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Abstract 

The pathogenesis of Alzheimer's disease (AD) is complex involving multiple contributing 

factors. The extent to which AD pathology impacts upon the metabolome is still not 

understood, nor is it known how disturbances change as the disease progresses. For the 

first time we have profiled longitudinally (6, 8, 10, 12 and 18 months) both the brain and 

plasma metabolome of APP/PS1 double transgenic and wild type (WT) mice. A total of 187 

metabolites were quantified using a targeted metabolomics methodology. Multivariate 

statistical analysis produced models that distinguished APP/PS1 from WT mice at 8, 10 and 

12 months. Metabolic pathway analysis found perturbed polyamine metabolism in both brain 

and blood plasma. There were other disturbances in essential amino acids, branched chain 

amino acids and also in the neurotransmitter serotonin. Pronounced imbalances in 

phospholipid and acylcarnitine homeostasis was evident in two age groups. AD-like 

pathology therefore impacts greatly on both the brain and blood metabolomes, although 

there appears to be a clear temporal sequence whereby changes to brain metabolites 

precede those in blood. 

 

Keywords: Alzheimer's disease, metabolites, metabolomics, blood, brain, APP/PS1. 

 

1. Introduction 

Dementia mainly affects the elderly, with the prevalence doubling every five years over 

the age of (Prince et al., 2014). Alzheimer’s disease (AD) is a progressive and fatal 

neurodegenerative disorder and the most common form of dementia, accounting for 60-80% 

of all dementia cases (Prince et al., 2014). AD is clinically characterised by progressive 

memory loss, mood changes, problems with communication and reasoning, and eventual loss 

of independent living. Familial AD (FAD), often associated with an earlier-onset (<65 years of 

age), is an autosomal dominant form of AD caused by mutations in the genes encoding 
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amyloid precursor protein (APP) and presenilins 1 and 2 (PS1 and PS2) leading to the 

subsequent accumulation of β-amyloid (Aβ) (Borchelt et al., 1997; Jankowsky et al., 2004; 

Selkoe, 2001; Selkoe and Schenk, 2003). AD is characterised by the pathological 

accumulation of extracellular Aβ and abnormally phosphorylated tau filaments in neurons that 

lead to senile plaques and neurofibrillary tangles (NFTs), respectively (Blennow et al., 2006; 

Selkoe, 2004; Skovronsky et al., 2006).  Transgenic mouse models containing mutations in 

the human APP and/or PS1 genes are widely used in experimental studies to investigate the 

pathophysiological role of Aβ in early-onset AD patients. The APPswe/PS1deltaE9 (APP/PS1) 

strain is one such example that has been extensively characterised and utilised.  These mice 

develop Aβ plaques at 5-6 months of age, although production of Aβ has been shown to occur 

as early as 3 months in the form of both Aβ(1-40) and (1-42) (Volianskis et al., 2010). APP/PS1 

mice display progressive age-related impairments in memory that appear as early as 7 months 

of age (Volianskis et al., 2010; Xiong et al., 2011). In behavioural tests the mice show deficits 

in measuring spatial navigation and reference learning (Xiong et al., 2011). Although APP/PS1 

mice do not model all facets of human AD, they do enable longitudinal investigations not 

normally possible in people in a clinical environment.  

Metabolomics is the scientific investigation of chemical processes involving metabolites. 

Metabolomics techniques can comprehensively and simultaneously help to measure 

disturbances in metabolic pathways that reflect changes downstream from genomic, 

transcriptomic and proteomic systems in a high-throughput manner (Beckonert et al., 2007; 

Fiehn, 2002).  It holds considerable potential as a discovery platform for identifying novel 

diagnostic biomarkers for AD but also many other neurodegenerative diseases. Metabolomics 

studies have previously been undertaken in APP/PS1 mice (Chen et al., 2012; Gonzalez-

Dominguez et al., 2015a; González-Domínguez et al., 2014; Graham et al., 2013b; Marjanska 

et al., 2005; Trushina et al., 2012; Yao et al., 2009), however, the majority of these studies 

(including our own (Graham et al., 2013b)) suffer from limitations commonly befalling many 

metabolomics investigations conducted to date. The current study was designed having noted 
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earlier approaches to undertake a more robust metabolomics evaluation of this important 

model of AD. Many previous studies had inadequate consideration of the optimal experimental 

design, a common arguable limitation being the use of arbitrary sample sizes without formal 

statistical power calculations. Another common limitation was a cross-sectional approach 

examining a single time point - therefore providing only the narrowest of windows through 

which to view and obtain reliable biological information. The majority of previous studies were 

also restricted to one sample type in isolation and did not examine whether biochemical 

alternations were more widespread. Finally, all potential sources of biological variation (i.e. 

potential confounders) were not always minimised in the experimental design, such as 

considering the gender of animals and subjects that can have a strong influence on the 

metabolome (Dunn et al., 2015; Graham et al., 2013a; Qiao et al., 2011). The current study 

undertook a targeted and quantitative methodology with optimal sample size pre-calculated to 

achieve 100% statistical power.  A total of 187 pre-nominated metabolites were measured in 

both brain and blood samples from female animals and this included amino acids, biogenic 

amines, phospholipids and acylcarnitines. 

Earlier metabolomics studies have revealed a number of biochemical disturbances in 

APP/PS1 mice. Previous studies using in vivo proton magnetic resonance spectroscopy (1H 

MRS) found decreases in N-acetylasparatate and glutamate, and an increase in myo-inositol 

concentrations in APP/PS1 mice (Chen et al., 2012; Marjanska et al., 2005). Glycolytic 

pathways involving the Kreb’s cycle, and neurotransmitter and amino acid metabolism, were 

found to be significantly affected in APP/PS1 mouse brain (Trushina et al., 2012). Furthermore, 

1H NMR metabolomics studies found altered ascorbate, creatine, γ-aminobutyric acid and 

NAA in APP/PS1 mouse brain, and altered acetate, citrate, glutamine and methionine in blood 

plasma (Graham et al., 2013b). A recent study applying GC-MS and UPLC-MS investigated 

the metabolic perturbations in five brain regions of APP/PS1 mice at 6 months of age 

(González-Domínguez et al., 2014). Region-specific alterations were observed for some 

metabolites associated with abnormal fatty acid composition of phospholipids and 

https://www.researchgate.net/publication/230564370_Age-related_changes_in_brain_metabolites_and_cognitive_function_in_APPPS1_transgenic_mice?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/271139469_Molecular_phenotyping_of_a_UK_population_defining_the_human_serum_metabolome?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/266565892_Region-specific_metabolic_alterations_in_brain_of_the_APPPS1_transgenic_mice_of_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/258841254_An_investigation_of_the_human_brain_metabolome_to_identify_potential_markers_for_early_diagnosis_and_therapeutic_targets_of_Alzheimer's_Disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/235770064_1H-NMR_metabolomics_investigation_of_an_Alzheimer's_disease_AD_mouse_model_pinpoints_important_biochemical_disturbances_in_brain_and_plasma?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/7669811_Monitoring_disease_progression_in_transgenic_mouse_models_of_Alzheimer's_disease_with_proton_magnetic_resonance_spectroscopy?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/51195945_Metabolomic_analysis_of_normal_C57BL6J_129S1SvImJ_mice_by_gas_chromatography-mass_spectrometry_Detection_of_strain_and_gender_differences?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/221891005_Defects_in_Mitochondrial_Dynamics_and_Metabolomic_Signatures_of_Evolving_Energetic_Stress_in_Mouse_Models_of_Familial_Alzheimer's_Disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
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sphingomyelins (SPHs), or differential regulation of neurotransmitter amino acids (e.g. 

glutamate, glycine, serine, N-acetyl-aspartate). Disturbances in phospholipids, energy 

deficiencies, altered homeostasis of amino acid and oxidative stress in APP/PS1 mouse 

spleen and thymus were also observed (Gonzalez-Dominguez et al., 2015a). One study 

employing HPLC-ELSD compared the cortical levels of cholesterol and phospholipid 

subclasses at ages 4 and 9 months (Yao et al., 2009), and found that membrane lipids of 

APP/PS1 mice including cholesterol and phospholipid were significantly decreased at 9 

months (Yao et al., 2009). Among phospholipid subclasses, phosphatidylethanolamine (PE), 

phosphatidylserine (PS) and phosphatidylcholine (PC) were selectively reduced (Yao et al., 

2009). Despite the fact that metabolomics studies have pinpointed some metabolites affected 

by the development of AD-like pathology the findings are often conflicting, fragmented and 

incongruent. The aim of this study was to longitudinally study the profile of pre-defined 

metabolites in an important and widely used transgenic AD model over much of its lifespan, 

and to monitor disturbances close to the initial pathological insult as well as those that arise 

within the blood circulation.  

 

2. Material and methods  

2.1 Brain tissue and plasma from APP/PS1 mouse 

Founder APPswe/PS1DE9 (APP/PS1) male mice were initially obtained from the Jackson 

lab (USA), and bred at the Ulster University. Heterozygous males were bred with wild-type 

(WT) C57/Bl6 females bought locally (Harlan, UK). APP/PS1and WT mice were housed under 

identical conditions and fed the same rodent maintenance diet (14% fat, 32% protein, and 54% 

carbohydrate; total energy of 3.0kcal/g; Harlan).  

APP/PS1 mice are a transgenic C57BL/6J mouse model co-expressing the Swedish 

mutation (K595N/M596L) and the deltaE9 PS-1 exon deletion (mutated human presenilin-1) 

(Lalonde et al., 2005). Offspring were tail snipped and genotyped using PCR. PCR used 

https://www.researchgate.net/publication/268229290_Metabolomics_reveals_significant_impairments_in_the_immune_system_of_the_APPPS1_transgenic_mice_of_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/247090756_Exploratory_activity_and_spatial_learning_in_12-month-old_APP_695SWEco_PS1DE9_mice_with_amyloid_plaques?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
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primers specific for the APP sequence (Forward “GAATTCCGACATGACTCAGG”, Reverse: 

“GTTCTGCTGCATCTTGGACA”). Mice not expressing the transgene were used as WT 

controls. For this study, female APP/PS1dE9 mice, aged 6, 8, 10, 12 and 18 months and, age 

matched WT female C57BL/6littermate controls (n = 8-9) were used. Mice were fasted for 16 

h, deeply anaesthetised with pentobarbitol, and blood samples were collected into heparinised 

tubes, centrifuged for 30 seconds at 13,000 x g and the resulting plasma were stored at -80˚C 

prior to metabolomics investigations. Whole mouse brain was also collected and snap-frozen 

in liquid nitrogen and stored at -80˚C until further use. 

 

2.2 Brain tissue extraction 

Mouse brain samples were collected into individual tubes to avoid cross-contamination, 

then lyophilized and cryogenically milled to a fine dry powder.  Powdered PM brain tissue (25 

mg ± 0.5 mg) was extracted in 300 µL in a solvent (85% ethanol and 15% PBS buffer) 

previously optimised for brain metabolite profiling (Urban et al. 2010). The samples were 

sonicated (5 min), vortexed (30 sec), centrifuged at (10,000 g; 4°C; 5 min) and the supernatant 

retained for analysis.  

 

2.3 Targeted metabolomics 

Quantitative mass spectrometry-based metabolomic profiling was performed using the 

Biocrates AbsoluteIDQ p180 (BIOCRATES, Life Science AG, Innsbruck, Austria), as 

previously described (Nkuipou-Kenfack et al., 2014; Roemisch-Margl et al., 2012). The 

AbsoluteIDQ p180 kit provides simultaneous quantification of amino acids, acylcarnitines, 

SPHs, PCs, hexose (glucose), and biogenic amines in many biological samples. The samples 

were processed according to the manufacturer’s instructions and analysed on a triple-

quadrupole mass spectrometer (Xevo TQ-MS, Waters Corporation, Milford, USA). The data 

were recorded in a 96-well format and seven calibration standards were integrated in the kit. 

https://www.researchgate.net/publication/225164314_Procedure_for_tissue_sample_preparation_and_metabolite_extraction_for_high-throughput_targeted_metabolomics?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
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Human EDTA plasma samples spiked with standard metabolites were used as quality control 

samples to assess reproducibility of the assay. Briefly, 10 µL of mouse plasma samples and 

10 µL of PM brain extract (prepared as described above) were used for the targeted 

metabolomics analysis. The amino acids and biogenic amines were derivatised using 

phenylisothiocyanate (PITC) in the presence of isotopically labelled internal standards internal 

standards as detailed by the manufacturer. This was followed by separation using a UPLC (I-

Class, Waters Corporation, Milford, USA) and quantified using a triple-quadrupole mass 

spectrometer (Xevo TQ-MS, Waters Corporation, Milford USA) operating in the multiple 

reaction monitoring (MRM) mode. All the remaining metabolites were quantified using the 

same mass spectrometer without column separation by the flow injection analysis (FIA) 

operating in MRM mode. Metabolite concentrations were calculated and expressed as 

µmol/mg tissue.  

 

2.4 Statistical analysis 

Sample size and power were estimated based on data (i.e. mean concentrations and 

standard deviations) obtained during previous laboratory sampling of human plasma using the 

Biocrates AbsoluteIDQ p180 kit. An on-line tool “Inference for Means: Comparing Two 

Independent Samples” developed by the University of British Columbia, Department of 

Statistics was used to calculate statistical power with the type I error rate set at the default 

value of 0.05 [http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html]. It was calculated that for most 

metabolite measurements a samples size of n≥8 gave desired power of 1.0 (100%). The 

concentrations of 187 metabolites were compared exported to Simca 13 (Umetrics, Umea, 

Sweden) for multivariate analysis. Data were log transformed, pareto-scaled and grouped into 

APP/PS1 and WT prior to analysis using orthogonal projection to latent structures-discriminant 

analysis (OPLS-DA). Data were tested for normality and found to be non-normally distributed 

(SPPS version, 13.0). Non-parametric one-way analysis of variance analysis (Kruskal-Wallis) 

was performed to determine if metabolites were statistically different across the 10 groups 
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(p<0.05). Metabolic pathway analysis was performed using online metabolomics tools 

(Metaboanalyst (Xia et al., 2012) and Vanted (version 2.0.1) (Junker et al., 2006)). Heat map 

visualisations of data were created using PermutMatrix version 1.9.3.0 (Caraux and Pinloche, 

2005).  

 

3. Results 

3.1 The effect of age on the brain and plasma metabolome of APP/PS1 mice. 

Initial assessments were made to ascertain the overall extent of changes in brain and 

plasma metabolites. Multiple comparison testing provided an overview of how metabolites in 

each metabolite class were affected at each age time point and in each sample type, which is 

detailed in Table 1. Multivariate analysis was used to build models differentiating all 10 groups 

analysed for brain (Figure 1A) and plasma (Figure 1B). Supervised orthogonal projection to 

least squares discriminant analysis (OPLS-DA) was employed to visually discriminate 

between WT (circles) and APP/PS1 (triangles) for mice aged 6 months (blue), 8 months (red), 

10 months (green), 12 months (yellow) and 18 months (grey). The scores plots (Figure 1) 

showed that was possible to visibly discern WT from APP/PS1 mice at all ages with the 

exception of 6 and 18 months were for both brain and plasma there was some degree of 

overlap. This observation was confirmed when OPLS-DA was applied at each time point to 

assess how accurately class membership was predicted (Q2 cumulative; Table 1). The 

predictive power of the models (Q2) varied according to age in both brain and plasma but 

some of the lowest Q2 values occurred at 6 and 18 months. Conversely, models with the 

greatest predictive ability were at 8 months (Q2 = 0.836) and 12 months (Q2 = 0.890), for 

brain and plasma, respectively.  

 

3.2 Metabolic Pathway Analysis of separate tissue compartments of APP/PS1 

mice.  

https://www.researchgate.net/publication/8180064_PermutMatrix_A_Graphical_Environment_to_Arrange_Gene_Expression_Profiles_in_Optimal_Linear_Order?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/8180064_PermutMatrix_A_Graphical_Environment_to_Arrange_Gene_Expression_Profiles_in_Optimal_Linear_Order?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/7257931_VANTED_A_System_for_Advanced_Data_Analysis_and_Visualization_in_the_Context_of_Biological_Networks?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
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Multiple comparison testing demonstrated that there were significant concentration 

changes in a number of amino acids and polyamines in both blood and brain samples. 

Metabolic pathway analysis made it possible to visualise the biochemical relationships of these 

metabolites and the ages at which they were affected (Figures 2 and 3). Significant increases 

in the polyamines putrescine, spermidine and spermine (p<0.05) in APP/PS1 mice were 

detected in both brain and plasma. Disturbances of these metabolites occurred earlier (6-8 

months) in brain than in plasma (10 months). Concentrations of plasma glutamine (p<0.05) 

and citrulline (p<0.01) were lower in APP/PS1 mice at 12 but neither of these precursor 

metabolites were affected in brain. Threonine levels were lower in APP/PS1 brain tissue (10 

months; p<0.05) and in plasma (12 months; p<0.01). Serine was also significantly altered (10 

months; p<0.05) in both the brain and plasma of APP/PS1 mice. Contrastingly, arginine was 

only significantly altered (6 months; p<0.05) in brain tissue, whilst concentrations of glutamine 

and proline were recorded as being significantly different in plasma (p<0.05).  

 

3.3 Disturbances in amino acid levels between APP/PS1 and WT mice 

Numerous other changes in amino acid and biogenic amines unrelated to the polyamine 

pathway also were also identified (Table 2). However, only two amino acids (phenylalanine 

and tyrosine) were affected in both brain and blood, and only phenylalanine showed the same 

direction of change (i.e. increased) in both sample types. Although, phenylalanine levels 

changed first in brain (6 months) and then in plasma (10 months).  

Many more disturbances in metabolite concentrations were observed in plasma than brain 

tissue. Interestingly five essential amino acids (EAAs), histidine, phenylalanine, valine, 

isoleucine, methionine were affected as were two of the three branched-chain amino acids 

(BCAAs).  Following this we assessed the overall changes in BCAAs and the ratio of essential 

amino acids to non-essential amino acids (EAAs:NEAAs; Supplementary Table 1). In 

APP/PS1 plasma the EAAs:NEAAs ratio was significantly lower at 6 months but was 
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significantly higher at 12 and 18 months. The total level of BCAAs was unaffected in brain and 

plasma of all age groups.  

Strikingly, at 10 months APP/PS1 plasma displayed a number of marked increases in 

amino acid levels. This included histidine and phenylalanine (increased 16-18%) but also 

methionine and methionine sulfoxide which were increased 36% and 73% respectively. 

Furthermore, asparagine and taurine were increased 37% and 28%, respectively. Serotonin 

was significantly increased in the plasma taken from APP/PS1 mice at 8 months (72.7 %). At 

12 months α-aminoadipic acid was 68% (p<0.001) lower in APP/PS1 mice compared to WT 

controls.  

 

3.4 Phospholipid alterations 

The alteration of 105 membrane lipid metabolites including 17 lysophosphatidylcholines 

(LysoPCs), 73 PCs and 15 SPHs were assessed for both plasma and brain tissue samples.  

Changes in both physiological compartments were visualised using heat maps (Figure 5). 

Metabolites in red were higher in APP/PS1 compared to WT controls and those in green were 

lower. One PC (PC aa C36:0) was not measureable in brain and 5 SPHs (SM (OH) C22:1, 

SM (OH) C24:1, SM C20:2, SM C26:0 and SM C26:1) were not measurable either in brain 

tissue or in plasma. The heat map revealed statistically significant and widespread increases 

in PC levels in APP/PS1 brain tissue at 8 months of age. Also evident was the widespread 

and statistically significant decrease of phospholipid levels in APP/PS1 plasma at 12 months. 

From 72 PCs measured in brain tissue, 28 were significantly higher (p<0.05) in APP/PS1 mice 

at 8 months. Of the 73 PCs measured in plasma, 51 were significantly lower (p<0.05) in 

APP/PS1 mice at 12 months. Of the 17 LysoPCs, 2 LysoPCs (LysoPC a C16:1 and LysoPC 

a C28:0) were significantly higher in APP/PS1 brain at 8 months (p<0.05). A total of 7 LysoPCs 

(LysoPC a C14:0, LysoPC a C16:0, LysoPC a C16:1, LysoPC a C17:0, LysoPC a C18:1, 

LysoPC a C18:2 and LysoPC a C20:4) were significantly lower in APP/PS1 plasma (p<0.05) 

at 12 months. Furthermore, of the 10 measured SPHs, 6 SPHs (SM (OH) C16:1, SM C16:0, 
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SM C18:0, SM (OH) C22:2, SM C24:0 and SM C24:1) were at significantly higher 

concentrations in APP/PS1 brain at 8 months and 3 SPHs (SM (OH) C14:1, SM (OH) C22:1 

and SM C24:0) were at significantly lower concentrations in APP/PS1 plasma (p<0.05) at 12 

months. Changes in the total levels of each phospholipid class were also examined 

(Supplementary Table 2). In APP/PS1 brain the total levels of PC and SPH were significantly 

higher at 8 months. Contrastingly, in APP/PS1 plasma the total levels of PC and LysoPC were 

significantly lower at 12 months.  

3.5 Acylcarnitine alterations 

Of the 40 acylcarnitines quantified 8 significant differences in brain tissue and 8 were 

significantly different in plasma (p<0.05) (Figure 4). Only 2 acylcarnitines were significantly 

altered in both brain and plasma (C10:1, C12:1) and neither of these (C10:2) exhibited the 

same direction of change.  

In APP/PS1 plasma the most marked acylcarnitine changes were the 65-96% reductions 

(p<0.01) in the levels of C4:1 and C6:1 which persisted from the ages of 8 months onwards. 

In APP/PS1 brain the most marked changes were the 45-68% increases (p<0.05) in the levels 

of C7-DC, C10:1 and C12:1 occurring at 8, 10 and 18 (but not 12) months. 

4. Discussion 

This is the first high-throughput targeted metabolomics analysis to longitudinally 

investigate the metabolic disturbances of APP/PS1 mice. The aim was to identify the specific 

metabolite changes consequential to the development of AD-like pathology in these mice, and 

how these changes are affected as pathology progresses over time. The study also assessed 

which neurometabolite changes are mirrored within the blood circulation as a method to 

explore what, if any, peripheral markers may provide insights into brain metabolite behaviour.  

A total of 187 metabolites were quantified including amino acids, biogenic amines, 

phospholipids and acylcarnitines. One of the key findings is that the majority of metabolite 

perturbations in the APP/PS1 model are transient. The majority of perturbations do not persist, 
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as might have been expected in chronic and progressive disease pathology. Our findings 

suggest that there are key periods when wide-ranging metabolic disturbances occur, and the 

data contained herein could be highly informative, both for future experimentation with this 

animal model, but also in terms of interpreting metabolomics findings from human samples.  

The targeted metabolomics approach undertaken was able to discern APP/PS1 mice from 

WT most effectively at ages between 8 and 12 months. However, for the both the youngest (6 

months) and the eldest (18 months) age groups it was much less clear as there was some 

degree of overlap between WT and APP/PS1. This was the case for both plasma and brain 

models. It was possible to quantify the specificity of OPLS-DA models for each age group. It 

was evident that predictive scores (Q2) were poorer at 6 months when Aβ plaque formation is 

in the early stages and memory impairment is minimal (Hamilton and Holscher, 2012; 

Volianskis et al., 2010). However, it is very interesting that predictive scores were also quite 

poor at 18 months when there is extensive plaque formation and neurogenesis is almost 

completely suppressed (Hamilton and Holscher, 2012). This suggests either that the APP/PS1 

model eventually returns to a more balanced metabolic state, or that the aging of WT mice 

leads to a metabolite profile more akin to the APP/PS1. It is also worth noting that some 

multivariate models were particularly impressive. For example, plasma metabolites at 12 

months predicted APP/PS1 mice with 89% accuracy, and brain metabolites at 8 months 

predicted with 84% accuracy. This targeted approach is a significant improvement on the 

predictive abilities of our earlier NMR-based profiling approaches that predicted APP/PS1 

mice (12 months) with 62% and 74% for brain and plasma samples, respectively (Graham et 

al., 2013b).  

Taking into consideration the overall changes in the metabolite classes (as outlined in 

Table 1) it is unsurprising that changes in amino acids/biogenic amines and phospholipids 

where fundamentally important in distinguishing APP/PS1 from WT. For phospholipids, these 

were most significantly disturbed at 8 months in brain and 12 months in plasma. For amino 

https://www.researchgate.net/publication/235770064_1H-NMR_metabolomics_investigation_of_an_Alzheimer's_disease_AD_mouse_model_pinpoints_important_biochemical_disturbances_in_brain_and_plasma?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/235770064_1H-NMR_metabolomics_investigation_of_an_Alzheimer's_disease_AD_mouse_model_pinpoints_important_biochemical_disturbances_in_brain_and_plasma?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/221895733_The_effect_of_ageing_on_neurogenesis_and_oxidative_stress_in_the_APPswePS1deltaE9_mouse_model_of_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/221895733_The_effect_of_ageing_on_neurogenesis_and_oxidative_stress_in_the_APPswePS1deltaE9_mouse_model_of_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/221895733_The_effect_of_ageing_on_neurogenesis_and_oxidative_stress_in_the_APPswePS1deltaE9_mouse_model_of_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
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acids/biogenic amines these were affected to the greatest extent at 10 months in both brain 

and plasma.  

Polyamine metabolism was transiently disturbed in both brain and plasma. Increased 

levels of three polyamines, putrescine, spermidine and spermine, have been reported in brain 

tissue and plasma from AD patients (Inoue et al., 2013; Trushina et al., 2013). The underlying 

explanation for this is that Aβ causes up-regulation of polyamine uptake and increased 

ornithine decarboxylase activity, which leads to increased polyamine synthesis (Yatin et al., 

1999; Yatin et al., 2001). Polyamines, like spermidine and spermine are positive modulators 

of the N-Methyl-D-Aspartate (NMDA) receptor. Thus, increased polyamine synthesis can 

cause over activity of the NMDA receptor that in turn leads to neuronal excitotoxicity that is 

very common in AD (Cacabelos et al., 1999). Indeed, it is notable that the most recently 

licensed treatment for AD is the NMDA receptor antagonist memantine and the current 

findings that brain polyamine elevations occur early in the pathology of the mice studied is 

consistent with this. Putrescine that precedes both spermidine and spermine in the 

biochemical pathway is the first to be elevated (6 months) in APP/PS1 mice. This elevation of 

putrescine could stem from the observed rise in its precursor metabolite, arginine. The 

subsequent increase in both brain spermidine and spermine occurred at 8 months.  These 

observations were mirrored in blood plasma where there was a very similar trend, albeit later, 

with plasma elevations of putrescine, spermidine and spermine occurring at 10 months. It 

remains to be proven whether the polyamine disturbances we detected in the circulation are 

the direct result of the observed cerebral disturbances. It is also possible that these arise 

spontaneously and independently in peripheral systems of the APP/PS1 mouse. This still has 

to be determined, however, putrescine is deceased in the thymus of APP/PS1 mice and is 

entirely absent from the spleen, which eliminates these organs as potential sources for 

elevated blood polyamine levels (Gonzalez-Dominguez et al., 2015a). It is interesting to 

compare these findings with those from human subjects. We recently reported an untargeted 

metabolomics analysis of human plasma whereby people with Mild Cognitive Impairment (MCI) 

https://www.researchgate.net/publication/13259529_The_glutamatergic_system_and_neurodegeneration_in_dementia_Preventive_strategies_in_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/268229290_Metabolomics_reveals_significant_impairments_in_the_immune_system_of_the_APPPS1_transgenic_mice_of_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/255689143_Metabolic_profiling_of_Alzheimer's_disease_brains?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/280264845_Identification_of_altered_metabolic_pathways_in_plasma_and_CSF_in_mild_cognitive_impairment_and_Alzheimer's_disease_using_metabolomics?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
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that remain stable over time (MCI-stable) and people with MCI who later converted to AD 

(MCI-converters) demonstrated significant increases in arginine compared with a cognitively 

normal age-matched control group (Graham et al., 2015). Furthermore, the fate of this arginine 

differed substantially between these groups. In the MCI-converters group putrescine, as with 

the mice studied here, was channelled towards the production of spermidine and spermine. In 

contrast MCI-stable group had their putrescine diverted towards the production of N-

acetylputrescine or 4-aminobutanal (the latter were not measured in the present study). Thus 

the findings presented here strengthen the suitability of our mouse model as they recapitulate 

similar behaviour for the elevated putrescine, spermidine and spermine in human plasma. 

Furthermore, it does appear that there is some selectivity towards the polyamine pathway in 

AD, since other metabolites downstream of arginine (e.g. creatinine, sarcosine, ornithine, 

proline or hydroxyproline) are either unaffected or very inconsistently affected. These data 

support the need for further investigation of polyamine metabolism in AD research, particularly 

since chemical inhibition of the polyamine system counteracts Aβ induced memory 

impairments, reportedly through modulation of extra-synaptic NMDA receptor signalling 

(Gomes et al., 2014).  

Beyond these biochemical pathways, numerous other metabolite disturbances were 

evident in the APP/PS1 mouse model. First, we observed a number changes in the plasma 

levels of amino acids.  We observed five EAAs which were altered only in plasma and this 

included two of the three BCAAs. The magnitude of these amino acid disturbances was 

sufficiently large enough to impact on EAAs:NEAAs but not the overall levels of BCAAs. It is 

possible that the period of fasting (undertaken to stabilise key physiological biomarkers) could 

favour changes in amino acids which may arise from accelerated loss of liver function in AD. 

It is also possible that EEAs and BCAAs changes are a consequence of the neuronal 

destruction or degenerative brain pathology, which occurs in this model (Hamilton & Holscher 

2012).  

https://www.researchgate.net/publication/263053358_Inhibition_of_the_Polyamine_System_Counteracts_b-Amyloid_Peptide-Induced_Memory_Impairment_in_Mice_Involvement_of_Extrasynaptic_NMDA_Receptors?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/274049270_Untargeted_Metabolomic_Analysis_of_Human_Plasma_Indicates_Differentially_Affected_Polyamine_and_L-Arginine_Metabolism_in_Mild_Cognitive_Impairment_Subjects_Converting_to_Alzheimer's_Disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/221895733_The_effect_of_ageing_on_neurogenesis_and_oxidative_stress_in_the_APPswePS1deltaE9_mouse_model_of_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/221895733_The_effect_of_ageing_on_neurogenesis_and_oxidative_stress_in_the_APPswePS1deltaE9_mouse_model_of_Alzheimer's_disease?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
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We also found a number of other important metabolites that were altered in APP/PS1 

plasma including the neurotransmitter serotonin, which was increased by >70% at 8 months. 

It is not entirely clear why there was a significant decrease in α-aminoadipic acid in APP/PS1 

mice, but since this is an intermediates in amino acid metabolism it could be a consequence 

of the wider amino acid disturbances. As far as we are aware, changes in α-aminoadipic acid 

have not been reported before but the potential relevance that it is a NMDA receptor ligand. 

In fact the L-enantiomeric form exerts an agonist activity, while the D-enantiomeric form acts 

as an antagonist (Brauner-Osborne et al., 2000; Guldbrandt et al., 2002). Since NMDA has 

been implicated in both cell death and neuronal excitotoxicity in AD (Butterfield and Pocernich, 

2003), clearer delineation of the relative abundance of the D-and L-enantiomers of α-

aminoadipic acid, would be useful to allow better interpretation of how these might modulate 

neurotoxicity via NMDA receptors with respect to AD pathology. At 10 months both methionine 

and methionine sulfoxide were significantly elevated in APP/PS1 mice (36 and 73%, 

respectively).  This is supported by a study that found modest non-significant increases in 

methionine in serum from people with MCI but significantly reduced levels in AD patients 

(Gonzalez-Dominguez et al., 2014).  Also noteworthy is that the levels of methionine sulfoxide 

reductase (Msr) enzymes are elevated by 40% in APP/PS1 mice at 9 months of age 

(Moskovitz et al., 2011), which may suggest that upregulation of Msr in the early stages of AD 

may be an attempt to mitigate oxidative stress, ultimately failing in the later stages of the 

disease. 

Detailed glycerophospholipid and sphingolipid lipid profiling of the APP/PS1 mouse was 

also undertaken in this study. Glycerophospholipids (PCs and LysoPCs) are the major class 

of complex lipids playing essential roles in neural membrane formation and intraneuronal 

signal transduction (Farooqui et al., 2000; Farooqui et al., 2007). PCs are the most abundant 

glycerophospholipids that have a choline polar headgroup attached to the phosphate group. 

The LysoPCs result from partial hydrolysis of PCs, which removes one of the fatty acid groups. 

This hydrolysis is generally thought to be the result of the enzymatic action of phospholipase 

https://www.researchgate.net/publication/12426512_Ligands_for_Glutamate_Receptors_Design_and_Therapeutic_Prospects?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
https://www.researchgate.net/publication/10688287_The_glutamatergic_system_and_Alzheimer's_disease_therapeutic_implications?el=1_x_8&enrichId=rgreq-0e0d3e3f-a550-4cd9-9a24-2bd38ea51c0f&enrichSource=Y292ZXJQYWdlOzI4NDQ5OTEyMjtBUzoyOTkyNDY5NzM2NjkzODdAMTQ0ODM1NzQ0NjQ3OQ==
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A2 (PLA2) (Farooqui et al., 2000). Our results demonstrate that there are 2 time periods when 

PCs undergo considerable and widespread flux. First, in the APP/PS1 brain at 8 months 

almost 40% PCs (28 from 72) increased significantly. Second and in contrast, in APP/PS1 

plasma an even higher proportion (70%) of PCs (51 from 73 analysed) significantly decreased. 

It well known that PCs are the most abundant phospholipid in the brain, and it is also known 

that uptake of choline from the circulation into the brain decreases with advancing age. It has 

been suggested that reduced uptake of plasma choline could lead to increased degradation 

of membrane PC in order to produce sufficient amounts of the neurotransmitter acetylcholine 

(Mi et al. 2013). 

Such detailed phospholipid profiling has been undertaken is this model before, however, 

the aggregate levels of PCs in APP/PS1 mouse brain have been reported to be lower at 9 

months of age (Yao et al., 2009). It has also been noted that total phosphatidylcholine diacyl 

(PCaa) levels tend to be lower in APPswe brain (Grimm et al., 2011).  However our findings 

are in broad agreement with a previous study that demonstrated the APP/PS1 mouse brain 

exhibits increased SPHs and PCs at 9 months (Fabelo et al., 2012). The potential relevance 

of such a finding is that neural membrane PCs are hydrolysed preferentially by the enzyme 

PLA2 to generate LysoPCs and free fatty acids (Larsson Forsell et al., 1999; Mancuso et al., 

2000; Prokazova et al., 1998), but the importance of PLA2 in AD pathogenesis is contentious 

(Gattaz et al., 1996; Gattaz et al., 1995; Stephenson et al., 1996). Taken together, the data 

from these studies suggests that PLA2 activity (particularly cPLA2 and iPLA2) is reduced, 

resulting in reduced phospholipid turnover in early AD pathogenesis. This could contribute to 

cognitive dysfunction and neuropathology in the early stages of the disease. As the disease 

worsens, cPLA2 and sPLA2 levels (and accordingly the metabolism of phospholipids) become 

elevated in AD brains (Schaeffer et al., 2009; Schaeffer and Gattaz, 2008). This may explain 

why we observed a general increase in PCs in the brain at 8 months and why subsequently 

this increase is not sustained.  
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More than one third of all the SPHs measured in APP/PS1 mouse brain were significantly 

elevated at 8 months of age (p<0.05). SPHs are precursors for ceramide production. Their 

accumulation induces apoptosis and seems to worsen neurodegeneration by increasing Aβ 

biosynthesis and promoting gamma-secretase processing of APP (Cutler et al., 2004; Grimm 

et al., 2005; Puglielli et al., 2003). Our findings closely resemble other work showing that global 

brain levels of ceremides, sphingolipids and related molecules are increased in the cerebral 

cortex of APPSL/PS1Ki and APP/PS1 mice especially after the age of 6 months (Barrier et al., 

2010). Interestingly, the concentrations of SPH were nearly constant between 3 & 6 months 

old APPSL/PS1Ki mice (Barrier et al., 2010).  We also found a number of changes in 

acylcarnitine species in both brain and plasma from APP/PS1 mice. We could not detect any 

particular overall pattern in acylcarnitine changes. However, as a class acylcarnitines were 

rather unique because some metabolites were very persistently affected. Most conspicuously 

C4:1 and C6:1 were decreased >65% in APP/PS1 plasma at 8, 10, 12 and 18 months.   

This study has identified a series of changes in a number of metabolic networks including 

those involved in membrane lipid metabolism and neuronal health and neurotoxicity, as well 

as altered amino acid metabolism. It is important to remember that anaesthesia will have 

affected the physiological status of mice and could have indirectly influenced the levels some 

metabolites measured here. However, there are consistencies with the findings of another 

recent study of plasma taken from 6 month old APP/PS1 mice although there are some 

differences in the lead metabolites found in this study (Gonzalez-Dominguez et al., 2015b). 

What is important in our study, and which contrasts with the recent study is that we have 

delineated some of the key metabolomics impairments occurring longitudinally over the 

lifespan of the APP/PS1 mouse (6, 8, 10, 12 and 18 months). Our longitudinal approach has 

provided an insight into the different temporal phases of metabolic disturbances that may 

occur both centrally and peripherally in human AD as a result of Aβ pathology. There appear 

to be certain periods in which this mouse model underwent widespread metabolic flux, initially 

occurring in the brain followed 2 to 4 months later with related changes in circulating 
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metabolites. We found these disturbances were frequently transient in nature neither being 

progressively nor persistently affected. These were only evident from our broader timeframe 

of longitudinal assessment compared to other studies, and occurred in mice at ages that were 

older than those recently reported (Gonzalez-Dominguez et al., 2015b).  

 

5. Conclusion 

In conclusion, this study provides strong evidence to support the value of investigating 

metabolic changes in mice modelling certain aspects of AD pathology. These provide a basis 

to refine studies for future translation in humans such as further examination of changes in PC 

species that we observed both in the central nervous system and circulation and that may 

provide a means to tracking the pathophysiology of AD. In addition to supporting other studies 

of the involvement of certain metabolic pathways that appear to be affected in relation to 

models of Aβ pathology, in this study, the depiction of how polyamine metabolism is disturbed 

is potentially relevant towards future therapies based on the development of inhibitors of the 

polyamine system.  
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Table 1 – Overview of Brain and Plasma metabolites significantly altered in APP/PS1 mice 

 

Age (months) 6 8 10 12 18 

Sample type    

Metabolite group 

Brain 

(n=9) 

Plasma 

(n=9) 

Brain 

(n=8) 

Plasma 

(n=8) 

Brain 

(n=8) 

Plasma 

(n=8) 

Brain 

(n=8) 

Plasma 

(n=8) 

Brain 

(n=8) 

Plasma 

(n=8) 

Amino acids and biogenic amines (42) 3 [7%] 3 [7%] 2 [5%] 2 [5%] 4 [10%] 12 [29%]  1 [2%] 6 [14%] 1 [2%] 0 [0%] 

Acylcarnitines (40) 0 [0%] 0 [0%] 3 [8%] 6 [15%] 2 [5%] 2 [5%] 1 [3%] 2 [5%] 5 [13%] 6 [15%] 

Phosphotidylcholines (PCs)  (73) 0 [0%] 0 [0%] 28 [38%] 0 [0%] 1 [1%] 0 [0%] 1 [1%] 51 [70%] 0 [0%] 1 [1%] 

Lyso-phosphotidylcholines (LysoPCs)  (17) 1 [6%] 1 [6%] 2 [12%] 1 [6%] 0 [0%] 1 [6%] 1 [6%] 7 [41%] 3 [18%] 1 [6%] 

Sphingolipids (SPHs)  (15) 1 [7%] 0 [0%] 6 [40%] 0 [0%] 0 [0%] 0 [0%] 3 [20%] 3 [20%] 1 [7%] 0 [0%] 

Total (187) 5 [3%] 4 [2%] 41 [22%] 9 [5%] 7 [4%] 15 [8%] 7 [4%] 69 [37%] 10 [19%] 8 [4%] 

Ability of OPLS-DA to predict class 

membership (Q2 cummulative) 
0.174 0.406 0.836 0.581 0.701 0.837 0.701 0.890 0.387 0.697 

Numbers in parenthesis indicate the total number of metabolites measured in each metabolite class. Number of metabolites refer to 

those significantly different in APP/PS1 mice compared to WT (Kruskal-Wallis one-way ANOVA with pairwise multiple 

comparisons). Values in square brackets are the respective percentage of measured metabolites altered. Q2 values from OPLS-DA 

are cumulative.  
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Table 2 – Significant alternations in amino acid and biogenic amine 

concentrations. 

 
Age 

(months) 

% change in 

APP/PS1 mice 
p-value 

Brain 

Phenylalanine 6 + 20.11±26.38 0.013 

Trypotophan 
6 + 30.53±40.54 0.021 

18 + 33.06±41.34 0.025 

Tyrosine 12 - 27.92±20.17 0.034 

Plasma 

α-Aminoadipic acid 12 - 68.17±4.52 0.001 

Asparagine 10 + 37.96±30.90 0.007 

Histidine 10 +15.91±10.96 0.036 

Phenylalanine 10 +17.92±8.04 0.002 

Valine 12 -0.99±9.05 0.039 

Isoleucine 12 + 14.98±12.68 0.003 

Methionine  
10 + 35.91±39.90 0.015 

12 - 33.67±13.17 0.003 

Tyrosine 
8 + 31.73±27.98 0.015 

10 + 30.02±14.27 0.004 

Methionine sulfoxide 
6 + 23.97±23.72 0.025 

10 +73.13±97.81 0.011 

Serotonin 8 + 72.72±39.24 0.027 

Taurine 
6 + 17.99±16.09 0.034 

10 + 27.85±15.52 0.003 

Changes in APP/PS1 mice are expressed as percentages compared with 

WT. ‘+’ indicates an increase and ‘-’ a decrease. P-values were calculated 

using the Kruskal-Wallis one-way ANOVA with pairwise multiple 

comparisons. Data are presented as mean ± SD (n=8-9). 
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Figure Legends 

 

Figure 1. Multivariate statistical models arising from targeted metabolomics data.  

OPLS-DA scores plot classifying the brain samples (upper) and plasma samples (lower) from 

WT (circle) and APP/PS1 (triangle) mice aged (blue) 6 months, (red) 8 months, (green) 10 

months, (yellow) 12 months and (grey) 18 months.  

Figure 2. Age-dependent changes in metabolic pathways in brain samples. Data are 

presented as mean ± SD (n=8-9). Kruskal-Wallis one-way ANOVA with pairwise multiple 

comparisons showed significant differences between WT (black) and APP/PS1 (red) mice. 

*p<0.05 and **p<0.01.  

Figure 3. Age-dependent changes in metabolic pathways in blood plasma samples. 

Data are presented as mean ± SD (n=8-9). Kruskal-Wallis one-way ANOVA with pairwise 

multiple comparisons showed significant differences between WT (black) and APP/PS1 (red) 

mice. *p<0.05, **p<0.01 and ***p<0.001.  

Figure 4. Significant changes in acylcarnitine concentrations. Graphs show changes in 

individual acylcarnitines in brain (upper) and plasma (lower) of the APP/PS1 mice relative to 

WT mice (6, 8, 10, 12 and 18 months). Data are presented as mean ± SD (n=8-9). Statistical 

significances were determined using the Kruskal-Wallis one-way ANOVA with pairwise 

multiple comparisons (*p<0.05, **p <0.01 and ***p<0.001). 

Figure 5. Phosophlipid disturbances in the APP/PS1 mouse. Heat maps show the 

changing phospholipid profiles (14 lysophosphatidylcholine (LysoPCs), 76 

Phosphatidylcholine (PCs) and 15 sphingomyelin (SPHs)) of WT and APP/PS1 mice. (upper) 

brain phospholipids; (lower) plasma phospholipds. Each individual row represents a sample, 

and each individual column represents a phospholipid. Red pixels indicate increasing 

concentrations and green pixels decreasing concentrations (see colour scale above the heat 

map). Yellow boxes indicate the divergent changes detected in brain and plasma at 8 and 12 

months, respectively. Heat map visualisations were produced with PermutMatrix graphical 

interface after Z-score normalization and Pearson’s dissimilarity was used as distance 

measure. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Supplementary Table 1 – Alterations in essential and branched chain amino acids in APP/PS1 mice. 

 
EAA:NEAAs BCAAs 

WT APP/PS1 WT APP/PS1 

Brain 

6 months 0.049±0.010 0.050±0.005 1.49±0.40 1.46±0.51 

8 months 0.051±0.005 0.048±0.006 1.56±0.20 1.57±0.38 

10 months 0.046±0.005 0.051±0.004 1.31±0.10 1.55±0.30 

12 months 0.048±0.009 0.049±0.004 1.29±0.51 1.24±0.25 

18 months 0.046±0.006 0.051±0.004 1.16±0.41 1.47±0.19 

Plasma 

6 months 0.53±0.041 0.47±0.057* 395.52±22.90 374.27±43.63 

8 months 0.46±0.039 0.45±0.036 377.89±37.42 381.54±50.55 

10 months 0.46±0.053 0.47±0.079 343.59±40.77 394.31±86.16 

12 months 0.48±0.122 0.52±0.042** 328.01±138.91 331.90±29.48 

18 months 0.46±0.022 0.52±0.047* 307.55±44.85 338.32±57.72 

 

Data are presented as mean ± SD. EAA:NEAAs – ratio of essential amino acids to non-essential amino acids; BCAAs – Branched chain amino 

acids. Brain concentrations values are stated in µM/mg tissue. Plasma concentrations values are stated in µM. Statistical differences were 

determined using the Kruskal-Wallis one-way  ANOVA with pairwise multiple comparisons (*p<0.05, **p<0.01). 
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Supplementary Table 2 – Alterations in total phosphotidylcholine (PC), Lyso-PC, and sphingomyelin (SPH) in APP/PS1 

mice. 

 
Total PC Total LysoPC Total SPH 

WT APP/PS1 WT APP/PS1 WT APP/PS1 

Brain 

6 months 85.40±8.98 85.20±5.56 0.83±0.10 0.94±0.11 4.73±0.64 4.35±0.62 

8 months 81.34±5.63 92.04±6.38* 1.01±0.10 1.07±0.08 4.24±0.71 5.55±0.55** 

10 months 90.21±9.08 87.03±13.14 0.99±0.11 1.00±0.10 5.13±0.63 4.58±1.27 

12 months 83.07±5.63 77.46±5.32 1.00±0.12 1.06±0.09 4.30±0.38 3.74±0.22 

18 months 78.70±7.83 74.91±4.94 0.88±0.13 1.02±0.16 3.93±0.48 3.45±0.70 

Plasma 

6 months 1487.56±214.01 1411.09±254.60 598.94±81.70 566.99±125.68 43.80±11.33 41.75±7.55 

8 months 1344.11±184.52 1205.80±134.43 563.42±57.73 513.28±54.41 46.58±9.68 42.73±10.07 

10 months 1302.13±138.85 1319.71±280.00 564.61±48.57 551.00±114.82 41.22±5.97 40.37±6.40 

12 months 1544.65±330.72 996.40±330.72** 573.37±62.78 449.01±62.78** 40.57±9.49 38.10±9.49 

18 months 1243.58±253.09 1308.20±220.65 452.41±55.19 440.59±28.09 40.52±6.60 40.41±9.42 

 

Data are presented as mean ± SD. Brain concentrations values are stated in µM/mg tissue. Plasma concentrations values are stated in µM. 

Statistical differences were determined using the Kruskal-Wallis one-way ANOVA with pairwise multiple comparisons (*p<0.05, **p<0.01). 

 


