 dB), γ ≈ 1.28 (a cycle slip is equal to ≈ 22 rad).

to be less critical for the proposed RVB than for the Gaussian sum estimator.
In future work, it could be of interest to adapt the proposed technique to

higher order dynamics and to investigate the more general case of multifre-
quency signals (i.e., more than two frequencies). Furthermore, the technique
could be extended so as to estimate jointly the phase process with the (so-far)
assumed known parameters particularly the signal-to-noise ratio and the cor-
relation coefficient. This way, a complete adaptive estimation scheme could be
designed. In any event, note that according to the domain of application, the
proposed Bayesian model may require some refinement (e.g., in case of channel
dependent power) to fit more accurately the received signal.
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Appendix A. Modes of the VB filtering distribution

The number of modes of the RVB filtering distribution (15b) and their re-
spective location can be found via a conventional albeit tedious study of func-
tion. Due to space limitations, only results are conveyed hereafter with the
notation δk = βkγ̃

2σ2
φ.

If δk ≤ 1, the pdf is unimodal:

• If φ̂rvbk−1 6= ψ̂mml
k mod (π/γ̃), the unique mode is in the open interval with

endpoints φ̂rvbk−1 and ψ̂
mml
k +2p0π/γ̃ where p0 = argmin

p∈Z

∣

∣

∣
ψ̂mml
k + 2pπ/γ̃ − φ̂rvbk−1

∣

∣

∣
.

• Otherwise, the unique mode is φ̂rvbk−1.

If δk > 1, the pdf is uni- or multimodal:

• If φ̂rvbk−1 6= ψ̂mml
k ∓ γ̃−1

[

√

δ2k − 1 + arccos(−δ−1
k )

]

mod (2π/γ̃) there are

ℓ0 − n0 modes and the nth mode for n = 1, . . . , ℓ0 − n0 is located in the
open interval

]θ0,Θ0[+
2π

γ̃
(ℓ0 + n)

where

θ0 = ψ̂mml
k − 1

γ̃
arccos(−δ−1

k )

Θ0 = ψ̂mml
k +

1

γ̃
arccos(−δ−1

k )

ℓ0 = ⌊γ̃/(2π)s(θ0)⌋
n0 = ⌊γ̃/(2π)s(Θ0)⌋

with ⌊⌋ the floor function and s(.) the function defined by

s(φk) =
δk
γ̃

sin
(

γ̃[ψ̂mml
k − φk]

)

− φk + φ̂rvbk−1.

• Otherwise, three “degenerated” cases can easily be defined from the latter
case where one or two modes are inflection points.

Appendix B. Derivation of φ̂rvb

1

In this Appendix we derive the expression (17) of the RVB estimator for
k = 1. Our derivations use extensively the expression of the Fourier series [28,
p.376,9.6.34]

exp {β cos(x)} = I0{β}+ 2
+∞
∑

q=1

Iq{β} cos(qx) (B.1)
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where Iq{x} = 1/π
∫ π

0
ex cos(θ) cos(qθ)dθ is the modified Bessel function of the

first kind and of order q.
Using (16) and (14b), the RVB estimator at k = 1 can be expressed as

φ̂rvb1 =

∫

φ1
φ1f(φ1) exp

{

β1 cos(γ̃[ψ̂
mml
1 − φ1])

}

dφ1
∫

φ1
f(φ1) exp

{

β1 cos(γ̃[ψ̂mml
1 − φ1])

}

dφ1
. (B.2)

The denominator of (B.2), denoted as d1 corresponds to the normalizing con-
stant of a von Mises pdf [25, p.36], so that d1 = 2πI0{β1}/γ̃.
Using (B.1), the numerator of (B.2), denoted as n1, can be rewritten as

n1 =

∫ π
γ̃

−π
γ̃

φ1

[

I0{β1}+ 2
+∞
∑

q=1

Iq{β1} cos(qγ̃[ψ̂mml
1 − φ1])

]

dφ1. (B.3)

Using an integration by parts on the second term leads to

n1 = −4π

γ̃2

+∞
∑

q=1

(−1)q
Iq{β1} sin(qγ̃ψ̂mml

1 )

q

which allows to recover the expression (17).

Appendix C. Derivation of φ̂rvb

k , k ≥ 1

In this Appendix we derive the expression (18) of the RVB estimator for
k > 1. Using (16) and (15b), the RVB estimator can be formulated as

φ̂rvbk =

∫

φk
φk exp

{

βk cos(γ̃[ψ̂
mml
k − φk])− (φk−φ̂

rvb
k−1)

2

2σ2
φ

}

dφk

∫

φk
exp

{

βk cos(γ̃[ψ̂mml
k − φk])−

(φk−φ̂rvb
k−1)

2

2σ2
φ

}

dφk

.

The numerator and the denominator of the former expression are denoted re-
spectively as nk and dk, i.e., φ̂

rvb
k , nk/dk. Using results from [34, p. 1653],

the denominator dk can be expressed as

dk =
√
2πσφ

[

I0{βk}+ 2
+∞
∑

q=1

Iq{βk}e−
σ2
φ
q2γ̃2

2 cos
(

qγ̃[ψ̂mml
k − φ̂rvbk−1]

)

]

. (C.1)

Applying then the Parseval’s theorem to the numerator nk, one has

nk =

∫

ν

F
{

eβk cos(γ̃[ψ̂mml
k −φk])

}

(ν)F∗







φke
−

(φk−φ̂rvb
k−1)2

2σ2
φ







(ν)dν (C.2)
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where F {g} (ν) is the Fourier transform of the function g at the frequency
point ν. Using standard properties of the Fourier transform and the Fourier
series (B.1), the first term involved in (C.2) can be expressed as

F
{

eβk cos(γ̃[ψ̂mml
k −φk])

}

(ν) = I0{βk}δ(ν)

+ e−j2πνψ̂
mml
k

+∞
∑

q=1

Iq{βk}
[

δ(ν − q
γ̃

2π
) + δ(ν + q

γ̃

2π
)

]

(C.3)

where δ(ν) is the Delta Dirac function. The second term is obtained by inte-
gration by parts

F







φke
−

(φk−φ̂rvb
k−1)2

2σ2
φ







(ν) =
√
2πσφ

[

φ̂rvbk−1 − j2πσ2
φν

]

e−j2πνφ̂
rvb
k−1e−2π2σ2

φν
2

.

(C.4)

Plugging then (C.3) and (C.4) in (C.2) yields

nk =
√
2πσφ

[

I0{βk}φ̂rvbk−1 + 2

+∞
∑

q=1

Iq{βk}e−
σ2
φ
q2γ̃2

2

{

φ̂rvbk−1 cos
(

qγ̃[ψ̂mml
k − φ̂rvbk−1]

)

+ σ2
φγ̃ q sin

(

qγ̃[ψ̂mml
k − φ̂rvbk−1]

)}]

. (C.5)

Finally, combining (C.1) and (C.5) the expression (18) can be recovered.
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