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Summary

Clinical adoption of a con-
stant cell killing relative
biological effectiveness
(RBE) for acute exposures
underestimates the effect of
increased linear energy
transfer (LET) in the distal
regions of clinical proton
beams. Experimental data for
the impact of dose fraction-
ation in such scenarios re-
mains limited. Toward distal
regions of the spread-out
Bragg peak, we found an

Purpose: To investigate the clinical implications of a variable relative biological effec-
tiveness (RBE) on proton dose fractionation. Using acute exposures, the current clin-
ical adoption of a generic, constant cell killing RBE has been shown to underestimate
the effect of the sharp increase in linear energy transfer (LET) in the distal regions of
the spread-out Bragg peak (SOBP). However, experimental data for the impact of dose
fractionation in such scenarios are still limited.
Methods and Materials: Human fibroblasts (AG01522) at 4 key depth positions on a
clinical SOBP of maximum energy 219.65 MeV were subjected to various fractionation
regimens with an interfraction period of 24 hours at Proton Therapy Center in Prague,
Czech Republic. Cell killing RBE variations were measured using standard clonogenic
assays and were further validated using Monte Carlo simulations and parameterized us-
ing a linear quadratic formalism.
Results: Significant variations in the cell killingRBE for fractionated exposures along the
proton dose profile were observed. RBE increased sharply toward the distal position, cor-
responding to a reduction in cell sparing effectiveness of fractionated proton exposures at
higher LET. The effect was more pronounced at smaller doses per fraction. Experimental
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increased RBE correspond-
ing during fractionated pro-
ton exposures at higher LET
and lower dose per fraction.
This increase in RBE results
in considerable deviation
from clinically predicted
isoeffective regimens.

survival fractions were adequately predicted using a linear quadratic formalism assuming
full repair between fractions. Data were also used to validate a parameterized variable
RBEmodel based on linear a parameter responsewith LET that showed considerable de-
viations from clinically predicted isoeffective fractionation regimens.
Conclusions: The RBE-weighted absorbed dose calculated using the clinically adopted
generic RBE of 1.1 significantly underestimates the biological effective dose from var-
iable RBE, particularly in fractionation regimens with low doses per fraction. Coupled
with an increase in effective range in fractionated exposures, our study provides an
RBE dataset that can be used by the modeling community for the optimization of frac-
tionated proton therapy.� 2016 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Proton therapy is a rapidly advancing form of external
beam radiation therapy and has been established as an
alternative to photon-based modalities for specific cancer
types (1). The motivation behind the adoption of thera-
peutic protons lies in their inherent physical advantages
expressed over more conventionally used X-ray techniques.
The inverted Bragg peak depth-dose profile allows for
effective treatment of a tumor region while significantly
sparing surrounding healthy tissues, with the superposition
of several peaks of discrete energies treating extended re-
gions using a spread-out Bragg peak (SOBP) (2-4). This
increased sparing of healthy tissues offers additional ad-
vantages in the treatment of pediatric patients, in whom the
risk of secondary cancers and late morbidity is significantly
higher (5). Additionally, the rapid distal falloff in dose is
ideal in the treatment of tumors located near organs at risk
(OAR). Further to the advantages offered by the depth-dose
profile, the increased linear energy transfer (LET) of pro-
tons in comparison with X-rays results in an increased
biological effectiveness for cell killing. Particularly for
regions surrounding the Bragg peak, the more localized
pattern of energy deposition enhances biological damage,
primarily through more complex DNA lesions (6, 7). To
account for such an increase in effectiveness, the concept of
relative biological effectiveness (RBE), defined as the ratio
of photon to particle doses to induce an equivalent bio-
logical effect (8), is adopted in treatment planning to scale
physical dose into RBE-weighted absorbed dose: DRBE, the
product of physical dose and RBE (9, 10).

The estimation of proton beam RBE compared with
energetic X-rays presents a key issue in radiation therapy
because any uncertainty in the RBE transfers directly to an
uncertainty in the biologically effective dose delivered to a
patient. Considering the necessity of a 3.5% dose toler-
ance, characterization of proton RBE in a clinical setting
is pertinent to the optimal delivery of proton radiation
therapy (11). A lack of strong datasets has seen the clin-
ical adoption of a fixed, generic RBE value of 1.1
regardless of evidence for changes in biological effec-
tiveness as a function of energy modulation, beam size,

cellular radiosensitivity, or SOBP size and position
(12-15). In addition, a fixed RBE during fractionated ex-
posures disregards any effects resulting from the variation
of dose per fraction and the total number of fractions
delivered in relation to the LET (16).

As a key radiation therapy strategy, fractionation aims to
maximize dose delivery to a treatment region while
allowing healthy tissues time to repair by splitting the total
dose into smaller fractions, with 1 or more rest periods
between each delivery. Having reported a sharp rise in RBE
toward the high LET regions of a clinical SOBP for acute
exposures (12), the authors aim to elucidate the additional
effects of a variable proton RBE on a fractionated regimen.
The use of a variable RBE may see significant deviations
from current clinical assumptions, and may obscure the
potential therapeutic advantages of proton radiation therapy
when delivering fractionated regimens based on the
extrapolation of clinical experience with photons (17). The
unique depth-dose deposition characteristics of protons
may present opportunities for the shortening of clinical
fractionation schedules through hypofractionation and have
been investigated through several clinical trials (18-20). As
a result, comparisons with the widely accepted Interna-
tional Atomic Energy Agency standard fractionation
regimen of 2 Gy per fraction photon irradiation will provide
useful insights for the discussion about the adoption of
modified fractionation schemes (10).

For this study, the cell killing RBE of various proton
fractionation regimens in normal human skin fibroblast
(AG01522) cells were investigated. The pencil-beam scan-
ning clinical beam of maximum energy 219.65 MeV at
Proton Therapy Center, Prague, Czech Republic has been
previously used in the treatment of a range of tumor sites
including head and neck, brain, and prostate.

Cells were exposed at the positions of key features on a
clinical dose profile: at the proton entrance and at the
proximal-SOBP, central-SOBP, and distal-SOBP regions.
These clinically relevant exposure conditions allowed the
investigation of a wide range of clinical LET values. The
effect of proton fractionation on cell survival was investi-
gated by delivering up to 3 fractions to cell monolayers
with an interfraction rest period of 24 hours.

Volume 95 � Number 1 � 2016 Fractionated proton therapy RBE 71

http://creativecommons.org/licenses/by/4.0/


Methods and Materials

Cell culture

AG01522 cells were maintained in a-modified mini-
mum essential medium (Sigma Aldrich, St. Louis, MO)
supplementedwith 20% fetal bovine serum and 1%penicillin-
streptomycin (Gibco, Life Technologies Carlsbad, CA). All
cells were incubated in 5% CO2 with 95% humidity at 37�C.

Proton irradiation, dosimetry, and simulation

Cells were exposed at various positions along a clinical
SOBP generated by pencil scanning beam of maximum
energy 219.65 MeV, generated by an IBA Protheus 230
cyclotron at Proton Therapy Center Prague, Czech Re-
public. Up to 3 fractions (of the same dose per fraction)
were delivered to cells with an interfraction rest period of
24 hours. The full details are outlined in Supplementary
Information (available online at www.redjournal.org).

Clonogenic assay

Cells were incubated in full media for 24 hours before the
delivery of each fraction. After the delivery of the final
fraction, cells were immediately trypsinized, counted, and
seeded onto 6-well plates in duplicate with sufficient density
to obtain w50 macroscopic colonies per well. Plates were
then incubated in 5% CO2 with 95% humidity at 37�C for
12 days to allow macroscopic colony formation. Colonies
were fixed and stained using 0.5% crystal violet dye in 95%
methanol in water for 30 minutes at room temperature, then
gently rinsed in water and air dried. Colonies consisting of at
least 50 cells were scored as viable.

Data analysis and simulation

Cell survival was described using a linear quadratic
formalism, where for acute exposures the surviving fraction
(SF) of cells after receiving an acute dose D is given by:

SFacuteZexp
�� aD� bD2

� ð1Þ
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Fig. 1. Clonogenic survival data at experimental positions in the entrance, proximal, central, and distal regions of the
spread-out Bragg peak for AG01522 cells alongside reference 225 kVp X-ray curves. Survival curves indicate overall cell
survival after irradiated dose delivered under each fractionation regimen. (A) Cell survival as a function of total dose
delivered in a single (A), double (B), and triple (C) exposure at the 4 experimental positions. Error bars indicate standard
error of the mean with fits obtained using the linear quadratic model.
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with fitting parameters a and b. Additionally, cell survival
after a fractionated regimen of n fractions and dose per
fraction d is described as follows:

SFfracZexp
�� a n d� b n d2

� ð2Þ
Using the definition of RBE calculated relative to 225

kVp X-rays (DX rays/Dprotons at isoeffect where D denotes
acute dose), it is possible to obtain analytic equations for
the RBE as a function of the radiation dose in acute and
fractionated regimens, where

RBEacuteZ
e aX þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
X þ 4 bX

�
aP DP þ bP D

2
P

�q

2bX DP

ð3Þ

and

RBEfracZ
aP þ bPdP
aX þ bX dX

ð4Þ

where X and P subscripts denote parameters corresponding
to X-ray and proton exposures, respectively. Nonlinear
regression analysis was performed on survival curves using
GraphPad Prism version 6.0f. A detailed description of the
simulation parameters and toolkit used is provided in
Supplementary Information (available online at www
.redjournal.org).

Results

Cell survival by fractionation regimen

Figure 1 details the cell survival under the various proton
fractionation regimens alongside reference X-ray survival
curves. It is evident that for all fractionation regimens, cell
survival curves become consistently steeper toward more
distal positions and remain steeper than the X-ray curves in
all cases. With the introduction of more fractions, the level
of cell sparing increases across all positions but varies
along the SOBP, with the most distal positions seeing the
least amount of sparing. The fold decrease (ie, SFdistal/
SFproximal at 3.6 Gy) in survival between the proximal and
distal positions is 3.7 � 1.0 and 3.8 � 0.8 for the single-
fraction and double-fraction regimens but is increased to
6.1 � 1.3 for a triple-fraction regimen, where a total dose of
3.6 Gy is delivered.

Cell survival by SOBP position

Figure 2 details the cell survival at the various experi-
mental SOBP positions alongside reference X-ray survival
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Fig. 2. Clonogenic survival data under the 3 fractionation regimens delivering total dose in single, double, and triple
fractions for AG01522 cells alongside reference 225 kVp X-ray curves. Survival curves indicate overall cell survival at each
experimental position at the entrance (A), proximal (B), central (C), and distal (D) regions of the SOBP with LET Z 0.63,
1.68, 2.45, and 7.5 keV/mm, respectively. X-ray response is described in (E). Error bars indicate standard error of the mean
with fits obtained using the linear quadratic model (full details outlined in Supplementary Information; available online at
www.redjournal.org).
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curves. Again, in all cases the increased level of cell
sparing with increasing number of fractions is evident: the
fold increase in cell survival between triple-fraction and
single-fraction regimens for the proximal and central po-
sitions at 3.6 Gy is 2.59 � 0.27 and 2.0 � 0.4, respectively.
However, the effect of fractionation is less evident in the
positions with higher LET, with cell survival curves
effectively overlapping regardless of fractionation regimen
at the distal position, with fold increase in cell survival of
1.6 � 0.27 between single-fraction and triple-fraction
regimens at 3.6 Gy.

Cell survival by fraction size

Figure 3 shows survival data after delivering single, double.
and triple fractions of 1.2, 0.8, 0.6, and 0.3 Gy per fraction
alongside reference X-ray data. For all fraction sizes,
fractionation of the proximal and central positions allowed
significantly more cell sparing than the distal region, where
survival curves were significantly steeper. Adoption of a
linear quadratic formalism to predict fractionated response

based on the cell response parameters of a single fraction
appears suitable, matching experimental data points closely
across all data sets. The comparison of experimental versus
analytically obtained survival for single, double, and triple
exposures yields Pearson’s correlation coefficients >0.975
(P<.0001), indicating an excellent degree of correlation
(Fig. E2; available online at www.redjournal.org).

The clinical implications of a variable RBE under
various fractionation regimens

A strong linear relationship of the proton a parameter ap
with LET (Fig. E3; available online at www.redjournal.org)
allows the parameterization of RBE in acute and fraction-
ated regimens by substituting the expression

apZax þ lLET ð5Þ
in equations 3 and 4, where ap can be described in terms of
the a parameter for X-ray exposure ax, proton LET and the
linear gradient of the acute cell response (l Z 0.0883,
characteristic for the cell line used). Inasmuch as no sig-
nificant difference or relationship between proton b
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Fig. 3. Clonogenic survival data at experimental positions in the proximal, central, and distal regions of the spread-out
Bragg peak for AG01522 cells alongside reference 225 kVp X-ray curves. Survival curves indicate cell survival for (A)
1.2 Gy, (B) 0.8 Gy, (C) 0.6 Gy, and (D) 0.3 Gy per fraction for up to 3 fractions. Error bars indicate standard error of the
mean, solid lines represent fits obtained using the fractionated linear quadratic model (equation 2), and dotted lines are for the
acute exposures.
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parameters bp and LET was observed, the parameterized b
values were assumed to be constant and equivalent to those
for the X-ray response.This is in agreement with published
work (21).

Parameterized RBE values as a function of proton dose
and depth (ie, LET) for acute and fractionated regimens are
shown in Figure 4. In agreement with literature data, RBE
for acute exposure increases slowly in the SOBP region
before rising sharply at the distal dose falloff. In the SOBP
region there is also a small but significant increase in RBE
as the total dose is reduced (from RBE Z 1.12 for 3.6 Gy
to RBE Z 1.21 for 0.8 Gy). Under fractionated regimens,
similar patterns for RBE with depth are observed, although
the data indicate a smaller RBE increase in the SOBP re-
gion as a consequence of reducing the dose per fraction
(from RBE Z 1.17 for 3.6 Gy/fraction to RBE Z 1.24 for
0.8 Gy/fraction).

The clinical implication of these RBE increases for
fractionated exposures is highlighted in Figure 5, where the
experimental RBE-weighted absorbed dose DRBE for acute
and fractionated exposures for various dose sizes is pre-
sented alongside the clinically assumed profiles. Acute

deliveries see significant increases in delivered DRBE versus
clinical assumptions (RBE Z 1.1), particularly for smaller
doses and in the distal region. Fractionation increases this
effect in the SOBP region, seeing increases of 8.3% to
12.1% in integral DRBE over the clinical case in comparison
with 4.6% to 10.6% for the acute delivery of the same
doses. The percentage increase is higher for smaller doses
per fraction. The greatest difference between the experi-
mental and clinically assumed DRBE lies in the distal dose
falloff region, as shown in Figure E4 (available online at
www.redjournal.org). The increase in effective range (point
of 80% peak DRBE) over the clinically assumed DRBE

profile shows a marked difference (w7%) between acute
and fractionated delivery toward higher SOBP doses
(0.82 mm vs 0.88 mm at 3.6 Gy) (Fig. E5; available online
at www.redjournal.org) before converging at lower doses
per fraction.

EQD2 of fractionated proton regimens

The parameterized RBE for single fractions of proton
radiation is shown in Figure 6A. Consistent with the sharp
rise in LET, the highest RBE is found toward the more
distal positions of the SOBP. For each position, RBE is
higher for lower doses. The nonuniformity in biological
effect when using a variable RBE is compounded under
multifraction regimens, under low dose per fraction and in
the low-dose regions of the proton dose profile in
particular. As a result, it is useful to quantify the impact
of a variable RBE on a typical clinical fractionation
schedule.
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Figure 6B outlines the equivalent photon dose in 2-Gy
fractions (EQD2) for regimens considered isoeffective
using a constant RBE of 1.1 to deliver a clinically relevant
EQD21.1 of 70 Gy to AG01522 cells. Details for EQD2
calculations are outlined in Supplementary Information
(available online at www.redjournal.org). By incorpo-
rating a variable RBE using the same regimens, the pre-
dicted equivalent doses in all experimental positions
deviate from those using the clinical assumption with an
increase in predicted equivalent dose in hyperfractionated
regimens and a reduction in the case of hypofractionated
regimens. Notably, equivalent doses in the distal position
are underestimated clinically for all fraction sizes.

Discussion

The lack of robust experimental data exploring fractionated
proton radiation presents a substantial opportunity to gain
insight into the effects of an inhomogeneous cell response
along clinical dose profiles. Although the sole use of the
AG01522 cell line is not a comprehensive representation,
this study provides useful reference data and highlights an
interesting trend of RBE as a function of LET and fraction
size, examining also the potential clinical implications. The
findings from this report indicate a significant increase in
RBE over the acute delivery of protons, where the same
total physical doses are delivered in fractionated regimens.
This is particularly evident toward the distal dose falloff
(Fig. 5), where high RBE values have been reported for
acute exposures (21-24). Such an increase in effectiveness
of fractionated exposures is proportional to the LET and
inversely proportional to the dose per fraction delivered.
Previously reported in vivo experiments (25, 26) have
indicated a constant RBE with fractions for the middle of
the SOBP but have acknowledged that the end of the SOBP
was w1.14 more effective also for fractionated exposures.

The data presented further highlight the inadequacy of
extrapolating the cell response from X-ray radiation in the
form of a generic, fixed RBE value of 1.1 and outline the
difficulties in delivering isoeffective doses to treatment
regions in terms of biologically effective beam range and
dose.

Exposures to low-LET regions of the SOBP appear to
produce cell survival levels similar to those of X-rays, with
steeper and more linear survival curves correlating strongly
with the increasing LET toward more distal regions. This
increase in RBE with LET supports the hypothesis of more
complex damage and has been observed in several previous
studies for various cell lines (27, 28), and in vivo mouse
models (25, 26) with the same linear relationship between
ap and LET having been previously reported through
extensive analysis of current radiobiological data by
Wedenberg et al (29).

The adoption of a linear quadratic formalism has suc-
cessfully been used for clinical schedules using low LET
radiation and closely describes the experimental data (30).
The use of an experimental interfractional rest period of
24 hours reflects current clinical practice and appears to be
adequate for the complete repair for sublethal damage for
the AG01522 normal fibroblast cells. Complete repair of the
fibroblast cells under these experimental conditions (eg,
dose, LET) has previously been observed by the authors
using immunofluorescence techniques to investigate DNA
damage (31). Cells associated with more erroneous repair or
exposure to higher LET radiation may promote incomplete
repair between fractions, compounding sublethal repair to
see higher than expected toxicity (32). The applicability of
this approach for the full proton LET range and to tumor
cells presents an avenue for further investigation.

Given the perception of protons as “low LET” radiation,
there is a natural motivation to alter proton deliveries based on
clinical experience with photons, with an advantageous dose
deposition profile providing an incentive to deliver higher
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doses per fraction. Isoeffect calculations in this study have,
however, outlined how the strong dependence of RBE on the
proton LET component must be taken into consideration,
particularly whenvarying dose per fraction. Additionally, this
variation in RBE must be noted when comparing photon and
proton schedules in the evaluation of clinical trials. The
AG01522 cells in this study (a/bZ 6.4Gy) provide an insight
into the behavior of late-responding tissues under various
fractionation schedules. The increased effectiveness in the
distal region for hyperfractionated exposures may reduce
the therapeutic benefits of fractionation by counteracting the
differential response with rapidly growing tumors. Addition-
ally, the movement toward hypofractionation sees the poten-
tial for overestimation of effective dose delivered under the
assumption of a constant RBE for all but the most distal
regions of the SOBP.

The inhomogeneous cell killing response observed
across the SOBP, the further effect of the different frac-
tionation regimens on biological effectiveness, the effective
range increases in the order of 1 mm, and the lack of
confidence in predicting isoeffective treatments show sig-
nificant limitations in the use of a generic, fixed value of
RBE of 1.1. The experimental RBE variations and their
implications for fractionated proton radiation therapy
observed in this study support the incorporation of a vari-
able RBE in the planning of clinical treatments. This study
provides a dataset from primary human cells that can be
used for assessing optimization strategies for fractionated
proton radiation therapy in line with similar studies on
variable RBE in treatment planning (17).
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29. Wedenberg M, Lind BK, Hårdemark B. A model for the relative

biological effectiveness of protons: The tissue specific parameter a/b
of photons is a predictor for the sensitivity to LET changes. Acta

Oncol 2013;52:580-588.

30. Brenner DJ. The linear-quadratic model is an appropriate methodol-

ogy for determining isoeffective doses at large doses per fraction.

Semin Radiat Oncol 2008;18:234-239.

31. Chaudhary P, Marshall TI, Currell FJ, et al. Variations in the pro-

cessing of DNA double-strand breaks along 60-MeV therapeutic

proton beams. Int J Radiat Oncol Biol Phys 2016;95:86-94.

32. Antonelli F, Bettega D, Calzolari P, et al. Inactivation of human cells

exposed to fractionated doses of low energy protons: Relationship

between cell sensitivity and recovery efficiency. J Radiat Res 2001;42:

347-359.

Volume 95 � Number 1 � 2016 Fractionated proton therapy RBE 77

http://refhub.elsevier.com/S0360-3016(16)00149-8/sref1
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref1
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref1
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref2
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref2
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref3
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref3
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref4
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref4
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref4
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref5
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref5
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref5
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref6
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref6
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref7
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref7
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref7
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref8
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref8
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref9
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref9
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref10
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref10
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref10
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref11
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref11
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref12
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref12
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref12
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref12
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref13
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref13
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref13
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref14
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref14
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref14
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref14
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref15
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref15
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref15
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref16
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref16
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref16
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref17
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref17
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref18
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref18
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref18
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref18
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref19
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref19
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref19
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref20
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref20
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref20
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref21
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref21
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref21
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref22
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref22
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref22
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref23
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref23
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref23
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref24
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref24
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref24
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref25
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref25
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref25
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref26
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref26
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref26
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref27
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref27
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref27
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref28
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref28
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref28
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref29
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref29
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref29
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref29
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref30
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref30
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref30
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref31
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref31
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref31
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref32
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref32
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref32
http://refhub.elsevier.com/S0360-3016(16)00149-8/sref32

	Investigating the Implications of a Variable RBE on Proton Dose Fractionation Across a Clinical Pencil Beam Scanned Spread- ...
	Introduction
	Methods and Materials
	Cell culture
	Proton irradiation, dosimetry, and simulation
	Clonogenic assay
	Data analysis and simulation

	Results
	Cell survival by fractionation regimen
	Cell survival by SOBP position
	Cell survival by fraction size
	The clinical implications of a variable RBE under various fractionation regimens
	EQD2 of fractionated proton regimens

	Discussion
	References


