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We compute the spatial optimal energy amplification of steady inflow perturbations in
a non-parallel wake and analyse their stabilizing action on the global mode instability.
The optimal inflow perturbations, which are assumed spanwise periodic and varicose,
consist in streamwise vortices that induce the downstream spatial transient growth of
streamwise streaks. The maximum energy amplification of the streaks increases with
the spanwise wavelength of the perturbations, in accordance with previous results
obtained for the temporal energy growth supported by parallel wakes. A family of
increasingly streaky wakes is obtained by forcing optimal inflow perturbations of
increasing amplitude and then solving the nonlinear Navier-Stokes equations. We
show that the linear global instability of the wake can be completely suppressed by
forcing optimal perturbations of sufficiently large amplitude. The attenuation and
suppression of self-sustained oscillations in the wake by optimal 3D perturbations is
confirmed by fully nonlinear numerical simulations. We also show that the amplitude
of optimal spanwise periodic (3D) perturbations of the basic flow required to stabilize
the global instability is much smaller than the one required by spanwise uniform (2D)
perturbations despite the fact that the first order sensitivity of the global eigenvalue to
basic flow modifications is zero for 3D spanwise periodic modifications and non-zero
for 2D modifications. We therefore conclude that first-order sensitivity analyses can be
misleading if used far from the instability threshold, where higher order terms are the
most relevant.

I. INTRODUCTION

Two-dimensional wakes behind bluff bodies support robust self-sustained vortex shedding for
sufficiently large Reynolds numbers. The onset of self-sustained oscillations is associated to a global
instability supported by a finite region of local absolute instability in the near wake.1–3 There is a
continued interest in controlling vortex shedding because, in addition to inducing unsteady loads on
the body, it also leads to an increase of the mean drag.

Spanwise periodic (3D) perturbations of spanwise uniform (2D) wakes, e.g., obtained with
periodic modulations of the trailing and/or leading edge of the bluff body4–7 or spanwise periodic
blowing and suction8 can attenuate and even suppress vortex shedding and reduce the associated
undesired drag and unsteady loads (see, e.g., Ref. 9 for a review). Recently, important progress has
been made in the understanding of this stabilizing action from a linear stability perspective: Hwang
et al.10 show that appropriate 3D spanwise periodic perturbations of 2D absolutely unstable wake
profiles lead to a reduction of the absolute growth rate. This reduction is observed for a range of
spanwise wavelengths that is in accordance with experimental results, just as the fact that varicose
perturbations are more stabilizing than sinuous ones. However, the question of the higher efficiency
of 3D perturbations when compared to 2D ones in reducing the absolute growth rate was left partially
open by this study. It is indeed known that lower rates of 3D blowing and suction, compared to 2D
one, are required to suppress shedding in a cylinder wake.8 This seems to contrast the fact that the
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first-order sensitivity of the absolute instability growth rate with respect to 3D spanwise periodic
modifications of the basic flow is zero,10, 11 therefore predicting that, at first order, 2D perturbations
are more effective than 3D ones in reducing the absolute growth rate.

A partial explanation of the higher efficiency of 3D perturbations when compared to 2D ones
has been given in another recent study12 where we show that parallel “frozen” 2D wakes can
support the large temporal amplification of streamwise streaks from stable spanwise periodic and
streamwise uniform streamwise vortices via the lift-up effect.13, 14 The optimal perturbations leading
to the optimal amplification of the streaks were computed and it was shown that varicose streaks of
relatively small amplitude are able to completely quench the absolute instability.12 It was also shown
that the initial amplitude of optimal 3D perturbations necessary to quench the absolute instability is
much smaller than the initial amplitude required by 2D perturbations.

Many questions were however left unanswered by the local temporal analysis developed in
our previous investigation.12 For instance, can optimal spatial amplifications be large in spatially
diffusing wakes? The answer is not a priori clear because the wake diffusion not only reduces the
basic flow shear fuelling the transient growth but also increases the local spanwise wavenumber
of the perturbation, which is known from local analysis to reduce the growth. Another question is:
are 3D optimal perturbations more efficient than 2D ones in stabilizing a global instability? The
answer to this question is not obvious because finite downstream distances are needed to attain the
maximum energy growth, while the pocket of absolute instability that needs to be controlled is lo-
cated upstream, and therefore it is not clear how efficient optimal perturbations can be in quenching
the absolute instability. The scope of the present study is to answer these questions by consid-
ering the spatial optimal perturbations and their influence on the global stability of non-parallel
wakes.

An “artificial” wake, left free to spatially develop downstream the enforced inflow wake profile,
is introduced as reference 2D basic flow in Sec. III. The use of such a basic flow allows us to
find results which are independent of the specific body shape generating the wake and of the
particular devices used to generate the optimal perturbations. The optimal spatial perturbations
of this non-parallel wake are computed in Sec. IV following the procedure described in Sec. II.
These optimal perturbations are defined as the perturbation profiles enforced at the inflow station
that lead to the optimal energy amplification G(x) at the downstream station x. This definition is
quite different from that of optimal initial or inflow conditions leading to the optimal temporal
energy amplification15, 16 G(t). Optimal spatial energy amplifications have already been computed
in non-parallel boundary layers by using direct-adjoint methods exploiting the parabolic nature of
the boundary layer equations.17, 18 Here we choose to specifically design an alternative scalable
optimization method (see Sec. II) that does not rely on the parabolic nature of the equations and
that does not require the explicit computation of adjoint operators. The influence of forcing optimal
perturbations on the global linear stability is investigated in Sec. V. The results of fully nonlinear
simulations that validate these results in the nonlinear regime are reported in Sec. V D, while the
used numerical methods are summarized in the Appendix.

II. PROBLEM FORMULATION

In this section the mathematical formulation of the analysis performed in the paper is briefly
introduced. The formulation is general and can be applied to other non-parallel shear flows. Specific
details about the particular wake profile and perturbations used in this study are mentioned in
Secs. III–V.

A reference two-dimensional (2D) non-parallel plane basic flow U2D(x, y) is obtained as a steady
solution of the Navier-Stokes equations with inflow boundary condition U = U0(y)ex given at x = 0
and free-stream conditions U → U∞ex given as y → ±∞. We denote by x, y, and z the streamwise,
cross-stream, and spanwise coordinates and by ex , ey , ez the associated unit vectors. The Reynolds
number Re = U ∗

re f δ
∗/ν is based on the characteristic velocity and length associated to U0(y) and on

the kinematic viscosity ν of the fluid. The non-parallel basic flow U2D = U (x, y)ex + V (x, y)ey is
invariant to translations and reflections in the spanwise coordinate z (it is therefore two-dimensional
or 2D).
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Perturbations u′ to the reference 2D basic flow are ruled by the Navier-Stokes equations in
perturbation form:

∇ · u′ = 0, (1)

∂u′

∂t
+ (∇U) u′ + (∇u′) U + (∇u′) u′ = −∇ p′ + 1

Re
∇2u′, (2)

using U = U2D as basic flow.
In the first part of the study, dealing with optimal spatial perturbations of U2D , we consider steady

perturbations u′ of U2D obtained by perturbing the inlet profile U0(y) with steady inflow perturbations
u′

0(y, z). We are interested in steady perturbations both because they are spatially stable and because
they are of interest in passive control applications. In particular, spanwise periodic perturbations of
wavelength λz will be considered in the following. Considering small perturbations, the nonlinear
term (∇u′)u′ can be neglected, which makes the perturbation equations linear. Defining the local
perturbation kinetic energy density as

e′(x) = 1

2δλz

∫ ∞

−∞

∫ λz

0
u′ · u′ dy dz, (3)

the optimal spatial energy amplification of inflow perturbations is defined as

G(x) = max
u′

0

e′(x)

e′
0

. (4)

Different approaches can be used to compute G(x) and the associated optimal inflow perturbation.
We choose here to decompose the inlet perturbation on a set of linearly independent functions b(m)

0 ,
in practice limited to M terms, as

u′
0(y, z) =

M∑
m=1

qmb(m)
0 (y, z). (5)

Denoting by b(m)(x, y, z) the perturbation velocity field obtained using b(m)
0 (y, z) as inlet perturba-

tion, from the linearity of the operator follows that

u′(x, y, z) =
M∑

m=1

qmb(m)(x, y, z), (6)

where the coefficients qm are the same used in Eq. (5). The optimization problem in Eq. (4) can
therefore be recast in terms of the M-dimensional control vector q as

G(x) = max
q

qT H(x)q
qT H0q

, (7)

where the components of the symmetric matrices H(x) and H0 are

Hmn(x) = 1

2δλz

∫ ∞

−∞

∫ λz

0
b(m)(x, y, z) · b(n)(x, y, z) dy dz, (8)

H0,mn = 1

2δλz

∫ ∞

−∞

∫ λz

0
b(m)

0 (y, z) · b(n)
0 (y, z) dy dz. (9)

Within this formulation G(x) is easily found as the largest eigenvalue μmax of the generalized
M × M eigenvalue problem μH0w = Hw. The corresponding eigenvector is the optimal set of
coefficients q(opt) maximizing the kinetic energy amplification at the selected streamwise station x.
The corresponding inlet perturbation is u′(opt)

0 (y, z) = ∑M
m=1 q (opt)

m b(m)
0 (y, z). In the limit M → ∞

the approximated solution converges to the exact solution.
In the second part of the study, the influence of forcing finite amplitude optimal perturbations

on linear global stability is investigated. A family of 3D streaky nonlinear non-parallel basic flows
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U3D(x, y, z; A0) is obtained by looking for steady solutions of the (nonlinear) Navier-Stokes equa-
tions with inflow boundary condition U0(y, z) = U0(y)ex + A0u′(opt)

0 (y, z) given at x = 0. u′(opt)
0 is

normalized to unit x-local energy so that e′(0) = A2
0 for u′ = U3D − U2D (see the definition of e′ in

Eq. (3)). In general, it is not guaranteed that the linear optimal perturbations are also (nonlinearly)
optimal at finite amplitude. However, for the present purpose of open-loop control, this is not a
problem as long as they are still largely amplified. Using strictly optimal perturbations is also not
critical because it is not likely that strictly optimal perturbations can be forced in a real flow and
there is no guarantee that they would be also the optimal ones in reducing the global mode growth
rate. The global linear stability of the U3D basic flows is then analysed by integrating in time the
linearized form of the Navier-Stokes equations (1) and (2) in perturbation form with U = U3D . After
the extinction of transients, the leading global mode emerges inducing an exponential growth or
decay of the solution. The global growth rate is then deduced from the slope of the global energy
amplification curve.

III. NON PARALLEL 2D REFERENCE WAKE

The 2D reference wake is computed by enforcing as inflow boundary condition the following
well studied2 wake profile:

U0(y) = 1 + �

[
2

1 + sinh2N (y sinh−1 1)
− 1

]
, (10)

with � = (U ∗
c − U ∗

∞)/(U ∗
∞ + U ∗

c ), where U ∗
c is the centreline and U∞∗ the freestream velocity (di-

mensional variables are starred). The velocity U0 is made dimensionless with respect to the reference
velocity U ∗

re f = (U ∗
c + U ∗

∞)/2. The spatial coordinates are made dimensionless with respect to the
reference length δ∗

0 that is the distance from the centreline to the point where the 2D wake velocity
is equal to U ∗

re f , computed at the inflow. We set � = −1.35 to ensure a small recirculation in the
upstream region of the wake. For � = −1.35, the wake is globally unstable when Re � 39 (not
shown). In the following we will consider the value Re = 50 for which numerical simulation (see
the Appendix for the numerical details) shows strong self-sustained oscillations in the wake (see
Fig. 1(b)). As at Re = 50 the only unstable global mode is sinuous (antisymmetric with respect to
the y = 0 axis), the unstable basic flow U2D is computed by direct temporal integration by enforcing
the y-symmetry of the solutions (otherwise a Newton-based continuation method would have been
required). The reference basic flow is shown in Fig. 1(a). It can be seen how the basic flow vorticity,
which is maximum at x = 0 with peaks at y ≈ ±1, slowly diffuses downstream.

(a)

(b)
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FIG. 1. Spanwise vorticity fields ωz(x, y) associated to the reference 2D non-parallel wake at Re = 50. (a) (unstable) Basic 2D
flow profile obtained by enforcing the y-symmetry of the solution. (b) Snapshot of the periodic self-sustained state obtained
without enforcing the y-symmetry of the solution.
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FIG. 2. Optimal spatial energy growths G(x) (panel (a)) computed for the spanwise wavenumbers β = 0.5, 0.75, . . . , 1.50,
1.75 at Re = 50 (outer to inner). The dependence Gmax(β) of the maximum energy growths on the spanwise wavenumber is
reported in panel (b).

IV. OPTIMAL SPATIAL ENERGY GROWTH

Optimal steady inlet perturbations of U2D maximizing the spatial energy amplification G(x) are
computed following the procedure described in Sec. II. Our previous investigation of the optimal
temporal energy growth in parallel wakes12 has shown that the most amplified spanwise periodic
and streamwise uniform (corresponding to steady in our spatial framework) perturbations consist
in streamwise vortices inducing the growth of streamwise streaks. We therefore consider inlet con-
ditions of the type: u′

0 = (u′
0, v

′
0, w

′
0) = (0, ∂ψ/∂z,−∂ψ/∂y). Single-harmonic spanwise periodic

perturbations can be considered without loss of generality: ψ ′ = f(y)sin (βz). As varicose pertur-
bations (mirror-symmetric with respect to the y = 0 plane) are the most efficient for control,9, 10, 12

even if they are slightly less amplified than sinuous ones,12 we enforce f (−y) = −f(y) which leads
to varicose streaks. The set of linearly independent inflow conditions used in Eq. (5) is chosen as
b(m)

0 (y, z) = (0, ∂ψ (m)/∂z,−∂ψ (m)/∂y) with ψ (m) = fm(y)sin (βz) and fm(y) = −fm(y) for m = 1,
. . . , M. We have found well suited the set fm(y) = sin (2mπy/Ly), where the numerical box extends
from −Ly/2 to Ly/2 in the y direction.

Optimal energy growths have been computed for a set of spanwise wavenumbers β increasing
M until a precision of 1% or higher on Gmax was achieved (see also the Appendix for the numerical
details of the computations). The computed optimal energy growth curves G(x, β) are reported
in Fig. 2(a). It is seen how, consistently with results form the local analysis,12 both the maximum
growth Gmax = max xG(x) and the position xmax where it is attained increase with increasing spanwise
wavelength λz = 2π /β, i.e. with decreasing β (see also panel (b) of the same figure). The convergence
of the optimal growth curves with increasing M is quite fast, and this for all the considered values of
β, as can be seen in Fig. 3. Well converged results, with relative variations below 1% are obtained
with only M = 16 terms.
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FIG. 3. Convergence of the optimal energy growth G(x) for β = 1 (panel (a)) and of the maximum energy growth Gmax(β)
(panel (b)) when the number M of linearly independent inflow conditions is increased at Re = 50. Well converged results are
obtained for M = 16.
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FIG. 4. Cross-stream (y-z) view of the cross-stream v′
0-w′

0 components of optimal vortices (arrows) forced at the inflow
(x = 0) and of the streamwise u′ component of the corresponding optimal streaks (contour-lines) at x = xmax for Re = 50,
β = 1. The 2D basic flow wake streamwise velocity at the inflow U0(y) is also reported in grey-scale with white corresponding
to the freestream velocity and dark grey the minimum velocity (wake centreline).

The optimal inflow perturbations (x = 0) and the maximum response (x = xmax) associated to
the maximum growth Gmax obtained for β = 1 are reported in Fig. 4. The corresponding velocity
profiles are reported in Fig. 5, where additional values of β are also considered. The optimal inflow
perturbations consist in two rows of counter-rotating vortices on each side of the y = 0 plane, with
opposite rotation on each side. These vortices induce the growth of y-symmetric (varicose) streaks.
From Fig. 5 it can be seen how, for increasing spanwise wavelengths λz (decreasing β), the size
of optimal perturbations increases in the normal (y) direction (and of course also in the spanwise z
direction).

The observed trends are in agreement with those found in our previous local analysis.12 However,
the maximum spatial growth rates obtained in the non-parallel case are smaller than the temporal
ones obtained at the same nominal β under the frozen and parallel flow approximation. This is
not surprising because the nominal values of β and Re of the non-parallel results are based on the
properties of the wake profile at the inflow (x = 0). As the dimensional reference length δ∗(x) (the y∗
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FIG. 5. Normalized amplitude of the v(x = 0, y, z = 0) component (panel (a)) and w(x = 0, y, z = λz/4) components
(panel (b)) of the optimal inflow boundary vortices. The normalized amplitude of the u(x = xmax, y, z = 0) streamwise
component of the corresponding optimally amplified streaks is plotted in panel (c). Three selected spanwise wavenumbers
are considered: β = 0.5 (dashed line, green), β = 1 (solid line, red), and β = 1.5 (dotted line, blue).
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value where U ∗
2D(y∗) = U ∗

re f ) increases with x, a dimensionless wavenumber β = β∗δ∗ based on the
local scale would increase going downstream. As the maximum growth rate is a decreasing function
of β, it is not surprising that the maximum growth rates are smaller than the ones that would be
obtained if the wake was parallel. Therefore, the results of the present analysis should be compared
to the ones of the local analysis obtained at larger values of β.

V. STABILIZING EFFECT OF OPTIMALLY FORCED STREAKS ON GLOBAL MODES

In this second part of the study, we investigate the influence of the forcing of optimal per-
turbations on the linear global stability of the wake. The input parameter of this analysis is the
amplitude A0 of the forcing at the inflow boundary and the output is the linear growth rate sr

of the global mode supported by the streaky wake. All the results are obtained for Re = 50 and
β = 1. The choice of β = 1 is not completely arbitrary. On the one hand, in order to obtain large
energy amplifications, one should choose low values of β. For low β, however, not only would the
cross-stream size of the inlet optimal vortices be probably too large to be implemented in practical
applications but, even more importantly, large amplitudes of the streaks would be obtained only
far downstream (e.g., xmax ≈ 120 for β = 0.5). This is a problem because the main scope of the
control is to reduce the absolute growth rate in the absolute region which extends up to x ≈ 5.
On the other hand, selecting large values of β, in order to have xmax in the absolute region, would
lead to poor energy amplifications and would exclude any damping in the convective region. The
value β = 1 is a good compromise between these two extrema. In particular, as can be seen from
Fig. 2(a), the obtained G(x) for β = 1 in the region x � 10 are sensibly the same of those obtained
for higher β.

A. Streaky wakes basic flows

Non-parallel streaky (3D) wake basic flows U3D(x, y, z; A0) are computed by enforcing at
x = 0 the inflow condition U = U0(y)ex + A0u′(opt)

0 and by then computing the corresponding
steady solution of the (nonlinear) Navier-Stokes equations, as explained in Sec. II. The solution,
which may be unstable, is obtained by enforcing symmetry with respect to the y = 0 plane, exactly
as done to compute U2D . The local amplitude of the streaks is measured extending the standard
definition used in previous studies:12, 19

As(x) = 1

2

maxy,z

(
U3D − U2D

)
− miny,z

(
U3D − U2D

)
maxy U0 − miny U0

. (11)

In this definition the streak amplitude at the station x is defined as half the maximum deviation of the
streaky 3D profile from the reference 2D profile, at the same x station, normalized by the maximum
velocity variation of the inflow 2D reference profile.

The considered values of A0 and the obtained values of As at xmax (maximum value of As) and
in the middle of the absolute instability region (x = 2.7) are reported in Table I, where each
considered case is given a literal label. Case A corresponds to the reference two-dimensional
wake profile U2D (no streaks) while cases B, C, D, and E are obtained by increasing the inlet
amplitude A0 of the forced optimal perturbations. The nonlinear streaks amplitude evolution As(x)
associated to the velocity fields U3D are reported in Fig. 6(a) for the considered cases. From
Fig. 7, where streaky basic flows are shown in the symmetry plane y = 0, it is seen how, indeed
for increasing A0, the wake is increasingly 3D. The effect of nonlinearity is to slightly reduce the
maximum energy growth (from ≈20 in the linear small amplitude limit to ≈17–15 for streaks D and
E, not shown) and to induce a mean flow distortion that slightly counteracts the effect of the streaks.

B. Linear global stability analysis

The linear global stability analysis is performed via a direct numerical simulation of the
Navier-Stokes equations (1) and (2) linearized upon the 3D streaky basic flows U3D defined above
(Sec. V A). In previous local stability analyses10, 12 it was shown that for large streaks amplitudes,
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TABLE I. Considered nonlinear streaky wake basic flows. A0 is the finite
amplitude given, at the inflow, to the linear optimal boundary perturbations
(vortices). As,max is the maximum streak amplitude reached in the nonlinear
numerical simulation. Case A corresponds to the reference two-dimensional
wake. Cases B, C, D, and E are obtained by increasing A0.

Case A0 As,max (%) As(x = 2.7) (%)

A 0.000 0 0
B 0.057 10.3 2.5
C 0.085 15.1 3.7
D 0.120 20.4 5.2
E 0.171 27.3 7.4
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FIG. 6. Spatial evolution of the streaks amplitudes As(x) for increasing amplitudes A0 of the inflow optimal perturbations
(panel (a)) and temporal evolution of the global kinetic energy of secondary perturbations E′(t) to the considered reference
and streaky basic flows (panel (b)). All the results have been obtained for Re = 50 and β = 1.
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FIG. 7. Streaky basic flows. Distribution of the streamwise velocity u(x, y = 0, z) in the y = 0 symmetry plane. The reference
2D case A is reported in panel (a), while cased C and E, obtained by increasing the amplitude A0 of the inflow optimal
perturbations, are reported in panels (b) and (c), respectively.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

195.83.231.74 On: Mon, 24 Feb 2014 17:07:04



the dominant absolute mode is subharmonic, i.e., its spanwise wavelength is twice that of the basic
flow streaks. This is taken in due consideration by integrating the linearized equations in a domain
including two basic flow streaks wavelengths (Lz = 2λz). Noisy initial conditions on u′ are given for
the reference 2D wake (case A). The unstable global mode emerging for large times in the reference
2D wake is then used, upon normalization of its amplitude, as initial condition on u′ in simulations
with the increasingly streaky basic flows B,...,E.

The temporal evolution of the global perturbation kinetic energy

E ′ = 1

2δLx Lz

∫ Lx

0

∫ L y/2

−L y/2

∫ Lz

0
u′ · u′ dx dy dz

is reported in Fig. 6(b). After an initial transient extending to t ≈ 70, the dependence of E′ on time
is exponential (a straight line in the lin-log scales used in the figure), where the rate of growth or of
decay is twice the growth rate of the global mode.

As anticipated (see, e.g., Fig. 1(b)) the reference 2D wake (case A) is strongly linearly unstable
at Re = 50. The forcing of 3D linearly optimal perturbations of increasing amplitude has a stabilizing
effect on the global instability. The growth rate first reduced for low amplitude streaks (cases B and
C) is then rendered quasi-neutral (case D) and finally completely stable for sufficiently large streak
amplitudes (case E).

In the neutral and stable case the streaks amplitudes As(x = 2.7), measured in the middle of
the absolute instability region of the reference 2D wake, are respectively of ≈5% and ≈7%. These
values are not far from the ≈8% value at which the absolute instability was completely quenched in
our previous local stability analysis.12 Also remark that, in the present non-parallel case As is given
in terms of the entrance reference maximum �U2D(x = 0), but if it was based on the local value
of �U2D(x) which is decreased with x, this would result in even larger downstream values of As.
The stabilization of the global mode therefore appears to be associated to a strong reduction of the
pocket of absolute instability that drives the global mode oscillations in the 2D reference case. A
local stability analysis of the basic flow profiles extracted at x = 2.7 (not shown) indeed confirms that
the local absolute growth rate is reduced with increasing streak amplitudes and that it is completely
quenched by streak E.

C. Sensitivity of the global growth rate to the amplitude of 3D optimal structures

1. The first order sensitivity of the global growth rate to streaks is zero

In previous studies based on local stability analyses,10, 11 it was shown that the sensitivity of the
absolute growth rate to 3D spanwise periodic modifications of the basic flow is zero. The argument
developed in the local absolute instability analysis is easily extended to the global stability analysis of
the nonparallel wake and proceeds as follows. Denote by L2D the Navier-Stokes operator linearized
near the 2D basic flow U2D . For small values of the inflow amplitude of optimal perturbations,
the basic flow is modified by a small amount δU = U3D − U2D that induces a small change δL
in the linear operator. At first order, the change of the leading eigenvalue induced by this small
variation is20, 21 δs = 〈w†

2D, δLw2D〉/〈w†
2D, w2D〉, where w2D, s2D, w†

2D are, respectively, the leading
global mode, eigenvalue, and adjoint global mode associated to U2D , and the standard inner product
is defined as 〈a, b〉 = ∫ Lx

0

∫ L y/2
−L y/2

∫ Lz

0 a · b dx dy dz. From Eq. (2) it is seen that the variation δL
induced by δU consists only in spanwise periodic terms as δU is itself spanwise periodic. As w2D

and w†
2D do not depend on z, it follows22 that 〈w†, δLw〉 = 0 and therefore that δs = 0. This is not the

case for 2D (spanwise uniform) perturbations of U for which the variation of the leading eigenvalue
is, in general, non-zero.

2. Effective sensitivity of global growth rate to spanwise periodic basic flow
modifications and comparison with 2D modifications

We now consider the observed dependence of the most unstable global mode on the control
amplitude. Such a control amplitude is unequivocally defined in terms of inflow optimal perturbation

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

195.83.231.74 On: Mon, 24 Feb 2014 17:07:04



-4

-2

 0

 2

 4

 0  0.05  0.1  0.15  0.2

A0

s r
*1

00

(a)

3D
2D -4

-2

 0

 2

 4

 0  5  10  15  20  25  30

As%(x=2.7)

s r
*1

00

(b)

3D
2D  3

 3.3

 0  0.5  1  1.5

As%(x=2.7)

s r
*1

00

(c)

3D
2D

FIG. 8. Dependence of the growth rate of the global eigenvalue sr on the inflow optimal perturbation amplitude A0

(panel (a)) and on the streak amplitude As(x = 2.7) measured in the centre of the absolute region of the reference 2D
wake (panels (b) and (c) for a zoomed plot). A spanwise uniform perturbation (2D) has been also considered for comparison.
Symbols denote data points, while lines are best fits to the data points.

amplitudes A0. The dependence of the global growth rate sr on the inflow optimal perturbation
amplitude A0 is displayed in Fig. 8(a). If this dependence is also to be reported in term of streaks
amplitudes, for the considered streaks with β = 1, it makes no sense to report it in terms of As,max

because this value is attained far downstream, in the convectively unstable region. We instead take
as an indicator of the “useful” streak amplitude the amplitude of the streaks in the middle of the
absolute region of the unperturbed flow As(x = 2.7). The dependence of sr on this amplitude is
reported in Fig. 8 (panels (b) and (c) for a zoom).

In the same figures the variation of the growth rate sr induced by a 2D perturbation of the basic
flow is also reported for comparison. The 2D perturbation has the same y shape as the optimal streak
shape in the middle of the absolute region (x = 2.7) but is uniform instead of periodic in the spanwise
direction. For this 2D perturbation, A0 is unambiguously defined and As is defined as the maximum
associated �U taken at x = 2.7.

From the figures it is clearly seen how the first order sensitivities dsr/dA0 and dsr/dAs computed
for A0 = As = 0 are zero for the 3D perturbations and non-zero for the 2D perturbations as predicted
by the first order sensitivity analysis. According to a first-order sensitivity analysis one would expect
the 2D perturbations to be more effective than 3D ones in quenching the global instability, but exactly
the opposite is observed. Indeed, 2D perturbations are more effective than 3D ones in reducing sr

only for very small perturbation amplitudes, while the opposite is observed for larger amplitudes
where the higher order dependence of sr on A0 and As induces more important reductions of sr. We
indeed find that 3D perturbations stabilize the global mode at a value of As(x = 2.7) more than five
times smaller, and more than ten times smaller in terms of A0. A higher efficiency of 3D perturbations
was expected for results expressed in terms of A0, due to the gain associated with the lift-up of the
3D optimal perturbations. However, such a result was somehow unexpected when expressing the
growth rate reductions in terms of As.

D. Nonlinear simulations

Non-linear simulations of the full Navier-Stokes equations have finally been performed to assess
the effect of the inflow forcing of 3D optimal perturbations in the nonlinear regime. The same grid
used in linear simulations has been used in the nonlinear ones. In a first simulation, the permanent
harmonic self-sustained state supported by the reference 2D wake is allowed to develop. This 2D
(spanwise uniform) self-sustained state is then given as an initial condition to simulations in the
presence of the optimal perturbations (streaky wakes) of increasing amplitude. As expected from the
linear analysis, the global perturbation kinetic energy E′ associated to the self-sustained oscillations
in the wake is reduced when the amplitude of the enforced optimal perturbations is increased (see
Fig. 9). A stable steady streaky wake is found for case E, where the oscillations are completely
suppressed.
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FIG. 9. Temporal evolution E′(t) of the total perturbation kinetic energy, integrated over the whole computational box,
supported by the streaky wakes, normalized to the E ′

A of the reference 2D wake. The results are issued from nonlinear
simulations where the permanent periodic state supported by the reference 2D wake is given as initial condition. In the
presence of optimal perturbations of increasing amplitude, the amplitude of self-sustained oscillations is initially reduced
(cases B, C, D), up to their complete suppression (case E).

Snapshots of the perturbation streamwise velocity in the y = 0 plane are reported in Fig. 10 for all
the considered cases. For the reference 2D wake (case A), the self-sustained state is spanwise uniform
(2D) with structures corresponding to standard von Kármán vortices. These vortical structures
become increasingly modulated in the spanwise direction for increasing amplitudes A0 of the forcing.
Unsteady structures are completely suppressed for case E, where the basic flow streamwise streaks
remain the only visible structures in the wake.

VI. SUMMARY AND DISCUSSION

In this study the optimal amplifications supported by an “artificial” non-parallel unstable 2D
wake have been computed and their influence on the stability of the wake have been investigated by
a global stability analysis. The main results can be summarized as follows:

� The energy of steady, symmetric spanwise periodic streamwise vortices forced at the in-
flow boundary can be significantly amplified downstream leading to large amplitude varicose
streamwise streaks.

� An increase of the spanwise wavelength λz of the perturbations leads to larger energy amplifi-
cation and to taller (in y) optimal structures.

� The used optimization technique, based on the simulation of the responses to a set of linearly
independent inflow forcings, has proved very flexible. Only 16 simulations of independent
forcings were needed to obtain accuracies higher than 1% on the optimal energy growths.

� The unstable global mode of the reference 2D wake at Re = 50 is completely stabilized when
optimal inflow perturbations (vortices) are forced with sufficiently large amplitude.

� The results of first order local sensitivity analyses10, 11 are easily extended to the non-parallel
case to show that the sensitivity of the 2D global mode eigenvalue to 3D spanwise periodic
modifications of the basic flow is zero, while it is in general non-zero for 2D modifications.

� 3D optimal perturbations require smaller amplitudes than a reference 2D forcing to quench the
global instability, and this both in terms of rms-amplitude of the inflow forcing and in terms of
the basic flow distortion amplitude measured in the centre of the absolute instability region of
the reference 2D wake. This is in contrast with the prediction of the sensitivity analysis.

The trends observed for the optimal energy amplification and the associated optimal pertur-
bations in the non-parallel case are in qualitative agreement with those found in the local stability
analysis.12 In particular, the shapes of the optimal inputs (streamwise vortices) and those of the op-
timal outputs (streamwise streaks) are very similar for both analyses. When comparing the results,
care must however be exerted in, e.g., selecting the appropriate spanwise wavenumbers to compare,
as the local dimensionless wavenumber keeps increasing while going downstream in the non-parallel
wake. Using the wavenumber made dimensionless with respect to the inflow reference length, the
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FIG. 10. Snapshots from fully nonlinear simulations. Streamwise perturbation velocity u′(x, y = 0, z) = u(x, y = 0, z) −
U2D(x, y) in the y = 0 symmetry plane in the permanent regime (t = 250). The reference 2D case A is reported in panel (a),
while cases B, C, D, and E, obtained by increasing the amplitude A0 of the inflow optimal perturbations, are reported in panels
(b) to (e) (top to bottom). Case A displays self-sustained periodic oscillations of 2D structures in the wake. These structures
become increasingly 3D and of smaller rms value for increasing values of the enforced A0 (cases B to D). The oscillations
are completely suppressed in case E where the stable streaky basic flow is observed after transients are extinguished.

growths in the non-parallel wake appear smaller than the ones that would be predicted by keeping
the wake frozen and parallel.

The fact that the linear global instability can be suppressed by optimal spanwise perturbations is
in agreement with the idea that these 3D perturbations efficiently reduce the local absolute growth in
the wave-maker region of the flow.10, 12 It also extends to flows with an “oscillator” dynamics3, 21 the
control strategy based on the forcing of optimally amplified streaks that has been successfully used
to stabilize convectively unstable waves in non-parallel boundary layers.23–26 In this type of control
strategy, optimal vortices are forced which then efficiently generate the streaks leading in fine to
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the stabilization. This control technique is much more efficient than directly forcing the stabilizing
streaks because the lift-up effect is used as an amplifier of the control action. Otherwise, much larger
forcing amplitudes would be required to directly force the streaks.

The conclusions concerning the sensitivity analysis are, we believe, probably the most relevant
of this study. According to a first order sensitivity analysis, the 3D spanwise periodic forcing or
modification of the basic flow with amplitude A is less effective than a 2D one with the same
amplitude because the sensitivity of 3D perturbations is zero (growth rate reductions ∼A2, with
zero derivative in A = 0), while the 2D sensitivity is not zero (growth rate reductions ∼A). While
these conclusions are correct for very small amplitudes A of the basic flow modifications, they are
not correct for larger amplitudes where the parabola-shaped growth rate reductions (3D control)
have grown larger than the straight line ones (2D control). In our specific case this cross-over
happens at very small amplitudes of the forcing, of the order of 1/10 of the amplitude required for
stabilization by 3D modifications and of the order of 1/100 of the one required by 2D modifications.
Considering that these results have been obtained at a Reynolds number only 20% above the critical
value for global instability, this means that except in very weakly unstable situations, where small
control amplitudes suffice to stabilize the perturbations, a first order sensitivity leads to misleading
conclusions when the stabilizing efficiency of 3D and 2D perturbations is compared.

An important question, left for future study, is how to force optimal perturbations in the presence
of the bluff body. As already mentioned, many ways to modulate wakes in the spanwise direction
have been already implemented, among which, the sinusoidal indentation of the leading and/or the
trailing edge of the body,4–7 and the spanwise periodic blowing and suction at the wall surface.8 The
achieved wake modulations are strikingly similar to the streaky wakes investigated in the present
study, suggesting that, just like in boundary layers, the optimal streaks represent a sort of “attractor”
of the spanwise modulated solutions. However, it is not clear which of these strategies, if any,
predominantly uses vortices to force the streaks instead of directly forcing the streaks. It would also
be interesting to investigate the optimal amplification and the control efficiency of periodic inflow
perturbations. Additional work is granted on these issues.
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APPENDIX: NUMERICAL SIMULATIONS

The Navier-Stokes equations (nonlinear and linearized) have been numerically integrated using
OpenFoam, an open-source finite volumes code (see http://www.openfoam.org). The flow is solved
inside the domain [0, Lx] × [− Ly/2, Ly/2] × [0, Lz] that is discretized using a grid with Nx and
Nz equally spaced points in the streamwise and spanwise directions, respectively. Ny points are
used in the y direction using stretching to densify points in the region where the basic flow shear
is not negligible. The fractional step, pressure correction PISO (Pressure Implicit with Splitting of
Operators) scheme is used to advance the solutions in time.

TABLE II. Numerical grids used for the computation of optimal perturbations. As a y-symmetry is enforced the equations
are solved only in the [0, Ly/2] half-domain.

β Lz Nz Ly/2 Ny Lx Nx

0.5 12.57 48 20 120 124 300
0.75 8.38 48 20 120 124 300
1 6.28 24 10 80 124 300
1.25 5.03 24 10 80 124 300
1.5 4.20 12 10 80 124 300
1.75 3.60 12 10 80 124 300
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Different grids have been used to compute optimal linear perturbations of different spanwise
wavenumbers, as reported in Table II.

Nonlinear streaky basic flows for β = 1 have been computed using the same grid used for
the computation of the linear optimals at the same β. For the linear and nonlinear simulations of
the perturbations to the 3D streaky basic flows, however, the domain is doubled in the y direction
([ − Ly/2, Ly/2] instead of [0, Ly/2]) as the y symmetry is no more enforced. Te box is also doubled in
the spanwise direction (Lz = 2λz) in order to include subharmonic perturbations. The corresponding
Ny and Nz are also doubled leading to a grid with Lx = 124, Ly/2 = 10, Lz = 4π , Nx = 300,
Ny = 160, Nz = 48 with �x = 0.4, �z = 0.26 and a minimum �y = 0.01 on the symmetry axis and
a maximum �y = 0.1 near the freestream boundary.
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