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ABSTRACT 

Powder-based inkjet three-dimensional printing (3DP) to fabricate pre-designed 3D structures 

has drawn increasing attention. However there are intrinsic limitations associated with 3DP 

technology due to the weak bonding within the printed structure, which significantly 

compromises its mechanical integrity. In this study, calcium sulphate ceramic structures 

demonstrating a porous architecture were manufactured using 3DP technology and 

subsequently post-processed with a poly (ε-caprolactone) (PCL) coating. PCL concentration, 

immersion time, and number of coating layers were the principal parameters investigated and 

improvement in compressive properties was the measure of success. Interparticle spacing 

within the 3DP structures were successfully filled with PCL material. Consequently the 

compressive properties, wettability, morphology, and in vitro resorption behaviour of 3DP 

components were significantly augmented. The average compressive strength, Young’s 

modulus, and toughness increased 217%, 250%, and 315%, following PCL coating. Addition 

of a PCL surface coating provided long-term structural support to the host ceramic material, 

extending the resorption period from less than 7 days to a minimum of 56 days. This study 

has demonstrated that application of a PCL coating onto a ceramic 3DP structure was a 

highly effective approach to addressing some of the limitations of 3DP manufacturing and 

allows this advanced technology to be potentially used in a wider range of applications. 
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Postal Address: School of Mechanical and Manufacturing Engineering, Dublin City 
University, Republic of Ireland. 



1 Introduction 

One of the challenges additive manufacturing (AM) technologies is facing today is to 

manufacture more robust components from a greater selection of materials. Powder-based 

inkjet three-dimensional printing (3DP) is one of the AM technologies that can potentially 

use a broad range of powdered materials to fabricate complex internal and external structures. 

It involves a sequential layering process, through which binder droplets are ejected from 

inkjet print head nozzles and selectively deposited on the powder bed to build a 3D 

component from a series of cross sections. Co-manufacturing a support structure to overhang 

printed features is not required. Thus, 3DP offers great flexibility in product design and 

material selection. Studies have investigated a wide variety of powdered materials processed 

in 3DP, including metal (Lim et al., 2007; Williams et al., 2007), ceramics (Peters et al., 

2006; Gbureck et al., 2007; Zhou et al., 2014), polymers (Lam et al., 2002; Chia and Wu, 

2015), wood (Saidin et al., 2013), and their composites (Will et al., 2008; Koltygin and 

Bazhenov, 2012; Zhou et al., 2015). In practice, plaster calcium sulphate (CaSO4) powder is 

one of the most commonly used materials in 3DP manufacturing. This technology has been 

used for rapid prototyping, domestic use, architectural design, artwork and medical 

applications, such as tissue-engineering scaffolds (Iliescu et al., 2009; D’aveni, 2013; Huson 

and Hoskins, 2014; Shirazi et al., 2015).  

There are still major limitations associated with 3DP technology due to inherent weak 

bonding within the printed structures, which yields poor mechanical performance 

(Chummanklang et al., 2007). This inherent weak bonding is in part due to the large degree 

of interparticle spacing within the powder bed. During a 3DP process, the adjacent powders 

are only loosely connected by the deposited binder droplets. The weak bonding between the 

powder particles leads to interparticle spacing within the 3DP structure. Stress concentrations 

surrounding the interparticle spacing reduce the overall mechanical integrity of the printed 

structure. The initial green strength of a 3DP ceramic structure only comes from the 

mechanical interlocking of precipitated crystals (Butscher et al., 2011). Poor mechanical 

properties have limited many potential applications for 3DP structures. For example, patient-

specific tissue scaffolds for bone regeneration requires compressive strength and modulus to 

at least match those of cancellous bone, which is in the range of 2-20 MPa and 100-2000 

MPa, respectively (Røhl et al., 1991; Giesen et al., 2001; Yeni and Fyhrie, 2001; Olszta et 

al., 2007; Fu et al., 2011). However, the 3D printed bioceramic scaffolds developed in most 

previous studies have insufficient mechanical properties to meet the requirement for bone 



tissue engineering applications (Chumnanklan et al., 2007; Gbureck et al., 2008; Szucs and 

Brabazon, 2008; Zhou et al., 2012). Weak bonding can subsequently compromise other 

properties, such as barrier properties, and long-term structural integrity under humid or 

physiological environments. The authors have previously demonstrated that CaSO4 porous 

structures manufactured using 3DP technology completely disintegrated within 7 days when 

immersed in pH=7.4 buffer solution (Zhou et al., 2012). Coupled with insufficient 

mechanical stability, this results in an inability to support surrounding tissue in a load-bearing 

site. 

To address this challenge, different approaches have been used to enhance mechanical 

performances of 3DP tissue engineered bone scaffolds. Many studies have focused on the 

selection of different liquid binders to increase powder-binder reactivity (Peters et al., 2006; 

Gbureck et al., 2007; Vorndran et al., 2008). Vorndran et al. (2008) compared the quality of 

3DP scaffolds (in this case calcium phosphate) using water-based and acid binders, which 

offered different compressive properties and printing resolution. However, acidic binders 

cause degradation of the thermal print head used in commercial 3D printers and, in practice, 

only water-based media (>98% water) can ensure reliable 3DP manufacturing over a 

sustained period (Rahmati et al., 2009). Another approach was to investigate powder physical 

and topological properties on a fundamental level (Butcher et al., 2012; Zhou et al., 2014). 

Powder particle size has been demonstrated to be the most important topological 

characteristic in affecting powder bed packing, spreadability and wettability. Many studies 

have investigated powders of various particle size in the 3DP process, which have resulted in 

different properties of the resultant 3DP structure (Lu et al., 2009; Butcher et al., 2012; Zhou 

et al., 2014). However, a previous study has reported that even for a highly-packed powder 

bed, powders only occupied less than 40% of the overall volume within the powder bed, the 

remaining being occupied by interparticle spacing (Zhou et al., 2014). Sintering has been 

used to consolidate 3DP ceramic structures to improve their mechanical properties. Due to 

the coarse particles used in 3DP manufacturing, the rearrangement of particles during 

sintering is limited and the degree of particle necking is low (Chummanklang et al., 2007). A 

relatively high shrinkage (18-32%) after sintering has been reported (Seitz et al., 2005; 

Leukers et al., 2005; Fierz et al., 2008), which requires compensation when considering the 

original CAD models. Processing parameter optimisation (e.g. layer thickness, build 

orientation, and binder saturation level) also plays an important role in printing resolution and 

stability (Patirupanusara et al., 2008; Asadi-Eydivand et al., 2016).  



Most of the approaches used to date do not provide solutions to reducing the extent of 

interparticle spacing within 3DP structures. Consequently, the improvements in mechanical 

properties have been very limited. A more rational approach to solve this problem would be 

to focus on filling the interparticle spacing with a binding agent during post-processing for 

components printed. Normally, 3DP components are immersed in an infiltrant liquid pool to 

obtain infiltration and also coating on the surface. Commercially available infiltrants for Z-

corp 3D printers include wax and epoxy resins. However, to meet demands from an 

increasing range of businesses, there is a growing imperative to widen the variety of infiltrant 

that can be used to fill interparticle spacing of 3DP structures. A non-toxic and bioresorbable 

material would be an attractive proposition for 3DP structures for use in health and safety 

sectors (e.g. food industry and medical device applications).  

Poly (ε-caprolactone) (PCL) is a bioresorbable polymer that has been commercially used for 

decades to make implantable medical devices (e.g. OsteoporeTM and OsteoplugTM) (Teoh et 

al., 2004). It is a biocompatible material and undergoes degradation via hydrolytic cleavage 

of ester linkages in physiological conditions. PCL provides long-term mechanical stability to 

withstand forces from both wound contraction and external application owing to its relatively 

slow resorption profile (Rai et al., 2005). Due to the excellent toughness and processability, 

PCL is often blended with more brittle materials to improve resistance to stress cracking 

(Nair and Laurencin, 2007). Coating highly porous ceramics with PCL has been shown to 

augment compressive properties (Xue et al., 2009 and Zhao et al., 2010). Significant 

improvements in toughness have also been demonstrated due to the ductile PCL fibrils 

bridging cracks within brittle ceramics (Peroglio et al., 2007). Due to the bioresorption and 

toughness, PCL has distinctly different characteristics compared to widely used 3DP ceramic 

materials, such as CaSO4. Therefore, it presents great potential to address the weak bonding 

within 3DP structures and improve their functions to meet various application requirements. 

The aim of this study was to evaluate the effects of adopting PCL coating as a post-process 

method to augment the performance of 3DP porous structures. Specific properties used to 

evaluate the extent of improvement were compressive properties, wettability, morphology, 

and in vitro bioresorption. By utilising different parameters during the polymer dip-coating 

method, (e.g. immersion time, solution concentration, and repeated times) the efficiency of 

PCL coating and the capability to achieve variable functions of 3DP porous structures was 

also investigated. 



 

2 Materials and Methods 

2.1 Manufacturing Process 

A 3D porous structure was designed with pore size and strut thickness both equal to 1.2 mm. 

The cylindrical structure had diameter= 13.2 mm and height= 13.2 mm (Figure 1). The 

design was saved in the STL format and then imported to the Zcorp 310 3D printer (Z 

Corporation, US). Standard CaSO4 hemihydrate powder (ZP 102, Z Corporation, US) and 

water-based binder (ZB 7, Z Corporation, US) were used as the base materials for building 

3D structures. Layer thickness was 100µm. During the 3DP process, the feed area was first 

filled with powder and the roller spread a powder layer from the feed area to the build area. 

The print head deposited binder droplets selectively within the build area. After the first 

layers were built up, the roller returned to the feed area and then spread another powder layer 

to the build area. This procedure was repeated continuously until a complete structure was 

constructed. After the 3DP process, the unbound powder was removed using compressed air. 

All printed structures were heated  in a furnace (BCF 11/8, Elite Thermal System Ltd., UK) 

at 200 °C for 30 min to dehydrate the CaSO4 hemihydrate (Zhou et al., 2012).  

2.2 PCL Coating 

PCL coating solution was prepared by dissolving PCL powder (Capa 6506, Perstorp UK 

Ltd.) in chloroform (288306, Sigma-Aldrich UK) using an ADS-HP1 hotplate stirrer (Asynt 

Ltd., UK) at a temperature of 22 oC and a stirring speed of 3000 rpm. The dissolution process 

was defined as complete when all the PCL powder had been dissolved in the solution.  3DP 

structures were fully immersed in the PCL coating solution. After specific immersion times, 

each 3DP structure was removed and placed on a grill in the fume cupboard under ambient 

conditions for 48 h to facilitate solvent evaporation. The mass of each scaffold pre-and post-

coating was measured.  

Preliminary studies by the authors demonstrated that the maximum saturation for PCL in 

chloroform was approximately 16 wt.% (data not reported). Consequently, 16 wt.% was 

selected as the upper limit for PCL concentration investigated in this study. Additional 

concentration levels below the upper limit were selected at equal intervals. Two recent 

studies assessed the potential for coating tissue engineered scaffolds using PCL/chloroform 



solutions (Zulkifli et al., 2014; Shao et al., 2016). In these studies, 2.5 min and 10 min were 

used as the immersion times. To investigate the optimum immersion period for scaffolds to 

be coated with PCL – an extended range of immersion times was selected, which ranged from  

a relatively short period (30 s) to a prolonged period (30 min) compared to the previous 

studies (Zulkifli et al., 2014; Shao et al., 2016). The second PCL layer was applied onto each 

porous structure by repeating the same procedure as described for the first layer. The 

resultant structure was then heated in the oven at 80 °C for 1 h to help fuse the two layers 

together (Peroglio et al., 2007). The uncoated, PCL single-layer coated, and PCL double-

layer coated porous structures were classified as CaSO4, PCL-CaSO4, and 2PCL-CaSO4.  

In summary, the following parameters and levels were considered during the coating 

procedure:  

1. PCL concentration (4, 8, 12, and 16 wt.%);  

2. Immersion time (30 s, 5 min, and 30 min); 

3. Number of coating layers (single PCL layer and double PCL layers). 

2.3 Compressive Properties 

The compressive properties of each 3DP porous structure was determined using a Universal 

Materials Test system (EZ50, Lloyds Instruments, UK) with a 1 kN load cell (XLC 01/2419, 

Lloyds Instruments, UK) and at a rate of displacement of 0.5 mm/min (n = 4). The load cell 

had a load measurement accuracy of ± 0.5% and could read down to 1/200th of its capacity. 

Each specimen was tested to failure, which was denoted when the load in the post-peak 

region had reduced to 80% of the peak load. One thousand force-vs.-displacement data points 

were then logged for each specimen. The compressive strength was defined as the maximum 

load recorded, divided by the apparent cross-section area (including porosity) of the scaffold. 

The compressive modulus was determined by measuring the maximum slope of the elastic 

region of stress-vs.-strain curve immediately after the toe-in region. Simpson’s Rule was used 

to calculate the compressive toughness, which was denoted as the area under the compressive 

stress-vs.-strain curve to the point of failure. Based on the compressive property data, further 

characterisation was only conducted on the porous structures that were immersed in 12 wt.% 

PCL solution for 30 s. 



2.4  Morphology 

3DP structures were also sectioned longitudinally by a blade to facilitate observation of the 

internal architecture and morphology using field emission SEM (JEOL JSM-6500F, JEOL 

Ltd., Japan) at an operating voltage of 5 keV. The surfaces of the 3DP structures post-fracture 

were also analysed using SEM. Each 3DP structure was mounted on aluminium stubs using a 

cold cure resin (Extec Corp, Enfield, CT 06083-1258, USA), allowed to cure for 24 ± 2 h and 

subsequently gold-coated using a sputter chamber prior to SEM examination.  

2.5  Wettability 

The surface wettability was investigated by measuring the contact angle of deionised water at 

room temperature using the sessile drop method (FTA1000B, First Ten Ångstroms, UK). A 5 

µL droplet of water was placed on the surface at a pump out rate of 2.57 µL/s. 3DP structures 

were sectioned in the longitudinal direction to ensure contact angle measurements were also 

taken for the internal architecture. A minimum of three specimens were tested from each data 

set and five readings were performed at different locations on each specimen. Each reading 

was made by capturing a static contact angle of the sessile drop after a thermodynamic 

equilibrium was reached between the liquid and the surface. Hydrophilicity was compared 

between different tested surfaces based on the contact angle results.  

2.6  In vitro Resorption Properties 

The resorption properties were determined under pseudo-physiological condition via 

immersion in tris-HCl buffer solution (pH = 7.4). Each 3DP structure was weighed and then 

placed in an individual sterile polypropylene 120mL container (Sarstedt AG & Co., 

Germany) that contained 60mL of tris-HCl buffer solution. Each container was then placed in 

an oven that was maintained at 37 ± 1 °C (Heraeus® Series 6000, Thermo Fisher Scientific, 

UK). The resorption properties were measured over a 56 day period. On a weekly basis the 

buffer solution was replaced with fresh solution. Four 3DP structures were removed from the 

buffer solution each week; gravimetric analysis and mechanical assessment were conducted. 

In the first instance, the wet mass was measured after carefully removing all the excess water 

from the 3DP structure with sterile filter paper. Each 3DP structure was then rinsed with 

deionised water and dried in a 37 ± 1 °C oven for 48 h. The compressive properties were also 

determined at each time point after the samples were dried, although determining the 

compressive properties of the 3DP structures under wet conditions would have been 

beneficial as this is more representative of in vivo environment. Notwithstanding this fact, 



drying each of the 3DP structures prior to mechanical testing was chosen to allow for the 

non-destructive characterisation to be undertaken beforehand.  

The water absorption (%) and mass change (%) before and after immersion in buffer solution 

were calculated using Equations 1 and 2: 
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Where: m0,d = dry mass before immersion in buffer solution (g) 

mt,w = wet mass after immersion in buffer solution (g) 

            mt,d = dry mass after immersion in buffer solution (g) 

2.7  X-ray Microtomography Analysis 

X-ray microtomography (µ-CT) was used to determine the structural evolution of the 3DP 

structures in the dry condition as a function of time in tris-HCl buffer solution. At each time 

point, one 3DP structure was selected for µ-CT scanning using a SkyScan 1174 system 

(SkyScan N.V., Belgium) and scanned at medium resolution (600 axial µ-CT slices with 

1024 × 1024 pixels bitmap image, 16.25 µm resolution). The micro-focus X-ray source 

operated at a voltage of 50 kV and a current of 800 µA. Aluminium filters (0.75 mm) were 

applied for beam hardening reduction. During the scanning process, the specimen stage was 

rotated over 360° at rotation step of 0.5°. At each rotation step, an angular shadow projection 

of the specimen was acquired at an exposure time of 5.5 s. The X-ray shadow projections 

were then digitised and the acquisition geometry for each scan was extracted from the dataset 

of transmission images using a reconstruction programme (i.e. smoothing = 4, ring artefact 

correction = 14 and beam hardening correction = 46%.) The upper and lower threshold levels 

for reconstructed cross-sectional images were determined from the grayscale histogram, 

which was generated using ImageJ software (National Institutes of Health, USA). The 

threshold levels were selected in positions that best separated materials from spaces, as well 

as one material phase from another if they exhibited distinct peaks within the histogram. 

Thereafter structural properties of interest (e.g. volume and degree of porosity) were 

determined using the SkyScan CT-analyser software (Version 1.10.1.0, SkyScan N.V., 

Belgium). 



2.8 Statistical Analysis 

Data collected from each experimental test was evaluated for statistical significance using 

SPSS 13.0 software (SPSS, USA).  Differences between treatment groups were assessed 

using one-way Analysis of Variance (ANOVA) with a post-hoc Bonferroni correction. A 

value of p<0.05 was considered to be statistically significant. Data analysis was selected on 

basis of normal probability tests.  

3 Results 

3.1 Compressive Properties 

Significant improvements (p<0.05) in the compressive properties were achieved after 3DP 

structures were immersed in the 8, 12, and 16 wt.% PCL solution, compared to the uncoated 

scaffolds (Figure 2). The average compressive strength, modulus and toughness of PCL-

CaSO4 (12 wt.%) increased by 217%, 250%, and 315%, respectively when compared to the 

uncoated structure. However, no significantly improvements (p>0.05) were demonstrated 

between the compressive properties for the 3DP structures comprising of PCL-CaSO4 at 12 

wt.% or 16 wt.% concentration. 

No significant difference (p>0.05) was observed between the immersion time (0.5, 5 and 30 

min) in PCL solution and the resultant compressive properties of the 3DP structures (Figure 

3). A modest reduction was observed for the compressive strength, modulus and toughness of 

the 3DP structure immersed in 12 wt.% PCL solution for 30 s (3.14±0.41 MPa, 74.13±8.10 

MPa, and 0.41±0.08 10-6 J/m3), comparing to 30 min immersion (3.28±0.80 MPa, 

79.22±10.00 MPa, and 0.50±0.16 10-6 J/m3). Furthermore, there was less than 10% increase 

in the mass when the immersion time was increased from 30 sec to 5 min or 30 min, which 

indicated the majority of the PCL coating penetrated the 3DP structure during the initial 30 s 

of immersion.  

Significant differences (p<0.05) in the compressive properties were observed between the 

3DP structures as a function of number of coating layers (Figure 4). Compressive strength, 

modulus and toughness increased from 3.14±0.31 MPa, 74.13±4.10 MPa and 0.41±0.08 10-6 

J/m3 for a single PCL coating compared to 5.45±0.57 MPa, 90.1±7.00 MPa and 0.64±0.10 

10-6 J/m3 for a double PCL coating. Additionally, the average mass increase during first layer 

coating and second layer coating was 0.166 g and 0.126 g, respectively.  



3.2 Morphology 

SEM images showed significant differences in the surface morphologies between the 

uncoated and PCL-coated samples (Figure 5a and Figure 5b). The surface of a 3DP 

uncoated structure demonstrated a relatively higher degree of roughness and a larger level of 

visible interparticle spacing. Coating the 3DP structure with PCL filled the interparticle 

spaces on the surface. Evidence of PCL coating was also observed within the struts of the 

porous 3DP structures, which was indicative of deep penetration of the PCL coating (Figure 

5d). Stretched fibrils of PCL containing ceramic particles were noted across the fractured 

surface of the coated 3DP structures (Figure 6).  

3.3 Surface Hydrophilicity 

The water contact angle was determined to evaluate the surface hydrophilicity as a function 

of PCL coating (Figure 7). The surface of 3DP structures manufactured from CaSO4 

exhibited extreme hydrophilic tendency, immediately imbibing the water droplets once 

placed on the surface. The water contact angle increased considerably when the PCL coating 

was applied. However no significant difference (p>0.05) was observed between the 

application of a single or double layer of PCL to the surface of the 3DP structure. Large 

variations were observed for the contact angle data when comparing the surfaces of external 

struts and internal struts of the 3DP porous structures. In contrast the 2PCL-CaSO4 structure 

showed more consistent contact angle data. The outer surface of the 3DP structure exhibited 

higher contact angle when compared to the inner surface irrespective of the number of PCL 

coating layers applied. 

3.4 In vitro Resorption 

The resorption properties of the CaSO4 3DP structure changed dramatically on application of 

the PCL coating. Both PCL-CaSO4 and 2PCL-CaSO4 3DP structures were able to maintain 

the bulk of their shape following 56 days of immersion in buffer solution. The mass gradually 

reduced as a function of time in buffer solution over the 56-day period (Figure 8). A 10% 

reduction in the original mass was observed for PCL-CaSO4 and 2PCL-CaSO4 type structures 

by Day 7 and by Day 35 this mass reduction was 30%. Beyond Day 42 time point, a 

significant difference (p<0.05) in the mass change was noted between the PCL-CaSO4 and 

2PCL-CaSO4 3DP structures.  

The extent of water absorption was significantly different (p<0.05) between the PCL-CaSO4 

and 2PCL-CaSO4 3DP structures during the entire resorption period (Figure 9). Following 7 



days immersion in buffer solution, the water absorption for the PCL-CaSO4 structure was 

102.20±3.55 % when compared to 67.33±2.03 % for 2PCL-CaSO4. At day 56, the water 

absorption for the PCL-CaSO4 and 2PCL-CaSO4 3DP structures increased further to 

261.40±37.76 % and 148.32±10.27 %. 

By the end of the resorption study, both the PCL-CaSO4 and 2PCL-CaSO4 structures in the 

dry condition maintained ≤40% of their original compressive strength (Figure 10a) and 

≤20% of their original compressive modulus (Figure 10b). The single layer PCL coated 

CaSO4 structure demonstrated a greater reduction in compressive strength when compared to 

the double PCL coating CaSO4 structure. At the Day 56 time point, the compressive strength 

for the PCL-CaSO4 structure reduced from 3.14±0.31 MPa to 1.38±0.23MPa (-56.05% and 

the 2PCL-CaSO4 structure decreased from 5.45±0.57 MPa to 3.07±0.60 MPa (-43.67%). The 

rate of reduction in compressive modulus was more rapid than the reduction in compressive 

strength during the initial stages of resorption (i.e. 1-7 days). Thereafter, the compressive 

modulus for both specimen types decreased at a modest rate until Day 56.  

Precipitation of CaSO4 was more evident following resorption. Precipitation was observed on 

both the PCL-CaSO4 and 2PCL-CaSO4 structures following 7 days immersion in buffer 

solution (Figure 11a and Figure 11b). However, by Day 56 the extent of ceramic 

precipitation disappeared (Figure 11c). Ceramic particles were still evident following 56 

days in buffer solution, which were encased within the PCL coating. The surface morphology 

of the PCL coated structures did not seem to alter over the resorption period of 56 days 

(Figure 11d).  

3.5 µ-CT Analysis 

One of the challenges of analysing changes in the structural properties as a function of 

resorption time was the continuous shift in the X-ray absorption peaks on the grayscale 

histogram, which was due to changes in the density of the specimen. To determine the 

optimum threshold levels that could be applied on a continuous basis, the grayscale 

histograms for specimens taken at Day 0 to Day 56 were analysed in parallel. In this study, 

the X-ray absorption peaks shifted between different time points. The PCL-CaSO4 (Day 0) 

exhibited the X-ray absorption peak in a grayscale range of 40 and 120 (Figure 12a). During 

Day 7 and Day 21, the X-ray absorption peak shifted towards the higher grayscale. However 

at Day 28 the X-ray absorption peak shifted towards the lower grayscale. The PCL-CaSO4 

3DP structure exhibited X-ray absorption peaks of between 5 and 25 grayscale from Day 35 



to Day 49. No X-ray absorption peak was observed at Day 56. For the 2PCL-CaSO4 

structures, a similar trend was observed (Figure 12b). From Day 0 and Day 42, the X-ray 

absorption characteristic peak shifted between 20 and 140 grayscale. Between Day 49 and 

Day 56, the 2PCL-CaSO4 structures exhibited peaks at the lower grayscale range (i.e. 5- 25).  

Grayscales values are proportional to the material density (Hawkins et al., 2010).  It is 

postulated that a reduction in material density could be related to the degradation of the 3DP 

structure as a consequence of resorption time. If the micropore size was smaller than the 

voxel size of µ-CT scanning, then the voxel containing that micropore would still show a 

grayscale value. Therefore the grayscale value for a voxel was governed by the percentage of 

empty spaces within that voxel. At the later stages of resorption both the PCL-CaSO4 and 

2PCL-CaSO4 structures exhibited distinct X-ray absorption peaks within the low grayscale 

range (5-25), which was indicative of a low density due to a relatively higher level of 

resorption. Two threshold levels were subsequently determined: (1) 5 and (2) 25, resulting in 

three grayscale ranges: (1) 0-5, (2) 5-25, and (3) 25-255 (Table 1). Voxels carrying grayscale 

of 5-25 and 25-255 were considered as low-density and high-density materials. The grayscale 

range of 0-5 corresponded to the empty space. 

Different binary images were obtained after using different thresholding levels (Table 2). A 

small percentage of material was observed between the 5 and 25 grayscale range at Day 0 and 

Day 7, which could only be observed on the surface. Below the surface, all material was in 

the grayscale range of between 25 and 255. The binary images of 2PCL-CaSO4 did not 

exhibit great changes at Day 28. However, some material within the internal structure of 

PCL-CaSO4 changed to a lower grayscale range (5-25). The majority of the internal structure 

for the PCL-CaSO4 and 2PCL-CaSO4 converted into the lower grayscale range (5-25) by Day 

56 and only the outer layers of the 3DP structure remained in the upper grayscale range (25-

255). 

PCL-CaSO4 had an overall volume of 898.47 mm3 prior to immersion in the buffer solution 

and most of the structure was within the 25-255 grayscale range (Figure 13a).  The overall 

volume of the material gradually decreased to 699.07 mm3 by Day 49. The volume ratio of 

high-density materials to low-density materials also reduced to ≥1 at Day 49, which indicated 

the majority of material was within the 5-25 grayscale range. A greater reduction in the 

overall volume of the 3DP structure was observed from Day 49 to Day 56. In contrast, the 

2PCL-CaSO4 structures did not demonstrate a large decrease in the overall volume of 



material (Figure 13b). However, a continuous reduction in the volume ratio of high-density 

materials to low-density materials was also observed between Day 0 (6.41) and Day 56 

(0.49). 

For PCL-CaSO4, the percentage of spaces increased gradually from 37.44% (Day 0) to 

49.95% (day 49) (Figure 14). An additional significant rise was observed from Day 49 to 

Day 56 (69.34%), which concurred with the overall material volume reduction. The 

percentage of space increased gradually from 37.44% (Day 0) to 58.8% (Day 28) for the 

2PCL-CaSO4 structures. No distinct change in percentage of space was evident beyond Day 

28.  

4 Discussion 

To investigate the effects of PCL coating on 3DP structures, it is more logical to perform the 

study using a well-established material for this technology. Many materials such as 

hydroxyapatite still require more thorough investigations to the most efficient and reliable 

binding approach as well as to optimise powder physical and topological properties. CaSO4 

has been the dominant material for manufacturing 3DP structure since the emergence of the 

technology. Historically, the CaSO4 based material has been successfully used as a 

biocompatible material to substitute bone tissues for regeneration (Peltier et al., 1957). 

Unlike other approaches attempting to optimise physical or chemical properties of processed 

materials, PCL coating aims directly to address the inherent drawback on the morphology of 

a 3DP structure. Therefore, it is highly applicable to different materials processed using 3DP 

technology and justifies the use of CaSO4 powdered material in this study. The outcome from 

this study can be used as a guideline for application to other powdered formulations 

processed using 3DP technology. 

Post-processing of 3DP structures has been strongly advocated in an effort to augment the 

mechanical properties (Butscher et al., 2011). In this regard, a polymer dip-coating method 

was utilised to apply a PCL coating onto the 3DP structure. It was hypothesised that PCL 

would provide additional strength and toughness to the brittle CaSO4 material. The 

compressive properties of the 3DP structure increased considerably on application of the PCL 

coating. Under compression loading, fracture was normally initiated at the weakest points 

within the 3DP structure, i.e. the bonded area between adjacent powders containing surface 

flaws and gaps. Following evaporation of the solvent, the PCL coating adhered to the CaSO4 



particles (Figure 15). The layer of PCL coating covered these surface flaws and filled the 

interparticle spacing, which strengthened the bond between the CaSO4 particles. In this study, 

SEM analysis clearly demonstrated the PCL coating filled the interparticle spacing between 

the CaSO4 particles. 

PCL offers good toughness when compared to most other bioresorbable polymers (Roohani-

Esfahani et al., 2010), which contributed to improvements in the compressive properties of 

3DP structures. When the load exceeded the capacity of the brittle ceramic material, the stress 

was distributed to PCL layers and the energy was absorbed by the PCL coating. It has been 

reported that PCL can reach 7% and 80% elongation at yield and break point respectively 

(Agrawal and Ray, 2001; Shor et al., 2007). In this study PCL-CaSO4 underwent severe 

deformation under compression; however there was no evidence of fracture within the 3DP 

structure. The PCL-CaSO4 3DP structure maintained its overall shape post-failure, while the 

uncoated equivalent failed catastrophically. SEM analysis of the fractured surfaces from the 

PCL-CaSO4 showed evidence of crack bridging by the PCL fibrils, which confirmed the role 

of PCL coating in augmentation of the mechanical properties. 

Improvements in mechanical properties were also influenced by the coating concentration 

and the number of coating layers. Increasing the PCL concentration up to 12 wt.% offered a 

greater adherence throughout the 3DP structure. Consequently the overall structure was 

further reinforced, thereby increasing the mechanical properties. The PCL solution at 16 

wt.% was found difficult to prepare, it is suggested this concentration level exceeded PCL 

saturation in the solvent. The molecular weight of PCL is one of the properties that may 

affect the concentration. It is easier to dissolve and infiltrate using PCL of lower molecular 

weight. However, it would compromise the improvement of toughness to the 3DP structures. 

Additionally the duration of the immersion time in the PCL solution beyond 30 s did not offer 

further improvement in the mechanical properties. Application of a double layer of PCL 

coating achieved both a higher degree of coverage and a greater quantity of PCL material 

over the surface of the 3DP structure. Consequently a step-change improvement in the 

compressive properties was observed for the 2PCL-CaSO4 structures.  

PCL is known for slow resorption due to its hydrophobicity and highly crystalline structure 

(Khan et al., 2013). In this study, the uncoated 3DP structures disintegrated within a week, 

while only 10% mass loss was recorded for PCL-coated samples following 7 day immersion 

in buffer solution. The disintegration of the CaSO4 3DP structure in the buffer solution was 



due to dimensional expansion and the dissolution therein. The layers of PCL coating provided 

protection to the CaSO4 particles from exposure to water molecules, as well as maintaining 

the structural integrity of the 3DP component.  

PCL undergoes hydrolytic cleavage of ester linkages during the first 12 months of resorption 

before its molecular weight reduced to a low enough level for resorption (Sun et al., 2009). 

Therefore, a limitation of this study was to conduct a resorption experiment over a 56-day 

period. Notwithstanding this fact, both PCL coated 3DP structures demonstrated a reduction 

of almost 50% of their original mass by Day 56. Considering the high dissolution rate of 

CaSO4, it can be suggested the coating material played a crucial role in determining the 

resorption behaviour of the composite.  

Even though PCL-CaSO4 demonstrated lower PCL coverage when compared to the 2PCL-

CaSO4 structures - no significant difference (p>0.05) in the resorption properties was 

observed until Day 49. The comparable resorption profile could be due to the accumulation 

of Ca2+ and SO4
2- ions within some regional areas, which would cause oversaturation of ions 

and dissolution by-products making further dissolution difficult.  

Water absorption is influenced by the water uptake of the residual material and the number of 

surface micropores that can trap water (Yang et al., 2008). PCL-CaSO4 demonstrated a 

significantly higher water absorption (p<0.05) when compared to the 2PCL-CaSO4. Different 

distributions with respect to surface hydrophilicity were observed for the 3DP structures 

coated with single and double layers of PCL coating, which was due to the lower surface 

coverage for PCL-CaSO4 and consequently more surface micropores and flaws being 

exposed to the buffer solution. 

The compressive properties of the coated 3DP structures were governed by the more rigid 

PCL material. When CaSO4 particles dissolved, the proportion of PCL within the composite 

increased and therefore enhanced its role in determining the overall mechanical properties. 

This observation was more significant for 2PCL-CaSO4, which had more PCL material 

within the composite than the PCL-CaSO4 structures. Consequently the polymer within the 

2PCL-CaSO4 structure offered greater support to the CaSO4 fused particles when subjected to 

compressive loading. 

Materials undergoing resorption experience variations in density when compared to the 

control. The X-ray absorption peaks shifted significantly over the 56-day period and a 



grayscale range of 5 to 25 grayscale was observed at the latter stages of resorption for both 

PCL-CaSO4 and 2PCL-CaSO4 structures. This grayscale range represented material that was 

resorbed extensively to a relatively low density. Such an interesting finding offered an 

opportunity to segment the µ-CT data into two distinct material phases: (1) high-density 

material representing a slight resorbable class and (2) low-density material representing a 

higher resorbable class.  

The overall volume of material (grayscale range: 5-255) corresponded well with the 

gravimetric data for both the PCL-CaSO4 and 2PCL-CaSO4 structures as a function of 

immersion time. A more rapid reduction in the overall material volume occurred at Day 56 

for PCL-CaSO4, which coincided with the trends observed for the mass loss data. The 

proportion of materials within grayscale range of 5-25 increased significantly for PCL-CaSO4 

as a function of resorption time, which explains the reduction in compressive properties. 

Once the material had resorbed, pores were created within the same location. According to 

the µ-CT data, the porosity increase for the 3DP structures corresponded to an increase in 

material loss. The rate of increase in the overall porosity (grayscale range: 5-255) was slow 

and only a rapid increase occurred at Day 56 for the PCL-CaSO4, which paralleled well with 

the material volume. 

In this study, the mechanism of the polymeric addition could be considered both a coating 

and an infiltrate. Specific reasons for this consideration include: (1) the external and internal 

surfaces of scaffolds were largely covered by PCL; and (2) the PCL also infiltrated the 

interparticle spacing between adjacent powder particles within the 3DP printed structures 

(Figure 5). There may be some concerns of pore blockage as a consequence of polymer 

infiltration. However in this study this is not the case, the PCL coating did not occlude any of 

the pores within the printed structure. Application of the PCL coating reduced the extent of 

the interparticle spacing within the printed structure and assisted in overcoming one of the 

main drawbacks of 3DP technology.  

A potential limitation of this study was the choice of a relatively large pore size for the 

printed structures. However, it has been reported that trabecular bone demonstrates an 

average pore size of 500-1500 µm and a porosity of 50% - 90% (Cowin, 2001). A minimum 

pore size of 1.2 mm was chosen based on a previous study conducted by the authors, whereby 

they investigated the manufacturability of CaSO4 3DP structures of differing pore size and 

strut configurations (Zhou et al., 2012). They reported it was extremely difficult to remove 



the unbound CaSO4 powder particles from the 3DP structures when a pore size of less than 

0.8 mm was used. The relationship between scaffold pore size and cellular activity within 

tissue engineered scaffolds is not fully understood as is apparent from the conflicting reports 

on the optimal pore size found within the literature. Scaffolds with mean pore sizes ranging 

from 20 µm to 1500 µm have been used in bone tissue engineering applications (Pilliar et al., 

1986; Nehrer et al., 1997; Baksh et al., 1998; Lee et al., 2004; Williams et al., 2005). Early 

studies using porous implants demonstrated that the minimum pore size for significant bone 

growth was 75–100 µm with an optimal range of 100–350 µm for load bearing applications 

(Hulbert  et al., 1970; Klawitter and Hulbert, 1971; Klawitter et al., 1976). Since this work 

many studies have proposed a need for pores exceeding 650 µm for bone formation, to ensure 

rapid vascularisation and for the survival of transplanted cells within tissue engineered 

scaffolds constructs. By facilitating capillary formation, pores greater than 650 µm can lead 

to direct osteogenesis while pores smaller than 300 µm have the potential to promote 

osteochondral ossification (Tsuruga et al., 1997; Cornell, 1999; Kuboki et al., 2001; Götz et 

al., 2004; Karageorgiou et al., 2005; Lien et al., 2009; Roosa et al., 2010). However, it is 

important to identify the upper limits in pore size as large pores may compromise the 

mechanical properties of the scaffolds by increasing void volume (Karageorgiou et al., 2005). 

There are also potential drawbacks associated with polymer coating, such as compromising 

osteoconductivity of a bioceramic surface and cytotoxicity of residual solvent. It is suggested 

that more ‘friendly’ solvent, such as scCO2, should be considered to utilise in future studies. 

Nevertheless, the focus of this study was to evaluate the use of PCL coating as a highly 

effective approach to addressing the main limitations of current 3DP manufacturing. And it 

has successfully filled the interparticle voids within 3DP structures and consequently 

improved various key performances. The outcome of this study contributes to the continuous 

development of powder-based 3DP technology increasing the robustness of manufactured 

products creating opportunities to increase their applications. 

5 Conclusion 

The overall performance of 3DP ceramic structures improved through the application of PCL 

coating. Adoption of PCL coating technology as a post-processing option has been 

demonstrated as a highly efficacious method of reducing the interparticle spacing and 

altering surface properties of 3DP structures. The surface morphology, microstructure and 



hydrophilicity of 3DP components were subsequently modified, which augmented the 

compressive properties and in vitro resorption behaviour. The average compressive strength, 

Young’s modulus, and toughness increased 217%, 250%, and 315%, following PCL coating. 

PCL coating has successfully increased the compressive properties of 3DP porous structures 

to the lower limit of the range of those of cancellous bones. Additionally, the overall 

structural integrity of the 3DP structure was maintained for up to 56 days in buffer solution as 

the PCL coating inhibited the rapid dissolution of CaSO4 particles. The µ-CT data indicated 

the resorption behavior was predominantly related to microstructural conversion from high 

density to low density material, as opposed to a significant reduction in material volume. 

Therefore, the PCL coated bioceramic structure could provide mechanical support to the 

surrounding tissues without failing prematurely in vivo.  

The coating method also demonstrated a high degree of flexibility and the properties of 3DP 

structures could be further tailored by using different coating parameters. Introduction of a 

second layer of coating and using a solution with an increased PCL concentration facilitated a 

higher degree of surface coverage and depth of penetration of the PCL coating. In addition, 

the extent of PCL coating could be controlled by using solutions with different PCL 

concentrations. The release rate of ceramic material into environment was controlled by the 

surface coverage of PCL. Overall, the PCL coated bioceramic structures developed present 

compressive and bioresorbable properties applicable within the field of tissue engineered 

bone substitutes. 
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