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Summary

Fungi of the genus Aspergillus are widespread in the
environment. Some Aspergillus species, most com-
monly Aspergillus fumigatus, may lead to a variety
of allergic reactions and life-threatening systemic
infections in humans. Invasive aspergillosis occurs
primarily in patients with severe immunodeficiency,
and has dramatically increased in recent years.
There are several factors at play that contribute to
aspergillosis, including both fungus and host-related
factors such as strain virulence and host pulmonary
structure/immune status, respectively. The environ-
mental tenacity of Aspergilllus, its dominance in
diverse microbial communities/habitats, and its abil-
ity to navigate the ecophysiological and biophysical

challenges of host infection are attributable, in large
part, to a robust stress-tolerance biology and excep-
tional capacity to generate cell-available energy.
Aspects of its stress metabolism, ecology, interac-
tions with diverse animal hosts, clinical presenta-
tions and treatment regimens have been well-studied
over the past years. Here, we synthesize these find-
ings in relation to the way in which some Aspergillus
species have become successful opportunistic
pathogens of human- and other animal hosts. We
focus on the biophysical capabilities of Aspergillus
pathogens, key aspects of their ecophysiology and
the flexibility to undergo a sexual cycle or form cryp-
tic species. Additionally, recent advances in diagno-
sis of the disease are discussed as well as
implications in relation to questions that have yet to
be resolved.

Introduction

Aspergillus species are widespread in the environment,
growing on plants, decaying organic matter, and in soils,
air/bioaerosols, in/on animal systems and in freshwater
and marine habitats. Aspergilli are also found in indoor
environments (surfaces of buildings, air, household appli-
ances, etc.) and in drinking water and dust. The diverse
species which make up the Aspergillus genus are able
to utilize a wide variety of organic substrates and adapt
well to a broad range of environmental conditions (Cray
et al., 2013a). They produce asexual conidia that readily
become airborne and are highly stress tolerant, and can
produce environmentally persistent sexual ascospores
(Stevenson et al., 2015a; Wyatt et al., 2015a). Although
there are several hundred species in the Aspergillus
genus, there are only a few species which have consid-
erable impacts on human or animal health. Infections
are typically caused by Aspergillus flavus, Aspergillus
fumigatus, Aspergillus nidulans, Aspergillus niger and
Aspergillus terreus, among other species (Baddley et al.,
2001; Perfect et al., 2001; Enoch et al., 2006; Gupta
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et al., in press), with A. fumigatus being responsible for
more than 90% of infections, followed in frequency by
A. flavus and A. niger (Lass-Fl€orl et al., 2005; Balajee
et al., 2009a,b). However, the actual contribution of dif-
ferent Aspergillus species in causing aspergillosis varies
from country to country and depends on the patient pop-
ulation under study (for some examples, see Table S1
and references therein, supporting information). Further-
more, some infections attributed to the major aspergilli
(i.e. A. fumigatus, A. flavus, etc.) might be actually
caused by cryptic species1 (see below). Conidia of
pathogenic Aspergillus strains that are inhaled by
humans or animals are usually eliminated by the innate
immune system neutrophils and macrophages in
immunocompetent individuals. However, depending on
the virulence of the fungal strain, immunological status,
and/or the host’s pulmonary structure and function,
Aspergillus can lead to a variety of allergic reactions and
infectious diseases in immunocompromised individuals.
This may progress to invasive and lethal infection of the
respiratory system (and/or other tissues), often followed
by dissemination to other organs, a condition known as
invasive aspergillosis. A locally invasive version of the
disease, chronic necrotizing pulmonary aspergillosis, is
mainly observed in humans with mild immunodeficiency
or with a chronic lung disease. Non-invasive forms of
Aspergillus-induced lung disease include aspergilloma
and allergic bronchopulmonary aspergillosis (ABPA)
(Kosmidis and Denning, 2015a,b).
Various factors, including facets of modern living, that

contribute to increasing numbers of immunocompro-
mised people include: increases in population longevity;
environmental pollution; alcoholism; HIV and other dis-
eases; unhealthy levels of personal hygiene; sedentary
lifestyles; obesity; modern medical interventions resulting
in high rates of use of prosthetic devices in invasive sur-
gery; chemotherapy and radiotherapy in cancer therapy;
and solid organ and bone marrow transplantation requir-
ing the clinical use of immunosuppressive drugs (Masch-
meyer et al., 2007). As a result, the number of research
studies investigating aspergillosis is increasing; there
were 13 456 peer-reviewed reports on aspergillosis for
the period 2006–2015, when compared with 8313 for
1996–2005 and 3231 for 1986–1995, according to the
Thomson Reuters Web of Science database (accessed
28 April 2016).
The success of members of the Aspergillus genus as

dominant organisms in diverse habitats is attributable to
a combination of interacting factors (Cray et al., 2013a)
resulting in a global ubiquity which particularly

contributes to the impact of A. fumigatus as a successful
opportunistic pathogen. Morphological characteristics, a
remarkable stress-tolerance biology, an ability to pene-
trate host defences and colonize/damage the host,
exceptional ability to generate cell-available energy, and
other aspects of its ecophysiology collectively contribute
to its efficacy as a pathogen. The genomes of various
Aspergillus species have been sequenced and aspects
of their stress metabolism, ecology, and interactions with
diverse animal hosts, clinical presentations and treat-
ment regimes are well-characterized. This said insights
from these disparate fields need to be fully synthesized
to produce an integrated understanding of Aspergillus
behaviour and capabilities in the context of its excep-
tional levels of virulence. This review will focus on sev-
eral aspects by which Aspergillus, especially
A. fumigatus, has emerged as a ubiquitous opportunistic
pathogen which increasingly poses an ominous threat to
human health and mortality. More specifically, we
explore key aspects of its biophysical capabilities and
ecophysiology (Tables 1 and 2), and the flexibility to
undergo a sexual cycle or form cryptic species, which
contribute to the pathogenic potency of Aspergillus
species during the development of infection. Further, we
discuss recent advances in diagnosis of aspergillosis,
and go on to discuss unresolved scientific questions in
the context of further work needed in relation to both fun-
damental and applied aspects of aspergillosis.

Biophysical capabilities and ecophysiology of
pathogenic Aspergillus species

Collectively, the aspergilli are remarkable fungi. They are
not only environmentally ubiquitous; they are also used
as the cell factory of choice for many biotechnological
applications (Knuf and Nielsen, 2012). Furthermore,
there are numerous aspects of Aspergillus cell biology
and ecology (including their metabolic dexterity when
adapting to nutritional and biophysical challenges)
(Tables 1 and 2) which contribute to their status as,
arguably, the most potent opportunistic fungal pathogens
of mammalian hosts.
Strains of A. fumigatus, A. flavus, A. niger and other

Aspergillus species can inhabit different types of environ-
ments.2 These habitats are not only diverse in terms of
substrate and implications for fungal lifestyle, but also
vary greatly in relation to temperature and water avail-
ability regime and the dynamics of other biophysical
parameters (Cray et al., 2013a; Rummel et al., 2014;

1Cryptic species are those which can be differentiated using molec-
ular or other analytical techniques and yet are morphologically indis-

tinguishable (Howard et al., 2014).

2Aspergillus habitats are detailed in Nieminen et al. (2002), Gugnani
(2003), Tekaia and Latg�e (2005), Womack et al. (2010, 2015), Cray
et al. (2013a,b), Fairs et al. (2013), Borin et al. (2015) and Hillmann

et al. (2015a,b).
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Table 1. Aspergillus ecology within the host system.

Behaviour of Aspergillus Clinical implications Additional notes and seminal studies

Entry into and germination within the host tissue
Conidia produced by aspergilli in the
environment are readily airborne due to
their hydrophobicity and small size (Taha
et al., 2005). Conidia can enter host tissue
via wounds, ingestion or (more commonly)
inhalation (Oliveira and Caramalho, 2014).
The extraordinarily small conidia of
Aspergillus fumigatus and Aspergillus
terreus (2–3 lm) allow them to invade the
nasal cavity, upper respiratory tract and
reach the alveoli, where they bind to
surfactant proteins through ligand/receptor
recognition (Latg�e, 1999; Dagenais and
Keller, 2009; Lass-Fl€orl, 2012; Oliveira and
Caramalho, 2014). The hydrophobic
character of the conidial surface is lost, and
the epithelial cells endocytose the spore
(Kwon-Chung and Sugui, 2013). Imbibition
of water is rapid, the conidium becomes
metabolically active within 30 min, followed
by germination and then the production of
hyphae within 6–8 h (Lamarre et al., 2008;
Kwon-Chung and Sugui, 2013; Oliveira and
Caramalho, 2014; van Leeuwen et al.,
2016)

Cilia, with their mucus lining, can act as a
barrier which prevents microbial infection of
lung tissue. However, pathogenic strains of
fungi can penetrate this (Kwon-Chung and
Sugui, 2013). Furthermore, fungal infection
can occur more rapidly than the host’s
immune response, which can take up to
24 h (Cramer et al., 2011). The multiple
types of damage inflicted by the pathogen
to host tissue can become irreparable
(even with medical interventions) and can
lead to death (Lopes Bezerra and Filler,
2004; Filler and Sheppard, 2006)

The water activity of the mucus lining of the
lung is likely to be approximately 0.995
(Persons et al., 1987) and even propagules
of xerophilic fungi germinate at this high
value (Stevenson et al., 2015a). Aspergillus
flavus conidia are the largest and the least
aerodynamic of the five species of
Aspergillus most commonly associated with
aspergillosis; they have a diameter of
3.5–4.5 lm (Hedayati et al., 2007) so they
are more easily trapped and removed by
mucocilliary clearance (Binder and Lass-
Fl€orl, 2013). Tolerance to the various
stresses encountered upon entry into and
growth within the host system is imperative
to successful colonization (Table 2)

Colonization and infection
Germ tubes within the cytosol of an epithelial
cell produce proteases which degrade both
the epithelial cell envelope and the wall of
adjoining blood vessel(s); furthermore, the
germlings exhibit a positive trophism for
blood (Lopes Bezerra and Filler, 2004;
Filler and Sheppard, 2006). Germ tubes
grow into the blood vessel, releasing
hyphal segments which are thereby
distributed throughout the host. Damage
inflicted upon penetration of blood vessels
can cause haemorrhaging (Lopes Bezerra
and Filler, 2004). Once within the blood
stream, hyphae induce expression of
thromboplastin which promotes
coagulation, thereby causing blood clots
(Lopes Bezerra and Filler, 2004; Filler and
Sheppard, 2006). Hyphal fragments adhere
to endothelial cells, secrete proteases to
enter the cytosol of the latter, and continue
hyphal growth within the vascular tissue/
organs (Lopes Bezerra and Filler, 2004;
Filler and Sheppard, 2006). Pathogenic
Aspergillus strains are able to adapt their
metabolism to fluctuating nutrient
availability. For instance, such strains can
obtain amino acids as a nitrogen substrate
via production of hydrolases and proteases
(Askew, 2008) (see also ‘Biofilm formation’
below). During germination and
colonization, pathogenic aspergilli must
respond/adapt to diverse types of
stressors, stress parameters, and other
challenges including anoxia, nitrogen
deprivation, and antifungal metabolites
(Table 2)

Aspergillus fumigatus spores are negatively
charged, aiding in the attachment to surface
proteins of epithelial cells (Wasylnka et al.,
2001). Indeed, the binding efficiency of
A. fumigatus spores has been implicated in
the superiority of this species as a common
(if opportunistic) fungal pathogen (Wasylnka
et al., 2001). When in a resting state, the
conidia are not recognized by the dectin-1-
receptors on macrophages (white blood
cells) due to the outer hydrophobin layer
of the former which hides their b-glucan
molecules (Oliveira and Caramalho, 2014)

A study of A. fumigatus revealed that survival
of phagocytosis by macrophages was
facilitated by melanin. The macrophage
contains the conidium in a vacuole, but is
unable to attack the fungal structure
because the mammalian ATPases are
inhibited by the melanin within the fungal
cell wall, thereby preventing the synthesis
of phagosomal enzymes (see Thywißen
et al., 2011). Aspergillus can also utilize
catalases and oxidases, which protect the
fungal cells from reactive oxygen species
released in oxidative bursts by phagosomes
(Table 2; Missall et al., 2004)
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Table 1. (Continued)

Behaviour of Aspergillus Clinical implications Additional notes and seminal studies

Biofilm formation
Germ tubes and hyphae/mycelium of a
pathogenic strain within the host may not
exist as an isolated a pure population
which is isolated from other microbes (see
below). Furthermore, the fungal biomass
does not take the form of a simple colony
because the hyphae produce extracellular
polymeric substances, effectively creating a
biofilm (Seidler et al., 2008)

A study of echinocadins revealed that
Aspergillus biofilms are highly resistant to
antifungal therapies (Kaur and Singh,
2014); pathogenic aspergilli can also expel
antifungal compounds using multidrug efflux
pumps. Furthermore, biofilms which
develop in vivo are more robust (and retain
viability for longer) than those produced
in vitro (M€uller et al., 2011; Kaur and Singh,
2014). Such factors make the use of
antifungal drugs at elevated concentrations
imperative to achieving effective treatment
of the infection (Kaur and Singh, 2014)

The formation of Aspergillus biofilms in vivo
was demonstrated relatively recently
(Seidler et al., 2008); extracellular polymeric
substances are known to play roles in
tolerance to mechanistically diverse
stresses (Table 2; Cray et al., 2015a)

Competitive ability
A human- or animal host suffering from
aspergillosis is likely to have a perturbed
microbiome due to a loss of vigour and/or
changes in microbial ecology which result
from clinical treatment regimes (Lozupone
et al., 2012; Kolwijck and van de
Veerdonk, 2014). Many Aspergillus spp.
are ecologically vigorous microbes, able to
proliferate in perturbed ecosystems/open
habitats (Cray et al., 2013a; Oren and
Hallsworth, 2014). Upon infection,
Aspergillus can impact the host
microbiome, for instance, by inducing the
production of antimicrobial peptides
(Kolwijck and van de Veerdonk, 2014).
In addition, various secondary metabolites
produced by Aspergillus spp. can inhibit
other microbes, cause apoptosis of
competitors, or increase the sequestration
of nutrients (Losada et al., 2009).
Conversely, microbes, such as Candida
albicans, can produce metabolites that
cause apoptosis in Aspergillus (Losada
et al., 2009). In turn, the various changes
in the human microbiome can potentially
render the host more susceptible to
disease. Studies of intraspecies variation
between plant-pathogenic aspergilli found
that genotypes associated with the
broadest range of hydrolytic enzymes and
the highest level of aflatoxin were more
likely to outcompete other genotypes
(Mehl and Cotty, 2013)

Generally, the survival advantage associated
with some genotypes which is conferred by
high levels of vigour and intraspecific
competition favours more pathogenic
strains; a phenomenon that has been well
studied in relation to plant hosts (Mehl and
Cotty, 2013). In the lungs of cystic fibrosis
patients, mixed populations of bacteria and
fungi can cause exacerbated bouts of
sputum production, increases in fungal
proliferation, damage to lung tissue, and the
risk of allergic bronchopulmonary
aspergillosis, a lung-based form of the
disease characterized by inflammation of
local tissues and abnormal dilation of the
airways (bronchiectasis) (Whittaker Leclair
and Hogan, 2010). Treatments for such
patients incorporate both antibacterial and
antifungal therapies to avoid increases in
the bacterial or fungal loads (Whittaker
Leclair and Hogan, 2010)

Initial interactions between pathogenic
Aspergillus spp. and Pseudomonas
aeruginosa can be synergistic, followed by
antagonism upon biofilm formation. This is
characterized by the release of diffusible,
extracellular molecules that can inhibit
hyphal growth (Skov et al., 1999; Kaur and
Singh, 2014). A study of Pseudomonas
aeruginosa and A. fumigatus interactions
revealed that the bacterium was more
inhibitory to A. fumigatus in a biofilm than
when both species were present without a
biofilm (Ferreira et al., 2015). In vitro,
Aspergillus spp. have been grown in mixed
cultures to obtain secondary metabolites
with potent antifungal activities which might
be useful as drugs (Losada et al., 2009). An
in-vitro study carried out at 30°C reported
that A. flavus can outcompete other
aspergilli, including A. fumigatus, Aspergillus
niger and Aspergillus fischeri (Neosartorya
ficheri) and demonstrated that A. fumigatus
and A. terreus were ineffective competitors
(Losada et al., 2009). At 37°C, however,
A. fumigatus and A. terreus were more
competitive, inhibiting growth of all other
Aspergillus species assayed (Losada
et al., 2009)

Virulence
Pathogenic Aspergillus strains require
virulence factors to successfully infect the
host. For instance, adhesion factors, such
as hydrophobins, allow the binding of the
conidia to host epithelial cells (Latg�e, 1999;
Tomee and Kauffman, 2000). Toxins, such
as gliotoxin, can act as
immunosuppressants, preventing a host
immune response (Latg�e, 1999; Sugui
et al., 2007; Sales-Campos et al., 2013).
Subsequent infection of the epithelial cell,
therefore, leads to necrosis enabling fungal
proliferation and further dissemination of
the pathogen (including infection of deep
tissue) (Latg�e, 1999; Sugui et al., 2007;
Sales-Campos et al., 2013)

Aspergillus-mediated inhibition of immune
response renders the host more susceptible
to additional infections (Latg�e, 1999;
Whittaker Leclair and Hogan, 2010). It is
therefore desirable to inhibit gliotoxin
production using antifungals which target
this activity (Sugui et al., 2007; Scharf
et al., 2012)

A study of Aspergillus mutants in gliotoxin
synthesis demonstrated that fungal cells
unable to produce the toxin could not
induce apoptosis of the host cell, and so
exhibited reduced virulence (Sugui et al.,
2007). A key factor which contributes to
virulence is a robust tolerance to stresses
encountered within the host system
(Table 2; Rangel et al., 2015a)
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Lievens et al., 2015). Some Aspergillus species,
including some strains of A. fumigatus, are xerotolerant,
xerophilic and/or capable of surviving repeated desicca-
tion–rehydration cycles (Williams and Hallsworth, 2009;
Krijgsheld et al., 2012; Kwon-Chung and Sugui, 2013;
Wyatt et al., 2015b), conditions which can promote
sporulation. Indeed, Aspergillus species are renowned
for the large-scale production of hydrophobic and readily
airborne spores, including those which colonize building
materials (Ko et al., 2002; Afanou et al., 2015; Zhang
et al., 2015). Spores of Aspergillus species are among
the microbial cells with the greatest longevity; highest tol-
erances to heat, pressure and chaotropicity; and ability
to germinate at the lowest water activity. For example,
Aspergillus conidia (most commonly implicated in
aspergillosis infection) can survive for 60 years or more
(Kwon-Chung and Sugui, 2013); some structures (as-
cospores) survive exposure to temperatures of 85°C
(Wyatt et al., 2015a); and their conidia have germinated
at 0.640 water activity (and may germinate at < 0.600
water activity according to theoretical determinations; A.
Stevenson and J. E. Hallsworth, unpublished), which
represents the limit for life on Earth (Stevenson et al.,
2015a,b).
Entry into the host system is typically via inhalation of,

or contact with, Aspergillus conidia (Table 1). The small
size of A. fumigatus conidia (2–3 lm) allow deep pene-
tration of the pulmonary alveoli. Other Aspergillus
species, such as A. flavus, produce larger conidia which
can be removed more easily by the mucociliary clear-
ance in the upper respiratory tract (Binder and
Lass-Fl€orl, 2013). Conidia and other spores are invari-
ably desiccated (Bekker et al., 2012; Wyatt et al., 2013),

and a rapid recovery from desiccation/short lag phase
prior to germination is imperative for pathogenic strains
to evade immune responses, and successful infection
and invasion of host tissue (Kwon-Chung and Sugui,
2013). An effective host immune response can take up
to 24 h in humans (Cramer et al., 2011). As a result,
Aspergillus strains able to penetrate host tissue in a
shorter time are more likely to be effective in terms of
colonization and subsequent infection of the host. In
addition, conidia of A. fumigatus and other species con-
tain melanin which can protect against enzymatic lysis,
diverse stresses (see below), and can also inactivate the
C3 component of the complement system (which usually
plays a key role in the clearance of microorganisms)
(Jahn et al., 1997; Abad et al., 2010).
Lung epithelial cells form a monolayer that can often

be the initial point of contact between fungus and host
(Osherov, 2012). After adhering to the epithelial cells,
conidia are rapidly endocytosed by type II pneumocytes
(Zhang et al., 2005). Subsequent to entry into the epithe-
lial cell, the conidium can germinate, a key aspect here
is the adherence and subsequent entry of fungal spores
to the lung epithelium (Slavin et al., 1988). Aspergillus
spores form a diffusible product that is able to inhibit the
activity of alveolar macrophages and thereby facilitates
this process (Nicholson et al., 1996). Furthermore, pro-
teases are produced by the germinating spores which
can damage the epithelial cells (Kauffman, 2003), and
finally, the spores invade the vascular endothelium by
passing from the abluminal to the luminal side of the pul-
monary endothelial cells (Ben-Ami et al., 2009). This is
followed by the emergence of hyphae that can penetrate
the abluminal surface of endothelial cells, simultaneously

Table 1. (Continued)

Behaviour of Aspergillus Clinical implications Additional notes and seminal studies

Response to clinical treatment regimens
The types of antifungals used to treat
aspergillosis are polyenes, which bind to
sterols within the plasma membrane
causing leakage of intracellular substrates;
and allyamines, echinocandins, and
triazoles, which inhibit the synthesis of
essential cell-wall components (Ellis, 2002;
Greer, 2003; Chen et al., 2011; Vandeputte
et al., 2012). Some Aspergillus strains can
remove antifungals via efflux pumps and
secrete polymeric substances, thereby
reducing contact with antifungal
compounds (Seidler et al., 2008). Melanin
within the Aspergillus cell-wall can bind to
antifungals, thereby protecting the cell
(Nosanchuk and Casadevall, 2006).
Furthermore, some strains use heat shock
proteins and/or sterols to reduce entry of
antifungals into the plasma membrane
(Blum et al., 2013; Lamoth et al., 2014)

Fungal strains are commonly encountered
which resist specific treatment regimes and,
in such cases, infections advance even
after diagnosis and interventions using
antifungals. For strains resistant to
antifungals due to their heat shock protein
90 activity, treatment regimes are needed
which target the latter (Lamoth et al., 2014).
Topical treatment of fungal infections has
been achieved using photoinactivation
strategies (Bornstein et al., 2009) and
chaotropic antifungals (Cray et al., 2014),
thereby circumventing various types of
resistance to treatment. Such approaches,
however, are unsafe and/or inappropriate
for treatment of systemic infections

A study of A. fumigatus has shown that, at
24 h, germlings are more resistant to
voricanazole than those tested 8 h after
incubation began; this correlated with
temporal variation in levels of expression of
genes coding for efflux pumps (Ranjendran
et al., 2011). To circumvent resistance
associated with drug efflux, it is possible to
utilize antifungals, such as echinocandins,
which cannot be removed by efflux pumps.
In addition, prior to administration of
antifungals, the patient should be given
medication that targets ATPases, depleting
the availability of ATP that is otherwise
required for effective functioning of
efflux pumps (Cannon et al., 2009)
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Table 2. Stress phenotypes and stress metabolism of Aspergillus speciesa.

Environmental or
stress-parameter Responses and adaptations Tolerance limits and biophysical considerations

Temperature
High temperature
and heat shock

Adaptation to high temperature is a polygenetic phenomenon. A study
of Aspergillus fumigatus revealed changes in 64 proteins, many of
these chaperonins, at temperatures exceeding 40°C (Albrecht
et al., 2010). The heat-shock response of A. fumigatus is highly
efficient; the regulation of genes involved in the TCA cycle and
production of chaperonins is linked (Do et al., 2009). Heat shock
protein 90 acts in both protein folding and fungicide resistance in
pathogenic aspergilli (Picard, 2002; Albrecht et al., 2010; Lamoth
et al., 2014). The heat-shock response of A. fumigatus is rapid
(< 30 min) relative to that of comparator species (~2 h) (Albrecht
et al., 2010). At high temperatures, aspergilli increase the mean
length of lipids in the plasma membrane and synthesize
ergosterol, aiding membrane stability (Fritzler et al., 2007;
Pohl et al., 2011). In a study of Aspergillus terreus, ergosterol was
found to reduce absorption of the antifungal Amphotericin B,
thereby confering resistance to the drug (Blum et al., 2013)

The upper temperature-limit for growth of most
pathogenic aspergilli is between 40 and 50°C
(Schindler et al., 1967; Alborch et al., 2011;
Sharma et al., 2014). However, A. fumigatus
conidia can survive exposure to temperatures
of up 70°C (Albrecht et al., 2010). A. terreus
exhibits optimum growth in the range 30–40°C
and Aspergillus niger in the range 30–35°C
(Alborch et al., 2011; Sharma et al., 2014).
Specialized structures (ascospores) of
Aspergillus fischeri are highly thermtolerant
and able to germinate even after a 50-min
heat shock at 85°C (Wyatt et al., 2015a).
By contrast, the fungal pathogen
Crytococcus neoformans has an upper
temperature for growth of 37–39°C
(Lin et al., 2006)

Freeze-thawing A. fumigatus, A. terreus and Aspergillus nidulans synthesize
glycerol as a cryoprotectant through the activation of the
high-osmolarity glycerol response pathway. Cells can be damaged
by factors, such as ice crystals, which rupture the plasma
membrane and cause the release of the intracellular components
into the environment, and/or lead to cellular dehydration.
Trehalose minimizes the formation of ice crystals by interposing
itself within the hydrogen-bond network of water within the cell
membrane (Jin et al., 2005; Teramoto et al., 2008; Duran et al.,
2010; Wong Sak Hoi et al., 2012). During thawing, A. fumigatus,
A. terreus and A. nidulans utilize trehalose to stabilize cell
membranes, both structurally and also by protecting themselves
from oxidative damage (Jin et al., 2005)

The presence of trehalose and glycerol enables
cells to remain viable, even at temperatures
as low as �20°C (Wyatt et al., 2015a) due, in
part, to the reduction in osmotic stress within
the cell. In addition, these compatible solutes
maintain the integrity of the lipid bilayer, so
cellular processes can occur unhindered
(Jin et al., 2005; Wong Sak Hoi et al., 2012)

Solute activities
Chaotropicity Compatible solutes, including glycerol and trehalose, can play

essential roles in protection of cells against dissolved substances
which disorder the macromolecular systems of Aspergillus and
other fungi (Hallsworth et al., 2003a; Bell et al., 2013; Alves et al.,
2015; Cray et al., 2015a). This said, chaotropic solutes like ethanol
and urea, and many secondary metabolites with antimicrobial
activity do not induce compatible-solute synthesis according to a
study of the xerophile Aspergillus wentii (Alves et al., 2015). Under
chaotrope-induced stress, microbial cells increase production of
proteins involved in protein stabilization, energy generation and
protein synthesis; undergo modifications of membrane composition;
experience oxidative damage as a secondary stress; and upregulate
production of enzymes involved in the removal of reactive oxygen
species (Hallsworth et al., 2003a; Cray et al., 2015a)

A recent study of A. wentii demonstrated
considerable tolerance limits for a range of
chaotropic stressors. For instance, Aspergillus
was able to grow at CaCl2 concentrations of
up to 1.34 M (equivalent to a chaotropic
activity of > 100.0 kJ kg�1) and able to
tolerate glycerol at a chaotropic activity of
approximately 15.0 kJ kg�1 and guanidine
hydrochloride at a chaotropic activity of
approximately 23.0 kJ kg�1 (Alves et al.,
2015)

Osmotic stress Aspergillus spp. synthesize diverse compatible solutes including
glycerol, erythritol, arabitol, mannitol, sorbitol, trehalose and proline
(Chin et al., 2010; Alves et al., 2015). Although each of these can
reduce intracellular water activity, glycerol is superior in its ability to
depress water activity (Alves et al., 2015) and is preferentially
accummulated under extreme osmotic stress in Aspergillus and
other fungi (Hallsworth and Magan, 1994; Ma and Li, 2013; Alves
et al., 2015; Rangel et al., 2015a; Winkelstr€oter et al., 2015). For
xerophillic Aspergillus strains, it has been suggested that inability to
retain glycerol in the cell determines system failure under
hyperosmotic stress (Hocking, 1993). Retention of glycerol requires
transporters, such as aquaglyceroporins, that allow bidirectional
transport of glycerol and water in response to osmotic gradients
(Lui et al., 2015). Fungi can import and accumulate compatible
solutes from the extracellular environment (Hallsworth and Magan,
1994). At high NaCl concentrations, cell membrane fluidity is
decreased (by increasing the proportion of unsaturated fatty acids)
and this aids retention of glycerol (Duran et al., 2010)

Aspergillus strains are amongst the very small
number of microbes able to tolerate
concentrations of osmotic stressors that
correspond to water activity values of less
than 0.700 water activity (Williams and
Hallsworth, 2009; Stevenson et al., 2015a,b)
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Table 2. (Continued)

Environmental or
stress-parameter Responses and adaptations Tolerance limits and biophysical considerations

Water activity Low water-activity is frequently, although not necesarily,
accompanied by osmotic stress. For instance, water-activity
reduction can result from high concentrations of substances
which freely pass through the plasma membrane (e.g. glycerol;
Alves et al., 2015) or desiccation (see below). In the absence
of an extracellular supply of substances which could be used as
compatible solutes, synthesis of glycerol and/or other compatible
solutes is needed to retain metabolism or survive at low water-
activity or during desiccation–rehydration cycles (see below;
Alves et al., 2015; Wyatt et al., 2015a,b). Further work is needed
to understand Aspergillus responses to solute-induced stresses
which are independent of osmotic stress (Williams and Hallsworth,
2009; Alves et al., 2015; Stevenson et al., 2015a,b). Xerophilic
species, such as Aspergillus penicilliodes, which has been identified
in aspergillosis infections, are able to grow in both high-solute and
low-solute environments (Williams and Hallsworth, 2009; Stevenson
et al., 2015a)

A. penicillioides is capable of mycelial growth
and conidial germination on glycerol-rich
substrates down to at least 0.640 water
activity, and extrapolations indicate theoretical
minima for hyphal growth and germination of
0.632 (Stevenson et al., 2015a) and < 0.600
(A. Stevenson and J. E. Hallsworth,
unpublished) respectively. A. fumigatus and
A. niger exhibit optimum growth at 0.970 water
activity, and A. terreus at 0.940; these species
have water activity minima for growth of 0.770,
0.820 and 0.780, respectively (Gra€u et al.,
2007; Krijgsheld et al., 2012). Villena and
Guti�errez-Correa (2007) report that activities of
A. niger enzymes (cellulases and xylanases)
are considerably lower at 0.942 than at 0.976
(both within and outside the cell). In addition,
transport processes as well as other cellular
processes can be inhibited as viscosity and
molecular crowding within the cytosol increase
(Stevenson et al., 2015a,b; Wyatt et al.,
2015b). During molecular crowding in the
cytosol, in-silico modelling indicated that an
increased net force is required for diffusion of
solutes to take place; in addition, solutes tend
to repel each other more strongly (Hall and
Hoshino, 2010). The net effect is reduced
metabolic activity. Collectively, aspergilli are
more tolerant to low water-activity than are
virtually any bacteria or basidomycete fungi -
with the exception of some Wallemia spp.
(Kashangura et al., 2006; Stevenson and
Hallsworth, 2014; Santos et al., 2015;
Stevenson et al., 2015a)

Hydrophobic
stressors

Hydrophobic stressors include hydrocarbons and some secondary
metabolites which have antimicrobial activity (Cray et al., 2013a,b,
2015a). These stressors (log P > 1.95) preferentially partition into
hydrophobic domains of the macromolecular systems, chaotropically
disordering them, thereby inducing water stress (Bhaganna et al.,
2010; McCammick et al., 2010; Ball and Hallsworth, 2015). Glycerol
and other compatible solutes can mitigate against this activity
(Bhaganna et al., 2010, 2016; Alves et al., 2015; Cray
et al., 2015a)

Aspergillus species are highly tolerant to
hydrophobic stressors, including benzene
(Bhaganna et al., 2010; Cray et al., 2013a).
Despite some loss of viability, conidia of haploid
A. nidulans were found to tolerate exposure to
saturated benzene fumes (Zucchi et al., 2005);
A. niger can tolerate gaseous hexane up to
150 g m�3 (Arriaga et al., 2006)

Desiccation-
rehydration

Longevity High levels of trehalose and trehalose-based oligosaccharides
facilitate the survival of Aspergillus spores during inactivity
(Hesseltine and Rogers, 1982; Kwon-Chung and Sugui,
2013; Wyatt et al., 2015b). Studies of A. niger conidia
reveal that long-term survival is also
associated with an ability to store low amounts of oxygen
(20–30 ll mg�1 dry weight), allowing for a low level of
metabolic activity to maintain viability (Schmit and
Brody, 1976; Kilikian and Jurkiewicz, 1997; Jørgensen
et al., 2011)

Propagules of Aspergillus remain viable for
periods of decades (20–60 years) and may,
indeed, do so for considerably longer periods
(Ellis and Roberson, 1968; Hesseltine and
Rogers, 1982; Kwon-Chung and Sugui, 2013)

Rehydration Trehalose is essential for effective and efficient rehydration as it
plays a key role in maintaining membrane structure (Crowe et al.,
1984). Studies of A. fumigatus have also demonstrated a
key role of expansin proteins, which increase plasticity
of the cell wall during rehydration and cell enlargement,
thereby facilitating the osmotic changes which precede
germination and ability to invade host tissue
(Persons et al., 1987; Sharova, 2007;
Lamarre et al., 2008)

Rehydration and imbibition are extremely rapid
(< 30 min); see Table 1
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Table 2. (Continued)

Environmental or
stress-parameter Responses and adaptations Tolerance limits and biophysical considerations

Low pH H+ ATPases make up a large proportion of the Aspergillus cell
membrane; i.e. approximately 25% of the total number of membrane
proteins. A study of A. fumigatus showed utilization of H+ ATPases to
transform the energy from ATP hydrolysis into electrochemical
potential, driving the transportation of H+ ions (Beyenbach and
Wieczorek, 2006). Low pH can irreversibly damage the plasma
membrane, including conformational changes to membrane proteins,
and cause leakage of ions and metabolites (Mira et al., 2010). The
plasma membrane acts as an osmotic barrier, such that the cytosol
can be maintained at a pH different from that of the environment
(Longworthy, 1978). A study of A. niger revealed that movement of
H+ ions across the plasma membrane is rapid, enabling efficient
adaptation to pH-induced stresses, such as those imposed by
ammonium metabolism (Jernejc and Legi�s, 2004)

A. niger has a lower pH limit for growth of 1.5
and A. fumigatus is able to grow at pH values
as low as 3 (Krijgsheld et al., 2012; Kwon-
Chung and Sugui, 2013). In addition,
A. fumigatus, A. niger and A. terreus survive
optimally under slightly acidic conditions:
pH 5.0–6.0 (Krijgsheld et al., 2012)

Oxidative stress A. fumigatus is efficient at upregulating production of superoxide
dismutase, glutathione peroxidase and catalase, enzymes which
detoxify superoxide anions and hydrogen peroxide (Missall et al.,
2004; Abrashev et al., 2005). Without the removal of reactive
oxygen species, membrane lipids can be converted to lipid
hydroperoxides, by chain reaction, adversely impacting bilayer
permeability and integrity. Reactive oxygen species also oxidize
thiols, methionines and other amino-acid residues, thereby
impairing protein function (Missall et al., 2004). The enzymes
involved in oxidative stress response also protect the fungal
cell from oxidative bursts produced by phagosomes within the
host (Missall et al., 2004)

A. fumigatus hyphae can tolerate (although are
damaged at) ≥ 1 mM hydrogen peroxide
(Diamond and Clark, 1982). A. fumigatus
conidia can tolerate up to 15 mM hydrogen
peroxide; at higher concentrations, survival
rates are close to zero (Paris et al., 2003)

Oxygen
availability

The use of aerial hyphae, which enhances oxygen uptake, is
a unique adaptation utilized by very few microbes including
Aspergillus (Steif et al., 2014). Some pathogenic aspergilli can
function under anoxic conditions. A. terreus, for instance, is
able to utilize nitrates (via ammonia fermentation) under
anoxic conditions and can thereby produce ATP
(Steif et al., 2014)

Aerial hyphae allow Aspergillus to tolerate the
low oxygen levels in the lung (as low as 1%
partial O2 pressure in inflamed tissues) (Lewis
et al., 1999; Kroll et al., 2014). A. terreus, for
instance, remains active at < 1% partial O2

pressure (Kroll et al., 2014)

Energy
requirements

Exceptional energy-generating capability has been associated with
the record-breaking stress phenotypes of numerous Aspergillus
strains (see also Cray et al., 2013a). Under NaCl-induced stress,
A. nidulans up-regulates production of glycerol-6-phosphate
dehydrogenase thereby increasing flux through glycolysis and
ATP production (Redkar et al., 1998). A. fumigatus, Aspergillus
flavus, A. niger and A. terreus (and possibly also other aspergilli)
possess multiple genes for the same pathways, meaning they are
highly efficient at upregulating the TCA cycle, genes involved in
metabolism of two-carbon compounds, pentoses and poyols;
giving Aspergillus a versatile and efficient metabolism of different
carbon sources (Flipphi et al., 2009). A study of Aspergillus oryzae
revealed the production of aerial mycelium which has specialized
structures at the ends of the hyphae, with 4.5–5.5 lm diameter
pores in their the cell walls (Rahardjo et al., 2005a). These
structures are characterized by increased oxygen intake and
increased rates of respiration (Redkar et al., 1998). High
concentrations of NaCl stimulate the expression of a gene,
uidA, which stimulates the glycerol-6-phosphate dehydrogenase
promotor gpdA (Redkar et al., 1998). Under chaotrope and
NaCl-induced stresses, A. niger is able to produce large amounts
of cellulases; equivalent to 10.55 and 10.90 l ml�1 respectively,
expediting the breakdown of cellulose that can be used for growth
and energy generation (Ja’afaru and Fagade, 2010). When the
cellulase and amylase activities of 46 species from 26 fungal
genera, including A. fumigatus, A. flavus, A. niger and A. terreus,
were compared it was found that A. niger had the highest amylase
activity of these species 1.55 ll 50 mg�1 (Saleem and
Ebrahim, 2014)

The expression of multiple genes for enzymes
that regulate pathways allow fungi to adapt
their primary carbon metabolism requirement
to the niche they inhabit and confer a
selective advantage (Flipphi et al., 2009).
Cellulose represents a vast reservoir of
carbohydrates for saprotropic fungi, and
maintaining or upregulating cellulose
production under stress typically increases
energy generation for fungi in contact with
cellulose-containing substrates (Saleem and
Ebrahim, 2014). Regardless of substrate
type, energy is essential for multiplication,
stress tolerance and competitive ability
(Cray et al., 2013a)

a. Aspergillus species are also highly tolerant to low temperatures, alkaline conditions, ionizing radiation, ultraviolet (data not shown), carbon-
and nitrogen-substrate starvation (see Table 1 and main text); their tolerance to high ionic strength (Fox-Powell et al., in press) has yet to be
established.
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causing cell damage (Table 1). In severely immunocom-
promised individuals, following angioinvasion, hyphal
fragments can disseminate haematogenously leading to
invasion of deep organs (Filler and Sheppard, 2006).
Some details relating to the mechanical penetration of
germ tubes and hyphae into, and mycelial extension
within, host tissue have yet to be fully elucidated
(Table 1). It is clear, however, that proliferation within
the blood vessels adds to the potency of invasive
aspergillosis since it leads to tissue necrosis at the foci
of infection reducing leucocyte penetration as well as
effectiveness of antifungal drugs (Filler and Sheppard,
2006).
The biophysical challenges encountered both within

and without the host, robust stress-tolerance biology of
Aspergillus, ability to compete effectively against other
microbes (see below), and other demands of invading
host tissue/dealing with immune responses (Tables 1
and 2) all require considerable levels of cell-available
energy. Disparate studies – based on mycelial morphol-
ogy, stress metabolism, bioinformatic analysis of gen-
omes and ecology – indicate that Aspergillus species
indeed have an extraordinary capacity for energy gener-
ation (Table 2). Bioinformatic analyses of whole gen-
omes of A. fumigatus, A. flavus, A. nidulans, A. terreus
and other species have discovered duplications in a
number of genes encoding enzymes involved in meta-
bolic flux at the level of primary metabolism and energy
generation, such as those involved in the citric acid cycle
and glycolysis (Flipphi et al., 2009). Aspergillus species
can also grow via the formation of a floccose mycelium,
producing aerial hyphae that are capable of enhanced
oxygen absorption and increased rates of respiration;
thereby increasing energy generation and tolerance to
heat or other stresses (Rahardjo et al., 2005a,b). Studies
on A. nidulans, under NaCl-induced stress, indicate an
upregulation of glyceraldehyde-3-phosphate dehydroge-
nase which diverts the utilization of carbon substrate into
glycolysis (away from the formation of excessive glyc-
erol) and thereby increases ATP production during
stress (Redkar et al., 1998). Aspergillus species are able
to utilize a wide range of substrates, highly efficient at
acquiring such resources, and can store considerable
quantities of nutrients within the cell; all traits which con-
tribute to their energy-generating capacity and competi-
tive ability (Cray et al., 2013a). Species of Aspergillus
are also among the most stress-tolerant microbes thus
far characterized in relation to, for example, low water
activity, osmotic stress, resistance to extreme tempera-
tures, longevity, chaotropicity, hydrophobicity and oxida-
tive stress (Table 2) (Hallsworth et al., 2003b; Williams
and Hallsworth, 2009; Chin et al., 2010; Krijgsheld et al.,
2012; Cray et al., 2013a; Kwon-Chung and Sugui, 2013;
Alves et al., 2015; Stevenson et al., 2015a,b; Wyatt

et al., 2015a). Furthermore, aspergilli exhibit the highest
tolerances towards ionizing radiation and ultraviolet radi-
ation among other microbes (Dadachova and Casade-
vall, 2008; Singaravelan et al., 2008).
Aspergillus species have diverse adaptations and

responses to cellular stress, in addition to the reinforce-
ment of energy-generating capacity. These include the
deployment of biophysically diverse compatible solutes
and functionally diverse protein-stabilization proteins;
hyperaccumulation of melanin in the cell wall; oxidative
stress responses; ability to resist high temperatures; the
production of extracellular polymeric substances (EPS)
and formation of biofilms; and the ability to compete with
other microbes (Tables 1 and 2). Although individual
responses are detailed below, many of these are polyge-
netic traits and, furthermore, multiple responses/adapta-
tions to stress act in concert and/or are connected at the
levels of gene expression, metabolic regulation, physiol-
ogy and biophysics.
Some Aspergillus strains can synthesize and accumu-

late glycerol to extraordinarily high concentrations (up to
6–7 M; A. Stevenson and J. E. Hallsworth, unpublished),
e.g. for osmotic adjustment (Alves et al., 2015), and
mannitol and other polyols which also have unique prop-
erties as protectants (e.g. see Hallsworth and Magan,
1995; Rangel et al., 2015a). Aspergilli also produce
other amino-acid compatible solutes which, like compati-
ble solutes, can be effective protectants against chao-
trope- and hydrophobe-induced stresses (Bhaganna
et al., 2010; Alves et al., 2015); and produce high levels
of trehalose and trehalose-containing oligosaccharides
known to protect against desiccation and rehydration
events and temperature changes, especially those which
occur upon spore germination (Wyatt et al., 2015a,b).
Aspergillus species are metabolically wired to deploy
each of these substances (or a combination of compati-
ble solutes) according to the biophysical challenges, and
this versatility has been associated with germination and
hyphal growth at water activities which represent the limit
for life (see above) and with extreme temperature toler-
ances; an ability to function at subzero temperature (due
to preferential accumulation of chaotropic compatible
solutes such as glycerol: Chin et al., 2010); and ability to
stabilize macromolecular systems under conditions
which can disorder membranes and other macro-
molecules (see Ball and Hallsworth, 2015 and refer-
ences therein)3 ; and a high level of competitiveness
(Cray et al., 2013a). Rehydrating and germinating spores
within human or other hosts are subject to biophysically

3Such conditions include high temperature or heat shock, chaotrop-
icity-induced stresses and rehydration of dehydrated cells (Crowe
et al., 1984; Bhaganna et al., 2010; McCammick et al., 2010; Cray

et al., 2015a).
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violent changes in hydration, water activity and osmotic
stress. Furthermore, cells can undergo temperature
changes and may be exposed to chaotropic or
hydrophobic substances, such as breakdown products of
insect cuticles (Gao et al., 2011; Cray et al., 2015a). In
addition, antimicrobials produced by microbes or the ani-
mal host commonly-like many environmental substances
- exhibit the same mode-of-action (Fang, 1997; James
et al., 2003; Hallsworth et al., 2007; Cray et al., 2013a,b,
2015a; Pedrini et al., 2015; da Silva et al., 2015; Yaki-
mov et al., 2015; Bhaganna et al., 2016). Such sub-
stances can modify the outcomes of interactions
between diverse cells types, although this may reduce or
promote infection, depending on a variety of biotic and
abiotic factors (Cray et al., 2013a, 2015b, 2016;
Suryawanshi et al., 2015). The complexity and versatility
of the compatible solutes produced by Aspergillus are
akin to those produced by environmentally ubiquitous,
tenacious and competitive bacteria such as Pseu-
domonas putida (Cray et al., 2013a). These compatible
solutes play key roles in various types of habitat-relevant
stresses for diverse types of pathogenic aspergilli
(Tables 1 and 2; Cray et al., 2013a; Rangel et al.,
2015a,b).
The activities of protein stabilization proteins (e.g. heat

shock proteins, cold shock proteins and chaperonins)
are essential to enable microbial metabolism under
extreme conditions, can support competitive ability, and
can even expand microbial growth windows in relation to
biophysical parameters (Table 2; Ferrer et al., 2003;
Cray et al., 2013a). Such proteins may enhance the flex-
ibility of proteins at low temperature (Fields, 2001; Ferrer
et al., 2003), and stabilize protein structure at high tem-
perature or under chaotropicity-mediated stressors
induced by chaotropic solutes, hydrophobic stressors
and solvents (Table 2; Hallsworth et al., 2003a; Bha-
ganna et al., 2010, 2016; Cray et al., 2015a). One study
on A. fumigatus identified changes in 64 proteins at tem-
peratures exceeding 37°C, many of these acting as
chaperonins (Albrecht et al., 2010). Furthermore, A. fu-
migatus appears to downregulate genes involved in car-
bohydrate metabolism at high temperatures in a way
that is linked to the upregulation of heat shock proteins,
thereby enhancing the speed, efficiency and efficacy of
heat shock response (Do et al., 2009). Studies on
A. nidulans have identified PalA, a protein, which
induces an efficient increase in the production of protein
stabilization at extreme pH values (Freitas et al., 2011).
Melanin has been quantified in A. fumigatus, A. flavus

and A. niger at values of 3.4, 1.4 and 2.2 mg ml�1

respectively (Allam and Abd El-Zaher, 2012; Pal et al.,
2014). In Aspergillus spores (as well as their hyphae),
this pigment protects against oxidative stress, ultraviolet
radiation, ionizing radiation and high temperature by

enhancing the rigidity of the cell wall (Dadachova and
Casadevall, 2008; Schmaler-Ripcke et al., 2009; Allam
and Abd El-Zaher, 2012; Upadhyay et al., 2013; Ludwig
et al., 2014). It can act as a barrier to host defences (in-
cluding the generation of free radicals by host macro-
phages) as well as being able to bind and thereby
neutralize antifungal drugs (Nosanchuk and Casadevall,
2006; Upadhyay et al., 2013). Additionally, melanin
enables survival of conidia after macrophage phagocyto-
sis, by blocking phagolysosome acidification allowing
germination and liberation from the phagocytic cell (Sle-
siona et al., 2012).
Aspergilli, including some of the species associated

with aspergillosis, are highly resistant to mechanistically
diverse, cell surface acting inhibitors as well as various
heavy metals (Ouedraogo et al., 2011; Jarosławiecka
and Piotrowska-Seget, 2014; Luna et al., 2015). Heavy
metals, chaotropic substances, heat and other stresses
can induce lipid peroxidation and an oxidative stress
response in microbial cells, including high levels of
antioxidant enzymes (Hallsworth et al., 2003a; Abrashev
et al., 2008; Luna et al., 2015). In A. niger, responses to
oxidative stress include increased production of antioxi-
dant enzymes and/or increased concentrations of
metabolites with antioxidant activity (Gaetke and Chow,
2003; Luna et al., 2015). Production of enzymes, such
as superoxide dismutase, catalase, glutathione peroxi-
dase, glutathione S-transferase and glutathione reduc-
tase is increased by up to 25% in response to copper-
induced oxidative stress in A. niger (see also Table 2;
Luna et al., 2015). Such enzymes detoxify superoxide
anions and hydrogen peroxide, although in each case
the mechanism may differ (Table 2 and references
therein).
By comparison with other disease-causing species,

A. fumigatus is more thermotolerant and ascospores can
survive temperatures of 85°C (Wyatt et al., 2015a).
Growth is feasible at 55°C and is optimal at 37°C (Beffa
et al., 1998; Ryckeboer et al., 2003). Two genes, thtA
and cgrA, are believed to be involved in the thermotoler-
ance of A. fumigatus, but they do not seem to contribute
to pathogenicity (Chang et al., 2004; Bhabhra and
Askew, 2005). Yet, no conserved set of genes has been
firmly linked to thermotolerance or fungal growth at dif-
ferent temperatures (Nierman et al., 2005). Do et al.
(2009) suggesting that thermotolerance might be due to
the efficient regulation of metabolic genes by heat shock
proteins.
Further, it has become clear that Aspergillus species

can produce biofilms on abiotic or biotic surfaces, an
ability which impacts clinical medicine (reviewed in Ram-
age et al., 2011). Previous studies revealed that biofilm
formation by Aspergillus is induced by a complex inter-
play of different fungal constituents, such as cell wall
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components, secondary metabolites and drug trans-
porters (Fanning and Mitchell, 2012). Biofilm formation
and production of EPS is an important determinant in
the development of aspergillosis (Table 1) as EPS and
biofilms can also protect against stresses induced by
antimicrobials and microbial competitors (Cray et al.,
2013a and references therein).
The main classes of antifungas used for treatment of

aspergillosis are: inhibitors of the ergosterol biosynthesis
pathways (i.e. triazoles and allylamines); compounds
which bind to sterols thereby damaging cellular mem-
branes i.e. (polyenes); and compounds which act as
inhibitors of synthesis of 1,3-b-D-glucan, an important
cell-wall component (i.e. echinocandins) (Ellis, 2002;
Greer, 2003; Chen et al., 2011; Vandeputte et al., 2012).
Susceptibility/resistance of Aspergillus strains to antifun-
gals can vary; e.g. some may possess mutations in
specific genes, such as the cyp51 gene encoding a 14-
a-demethylase involved in the ergosterol biosynthesis
pathway (Vermeulen et al., 2015), heat shock proteins,
melanin (see above), efflux pumps and/or biofilm forma-
tion (Seidler et al., 2008; Kaur and Singh, 2014; Oliveiria
and Caramalho, 2014). EPS can prevent diffusion of
echinocadins into the biofilm, thereby protecting the fun-
gus (Seidler et al., 2008). Aspergillus strains occupy
diverse habitats, whether located within a human host,
soils or other environments (Delhaes et al., 2012; Cray
et al., 2013a). The genomes of Aspergillus species typi-
cally have large numbers of clusters of secondary
metabolite biosynthetic genes and are capable of pro-
ducing diverse types of antimicrobial substances (Cray
et al., 2013a), contributing to their ability to thrive and
dominate in diverse microbial communities. For instance,
Flewelling et al. (2015) found that A. fumigatus isolate
AF3-093A produces antimicrobials, such as flavipin,
chaetoglobosin A and chaetoglobosin B, which are
potent inhibitors of bacteria including Staphylococcus
aureus, methicillin-resistant S. aureus and Mycobac-
terium tuberculosis H37Ra. Pseudomonas aeruginosa,
which commonly infects the lungs of cystic fibrosis
patients (Smith et al., 2015), releases metabolites that
are known to inhibit fungal growth (Mowat et al., 2010).
This bacterium – notorious for its ecologically aggressive
character as a microbial weed (Cray et al., 2013a) –

can, for instance, inhibit biofilm formation by
A. fumigatus. It does not appear to break down extant
A. fumigatus biofilms (Mowat et al., 2010). Furthermore,
P. aeruginosa has been found to inhibit formation of
mycelium, upon germination of A. fumigatus conidia, by
approximately 85% relative to mycelial biomass from
control A. fumigatus conidia that were not exposed to
bacterial cells (Mowat et al., 2010). Nevertheless, A. fu-
migatus can also be an effective competitor of P. aerugi-
nosa, and strains of this fungus have frequently been

isolated from the lungs of cystic fibrosis patients (Mowat
et al., 2010); outcomes of such interspecies interactions
are determined by a complex range of interacting vari-
ables (Cray et al., 2013a; in press). Metabolic versatility
of A. flavus, A. nidulans and other Aspergillus species
has also been associated with ecological vigour in nutri-
tionally diverse environments, including host tissues
(Cray et al., 2013a; Mehl and Cotty, 2013). The ability of
A. flavus to produce a broad spectrum of degrading
enzymes and to infect a wide variety of plant or animal
hosts, and to use non-living substrates suggests it is an
opportunistic pathogen capable of subsisting on a
diverse range of nutritional sources (Mellon et al., 2007;
Mehl and Cotty, 2011). Furthermore, drug-resistant
strains of A. fumigatus do not appear to suffer from any
reduction in ecological fitness (Valsecchi et al., 2015).

Clinical manifestations and diagnosis of
aspergillosis

Although the main portal-of-entry and site-of-infection for
Aspergillus in human hosts is the respiratory tract, other
foci for penetration and infection have also been
described (Lortholary et al., 1995; Denning, 1996). The
clinical manifestations of aspergillosis vary and can be
divided into three main categories, according to the loca-
tion and extent of colonization and invasion (both of
which are influenced by the fungal virulence and
immune response of the host); these are (i) allergic
reactions, (ii) chronic pulmonary aspergillosis and (iii)
invasive aspergillosis. Aspergillus species can also colo-
nize the host without causing a systemic infection – at
sites such as the eyes, ears and skin – although reports
of non-invasive Aspergillus within such body locations
are considerably less common than those of aspergillo-
sis (Richardson and Hope, 2003). Allergic diseases
caused by Aspergillus can be associated with asthma,
sinusitis and alveolitis and occur following repeated
exposure to conidia and/or Aspergillus antigens (Den-
ning et al., 2014). In such cases, there is usually no
mycelial colonization, so removal of the patient from the
environmental source results in clinical improvement
(Latg�e, 1999). ABPA is considered as an extreme form
of A. fumigatus-induced asthma. In this case, the fungus
grows saprophytically in the bronchial lumen, resulting in
bronchial inflammation (Steinbach, 2008). The conidia
trigger an IgE-mediated allergic inflammatory response,
leading to bronchial obstruction (Agarwal et al., 2015).
Symptoms are recurrent fever, cough, wheezing, pul-
monary infiltrates and fibrosis (Barnes and Marr, 2006).
ABPA is observed in a small but numerically significant
fraction of patients with asthma or cystic fibrosis (1–2%
or 8–9% of the total, respectively) (Maturu and Agarwal,
2015).
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Chronic pulmonary aspergillosis is a progressive cavi-
tary lung disease, which can be accompanied by devel-
opment of dense balls of fungal mycelium (that are
known as aspergilloma) (Schweer et al., 2014). These
balls are a non-invasive, saprophytic form of Aspergillus
that colonize pre-existing pulmonary cavities, which were
formed during tuberculosis or other pulmonary disease
(Steinbach, 2008). People with aspergilloma may be
asymptomatic, although many suffer from a persistent
and productive cough, haemoptysis and weight loss
(Babu and Mitchell, 2015). Regarding the second cate-
gory, there are different forms of chronic pulmonary
aspergillosis, depending on the development of infection
and the host’s immune status. Most common are chronic
necrotizing pulmonary aspergillosis and chronic cavitary
pulmonary aspergillosis. Although the first one causes
the progressive destruction of lung tissue, chronic cavi-
tary pulmonary aspergillosis can cause multiple cavities,
with or without aspergilloma, accompanied by pulmonary
and systemic symptoms (Ohba et al., 2012).
Finally, a third category of aspergillosis is invasive

aspergillosis, representing the most life-threatening
opportunistic fungal infection in patients with reduced
immunity. Invasive pulmonary aspergillosis is the most
common form of invasive aspergillosis, implying fungal
invasion in the lung tissue. Patients at risk are predomi-
nantly haematopoietic stem-cell transplant recipients and
patients with haematological malignancies undergoing
intensive chemotherapy; however, cases involving non-
neutropenic patients have also been reported (Kosmidis
and Denning, 2015a,b). Acute invasive rhinosinusitis is
an underdiagnosed form of invasive aspergillosis which
most commonly involves the maxillary sinus, followed by
the ethmoid, sphenoid and frontal sinuses; this type of
infection is aggressive and often fatal (Drakos et al.,
1993; Middlebrooks et al., 2015). Finally, disseminated
disease (fungaemia) involves systemic invasion of the
brain and other organs, such as kidneys, heart, skin and
eyes (Latg�e, 1999; Singh and Husain, 2013).
Diagnosis of the different forms of aspergillosis presents

a major challenge in medicine for several reasons, includ-
ing the non-specific nature of their clinical presentation,
the lack of a sensitive and accurate diagnostic assay to
ensure an early diagnosis, and the fact that pathogenic
aspergilli can only be rarely isolated from infected persons
(Thornton, 2010; Lackner and Lass-Fl€orl, 2013). The most
important diagnostic criteria for invasive aspergillosis are
as follows: clinical and radiological evidence of lower res-
piratory tract infection; biological criteria including direct
microscopic evaluation, isolation, culture, and definitive
identification of Aspergillus from a clinical specimen, or
evidence from immunological, serological and/or molecu-
lar tests; host-related characteristics, such as neutropenia
or persistent fever in high-risk patients; and

histopathological evidence of infection (De Pauw et al.,
2008; Paulussen et al., 2014). An important advantage of
culture-based assays is that isolates are obtained which
can be used in epidemiological studies and for the devel-
opment of new antifungals that are likely to be effective
within clinical treatment regimes. However, an Aspergillus
strain isolated from an infected patient may or may not be
the primary causal agent of the aspergillosis infection as
multiple fungal strains, some highly pathogenic and others
not, may be present (�Alvarez-P�erez et al., 2009; Arvanitis
and Mylonakis, 2015; Escribano et al., 2015).
A variety of immunological tests are available that can

be used to diagnose the disease (Arvanitis and Mylonakis,
2015). Assays based on antibody detection have been
successful to diagnose allergic aspergillosis and aspergil-
loma, while assays for fungal antigen detection showed
great potential in diagnosing invasive aspergillosis
(Richardson and Hope, 2003; Lackner and Lass-Fl€orl,
2013). Further, PCR-based assays have been developed
that can improve early diagnosis of aspergillosis. Advan-
tages of such molecular assays include a high sensitivity,
ability to establish diagnosis at the species level and
capacity to detect genes that confer antifungal resistance
(Segal, 2009). In addition, PCR is fast, inexpensive and
can be applied to diverse types of sample, such as blood,
sputum and tissue. However, PCR-based methods have
not yet found their place in clinical practice mainly due to
lack of standardization (Arvanitis and Mylonakis, 2015).
When using PCR, special care must be taken to avoid
false-positive results, e.g. caused by conidia commonly
present in the air and airways of non-infected patients
(Bart-Delabesse et al., 1997). The European Aspergillus
PCR Initiative has made significant progress in developing
a standard real-time quantitative PCR protocol, but its clin-
ical utility has to be established in formal and extensive
clinical trials (Gomez, 2014). PCR should, therefore, still
be used in conjunction with other methods, such as sero-
logical assays or radiological methods, to diagnose
aspergillosis (Morrissey et al., 2013).

Sexual cycle and cryptic species: implications for
virulence

Recent advances in the fields of genomics, cell biology
and population genetics have reshaped our view of how
fungal pathogens reproduce and might be evolving. Some
species, traditionally regarded as asexual, mitotic and lar-
gely clonal, are now being examined in the context of their
(cryptic) sexuality (Heitman et al., 2014; Varga et al.,
2014). In this regard, while most known Aspergillus spe-
cies – approximately two-thirds of the total number have
not yet been demonstrated to possess a functioning sex-
ual cycle (Dyer and O’Gorman, 2012), there has been a
remarkable discovery of sexual stages (also known as
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teleomorphs) for aspergilli that were hitherto assumed to
be asexual, such as A. fumigatus (O’Gorman et al.,
2009), A. flavus (Horn et al., 2009b) and Aspergillus para-
siticus (Horn et al., 2009b). Notably, these three species
were found to be heterothallic (i.e. with obligate outcross-
ing), which contrasts with the homothallism (i.e. self-fertili-
zation) of most sexual aspergilli (Lee et al., 2010; Dyer
and O’Gorman, 2012). In addition, it is known that some
Aspergillus species can undergo a parasexual cycle that
enables genetic recombination during mitosis (Pontecorvo
et al., 1953; Lee et al., 2010; Varga et al., 2014).
The discovery of a sexual cycle for Aspergillus spe-

cies has not been casual, but is the result of years of
intense research work and accumulating evidence from
different fields, including ‘-omics’ sciences, population
genetics and the analysis of the phylogenetic relation-
ships with sexually reproducing species (Dyer and Pao-
letti, 2005; Paoletti et al., 2005; �Alvarez-P�erez et al.,
2010a,b; Dyer and O’Gorman, 2012; Heitman et al.,
2014). Importantly, although the discovery of a functional
set of genes necessary for sexual developmental pro-
cesses (also known as mating type [MAT] genes) in the
genome sequence of some species is usually given a
predominant role in this search for the hidden sexuality
of the aspergilli, the diagnostic value of basic mycologi-
cal techniques, such as paired mating and microscopic
observation of the development of mature sexual struc-
tures, should not be overlooked.
But, why might an opportunistic pathogen like A. fumi-

gatus need to maintain a fully operative sexual cycle
when asexual conidia are so abundantly produced and
effective as infecting propagules? And how frequently do
pathogenic aspergilli reproduce sexually in nature?
Unfortunately, the answers to these questions remain
unknown and, furthermore, might not be so easy to
obtain. A prevailing hypothesis which may lead to an
explanation for the maintenance of a sexual cycle in
some aspergilli is that sexual reproduction might provide
important benefits, such as the possible generation of
new combinations of beneficial traits, the purging of
deleterious mutations and the formation of thick-walled
fruiting bodies that are resistant to harsh environmental
conditions (Lee et al., 2010; Dyer and O’Gorman, 2012).
Nevertheless, sexual reproduction has, in most cases, a
50% cost (i.e. the sexually reproducing organism is only
able to pass on 50% of its genes to a progeny); requires
considerable investment in time and energy; and can
break apart favourable combinations of alleles, poten-
tially reducing fitness (Lee et al., 2010). Despite the
inherent advantages of sexual reproduction for living
systems, it has been suggested that successful fungal
pathogens might be undergoing a slow decline in sexual
fertility which, eventually, could lead to permanent asex-
uality (Dyer and Paoletti, 2005). Upon discovery of the

A. fumigatus teleomorph, it has been suggested that the
sexual fertility of A. fumigatus might be limited to some
isolates of certain geographically restricted populations
(O’Gorman et al., 2009). However, sexual fertility has
now been demonstrated for many isolates from diverse
global locations, and some of these even displayed high
mating efficiency (Sugui et al., 2011; Camps et al.,
2012). An apparent decline in sexual fertility has also
been suggested for some emerging agents of aspergillo-
sis, such as Aspergillus udagawae and Aspergillus lentu-
lus, which frequently fail to produce cleistothecia in
paired matings or produce ascospores that do not germi-
nate (Sugui et al., 2010; Swilaiman et al., 2013), but the
existence of rare supermater (i.e. highly fertile) individu-
als within these species cannot be yet excluded.
Another intriguing research question is the possible

effects of sexual reproduction on fungal virulence. The
main cause of concern for the medical community is the
possible emergence of recombinant strains with
increased virulence and/or antifungal resistance
(�Alvarez-P�erez et al., 2010a,b; Heitman et al., 2014). In
this respect, Camps et al. (2012) demonstrated that
azole-resistant isolates of A. fumigatus with the TR34/
L98H mutation (L98H substitution plus a 34-bp tandem
repeat in the promoter region of the cyp51A gene) can
successfully mate with azole-susceptible A. fumigatus
isolates of different genetic backgrounds and give rise to
a recombinant progeny displaying distinct phenotypes.
Although a detailed study of the genetic structure of
A. fumigatus in the Netherlands (where multitriazole
resistance first emerged) concluded that the TR34/L98H
allele seems to be confined to a single, predominantly
non-recombining population of the fungus (Klaassen
et al., 2012), sexual reproduction might have played a
role in the genetic diversification of azole-resistant
A. fumigatus strains (Camps et al., 2012).
Mating type related differences in virulence have been

explored in some clinically important aspergilli, including
A. fumigatus. For example, �Alvarez-P�erez et al. (2010a,
b) found an almost fourfold higher frequency of the
MAT1-1 than the MAT1-2 mating type among A. fumiga-
tus isolates obtained from cases of invasive aspergillo-
sis, while both mating types were represented in a
similar proportion among isolates of non-invasive origin.
Furthermore, in the same study the authors found a sig-
nificant association between the MAT1-1 mating type
and increased elastase activity, which is considered to
be a relevant virulence factor (or virulence determinant)4

4Virulence factors are molecules produced by pathogens that con-

tribute to the pathogenicity of the organism and enable them to, for
example, colonize a niche in the host, evade or inhibit the host’s
immune response, and obtain nutrients from the host. Pathogens

can typically synthesize a wide array of virulence factors.
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of A. fumigatus (Blanco et al., 2002; �Alvarez-P�erez
et al., 2010a,b). The possible association between the
MAT1-1 mating type and A. fumigatus virulence was
confirmed in an insect model system (the wax moth Gal-
leria mellonella) injected with strains of clinical and envi-
ronmental origin (Cheema and Christians, 2011).
However, as A. fumigatus virulence is multifactorial,
assessment of the specific contribution of the MAT locus
in virulence is not possible unless the strains used in the
experiments are congenic except for the MAT locus. Via
the latter approach, Losada et al. (2015) have recently
demonstrated in three different animal models (mice with
chronic granulomatous disease, BALB/c mice immuno-
suppressed with hydrocortisone acetate and G. mel-
lonella larvae) challenged with an isogenic pair of
A. fumigatus strains of opposite mating types, no differ-
ence in virulence between them or in the manner by
which these caused the disease. Nevertheless, research
experience with other fungal pathogens has shown that
differences in virulence between mating types can
depend on the genetic background of the strains (see,
e.g. Nielsen et al., 2005), making necessary the use of
different pairs of isogenic strains to reach reliable conclu-
sions. Further research on the role of the MAT locus on
A. fumigatus virulence is therefore required.
The classification of aspergilli has traditionally relied

on microscopic and visual determinations of cellular
structures and colony morphology as well as key physio-
logical activities (Houbraken et al., 2014). However, the
use of multilocus phylogenies and comparative genomics
has enabled a refinement of Aspergillus taxonomy (Hou-
braken et al., 2014; Samson et al., 2014). For example,
genetic characterizations of isolates hitherto regarded as
atypical strains of A. fumigatus have resulted in their
reclassifications as novel species. These distinct spe-
cies, that nevertheless share a common morphology,
commonly referred to as ‘cryptic’ or ‘A. fumigatus-like’,
include A. lentulus (Balajee et al., 2005) and Aspergillus
felis (Barrs et al., 2013). Cryptic species have also been
recognized for A. niger (e.g. Aspergillus awamori; Per-
rone et al., 2011), A. parasiticus (e.g. Aspergillus
novoparasiticus; Gonc�alves et al., 2012), A. terreus (e.g.
Aspergillus alabamensis; Balajee et al., 2009a) and
Aspergillus ustus (e.g. Aspergillus calidoustus; Varga
et al., 2008). So far, Aspergillus species identification
based on molecular biology approaches has typically
been based on sequencing of the nuclear ribosomal
internal transcribed spacer region (Schoch et al., 2012).
However, different studies have shown that sequence
analysis of some protein-encoding loci, including the
beta-tubulin (benA) and calmodulin (calM) genes, pro-
vides a superior discriminative resolution (Samson et al.,
2007, 2014; Houbraken et al., 2014). Sequence analysis
of the MAT loci has also proven useful according to

several studies (e.g. Barrs et al., 2013; �Alvarez-P�erez
et al., 2014; Sugui et al., 2014). This said, a polyphasic
approach which includes morphological, physiological,
molecular, biochemical and ecological data is likely to be
the most informative for resolving taxonomic differences
(Samson et al., 2007, 2014).
The prevalence of the cryptic species among patho-

genic aspergilli is still unclear, but they could account for
> 10% of the total clinical isolates (Balajee et al., 2009b;
Alastruey-Izquierdo et al., 2012, 2013; Negri et al.,
2014). Nevertheless, reports on their occurrence vary,
which could be due to differences in study design (e.g.
selection of patient populations) and/or variations in geo-
graphic distribution of some species (Alastruey-Izquierdo
et al., 2012). Factors, such as increasing awareness
among medical practitioners of the importance of the
cryptic species (which in turn may lead to a greater
research effort), ongoing development of improved tech-
niques for species-based identification, may also con-
tribute to discrepancies between frequency reports for
cryptic species. Some of the cryptic Aspergillus species
show a decreased susceptibility to a large number of
antifungal drugs when compared with other aspergilli
(Alastruey-Izquierdo et al., 2012, 2013; Howard, 2014;
Nedel and Pasqualotto, 2014). Therefore, accurate iden-
tification of clinical isolates is critical for effective, tar-
geted antifungal treatment (Alastruey-Izquierdo et al.,
2012, 2013). Some cryptic species do not have pre-
dictable susceptibility patterns and therefore, in-vitro sus-
ceptibility testing still remains an invaluable tool to aid
directed antifungal therapy (Howard, 2014).
In addition to the increased antifungal resistance gen-

erally attributed to the cryptic aspergilli, some studies
have reported significant differences in pathogenicity
between sibling species. For example, Coelho et al.
(2011) reported that infection by a fungus first identified
as Aspergillus viridinutans in an immunocompromised
patient led to a distinctive form of invasive aspergillosis
characterized by increased chronicity and a propensity
to spread across anatomical planes, which contrasts with
the rapidly progressive disease which is characterized
by a predilection for angioinvasion and haematogenous
dissemination typically caused by A. fumigatus. Subse-
quent polyphasic taxonomic re-examination of one of the
isolates from that case (isolate CM 5623) suggested that
it belonged to a novel species designated as A. felis,
which also causes invasive aspergillosis in dogs and
cats (Barrs et al., 2013). Finally, a recently refined phy-
logeny placed isolate CM 5623 into a separate clade
and justified the proposal of yet another new cryptic rep-
resentative (designated as Aspergillus parafelis) within
the broadly circumscribed species A. viridinutans (Sugui
et al., 2014). Notably, A. parafelis and the closely related
species, Aspergillus pseudofelis and Aspergillus
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pseudoviridinutans, which were also proposed as novel
taxa in the same study, displayed reduced susceptibility
to amphotericin B, itraconazole and voriconazole, and
increased virulence in different animal models with
respect to the type strain of A. viridinutans (Sugui et al.,
2014). Two implications/consequences of this are: (i) the
taxonomy of the genus Aspergillus is far from being set-
tled; and (ii) clinicians require some basic knowledge on
fungal taxonomy and the cryptic species concept, as
these can have consequences for disease management.
Furthermore, some cryptic species such as A. parafelis
and A. pseudofelis have shown successful mating under
laboratory conditions with related species, including
A. fumigatus (Sugui et al., 2014). In any case, despite
these few exceptions of promiscuous mating, inter-
species crossings in the section Fumigati of genus
Aspergillus are generally infertile, which suggests that
most phylogenetically distinct species are also sexually
incompatible (Sugui et al., 2014).

Aspergillus-related factors implicated in virulence

Several traits have been postulated to explain the oppor-
tunistic behaviour of Aspergillus, including fungus-related
factors as well as host-related factors (see below)
(Fig. 1). A. fumigatus displays a unique combination of
traits that can support its virulence (Dagenais and Keller,
2009). For example, the conidial surface is composed of
hydrophobic RodA protein covalently bound to the cell
wall, collectively known as the rodlet layer. One impor-
tant function of this layer is conidial dispersion and soil
fixation, but it also masks recognition of conidia by the
immune system and hence prevents immune response
(Aimanianda et al., 2009). Further, recent studies have

shown that galactosaminogalactan (GAG), a component
of the Aspergillus cell wall that is expressed during coni-
dial germination and hyphal growth, has possible anti-
inflammatory effects. GAG induces the anti-inflammatory
cytokine interleukin-1 receptor antagonist, making indi-
viduals more susceptible to aspergillosis (Gresnigt et al.,
2014). Mycotoxins and fungal enzymes are likely to play
an important role in the interaction between Aspergillus
species and their host. For A. fumigatus, several conidial
toxins have been described, in addition to a number of
toxins released by hyphae (Mitchell et al., 1997; Kamei
and Watanabe, 2005). Five mycotoxins have been iden-
tified in A. fumigatus, including gliotoxin, fumagillin, hel-
volic acid, fumitremorgin A and Asp-hemolysin. The
most studied is gliotoxin, a metabolite in the epipolthio-
dioxopiperazine family that modulates the immune
response. Gliotoxin can affect circulating neutrophils,
suppresses reactive oxygen species (ROS) production
and inhibits phagocytosis of conidia (Scharf et al., 2012).
Important mycotoxins produced by other Aspergillus spp.
include aflatoxin, ochratoxin, patulin and citrinin, which
can be carcinogenic and/or have a major role in food
poisoning (Sweeney and Dobson, 1998). Proteolytic
enzymes secreted by Aspergillus species, such as ser-
ine, metallo and aspartic proteases, are also known to
aid virulence (Bergmann et al., 2009). Aspergillus spe-
cies secrete a variety of proteases, many of which
enable the fungus to saprotrophically utilize animal and
vegetable matter. Recently, it has been found that many
proteases, e.g. those with elastinolytic activity, also func-
tion as virulence factors by degrading the structural barri-
ers of the host and thereby facilitating the invasion of
host tissues. Elastin constitutes nearly 30% of lung tis-
sue and elastinolytic activity has been implicated in the

Inhala on of conidia
• Diminu ve size
• Rodlet layer; melanin
• Rapid rehydra on &  

germina on
•Water-ac vity tolerance
• Evasion of host immune 

responses
• …

Hyphal growth in the lungs
• Saprotrophic ac vity
• Tolerance to diverse stresses
• Efficient energy genera on
• Compe ve ability
• Anoxia
• Galactosaminogalactan
•Mycotoxins
• Proteoly c enzymes
• Nutrient acquisi on (iron, zinc)
• Biofilm forma on
•…

(Para)sexual cycle

Abundant produc on & 
effec ve dissemina on of 
asexual conidia

Fig. 1. A complex range of Aspergillus- and host-related factors contribute to the success of Aspergillus species as potent pathogens (see also
Tables 1 and 2).
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pathogenesis of Aspergillus (Kothary et al., 1984; Blanco
et al., 2002; Binder and Lass-Fl€orl, 2013). Further, trace
metal ions, such as iron and zinc, have been shown to
contribute to virulence. Iron, for example, is a necessary
component of many biosynthetic pathways in fungi and
is therefore also essential for pathogenesis. Because
free iron is scarce in the human body, A. fumigatus pro-
duces siderophores (low-molecular mass iron-specific
chelators) to transport or store ferric ions (Haas, 2012).
Zinc is also essential for a wide variety of biochemical
processes in fungi, for the adequate regulation of gene
expression and thus for cellular growth and develop-
ment. A clear relationship has been shown between zinc
homeostasis and virulence of A. fumigatus, which
requires the zinc transporters ZrfA, ZrfB and ZrfC for
growth within a host (Moreno et al., 2007; Amich and
Calera, 2014). The wide spectrum of disease states
greatly complicates the study of putative virulence fac-
tors. Moreover, some virulence factors are active mainly
in fungi infecting compromised patients such as those
with neutropenia or those receiving, corticosteroid ther-
apy (Hogan et al., 1996). It can be expected that addi-
tional virulence factors and drug targets can be identified
using novel approaches based on whole-genome
sequencing and investigating large collections of fungal
strains. In this regard, several studies involving genomic
sequencing and subsequent mutant screening have
already pointed towards additional gene products that
may play key roles in Aspergillus pathogenicity (Valiante
et al., 2015).

Host-related factors implicated in virulence

In addition to fungus-related factors, host-related charac-
teristics may be equally, or even more, important in devel-
opment of aspergillosis. Immunity against Aspergillus
depends on host responses of the innate and adaptive
immune system. As described above, A. fumigatus is an
opportunistic pathogen which is rarely pathogenic in
immunocompetent hosts; the immune system kills fungal
intruders thereby preventing infection. As such, immuno-
suppressive therapies and conditions that compromise
the immune system trigger the development of aspergillo-
sis (Latg�e, 2001). Innate immunity consists of three major
lines of defence including anatomical barriers, humoral
factors and phagocytic cells (Latg�e, 1999). Upon inhala-
tion of Aspergillus conidia, the majority of conidia are
excluded from the lungs through mucociliary clearance.
Lung surfactant enhances agglutination, phagocytosis
and killing of conidia by alveolar macrophages and neu-
trophils. In cystic fibrosis patients, many of these mecha-
nisms are dysfunctional, making these patients highly
vulnerable for fungal colonization (Noni et al., 2015).
Although alveolar macrophages form the first line of

defence against inhaled conidia, little is known about their
recognition and activation mechanisms. Lectin-like inter-
actions might be responsible for adherence and uptake of
conidia, and also 1,3-b-D-glucan seems to play a role in
the conidial binding (Latg�e, 2001). The antimicrobial sys-
tems via which host cells kill intracellular conidia have not
yet been fully characterized.
After fungal germination, polymorphonuclear neu-

trophils provide the dominant host defence, rendering
neutropenic patients at an elevated risk for developing
aspergillosis (Kosmidis and Denning, 2015a,b). In the
phagocytes, NADPH-oxidase catalyses the conversion
of oxygen to superoxide anion and the generation of
ROS displaying antimicrobial activity (Segal, 2009). The
ability of neutrophils to attack and kill Aspergillus
depends on pathogen-recognition receptors, such as toll-
like receptors (TLR2 and TLR4), dectin-1, surfactant pro-
teins (A and D) and lectin (Singh and Paterson, 2005;
Segal, 2009). Natural killer cells are also important effec-
tor cells which play a role in host response to invasive
aspergillosis, and are recruited to the lungs as an early
defence mechanism (Morrison et al., 2003). Natural killer
cells are known to mediate immunity against intracellular
pathogens (Morrison et al., 2003), but their exact role in
the immune response against fungi has yet to be studied
in detail. Dendritic cells can transport hyphae and coni-
dia of A. fumigatus from the airways to the draining
lymph nodes and thus initiate disparate responses of T-
helper cells to the fungus (Bozza et al., 2002). Following
activation of pathogen-recognition receptors, molecules
are released to trigger other players in the immune
response to microbial invaders, such as T-cells, bridging
key responders of the innate and adaptive immunity.
When the immune system is eventually unable to stop or
control hyphal growth, hyphae invade and destroy the
surrounding tissue to obtain the necessary nutrients,
and, depending on the state of immunosuppression, may
cause a disseminated disease (Dagenais and Keller,
2009). Additional research is needed to further unravel
the complex interplay between innate and adaptive
immunity as key players of aspergillosis, related to differ-
ent Aspergillus strains exhibiting different pathogenicity.

General conclusions and unanswered questions

Early diagnosis of Aspergillus infection has been shown
to significantly increase the survival rate of the patient
(Nucci et al., 2013). However, so far, universally vali-
dated diagnostic assays that enable rapid and accurate
detection of this potentially deadly fungus have not yet
found their way in routine diagnosis of aspergillosis. Fur-
thermore, as aspergillosis can be caused by multiple
Aspergillus species, including an increasing number of
cryptic species, extreme caution should be taken to
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avoid false negatives (e.g. due to possible unknown dif-
ferences in the molecular targets of diagnostic tests).
Therefore, work is needed on the development of stan-
dardized, rapid and highly sensitive diagnostic assays
for use in clinical settings without resorting to time-con-
suming culturing, e.g. by targeting a conserved gene
involved in the pathogenicity of the fungus (Lievens
et al., 2008). Furthermore, attention should also be given
to the occurrence of a sexual or parasexual cycle in
Aspergillus, as it has been suggested that recombination
may give rise to new genotypes with increased virulence
(�Alvarez-P�erez et al., 2010a,b; Camps et al., 2012).
Mortality linked to invasive aspergillosis remains very

high despite the availability of new therapeutic strate-
gies. Azole resistance is an emerging problem in A. fu-
migatus and other Aspergillus species, and is associated
with an increased probability of treatment failure (Den-
ning and Perlin, 2011; Seyedmousavi et al., 2014). In
addition, particular attention should be given to the
increasing occurrence of cryptic species as these are
typically linked to an increased antifungal resistance and
different pathogenicity (Alastruey-Izquierdo et al., 2012,
2013; Howard, 2014; Nedel and Pasqualotto, 2014). Fur-
thermore, there is a strong appreciation that stress
responses and biofilm formation are involved in drug
adaptation, which can ultimately lead to development of
higher-level resistance and diminished clinical response
(Kaur and Singh, 2014; Perlin et al., 2015). In this con-
text, a better understanding of the global magnitude of
the azole resistance problem and new therapeutic strate-
gies (e.g. novel dosing mechanisms or introduction of
new drugs with novel mechanisms of action, such as
biofilm inhibitors) are urgently needed (Denning and Per-
lin, 2011; Kaur and Singh, 2014).
Aspergillus infections pose considerable challenges

due to the complexity of the disease, involving pathogen-,
environment- and host-related factors, and the limitations
of current diagnostic tools and therapeutic options. Gain-
ing more insight about both the pathogen and host traits
as well as the environmental factors, phenotypic traits
and evolutionary trajectory which enable Aspergillus spe-
cies to cause disease is crucial to fully understand the
interaction between the pathogen and the host, as well as
to open new therapeutic perspectives. However, despite
intensive research, the inner workings of some of the
mechanisms and strategies employed by Aspergillus
remain enigmatic. For instance, how is it that out of all the
fungi, it is Aspergillus which is uniquely equipped to
evade host defences in such a precise and consistent
manner? Why is it that some Aspergillus species that are
closely related to and share important features with A. fu-
migatus, such as resistance to itraconazole or tempera-
ture extremes – e.g. Aspergillus fischeri and Aspergillus
oerlinghausenensis (Houbraken et al., 2016) – do not

typically behave as opportunistic pathogens. Is it because
A. fumigatus is more widely spread in the environment,
can enter the human host and evade the immune system
more successfully, grows well at 37°C or is it better
adapted to microenvironments such as the human body
that are often characterized by low nutrient and oxygen
availability (Tables 1 and 2; Hall and Denning, 1994; Hill-
mann et al., 2015a,b; Kroll et al., in press)? A. fumigatus,
in particular, and aspergilli in general are very highly
evolved and successful soil saprophytes and the competi-
tion they face in the soil environment has provided some
species or strains most probably with the ability to colo-
nize and cause disease in a compromised human or ani-
mal host upon entering the lungs (Tekaia and Latg�e,
2005). Furthermore, the question arises: what impact
these pathogens have had on the structure of the lung
and immune system during human and animal evolution?
And how can xerotolerant Aspergillus species and, more-
over, extreme xerophiles, such as A. niger and A. penicil-
lioides, be so successful as pathogens in the high-water
activity habitat of the human host? Can the energy gener-
ation capability of Aspergillus play a part in enhancing
resistance or tolerance to viral infection and thereby
enhance vigour, competitive ability and virulence? It
seems paradoxical that a genus which is so ubiquitous in
various ecosystems and habitats of the Earth’s biosphere
is equally competent at invading and proliferating in
closed systems, including those represented by food fer-
mentations, microbially contaminated spacecraft (see
Rummel et al., 2014 and references therein) and an ani-
mal or human host. To conclude, only with an integrated
research approach bringing together expertise from differ-
ent disciplines, including mycology, medicine, epidemiol-
ogy, biopharmaceutical research, ecology, taxonomy and
systematics, molecular biology and bioinformatics we will
be able to better understand the behaviour and manage-
ment of this intriguing pathogen.
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