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Abstract—Quantifying the similarity between two trajecto-
ries is a fundamental operation in analysis of spatio-temporal
databases. While a number of distance functions exist, the
recent shift in the dynamics of the trajectory generation pro-
cedure violates one of their core assumptions; a consistent and
uniform sampling rate. In this paper, we formulate a robust
distance function called Edit Distance with Projections (EDwP) to
match trajectories under inconsistent and variable sampling rates
through dynamic interpolation. This is achieved by deploying the
idea of projections that goes beyond matching only the sampled
points while aligning trajectories. To enable efficient trajectory
retrievals using EDwP, we design an index structure called
TrajTree. TrajTree derives its pruning power by employing the
unique combination of bounding boxes with Lipschitz embedding.
Extensive experiments on real trajectory databases demonstrate
EDwP to be up to 5 times more accurate than the state-of-the-art
distance functions. Additionally, TrajTree increases the efficiency
of trajectory retrievals by up to an order of magnitude over
existing techniques.

I. INTRODUCTION

The last decade has witnessed an unprecedented growth in
the availability of location-tracking devices. The widespread
usage of these devices generates an abundance of data that are
in the form of trajectories. Querying and mining these trajecto-
ries is essential for a multitude of spatio-temporal tasks such as
tracking migratory patterns of animals [1], identifying “alleys”
conducive to environmental disasters [2], etc. What lies at the
core of any of these analytical tasks is a mechanism to compute
the similarity between two trajectories. The importance of
matching trajectories has been recognized in the computer
science community and a number of techniques exist [3]–
[7]. However, the recent explosion in the volume of trajectory
data is fueled by the availability of cheap and heterogeneous
location tracking devices that violate an assumption made
by all of the existing trajectory matching techniques; the
assumption of a uniform and consistent sampling rate. In this
paper, we study the problem of matching trajectories in the
presence of this sampling noise.

Generally, a trajectory T = [s1, · · · , sn] of a moving object
is represented as a sequence of spatio-temporal points si that
are sampled over a time duration. A spatio-temporal point
s = (x, y, t) encodes the spatial-attributes of the location,
such as latitude and longitude, and the timestamp t at which
the location was traversed. Two trajectories are considered
similar if they remain spatially close to each other for the
majority of their existence. A basic model to match trajectories
is through the Lp-norm and create a one-to-one alignment

between the sampled points. This model, however, suffers
in cases of local time shifts. Consider two trajectories that
traverse the same spatial contour, where one of them is slower
in the first half of the distance, and the other is slower
in the second half. At an uniform sampling rate, the first
trajectory would have more points in the first spatial half
than the second. Consequently, the true distance would not be
captured. Dynamic Time Warping (DTW) [6] first recognized
this issue and accounted for local time shifts using many-to-
one mappings. Subsequently, DTW was further improved by
better capturing the spatial semantics in Edit distance with Real
Penalty (ERP) [4], Edit Distance on Real sequence (EDR) [5],
DISSIM [7], and model-driven assignment (MA) [8].

While existing techniques can adapt to local time shifts,
they are unable to cope well with non-uniform sampling rates.
In real life, there are variations in sampling rates within and
across trajectories induced through variable device settings,
power constraints, intermittent signal disruptions, etc. For
example, a recent study has shown that cab drivers alter
the default sampling rate in their GPS-navigation systems to
reduce power consumption [9]. Furthermore, sampling rates
in trajectories generated from sources such as online “check-
ins” (eg. FourSquare), gps-tagged photo albums, and call
detail records are inherently non-uniform. These variations in
inter-trajectory as well as intra-trajectory sampling rates pose
a number of unique challenges that are not yet adequately
addressed. To combat these issues, we make the following
contributions in trajectory matching:

• We develop a robust distance function, called Edit Dis-
tance with Projections (EDwP), to compute similarity
between trajectories. EDwP employs a threshold-free
approach and automatically adapts to non-uniform
sampling rates through dynamic interpolation by using
the idea of projections.

• We develop an index structure called TrajTree for
efficient retrieval of k-NN queries. The proposed index
structure combines the ideas of Lipschitz embedding
[10] with bounding boxes [11] to drastically prune the
search space.

• Extensive experiments performed on real datasets
show EDwP as up to 5 times more accurate and robust
than state-of-the-art trajectory matching techniques.
Furthermore, TrajTree is efficient in pruning the search
space, which results in an order of magnitude speed-
up over the most recent trajectory matching technique
[8] and 5X speedup over EDR [5].
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Fig. 1. Illustrates the weaknesses of existing techniques using EDR [5] as the representative metric against (a) inter-trajectory sampling rate variance, (b)
intra-trajectory sampling rate variance and (c) “phase” shifts. The first two dimensions in each st-point represents the spatial location, and the third dimension
represents the timestamp at which the location is recorded. The distances computed using EDR assumes a spatial threshold of ε = 2. (d) Illustrates a scenario
where the mapping produced by MA [8] is not logical.

II. IMPACT OF INCONSISTENT SAMPLING RATES

In this section, we analyze the impact of varying sampling
rates on existing trajectory matching techniques.

1. Inter-trajectory Sampling Rate Variations: Consider
Fig. 1(a) where the two trajectories represented by the vertical
lines are being compared; the left one is sparsely sampled (only
4 points) whereas, the right one has a higher rate of sampling.
Since most existing techniques (except DISSIM [7] and MA
[8]) start by mapping sampled points between the trajectories,
the best mappings include those as indicated by the slanted
solid lines joining points across trajectories, which cause a
larger spatial distance between mapped points than the more
intuitive mappings indicated by the horizontal dotted lines.

MA [8] is more flexible in aligning points. While trying to
align a sampled point p1 in trajectory T1 to another sampled
point p2 in T2, it considers any non-sampled point in the
straight line connecting p2 to the last aligned point in T2 prior
to p2. Fig. 1(d) illustrates an example. This technique, however,
may produce alignments that are semantically inconsistent.
Specifically, in Fig. 1(d), p1,2 and p1,3 in T1 get mapped
to two non-sampled points in T2. Here, p1,3 is mapped to a
point that is traversed prior to the point where p1,2 is mapped.
In other words, it introduces alignments that goes backward
in time, and thus, violates the basic premise of time-series
matching. Consider another trajectory T3 in the figure that is
formed by points that are as far away from T2 as those of
T1; the difference in the order of traversing points among T1
and T3 intuitively makes T3 much more similar to T2 than
T1. However, MA relies on aggregating the distance between
matched points, and thus spuriously assigns the same similarity
for the (T1, T2) pair as for (T2, T3).

DISSIM also incorporates non-sampled regions in the dis-
tance computation. However, DISSIM cannot cope with local
time shifts due to only considering one-to-one mappings. Thus,
DISSIM can detect similarity between trajectories under non-
uniform sampling rates only if they travel at identical speeds.

2. Intra-trajectory Sampling Rate Variations: Besides
inter-trajectory sampling rate variation, sampling rates also
vary within a trajectory. This results from signal disruptions,
power constraints, etc. Fig. 1(b) illustrates the issue by taking
one of the most recent works, EDR, as the representative
metric. EDR considers two points to “match” if they are within
a spatial distance threshold ε. Let us assume ε = 2. As can be
seen, four out of the five points are identical and accordingly,
EDR assigns a distance of 1 due to the dissimilarity between

the fifth points. However, all of the four matched points
represent a densely sampled region and in reality, for the
majority of the two trajectories, they diverge from each other.
As a result, a distance of 1 is not an accurate reflection of the
significant dissimilarity existing between them.

One could certainly tackle varying sampling rates by inter-
polating points in the under-sampled regions. Such an approach
however, suffers from three bottlenecks. First, to ensure a
uniform sampling rate, interpolation should be performed such
that the processed database of trajectories have a uniform
density that is equal to the maximum density observed in the
unprocessed

If the trajectories are constrained within a road network,
one could consider map-matching [12], [13]. However, it has
been shown that at low sampling rates, map-matching is
not accurate [14]. More critically, many trajectories such as
animal migrations, ship and airplane movements, pedestrian
trajectories, etc. are not constrained within a network.

3. Sampling "Phase" Variations: Since st-points only
represent a sample of the locations traversed, the choice of
recorded samples can have a drastic impact on the computed
distance even under uniform sampling. Fig. 1(c) depicts two
trajectories that are sampled uniformly from their starting
points. Although T1 and T2 overlap for the majority of their
existence in the spatial region between (0, 3) and (0, 100), they
are not represented by the same set of sampled points. As a
result, under a spatial threshold of ε = 2 for EDR (or LCSS),
none of the st-points match, and consequently, the maximum
possible distance of 3 is assigned.

4. Threshold Dependency: EDR, ERP and LCSS, use
thresholds to determine similarity between locations. MA
depends on four different thresholds. Generally, threshold-
dependent techniques grid the physical space into regions,
and two spatial locations “match” if they fall within the same
grid. Determining the appropriate gridding threshold, however,
is not straightforward and can have a large impact on the
similarity. For example, in Fig. 1(c), at ε = 2, EDR(T1, T2)
assigns the maximum possible distance of 3. On the other hand,
a small increase of ε = 3 reduces EDR(T1, T2) to the lowest
possible distance 0.

Table I summarizes the features of six of the most recent
distance metrics. In this paper, our goal is to answer all of
the outlined challenges without compromising on the positive
aspects of any of the existing distance functions.



TABLE I. ROBUSTNESS OF PREVIOUS TRAJECTORY SIMILARITY
METRICS

Technique Local Sampling Rate Variations Threshold
Time Inter- Intra- Phase Free?
Shifts -trajectory trajectory Variations

DTW [6] X X
LCSS [3] X
ERP [4] X
EDR [5] X
DISSIM [7] X X
MA [8] X
EDwP X X X X X

III. PROBLEM FORMULATION

Definition 1: TRAJECTORY: A trajectory T =
{s1, · · · , sn} is a temporally ordered sequence of spatio-
temporal points (st-points). An st-point s = ([v1, · · · , vd], t)
contains a d-dimensional feature vector describing the spatial
attributes and a timestamp t encoding the time at which the
location is recorded.

For simplicity, we use trajectories embedded in a 2D plane.
The first two dimensions in each st-point denotes the spatial
co-ordinates and the third dimension denotes the timestamp.

Definition 2: SUB-TRAJECTORY: T1 is a sub-trajectory of
T2 if ∀i, 1 ≤ i ≤ |T1| T1.si = T2.sa+i, where ∃ a, 0 ≤ a ≤
(|T2| − |T1|). The relationship is denoted using T1 ⊆ T2.

To denote the specific sequence of st-points that define a
sub-trajectory T1 of T2, we use the notation T1 = T2[a, .., b].

Definition 3: SPATIO-TEMPORAL SEGMENT: A spatio-
temporal segment e = [s1, s2, f(·)] represents a segment con-
necting two temporally consecutive st-points s1 and s2 through
an interpolating function f(·). f(·) models the movement of
the object in the intermediate time interval s1t to s2t.

We use e.s1 and e.s2 to denote the two endpoints of e
respectively. s ∈ e denotes an st-point s lying within st-
segment e. Spatio-temporal segments (st-segments) are better
descriptors of trajectories, since they characterize the entire
trajectory shape under a given set of observations. We assume
f(·) to be a straight line connecting s1 and s2 and thus rep-
resent an st-segment as e = [s1, s2]. Certainly, more accurate
functions can be used to interpolate points in the presence of
additional information such as the underlying road network
[15]. We choose linear since it approximates movements well
[7], [16], [17].

With the introduction of an st-segment, hereon, a trajectory
is represented as a sequence of segments rather than points.
The notion of a sub-trajectory is extended analogously. The
length of a trajectory T is defined as follows:

length(T ) =
∑
∀ei∈T

length(ei) (1)

where length(ei) = dist(ei.s1, ei.s2). The speed within e
is defined as speed(e) = length(e)

e.s2t−e.s1t
.

A. Edit Distance with Projections (EDwP)

Conceptually, given two trajectories T1 and T2 that are rep-
resented as segment sequences, EDwP computes the cheapest

set of edits that make them identical. EDwP performs two
kinds of edits: replacements and inserts.

Replacement: The replacement operation, denoted by
rep(e1, e2), represents the operation where the segment e1 is
matched with e2. This match adds a cost, defined as follows:

rep(e1, e2) = dist(e1.s1, e2.s1) + dist(e1.s2, e2.s2) (2)

where dist(s1, s2) denotes the euclidean distance between
points s1 and s2. rep(e1, e2) is symmetric and the cost is
proportional to the spatial distance between the endpoints of
e1 and e2. Thus, if e1 and e2 are identical, the cost would
rightly evaluate to zero.

Insert: While rep(., .) allows us to match segments, match-
ing trajectories based only on already sampled points (and such
segments) is inadequate due to reasons outlined in Sec. II.
The ins(e1, e2) operation introduces extra points to aid robust
matching. In particular, ins(e1, e2) denotes the operation that
inserts a point pins(e1,e2.s2) into e1, effectively splitting e1 into
two segments [e1.s1, p

ins(e1,e2.s2)] and [pins(e1,e2.s2), e1.s2].
The point pins(e1,e2.s2) is determined so that the first segment
[e1.s1, p

ins(e1,e2.s2)] is best aligned with e2; thus, pins(e1,e2.s2)
is effectively the point on e1 that is spatially closest to e2.s2:

pins(e1,e2.s2) = arg min
p∈e1

dist(p, e2.s2)

Given the construction, we refer to pins(e1,e2.s2) as the
projection of e2.s2 on to e1. The timestamp for the new
spatial point is intuitively in proportion with the partition that
it induces within e1:

p
ins(e1,e2.s2)
t = e.s1t +

dist(e.s1, p
ins(e1,e2.s2))

speed(e1)

The ins(e1, e2) operation does not involve any cost; the
first part of the split segment of e1 is expected to be matched
to e2 in the next step, wherein the cost would be incurred.

From the perspective of trajectories, the operation
ins(T1.e1, T2.e1) modifies T1 by inducing the split on T1.e1 as
outlined above. Following this operation, T1 has one additional
segment, where the first two segments are the partitions of
T1.e1 from the split followed by segments T1.e2 to T1.e|T1|.
Hereon, we overload the ins(., .) notation to use trajectories,
so that ins(T1, T2) is meant to denote exactly the same split
as ins(T1.e1, T2.e1). Thus, ins(T1, T2) denotes the insertion
defined on the first segments of the trajectories.

Example 1: In Fig. 2(a), the ins(T1, T2) splits T1.e1 by
inserting the new point (0, 7, 21) within T1, as illustrated in
the figure. Let T

′

1 denote the modified version of T1 after
the insert operation (i.e., the output of ins(T1, T2)); the
following step would then invoke rep(T

′

1.e1, T2.e1) so that
the segments [(0, 0, 0), (0, 7, 21)] and [(2, 0, 0), (2, 7, 14)] be
matched incurring the cost:

dist((0, 0, 0), (2, 0, 0))+dist((0, 7, 21), (2, 7, 14)) = 2+2 = 4

With the formalization of the edit operations, we next de-
fine the proposed distance function EDwP between trajectories



(a) Projections of st-points
(b) Trajectory bounding box

Fig. 2. (a). Illustrates the idea of projections. (b). The trajectory bounding
box constructed over T1 and T2 in Fig. 2(a). The tBoxSeq label for b3 is
omitted since it contains just one segment.

T1 and T2.

EDwP(T1, T2) =

0 if |T1| = |T2| = 0

∞ else if |T1| = 0 or |T2| = 0

min{EDwP(Rest(T1), Rest(T2)) + otherwise
(rep(T1.e1, T2.e1)× Coverage(T1.e1, T2.e1)) ,

EDwP(ins(T1, T2), T2),

EDwP(T1, ins(T2, T1)),}

where Rest(T ) is the sub-trajectory T [2, · · · , |T |] contain-
ing all segments except T.e1. Coverage quantifies the impor-
tance of an edit based on how representative the segments
being edited are of the overall trajectories.

Coverage(e1, e2) = length(e1) + length(e2) (3)

Thus, larger segments have more weight on the overall distance
than smaller segments.

Example 2: The cheapest sequence of edits to convert T1
to T2 in Fig. 2(a) is illustrated in Fig. 3 where the different
steps are represented in the sub-figures. Adding the cost of
each edit, EDwP(T1, T2) = 89.65.

Fig. 3. Illustration of EDwP while matching the trajectories in Fig. 2(a).

Since EDwP computes the cumulative sum of each edit, in
most cases, the distance is likely to increase monotonically
with the length of the trajectories (unless the extra length
improves the alignment, as could happen in certain cases). In
certain situations, the average distance between matched points
is more desirable than the cumulative distance. For such cases,
we length normalize EDwP.

EDwPavg(T1, T2) =
EDwP(T1, T2)

length(T1) + length(T2)
(4)

Table II summarizes the novel features of EDwP that enables
it to overcome all of the weaknesses of existing techniques
without compromising on any of their positive aspects. At

TABLE II. FEATURES OF EDWP THAT SOLVE ISSUES OUTLINED IN
TABLE I.

Local Sampling Rate Variations Threshold
Time Inter- Intra- Phase Dependence
Shifts -trajectory trajectory Variations
Dynamic Pro-
gramming

Projections Coverage Segment alignment Parameter-
free

the same time, similar to the quadratic computation costs of
DTW, LCSS, ERP, and EDR, the cost of EDwP(T1, T2) is
O
(
(|T1|+ |T2|)2

)
.

Example 3: To establish how EDwP improves on the
deficiencies of existing techniques, let us revisit Figs. 1(b)
and 1(c). Here, EDwP(T1, T2) corresponding to Fig. 1(b)
and Fig. 1(c) are 20591.26 and 582 respectively. Compared
to EDR, EDwP correctly identifies that the trajectories in
Fig. 1(c) are significantly more similar than those in Fig. 1(b).

IV. INDEX STRUCTURE

Due to the quadratic computation cost of EDwP, perform-
ing sequential scans across entire databases is not scalable.
Thus, we develop an index structure called TrajTree to answer
k-NN queries efficiently on large trajectory databases.

Like LCSS, DTW and EDR, EDwP is non-metric due to
violating triangular inequality.

Theorem 1: EDwP does not satisfy triangular inequality.

PROOF: See Sec. A in Appendix.

Due to Theorem 1, generic indexing techniques that are
reliant on triangular inequality based pruning cannot be ap-
plied. Thus, we formulate the concept of bounding boxes for
trajectories and organize the search space in a hierarchical
fashion.

A. Indexing trajectories using bounding boxes

Generally, a bounding box, such as in R-trees [11], sum-
marizes a set of objects such that given a query, its distance
to the bounding box is lower than the distances to all of
the constituent objects within the box. Generalizing this idea
to trajectories, however, is not straightforward. A number of
questions arise.

• How do you construct a tight bounding box on a set of
trajectories? The most intuitive approach is to describe a set
of trajectories as a sequence of bounding boxes. An example is
shown in Fig. 2(b). While the bounding box for trajectories in
Fig. 2(a) is straight-forward, the scenario in Fig. 4(a) is much
more complex. As can be seen, to describe all three trajectories
using a sequence of tight bounding boxes, we need to partition
each trajectory into a large number of segments. Otherwise, the
tightness is compromised. Generating the optimal partitioning
scheme is difficult, since they are not based on any global
alignment. Rather, the analysis needs to happen in the sub-
trajectory space, where the optimal partitioning scheme allows
us to identify sub-trajectories that are in close spatial proximity
and thereby, allowing summarization through a sequence of
tight bounding boxes.

• Given a set of bounding boxes that have already been
built, where should a new trajectory be inserted? Ideally,



(a) (b)

Fig. 4. (a) The ideal bounding box on the shown three trajectories. Red
points denote projected points and the red dashed boxes denote the bounding
boxes. (b) Demonstrates the structure of TrajTree. The non-leaf square nodes
represent tBoxSeqs, and the circular leaf nodes represent trajectories. TiV
represents the vantage descriptors stored at each node.

it should be inserted on the bounding box that undergoes
minimum expansion in volume.

• How can bounding boxes be used to compute a lower
bound? In the space of high-dimensional points, this operation
is trivial since comparing to the corners of the box is enough.
The same strategy does not transfer in the space of trajectories.
Additionally, computing the EDwP between a query trajectory
and a bounding box does not provide a lower bound.

Existing literature do not answer the above questions,
which necessitates a deeper analysis for a formal treatment
of the above questions. We begin this analysis by introducing
the following definitions.

Definition 4: SPATIO-TEMPORAL BOX: A spatio-
temporal box (st-box) b = (s1, s2,minL) is a bounding box
constructed over a set of st-segments. The st-points s1 and s2
represent the spatial coordinates of the diagonals of b. minL
denotes the minimum length of all segments enclosed in b.

We use the notations s ∈ b, and e ∈ b to denote that an st-point
s or st-segment e is bounded within b.

Definition 5: TRAJECTORY BOX SEQUENCE: A trajectory
box sequence (tBoxSeq) is a sequence of st-boxes. The op-
eration of constructing a tBoxSeq over a set of trajectories
T = {T1, .., Tn} is denoted as B =tBoxSeq(T). The volume
V ol(B) of B is

∑|B|
i V ol(B.bi). In 2D, V ol(B.bi) is simply

the area of the bounding box B.bi.

An example of a tBoxSeq is shown in Fig. 2(b). Next, we
extend the existing definitions and notations to tBoxSeqs.

• Sub-trajectory: Trajectory T ⊆ B, if ∀i, 1 ≤ i ≤
|T |, T.ei ∈ B.ba+i for some 0 ≤ a ≤ (|B| − |T |).

• dist(s,b): The distance between an st-point s and an
st-box b is min∀p∈b{dist(s, p)}.
Projection: The projection of a point s on an st-box b
is defined as pins(b,s) = arg minp∈b dist(s, p). The re-
verse projection pins(e,b) = arg minp∈b dist(s, p)∀s ∈
e of b on a segment e is defined analogously.

• Replace and Insert: By incorporating the generalized
formulations of projection and dist(·, ·), replace and
insert edits are computed accordingly.

• Coverage: Coverage(T.e,B.b) = length(e)+length
(b.minL), where T is a trajectory and B is a tBoxSeq.

All existing notations such as Rest(B), B[m, · · · , n], etc.
are extended analogously.

B. Constructing tBoxSeqs

To construct tBoxSeqs, the optimal partitioning scheme
needs to be computed in the sub-trajectory space. Towards that
goal, we define a sub-trajectory distance function, EDwPsub.
The goal in EDwPsub(T1, T2) is to identify the sub-trajectory
in T2 that is most similar to T1. As in the global alignment
using EDwP, EDwPsub uses the same edit operations of replace
and insert to partition and align trajectories. However, the edits
are used in a different manner to identify the most similar sub-
trajectory rather than the optimal global alignment. Using the
generalized formulations above, the arguments in EDwPsub
can either be a trajectory or tBoxSeq. Formally, EDwPsub is
defined as follows.

PrefixDist(T,B) = (5)

0 if |T | = 0

∞ if |B| = 0

min{PrefixDist(Rest(T ), Rest(B)) + otherwise
(rep(T.e1,B.b1)× Coverage(T.e1,B.b1), )

PrefixDist(ins(T,B),B)

PrefixDist(T, ins(B, T ))}

EDwPsub(T,B) = min
1≤i≤|B|

{PrefixDist(T,B[i, .., |B|])} (6)

where T is a trajectory and B is a tBoxSeq. Note that
the only differences between EDwP and PrefixDist are the
initialization conditions for |T | = 0 and |B| = 0. This
modification allows PrefixDist to skip suffixes of B without
incurring any penalty. Consequently, PrefixDist computes the
prefix of B that best matches to T . Since our goal is to com-
pute the best-matching sub-trajectory (or a sub-sequence of a
tBoxSeq), along with skipping suffixes, we should also be able
to skip prefixes. Skipping prefixes is achieved by the min{. . .}
condition in the EDwPsub(T,B) equation; EDwPsub(T,B)
explicitly considers suffixes of B as candidates for T to match
with using PrefixDist. Thus, overall, the proposed systematic
combination allows for skipping any prefix as well as any
suffix of B, which allows the possibility of aligning T with
any contiguous sub-sequence of B. Clearly, EDwPsub(T,B)
is asymmetric. The computation cost of EDwPsub is same
as EDwP, which is O

(
(|T |+ |B|)2

)
. Even though PrefixDist

needs to be computed for each suffix of B, by employing
dynamic programming, the results for a suffix S can be reused
while computing the distance for a larger suffix S′ ⊇ S.

Equipped with EDwPsub, to compute the tBoxSeq on
two trajectories, first, the optimal subsequence alignment is
identified, and then an st-box is computed corresponding to
each replace operation. To generalize the operation over a
set of trajectories T = {T1, · · · , T|T|}, the following iterative
procedure is followed.

1) Initialize tBoxSeq, B = createTBoxSeq(T1)
2) ∀ i, 2 ≤ i ≤ |T|

a) B = createTBoxSeq(Ti,B)

where the createTBoxSeq(Ti,B) represents a tBoxSeq
based on the EDwPsub(Ti,B) alignment, and creating an st-
box for each aligned segment. The final B is the desired
tBoxSeq over all trajectories in T.



Example 4: Revisiting Fig. 2(a), EDwPsub(T1, T2) =
89.65 and EDwPsub(T2, T1) = 80. Fig. 2(b) demonstrates
the tBoxSeq corresponding to the trajectories in Fig. 2(a).
Although EDwPsub is not symmetric, the tBoxSeq constructed
is identical in this example regardless of the order. For
EDwPsub(T2, T1), first ins(T2.e1, T1.e1) inserts an addi-
tional point in T1. Let us denote this partitioned T1 as T ′1.
Following this, rep(T ′1.e1, T2.e1) and rep(T ′1.e2, T2.e2) are
the two edits. T1.e2 is left unmatched.

C. Computing lower bound from tBoxSeq

For tBoxSeqs to be useful in pruning the search space,
we need to show that a lower bound on the distances to
the constituent trajectories can be derived. It is easy to see
that EDwP(T,B) ≤ EDwP (T, Ti)∀Ti ∈ B, where B is a
tBoxSeq. This follows from the fact that EDwP computes a
global alignment. Thus, we focus on EDwPsub and re-use it
for computing a lower bound as well. Specifically, we prove
the following theorem.

Theorem 2: Given a set of trajectories T = {T1, .., Tn}
and a query trajectory Q, let B = tBoxSeq(T). We claim
EDwPsub(Q,B) ≤ EDwP (Q,T ) ∀ T ∈ T.

PROOF: We first establish the following lemma.

Lemma 1: Let Ts ⊆ T be two trajectories where Ts =
T [1, .., n], 1 ≤ n ≤ |T |, In other words, Ts is a prefix of T .
Then, for any trajectory Q,

PrefixDist(Q,T ) ≤ EDwP(Q,Ts) ∀Ts (7)

PROOF BY INDUCTION:
Base Case: Consider, |T | − |Ts| = 0, i.e., Ts = T
It is easy to see that PrefixDist(Q,T ) ≤ EDwP(Q,Ts) since
all computations in PrefixDist(Q,T ), and EDwP(Q,Ts) are
identical except when Q = ∅ and Ts = T 6= ∅. In this
case, PrefixDist(Q,T ) = 0 and EDwP(Q,Ts) = ∞. Thus,
PrefixDist(Q,T ) ≤ EDwP(Q,Ts).
Induction Step: Assume, ∀Q, PrefixDist(Q,T ) ≤
EDwP(Q,Ts), where |T | − |Ts| = k. We need to now
show that PrefixDist(Q,T ) ≤ EDwP(Q,Ts) holds for
|T | − |Ts| = k + 1. Let,

Tss ⊆ T be Tss = T [1, .., (|T | − 1)] (8)

Thus,
|Tss| − |Ts| = k (9)

Now, let E be the optimal set of edit operations for
PrefixDist(Q,Tss). From induction hypotheses,

PrefixDist(Q,Tss) ≤ EDwP(Q,Ts) (10)

Among all sequences of edits that will be explored in
PrefixDist(Q,T ), one of them will involve E followed by
the optimal edits for PrefixDist (∅, T [|T |, .., |T |]) = 0. This
follows from the fact that to optimally align T , its immediate
sub-trajectory Tss needs to be aligned first, followed by the
optimal alignment for the remaining portions. Thus, there
exists a sequence of edits where

PrefixDist(Q,T ) ≤ EDwP(Q,Ts) �

Lemma 2: For any two trajectories T1 and T2,
EDwPsub(T1, T2) ≤ EDwP(T1, Ts) ∀ Ts ⊆ T2.

PROOF BY CONTRADICTION: Assume there is a sub-trajectory
Ts = T2[a, .., b] such that EDwPsub(T1, T2) > EDwP(T1, Ts).
Thus, from the definition of PrefixDist,

∃T ′s ⊇ Ts, PrefixDist(T1, T ′s) > EDwP(T1, Ts) (11)

where T ′s = T2[a, .., |T2|]. However, using Lemma 1, this result
contradicts the base assumption. Thus, proved. �

It is easy to see that Lemma 2 also extends to tBoxSeqs.

Corollary 1: For any trajectory T and tBoxSeq B,
EDwPsub(T,B) ≤ EDwP(T, Ts) ∀ Ts ⊆ B.

Corollary 1, however, is not enough to prove Theorem 2.
More specifically, tBoxSeq(T) does not guarantee that ∀T ∈
T, T ⊆ tBoxSeq(T). To illustrate the issue, consider Figs.
2(a) and 2(b). As can be seen, T1 6⊆ B since T1.e1 6∈ B.b1.
Although the shape of T1 has been captured in B, B divides
T1 into a higher number of partitions. Thus, we next proceed
towards proving the following Lemma.

Lemma 3: Consider two trajectories T1 and T2 such that
both contain one st-segment each. If a new trajectory T ′2 =
[[T2.e1.s1, p], [p, T2.e1.s2]] is created by inserting an addi-
tional point p on T2.e1, then EDwP(T1, T

′
2) ≤ EDwP(T1, T2).

PROOF: See Sec. B in Appendix.
Lemma 3 can easily be extended to the following corollary.

Corollary 2: Given three trajectories T1, T2 and T ′2, where
T ′2 is generated by inserting any arbitrary number of points in
arbitrary st-segments e ∈ T2, EDwP(T1, T

′
2) ≤EDwP(T1, T2).

By combining Corollaries 1 and 2, Theorem 2 is proved. �

D. Building the index structure

The structure of TrajTree is similar to existing tree-based
spatial access methods such as R-trees [11]. More specifically,
a tree is built, where the root represents the tBoxSeq over the
entire database. Next, trajectories in the root are partitioned
into bf different groups, and the tBoxSeq on each group forms
a child node of the root. The process is repeated recursively
till a node is reached that contains less than n trajectories.
Thus, each non-leaf node represents a tBoxSeq, and leaves
correspond to trajectories. The structure of the tree is shown
in Fig. 4(b). There are two parameters: the branching factor bf
and the minimum size of each group n. In this paper, we focus
on an in-memory setting and n does not have a significant
impact on the performance. For an on-disk implementation,
existing techniques based on the disk page size can be used
to optimize n. bf , on the other hand, drastically impacts the
performance of the index structure. If bf is set too low, the
lower bounds computed using Theorem 2 would be loose. On
the other hand, for a large bf , the lower bounds would be tight,
but more computations would be performed at each level of the
tree. It is therefore critical to obtain the right balance between
the branching factor and the tightness of the lower bounds.
Towards that goal, we use Alg. 1 to partition trajectories at
each node.

We build a subset of trajectories P ⊂ D, where P comprises
of a set of diverse trajectories. P is initialized to a random
trajectory from D (line 3). Next, we add trajectories to P by
choosing the database trajectory that is most diverse from all
trajectories in P (the max of min construction in line 5). The



Algorithm 1 Partition(D, θ, n)
1: if |D| ≤ n then
2: return
3: P← {T1}, T1 ∈ D is randomly selected
4: repeat
5: T ← argmax∀T ′∈D

{
min∀T ′′∈P{EDwPsub(T

′, T ′′)}
}

6: drop← 1.0−
min∀T ′∈P{EDwPsub.s(T,T ′)}

min∀T ′,T ′′∈P,T ′ 6=T ′′EDwPsub(T
′,T ′′)

7: P← P ∪ {T}
8: until drop > θ
9: B = {B1, · · · ,B|P||Bi =tBoxSeq(Ti), Ti ∈ P}

10: for ∀T ∈ D\P do
11: B ← argmin∀Bi∈B {Vol(tBoxSeq({Bi, T}))−Vol(Bi)}
12: B ← tBoxSeq(B ∪ {T})

diversity within P is quantified using the minimum distance
between any pair of its constituent trajectories (denominator
in RHS of line 6), and we keep expanding P as long as the
marginal fractional drop in its diversity (drop in line 6) is
under a threshold θ. Each trajectory in P now acts as a pivot
and is initialized to a tBoxSeq. Hereon, each of the remaining
trajectories in D is added to the tBoxSeq that undergoes the
minimum expansion in volume (lines 9-12). Thus, instead of
bf , we use θ to dynamically adjust the branching factor based
on the properties of the dataset.

E. Vantage Points

In this section, we further boost the pruning power of
TrajTree by distributing a set of vantage points (VP). By
consolidating the unique viewpoints of the VPs, a vantage
descriptor is generated for each trajectory, which is then used
to compute an upper bound on the maximum possible distance
between the query and any trajectory in the k-NN answer set.
The upper bound is then used in a manner similar to best-first
search to prune the search space. The idea of VPs is inspired
from Lipschitz embedding [10].

Definition 6: VANTAGE POINT: A VP is a spatial point in
the trajectory space. The distance between a trajectory T and
a VP v is the distance between v and the point p in T that is
closest to v. Note, p may not necessarily be a sampled point.

VP-dist(T, v) = min∀e∈T {arg min
p∈e

dist(v, p))} (12)

where e is an st-segment in T .

Definition 7: VANTAGE DESCRIPTOR: Given
a set of VPs V = {v1, · · · , vd}, the vantage
descriptor of T is a d-dimensional feature vector
TV = [VP-dist(T, v1), · · · ,VP-dist(T, vd)]. We use TV[i]
to denote the ith dimension in TV.

In essence, the vantage descriptor of a trajectory captures a
feature space representation based on the viewpoints of VPs in
V. Next, we define vantage distance between two trajectories.

Definition 8: VANTAGE DISTANCE: The vantage distance
between trajectories T1 and T2 is defined as the following:

V D(T1, T2) =

∑|V|
i=0 1− min{T1V [i],T2V [i]}

max{T1V [i],T2V [i]}

|V|
(13)

Vantage distance builds on the intuition that if trajectories T1
and T2 are equidistant from most of the distributed VPs, then
they are likely to have traveled through similar regions. In

other words, EDwP(T1, T2) and V D(T1, T2) are likely to be
correlated. Now, letA be the true k-NN answer set with respect
to a given query trajectory Q, and AVD be the k-NN based
on VPs. We define an upper bound UB as the following

UB = arg max
∀T ′∈AVD

EDwP(T ′, Q) (14)

It is easy to see that ∀T ∈ A, EDwP(T,Q) ≤ UB. Indeed,
an upper bound can be computed from any random selection
of k trajectories from the database. However, the tightness of
the upper bound depends on how well the selected trajectories
overlap with A. VPs allow us to make a more informed selec-
tion of k database trajectories and thereby, producing a tight
upper bound. Additionally, since V D(T1, T2) operates in the
feature space and the computation cost is linear, V D(T1, T2)
is much faster than EDwP(T1, T2). To take advantage of these
properties, we integrate VPs with TrajTree.

While constructing the index, in addition to computing the
tBoxSeq at each node n, d VPs are also distributed and the
resultant vantage descriptors of all trajectories in the subtree
rooted at n are stored (Fig. 4(b)). The VPs are chosen using
the same mechanism used for selecting pivots while splitting a
node. Based on the chosen VPs, the vantage descriptor for each
trajectory in the subtree of n is stored. Note that the density of
VPs increases as lower levels of the tree are reached since the
number of trajectories under a subtree decreases with the level.
Consequently, resultant vantage descriptors get more refined as
the depth of a node in the tree increases.

F. Indexing costs and updates

Storage Cost: The storage cost depends on the branching
factor, which is controlled by θ. Assuming a balanced branch-
ing factor of bf , the height of the tree is logbf |D|+ 1, where
D is the trajectory database. The number of nodes at each
level of the tree follows a geometric progression, and is thus
bounded by O( bf |D|−1bf−1 ). Additionally, at each level of the tree,
|D| vantage descriptors are stored. Therefore, total storage is
O( bf |D|−1bf−1 + |V||D| logbf |D|), where |V| is the number of VPs
at each node.

Index Construction Cost: Except at the last level of the
tree, a cost of O(p|D|) is incurred at each level to select the
pivots, where p is the number of pivots. The number of pivots
at any level l of the tree follows the equation bf l. Thus, the
total index construction cost is bounded by O( |D|

2

bf ).

Updates: The index construction algorithm bulk-loads all
trajectories in the database. To insert a new trajectory, the
algorithm remains identical except for omitting the initial step
of selecting pivots at each node since existing pivot points are
reused. For deleting a trajectory, the corresponding leaf node
and the vantage descriptors at all nodes from the leaf to the
root are deleted. The tBoxSeqs remain unchanged. As in most
hierarchical index structures, updates decrease efficiency since
each insert or delete is likely to make the affected tBoxSeqs
loose. Thus, to tackle this issue, we track the diversity of
the pivots at each node. A node is classified as “poor” if the
increase in diversity due to re-computing the pivots is above
a threshold. Finally, if the number of “poor” nodes is above a
certain ratio, then the index is re-built.



Algorithm 2 Query(Q, k)
1: cands← priority queue containing the root node
2: ans← empty priority queue of maximum size k
3: processed← ∅
4: while cands 6= ∅ do
5: C ← cands.dequeue()
6: if (|ans| < k or C.dist< ans.head().dist) then
7: if C is a non-leaf node then
8: for each trajectory T ∈ C.getVPtopk(Q, k, processed) do
9: ans.insert(< T , EDwP(Q, T ) >)

10: processed← processed ∪ {T}
11: for each child C′ of C do
12: if |ans| < k or EDwPsub(Q,C

′) < ans.head().dist then
13: cands.insert(< C′,EDwPsub(Q,C

′) >)
14: else if C 6∈ processed then
15: ans.insert(C)
16: processed← processed ∪ {C}
17: return ans

G. Querying Algorithm

Alg. 2 outlines the pseudocode to answer k-NN queries.
The algorithm proceeds in a manner similar to best-first
search. Two priority queues, cands and ans, are maintained
to compute the answer set. cands prioritizes the unexplored
nodes in the index based on their distances to the query.
Initially, cands contains just the root node. ans maintains the
k-NN trajectories found at any given state of the searching
procedure (line 2). ans is populated in an iterative manner
(lines 4-16). At each iteration, the node C with the lowest
distance is extracted from cands and processed if it satisfies
the constraints (lines 5-6).

Case 1: If C is a tBoxSeq, then the following steps are
performed.
1. Update upper bound based on VPs at C: First, the top-k
nearest trajectories to Q are computed based on the VPs at C.
This analysis searches only those trajectories that are under
the subtree rooted at C. Next, the actual distance to each of
the VP-based k-NN trajectories are computed to generate an
upper bound UB as outlined in Eq. 14 (UB is ans.head().dist
in Alg. 2). Additionally, the trajectories in the VP-based k-NN
are inserted to ans if they are currently within the top-k (lines
8-10). UB is next used to prune the children of C.

2. Prune children of C based on the updated lower
bound: Once the upper bound from step 1 is derived, EDwPsub
for each children of C is computed and added to cands if they
have a distance below UB (lines 11-13).

Case 2: If C is a trajectory, ans is updated based on C’s
distance to query trajectory Q (lines 14-16). As can be seen,
a hashset called processed is maintained to track trajectories
that have already been evaluated. If not for processed, due to
possible overlaps between the VP-based k-NN sets of nodes
in the same path, trajectories common to both sets would be
processed multiple times.

Therefore, to summarize the features of TrajTree querying:

• The k-NN answer set is exact and optimal.
• The distances of query trajectory Q to tBoxSeqs

prioritize the search order.
• VPs produce a tight upper bound UB by approximat-

ing the optimal k-NN answer set. Since VPs operate
at a feature space, computing UB is fast.

V. EXPERIMENTS

In this section, we demonstrate that:

• EDwP is more accurate and robust to noise than state-
of-the-art trajectory matching techniques.

• TrajTree is efficient in indexing k-NN queries.

A. Experimental Setup

All our algorithms are implemented in Java 1.6.0 and
benchmarked on a PC with 12GB memory and Intel i5
2.60GHz quad core processor running Ubuntu 12.10. We use
the length normalized EDwP defined in Eq. 4.

Datasets: We use two real trajectory datasets. The first
dataset is extracted from the Beijing cab dataset [18]. This
dataset contains trajectories of 10, 000 cabs tracked over a
period of one week in Beijing [18]. Since we would like each
trajectory to represent a single trip, we partition a trajectory
into two if either the cab is stationary for more than 15 minutes,
or the time gap between two consecutive points is more than
15 minutes. Following this procedure, we use a subset 42, 000
trajectories to create our dataset.

Besides vehicular trajectories, we also use the Australian
Sign Language (ASL) dataset, which contains trajectories of
hand movements that denote 98 different signs such as “alive”,
“cold”, “computer”, etc. Thus, each trajectory in the ASL
dataset is labeled with the sign it denotes.

Benchmarking Techniques: We compare the accuracy of
EDwP with LCSS [3], EDR [5], DISSIM [7] and the semi-
continuous assignment model in MA [8]. EDR and LCSS have
been shown to outperform DTW [6] and ERP [4] in [5].

Parameters: While EDwP is parameter-free, EDR and
LCSS are dependent on a matching threshold. MA has as many
as four parameters. We set these parameters as outlined by
the respective papers. TrajTree, requires three parameters. The
default values of θ in Alg. 1 and the number of vantage points
are set to 0.8 and 80 respectively. The minimum size of a node
in TrajTree is set to 10. The default k in the k-NN queries is
set to 10.

B. Accuracy in clean data

First, we evaluate the accuracy of EDwP in clean data.
The ASL dataset contains trajectories from 98 different classes
with each class denoting a sign. These trajectories are recorded
in controlled environments and are thus clean. To measure
accuracy, we perform multi-class classification. We prepare
the dataset for the classification experiment by first randomly
selecting c classes, and then adding all trajectories under these
classes to the classification dataset. Next, using each of the
four distance metrics, we perform 10-fold cross-validation. The
class labels of trajectories in the testing set is predicted using
nearest neighbor classification. The process is repeated 100
times for consistency.

Fig. 5(a) demonstrates the results as the number of classes
is varied from 5 to 25. EDwP achieves the highest accuracy
across all numbers of classes. As the number of classes
increases, the classification task gets harder and consequently,
the accuracies of all distance metrics decrease. This rate of
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Fig. 5. (a) Classification accuracy of EDwP, EDR, LCSS, DISSIM, and MA on the ASL dataset. Variance of Spearman’s rank correlation of EDwP, EDR,
EDR-I, LCSS, and MA in the Beijing dataset against (b-c) inter-trajectory sampling rate variance, (d-e) intra-trajectory sampling rate variance, (f-g) phase
variations, (h-i) threshold dependency. The change in correlation is measured against k and noise percentage n. The legends for plot b to plot i are the same.
(j) Growth rate of querying time with k.

decrease however, is the smallest in EDwP indicating better
robustness to matching difficulty. The performance of DISSIM
suffers since it is unable to cope with local time shifts.

C. Accuracy in noisy data

In this section, we benchmark the robustness of EDwP to
sampling noise. We model each of the scenarios discussed in
Sec. II and compare the performances of the distance metrics.
For all of the experiments in this section, we construct two
datasets, D1 and D2. While D1 is clean, the second dataset
D2 is noisy. The process of injecting noise is dependent on
the issue being evaluated. Now, to quantify robustness, we first
construct a ground truth result set by computing the k-NN list
for a randomly chosen query from the clean D1 dataset. Next,
we re-compute the k-NN list for the same query trajectory in
the noisy D2 dataset. A robust distance metric should adapt to
the injected noise and produce an answer set that is close to the
k-NN on the clean D1 dataset. Based on this hypotheses, we
compute Spearman’s rank correlation coefficient [19] between
the two k-NN lists. Since the elements in the two k-NN lists
may not overlap completely, we form a single element set
by taking their union. Next, for each element in the union
set, we fetch its ranks in D1 and D2. Finally, we compute
the correlation between the two ranked lists. The closer the
correlation is to 1, the more robust the distance metric is.

For a thorough investigation of the performance, we also
apply EDR on an interpolated dataset. As discussed in Sec. II,
issues related to non-uniform sampling rates can be alleviated
by interpolating the dataset with additional points so that
all trajectories have a uniform sampling rate. As already
discussed, this pre-processing step is extremely expensive and
needs to be performed at query time. However, for the purposes
of better understanding the impact of sampling rate, we ignore
the scalability aspect and perform interpolation on both D1

and D2 to ensure a uniform sampling rate. Except this pre-
processing, the subsequent steps for the k-NN query remain

identical. We denote EDR on this interpolated scenario as
EDR-I. DISSIM is not included in this experiment as it is
unable to detect spatial similarity between trajectories moving
at dissimilar speeds.

Inter-trajectory sampling variance: In this experiment,
D1 corresponds to the Beijing dataset. To model variance in
inter-trajectory sampling rates in D2, without altering the shape
of a trajectory T ∈ D1, we randomly select n% of its seg-
ments, and partition them into two by inserting a point. Thus,
D2 represents the same trajectories in D1 at a higher sampling
rate. n is the noise parameter that controls the difference in
sampling rate between trajectories in D1 and D2. Fig. 5(b)
demonstrates the results at n = 5% while k is varied between 5
and 50. Fig. 5(c), on the other hand, analyzes the performance
at k = 10 as n is varied to increase the difference in sampling
rate between D1 and D2. Across both k and n, EDwP achieves
an accuracy that is up to 4 times better than existing techniques.
As expected, the correlation increases with k since there is
more overlap with the true k-NN list as k grows. Regardless
of k however, EDwP achieves a rank correlation that is close to
1 due to dynamic interpolation achieved through projections.
Against n, the performance difference is even more drastic.
Even in the worst case scenario, EDwP’s correlation with the
true answer set is higher than 0.75. Despite interpolation, EDR-
I performs worse than EDwP since it is limited to matching
only the existing sampled (or interpolated) points. On the
other hand, the alignment possibilities for EDwP are infinite
due to projections. MA suffers since with the introduction
of additional points, the trade off between ‘gap points’ and
matched points change.

Intra-trajectory sampling variance: Similar to the pre-
vious experiment, D1 corresponds to the Beijing dataset. To
model intra-trajectory variance in sampling rates in D2, we
take only the first half of each trajectory, and within this
half, we insert points in n% of the segments in a manner
similar to the previous experiment. Thus, the sampling rate in



each trajectory in D2 is higher in the first half. Figs. 5(d)
and 5(e) demonstrate the results. Although the trends are
similar to the results for inter-trajectory sampling variance,
the performance gap between EDR-I and EDR is significantly
higher. Due to the interpolation in the pre-processing step,
the difference in sampling rate disappears in EDR-I, and
the scenario degenerates to the case of only inter-trajectory
sampling rate difference between D1 and D2. Overall, EDwP
is up to 50% more correlated, since it weights each segment
alignment based on its coverage and thus automatically adapts
to the variance in the sampling rate.

Phase Variations: To model phase variations, we con-
struct two datasets from Beijing. Specifically, for each trajec-
tory, we randomly choose n% of its segments and partition
each segment into two by inserting an additional point. This
altered trajectory is next added to D1. Now, the exact same set
of segments are partitioned again and added to D2. Thus, the
sampling rate and the set of altered segments in D1 and D2 are
identical; the only difference lies in the location of the inserted
point. As can be seen in Figs. 5(f) and 5(g), although the trends
are similar, generally, the performance of EDR and LCSS are
better than inter and intra-trajectory sampling variances with
MA performing best among existing techniques. Since MA
considers aligning a sampled point to a non-sampled point,
its performance is stable. EDwP performs the best due to
projections and coverage.

Threshold Dependency: Finally, to highlight the impact
of threshold dependency, we perturb the locations of n% of
the st-points in each trajectory by a small amount and add it
to D2. D1 represents the original Beijing dataset. To perturb a
point, we draw a circle with the original location as the center
and a radius equivalent to the distance traveled in 30 seconds
based on the average speed of trajectories in the dataset. The
perturbed location is then set to one randomly selected point
within the circle. Figs. 5(h) and 5(i) demonstrate the results
against k (at n = 10%) and n (at k = 10) respectively. While
the impact of threshold is not as drastic as with sampling rate
variance, all techniques suffer due to relying on thresholds.

D. Index Performance

We now verify the efficiency of TrajTree in indexing k-NN
queries. We compare the querying time of TrajTree with the
index structure for EDR [5], and sequential scans over EDwP
and MA. No index structure exists for MA [8]. For EDR,
we ensure uniform sampling rates through interpolation since
EDR-I is the closest to EDwP in terms of robustness.

1) Online costs: Fig. 5(j) demonstrates the growth rate of
querying times with k (time in log-scale). TrajTree is more
than an order of magnitude faster than MA and up to 5 times
faster than EDR. Although the computational complexities of
all three matching techniques are quadratic, MA is the slowest
since it depends on 5 auxiliary functions, each of which has a
quadratic computation cost. In other words, the constant factor
in MA is 5 times higher. Compared to EDR, EDwP is faster
since it performs dynamic interpolation through projections.

Next, we look at the growth rate of the querying time with
database size. Fig. 6(a) demonstrates the result. The growth
rate is sublinear for both TrajTree and EDR. EDwP is up to 5
times faster than EDR and 10 times faster than sequential scan,

which establishes the efficiency of the pruning strategies. As
we show later in Fig. 6(c), VPs allow us to derive a tight upper
bound at the very beginning of the search process in the root
node. As a result, a significant portion of the tBoxSeqs can
be pruned out based on EDwPsub. Furthermore, as the search
process proceeds toward lower levels of the tree, the bounds
get tighter.

Next, we study the performance dependence of TrajTree
on the branching factor, which is controlled by θ. As outlined
in Alg. 1, θ dynamically controls the branching factor by
analyzing the marginal drop in the diversity of the selected
pivots. Fig. 6(b) analyzes the optimal value for θ. The querying
times are minimized at 0.8, which means the optimal balance
between the tightness of tBoxSeqs and the number of EDwPsub
computations is obtained. This result influences our default
choice of θ = 0.8.

The second parameter that impacts the performance of
TrajTree is the number of vantage points. The tightness of the
upper bound computed in Eq. 14 is influenced by the number
of VPs distributed. We verify this tightness. Towards that goal,
we introduce the notion of UB-factor.

UB-Factor =
VP-based Upper Bound

kth highest distance in actual k-NN
(15)

In the best case scenario, the optimal upper bound is the kth
highest distance in the actual k-NN answer set. We therefore
set the optimal upper bound as the denominator of the UB-
Factor. Thus, the closer the UB-Factor is to 1, the better is the
performance.

Fig. 6(c) studies the variance in UB-Factor at the root node
with increase in the number of VPs. Note that at lower levels
of the tree, the UB-Factor can only get tighter since TrajTree
continuously refines the upper bound by evaluating only un-
explored trajectories. Additionally, the density of VPs increase
with decrease in tree level. In other words, Fig. 6(c) depicts the
worst case scenario. As expected from a theoretical standpoint,
the UB-Factors improve with increase in the number of VPs.

To further investigate the tightness of the upper bounds
derived using VPs, we also study the Random UB-Factors in
Fig. 6(c), denoted as Beijing Random. A Random UB-Factor is
simply the UB-Factor from a random subset of k trajectories in
the database. Since the VP-based upper bound is derived from
an approximate k-NN, comparison to the random UB-Factor
allows us to judge the randomness in the k-NN approximation
performed through VPs. If the k-NN approximation by VPs is
simply a random subset of k trajectories, then the difference
between the VP-based UB-Factor and the random UB-Factor
would be low. As can be seen in Fig. 6(c), VPs provide an
UB-Factor that is significantly tighter than random and thus,
efficient in pruning a large portion of the search space.

To further establish the utility of VPs, we also study the
tightness of UB-Factors with increase in k. Fig. 6(d) presents
the results. The UB-Factors are almost constant across k. This
is a natural consequence of the fact that both the numerator and
denominator of UB-Factor increases with k. Nonetheless, the
upper bounds through VPs are more than 3 times tighter than
a random selection. In addition to the above studies, we also
analyzed the Spearman’s rank correlation coefficient between
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Fig. 6. Growth rate of running time with (a) dataset size and (b) θ. Tightness of the VP-based upper bound against the (c) number of VPs, and (d) k. Growth
rate of index construction time with (e) database size and (f) θ.

VP-based k-NNs and the actual answer sets. The correlation
ranges between 0.78 to 0.83 across all values of k in [5, 100].

2) Off-line Costs: First, we look at the growth rate of the
index construction cost with dataset size. As can be seen in
Fig. 6(e), the growth rate is smaller than quadratic but higher
than a linear distribution. This result is consistent with the
theoretical analysis in Sec. IV. The branching factor, regulated
by θ, also influences the index construction time. Fig. 6(f)
studies the impact of this parameter. Consistent with the theo-
retical analysis in Sec. IV, the construction time increases with
increase in θ as the computation cost at each level of the tree
increases. This behavior is opposite to the relationship between
θ and the querying time. However, since index construction is
an one-time off-line computation, optimizing the querying time
takes precedence.

VI. RELATED WORK

An elaborate discussion on existing trajectory distance
metrics and their weaknesses has already been done in Sec. II.
Initial efforts on indexing trajectory retrieval were primarily
directed towards indexing DTW [6], [20]. In subsequent works,
LCSS [3], ERP [4] and EDR [5] proposed index structures for
their respective distance metrics. Unfortunately, these index
structures do not generalize to EDwP and thus, we develop
TrajTree. Although we develop distance bounds specifically
for EDwP, TrajTree generalizes the idea of bounding boxes for
trajectories and can potentially be utilized for other trajectory
operations. Applying bounding boxes on trajectories has also
been explored by the TB-tree index [21] and SETI [22].
However, in contrast to TrajTree, both TB-tree and SETI par-
titions a trajectory into multiple segments, and a bounding box
summarizes each of these partitions. As a result, a trajectory
is distributed over various nodes in TB-tree and SETI. In
TrajTree, each node is a sequence of bounding boxes that
summarizes a set of trajectories. The design choice of TB-
tree and SETI stems from their goal of identifying database
trajectories that fall within a query temporal or spatial interval.
In contrast, our goal is to index similarity queries for which
TB-tree and SETI cannot be used to compute a lower bound
on EDwP.

VII. CONCLUSION

In this paper, we studied the problem of matching trajec-
tories under inconsistent sampling rates. To tackle this noise,
we developed Edit Distance with Projections (EDwP), which
is insulated from the choice of sampled regions, non-uniform
sampling rates, and local time shifts by employing the ideas

of projections and coverage. Additionally, EDwP is parameter-
free. EDwP not only allows robust matching, but its ability to
interpolate dynamically enables us to generalize the concept of
bounding boxes for trajectories. By integrating bounding boxes
with vantage points, we developed an index structure called
TrajTree for fast answering of k-NN queries. Each vantage
point provides a unique viewpoint on the trajectory database
and by consolidating their views, we are able to derive tight
upper bounds on the true distance. These upper bounds, in
conjunction with the lower bounds derived from bounding
boxes, drastically reduces the search space and provides up
to an order of magnitude speed up over the state-of-the art
retrieval techniques. Furthermore, extensive experiments show
EDwP to be 5 times more accurate and robust than existing
trajectory matching techniques.
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APPENDIX

A. Triangular Inequality

THEOREM 1. EDwP does not satisfy triangular inequality.
PROOF: Consider three trajectories T1 = [(0, 0), (0, 1)], T2 =
[(0, 0), (0, 1), (0, 2)], and T3 = [(0, 0), (0, 1), (0, 2), (0, 3)].
We ignore the timestamps since the proof is indepen-
dent from them. Now, EDwP(T1, T2) = 1 × 1 ,
EDwP(T2,T3) = 1 × 1, and EDwP(T1, T3) = 2 × 2. Thus,
EDwP(T1, T2)+EDwP(T2, T3) < EDwP(T1, T3).

B. Proof of Lemma 3

LEMMA 3 Consider two trajectories T1 and T2 such that
both contain one st-segment each. If a new trajectory T ′2 =
[[T2.e1.s1, p], [p, T2.e1.s2]] is created by inserting an addi-
tional point p on T2.e1, then EDwP(T1, T

′
2) ≤ EDwP(T1, T2).

PROOF: We first define the following variables:

p′ = pins(T1.e1,[T2.e1.s1,p]),

a = dist(T1.e1.s1, T2.e1.s1),

b = dist( T1.e1.s2, T2.e1.s2),

∆ = dist(p, p′),

d1 = dist(T1.e1.s1, p
′) + dist(T2.e1.s1, p),

d2 = dist(T1.e1.s2, p
′) + dist(T2.e1.s2, p).

Fig. 7 demonstrates the variables pictorially.

In this proof, we show that the edits
ins(T1.e1, [T2.e1.s1, p]) (followed by rep([T1.e1.s1, p

′],
[T2.e1.s1, p])) and rep([p′, T1.e1.s2], [p, T2.e1.s2]) on T ′2 is
cheaper than rep(T1.e1, T2.e1) on the original trajectories.
Specifically,

(a+ b)× (d1 + d2)− (a+ ∆)× d1 − (b+ ∆)× d2 ≥ 0 (16)

From the construction of T ′2, it is clear that T ′2’s shape is
identical to T2. Without loss of generality, we assume b ≥ a.
Due to symmetry, the proof for the opposite case follows
analogously. Additionally, it is guaranteed 6 ∃ ∆,∆ > b and
∆ > a. Now, while p is projected to the closest point in T1.e1,
in rep(T1.e1, T2.e1), the distance between the endpoints of
the st-segments are considered. Based on this observation, we
divide the proof into two cases.
Case 1: Line pp′ is perpendicular to T1.e1 It is known
that the shortest distance from a point to a line is its per-
pendicular projection. Clearly, the left hand side (LHS) of
Eq. 16 is minimized if a and b correspond to perpendicular
projections of endpoints T2.e1.s1 and T2.e1.s2 respectively.
Fig. 7 demonstrates an instance of this case. From geometry,

Fig. 7. Demonstrates the setup for the proof of Lemma 3. Although T1 is
assumed to be axis parallel, for arbitrary trajectories, it can always be rotated
to simulate the same setup.

b, ∆ and a are parallel to each other and thus can be expressed
as the following:

b = a+ r × (d1 + d2) (17)
∆ = a+ r × (d1) (18)

where r = b−a
d1+d2

defines the rate at which the projected
distance for a point in T2.e1 grows. Therefore, LHS of Eq.
16 equals:

= ad2 + (a+ r(d1 + d2))d1 − (a+ r × d1)(d1 + d2) = 0

Case 2: Line pp′ is not perpendicular to T1.e1 This case
arises when T1.e1 does not contain the point that corresponds
to the perpendicular projection of p. The non-optimality of the
projected distance is maximized if p is projected to one of the
endpoints of T1.e1. In such a case, it is guaranteed that either
a or b is not a perpendicular projection either. Without loss of
generality, we assume that p is projected to T1.e1.s2, which
in turn guarantees that b is the non-perpendicular projection.
More precisely, pins(T1.e1,[T2.e1.s1,p]) = pins(T1.e1,T2.e1) =
T1.e1.s2 = p′. The proof for pins(T1.e1,[T2.e1.s1,p]) = T1.e1.s1
follows analogously.

The LHS of Eq. 16 is minimized if a is the perpendicular
projection of T2.e1.s1. We now introduce the following vari-
ables. Let γ be the angle at which T2.e1 moves away from
T1.e1. Furthermore, α and β are the angles between ∆ and b
with their corresponding imaginary perpendicular projections.
Fig. 7 demonstrates each of these notations. Clearly, γ ≥ β ≥
α. In the triangle, 4p′ p T2.e1.s2, ∠T2.e1.s2 p′ p = β − α,
∠pT2.e1.s2p′ = γ−β, and ∠p′pT2.e1.s2 = 180−γ+α. Using
the law of sines, the following relationship is established.

d2
sin(β − α)

=
∆

sin(γ − β)
=

b

sin(γ − α)
(19)

b−∆ = d2
sin(γ − α)− sin(γ − β)

sin(β − α)
(20)

Now, let l1 = dist(T2.e1.s1, p). Therefore, from geometry,

∆− a = l1
cos(γ)

cos(α)
(21)

Combining these observations, the LHS of Eq. 16 is

= d1 × (b−∆)− d2 × (∆− a)

= d1d2
sin(γ − α)− sin(γ − β)

sin(β − α)
− d2l1

cos(γ)

cos(α)

≥ d1d2
cos(α)sin(γ − α)− cos(α)sin(γ − β)− cos(γ)sin(β − α)

sin(β − α)cos(α)

≥ d1d2
(cos(α)− cos(β)) sin(γ − α)

sin(β − α)cos(α)
≥ 0 �


