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Dual-Hop Cognitive Amplify-and-Forward Relaying
Networks over η − µ Fading Channels

Jing Yang, Member, IEEE, Lei Chen, Xianfu Lei, Member, IEEE, Kostas P. Peppas, Senior Member, IEEE, and
Trung Q. Duong, Senior Member, IEEE

Abstract—This paper presents a thorough performance anal-
ysis of dual-hop cognitive amplify-and-forward (AF) relaying
networks under spectrum-sharing mechanism over independent
non-identically distributed (i.n.i.d.) η − µ fading channels. In
order to guarantee the quality-of-service (QoS) of primary
networks, both maximum tolerable peak interference power Q at
the primary users (PUs) and maximum allowable transmit power
P at secondary users (SUs) are considered to constrain transmit
power at the cognitive transmitters. For integer-valued fading
parameters, a closed-form lower bound for the outage probability
(OP) of the considered networks is obtained. Moreover, assuming
arbitrary-valued fading parameters, the lower bound in integral
form for the OP is derived. In order to obtain further insights on
the OP performance, asymptotic expressions for the OP at high
SNRs are derived, from which the diversity/coding gains and
the diversity-multiplexing gain tradeoff (DMT) of the secondary
network can be readily deduced. It is shown that the diversity
gain and also the DMT are solely determined by the fading
parameters of the secondary network whereas the primary
network only affects the coding gain. The derived results include
several others available in previously published works as special
cases, such as those for Nakagami-m fading channels. In addition,
performance evaluation results have been obtained by Monte
Carlo computer simulations which have verified the accuracy of
the theoretical analysis.

Index Terms—Outage probability (OP), amplify-and-forward
(AF), cognitive relay network (CRN), η − µ fading, spectrum
sharing.

I. INTRODUCTION

Cognitive radio with spectrum sharing is regarded as a
promising technique to improve spectral efficiency and solve
the problem of spectrum scarcity in 5G wireless communica-
tion networks [1]. In underlay cognitive networks, secondary
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users (SUs) can simultaneously access the licensed spectrum
of the primary user (PU) without causing harmful interference
on PU. Thus, to ensure PU’s quality of service (QoS), the
transmit power constraint at SUs must be considered [2], [3].
Cooperative relaying can expand the coverage area and en-
hance the communication range of wireless networks without
requiring additional powers at the transmitter [4]. To further
improve the performance of cognitive networks, cooperative
relaying has been incorporated into cognitive networks to form
cognitive relay networks (CRNs).

Further research efforts have been focused on the perfor-
mance analysis of CRNs employing amplify-and-forward (AF)
and decode-and-forward (DF) protocols, including [5]–[11].
For example, the authors in [5], [6] have investigated the
outage performance of AF CRNs with maximum interference
power constraint of the primary network. In [7], tight lower
bounds and asymptotic expressions for the outage probability
(OP) of AF CRNs have been derived, where both interference
and maximum allowable transmit power constraints are con-
sidered. In [9], an exact expression for the OP of a dual-hop
DF CRN has been obtained, assuming that the transmit powers
at SUs are governed by both the primary network and the
secondary network. Bao et al. proposed cognitive multi-hop
DF networks and analyzed the system performance with the
interference limits in [10]. In [11], closed-form and asymptotic
OP expressions are presented where the mutual interference
between cognitive system and primary system is taken into
account. Most recently, CRNs incorporating multiuser di-
versity and multiple-input multiple-output technologies with
both AF and DF relaying have been considered in [12]. The
authors in [13] considered a cognitive cooperative DF relaying
network and investigated adaptive transmit power-allocation
policies for the SUs. Recently, Zhang et al. considered an
underlay cognitive DF relay network including one primary
user receiver (PU) and a secondary system and investigated
the performance of the considered network in [14].

In all the aforementioned works, small-scale fading is mod-
elled by the Rayleigh [5], [8]–[10], [12], [13] or the Nakagami-
m [6], [7], [11], [14] fading distributions. The Nakagami-m
distribution is a mathematically tractable model that well char-
acterizes the wireless propagation channel in many practical
cases. However, as it was pointed out in [15], this distribution
cannot match well experimental data in many practical cases,
particularly at the tail portion. A versatile fading distribution
which generalizes many of the well known models for multi-
path fading is the so-called η − µ distribution [15]. This
distribution better models small-scale fading under non-line-
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of-sight (NLoS) conditions and includes the Rayleigh, the
Hoyt and the Nakagami-m distributions as special cases. In
recent years, the η − µ fading model has gained increased
interest in the field of performance analysis of single- and
multi-hop systems over fading environment [16]–[19]. For
example, the authors in [16] analyzed the error performance
by using moment generating function (MGF) over η−µ fading
channels, without investigating outage performance. Later,
Peppas et al. analyzed the conventional dual-hop relaying
network over mixed η−µ and κ−µ fading channels in [17].
More recently, a hexagonal cell layout was considered with
the base stations located at the center of each cell in [20] and
analytical evaluation of OP and capacity for κ− µ and η − µ
fading channel distributions has been investigated. In [21], an
analytical study of selection combining diversity under η − µ
multi-path fading with integer-valued µ was presented.

Despite the wide applicability of the η − µ distribution,
to the best of the authors’ knowledge, the performance of
cognitive AF relay networks in η − µ fading environment
is still unexplored in the open technical literature. Motivated
by the lack of such a generalized analytical framework, in
this paper, a thorough OP analysis for dual-hop cognitive
AF relay networks operating over independent non-identically
distributed (i.n.i.d.) η − µ fading channels, is presented. In
order to ensure the QoS of PU, both maximum tolerable peak
interference at PU and maximum allowable transmit power
at SUs are considered to constrain the transmit power at
secondary source and relay. The main contributions of this
paper are summarized as follows:

• For integer-valued fading parameters, a closed-form lower
bound for the OP is presented which becomes tight for
high signal-to-noise ratios (SNRs).

• For arbitrary-valued fading parameters, a generic
frequency-domain approach is developed for the eval-
uation of the OP, in which the corresponding integral
is transformed into the frequency domain. Moreover,
such a transformation requires both the knowledge of the
MGFs of the random variables and the incomplete MGF
involved in the computation of the OP.

• In order to provide further insights as to the factors that
affect system performance, simple asymptotic expressions
for the OP are derived from which the diversity and
coding gains as well as the diversity-multiplexing gain
tradeoff (DMT) can be readily deduced.

The derived results include several others available in the
open technical literature as special cases, namely those of
Nakagami-m cases.

The remainder of this paper is organized as follows. In
Section II, the considered system model is provided. In Sec-
tion III, tight lower bounds as well as high-SNRs asymptotic
expressions for the OP are derived. In Section IV, the var-
ious performance evaluation results and their interpretations
are presented. Finally, Section V concludes this paper. For
the convenience of the reader, a comprehensive list of the
mathematical operators and functions often used in this paper
is presented in Table I.

II. SYSTEM MODEL

Consider a dual-hop cognitive AF relay network including
one SU source (SU-S), one AF SU relay (SU-R), one SU
destination (SU-D), and one PU destination (PU-D). All nodes
are equipped with single antenna and operate in half-duplex
mode. The communication from the SU-S to the SU-D is
performed into two time slots. During the first time slot, the
SU-S transmits signal x to the SU-R with transmit power PS .
The received signal at the SU-R is given by

yr = g1
√
PSx+ nr (1)

where g1 is the channel coefficient of the SU-S → SU-R link
and nr is additive white Gaussian noise (AWGN) at the SU-R.
During the second time slot, the received signal yr is amplified
by G and then forwarded to the SU-D with transmit power PR.
The received signal at the SU-D can be expressed as

yd = Gg1g2
√
PSPRx+Gg2

√
PRnr + nd, (2)

where g2 is the channel coefficient of the link the SU-R →
the SU-D and nd is AWGN at the SU-D. It is assumed that
all AWGN components have zero mean and variance N0.

In order to ensure the QoS provision at PU, i.e., total
accumulated interference at PU cannot exceed the maximum
tolerable interference power Q, and considering the maximum
transmit power at SU-S and SU-R as P , the transmit powers
at SU-S and SU-R are strictly governed by

PS = min
(
Q/|h1|2,P

)
, and PR = min

(
Q/|h2|2,P

)
,

respectively, where h1 and h2 are the channel coefficients
of the interference link SU-S → PU-D and SU-R → PU-D.
Consequently, the end-to-end instantaneous SNR at SU-D can
be deduced as [7]

γend =
γ1γ2

γ1 + γ2 + 1
, (3)

where

γ1 = min

(
γQ

|g1|2

|h1|2
, γP |g1|2

)
,

γ2 = min

(
γQ

|g2|2

|h2|2
, γP |g2|2

)
, (4)

with γQ = Q/N0 and γP = P/N0.
Throughout this analysis, it is assumed that all links are

subject to i.n.i.d. η − µ fading. Thus, |gℓ|2 and |hℓ|2 follow
the η − µ distribution with parameters µgℓ , ηgℓ , and µhℓ

,
ηhℓ

, respectively, where ℓ ∈ {1, 2}. Let E{|g1|2} = Ω1,
E{|g2|2} = Ω2, E{|h1|2} = Ω3 and E{|h2|2} = Ω4.

The PDF of X , where X ∈ {|gℓ|2, |hℓ|2}, can be expressed
as [15]

fX(x) =
2
√
πµµ+0.5hµxµ−0.5

Γ(µ)Hµ−0.5X
µ+0.5

× exp
(
− 2µhx

X

)
Iµ−0.5

(2µHx

X

)
, (5)

where X = E(X), µ > 0, µ ∈ {µgℓ , µhℓ
} and η ∈ {ηgℓ , ηhℓ

}.
The parameters h and H are given by h = (2 + η−1 +

η)/4, H = (η−1−η)/4 with 0 < η < ∞, with h ∈ {hgℓ , hhℓ
}
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TABLE I: Mathematical Operators and Functions
ı =

√
−1 imaginary unit

z conjugate of the complex number z

F{g(t); t;ω} Fourier transform of the function g(t)

E{·} expectation operator

Pr {·} probability operator

fX(·) probability density function (PDF) of the random variable (RV) X

FX(·) cumulative distribution function (CDF) of RV X

MX(·) moment generating function (MGF) of RV X

MX(t, s) incomplete moment generating function (MGF) of RV X

Ia (·) modified Bessel function of the first kind and order a [22, eq. (8.431)]

Γ (·) Gamma function [22, eq. (8.310.1)]

Γ (·, ·) incomplete Gamma function [22, eq. (8.350.2)]

pFq(·) generalized hypergeometric function [22, eq. (9.14.1)]

δ (·) Dirac’s delta function

and H ∈ {Hgℓ ,Hhℓ
} [15]. Assuming integer values of µ, the

CDF of X can be obtained as follows [17],

FX(x)=1− 1

Γ(µ)

( h

H

)µ{ µ−1∑
k=0

µ−k−1∑
p=0

1

p!

[
Apxpa(k) exp(−Ax)

+ (−1)µBpxpb(k) exp(−Bx)
]}

, (6)

where

A =
2µ(h−H)

X
, B =

2µ(h+H)

X
,

a(k) =
(−1)k(µ+ k − 1)!H−k

2µ+kk!(h−H)µ−k
, b(k) =

(µ+ k − 1)!H−k

2µ+kk!(h+H)µ−k
,

and a(k) ∈
{
a
(k)
gℓ , a

(k)
hℓ

}
, b(k) ∈

{
b
(k)
gℓ , b

(k)
hℓ

}
, A ∈ {Agℓ , Ahℓ

},
B ∈ {Bgℓ , Bhℓ

}.
For arbitrary values of µ, the CDF of X can be expressed

as

FX (x) = 1− Yµ

(
H

h
,

√
2hµx

X

)
(7)

where

Yµ(x, y)=

√
π21.5−µ(1− x2)µ

Γ(µ)xµ−0.5

∫ ∞

y

e−t2t2µIµ−0.5(t
2x)dt (8)

denotes the Yacoub integral [15, eq. (20)]. It is noted that
Yµ(x, y) can be expressed in terms of tabulated functions for
integer or half-integer values of µ only. For arbitrary values of
µ, an expression of Yµ(x, y) in terms of the bivariate confluent
hypergeometric functions is available in [23, eq. (2)].

The MGF of X can be deduced in closed form as [24, eq.
(3)]

M(s) = [(1 + s/A)(1 + s/B)]−µ. (9)

Finally, by employing an infinite series representation for
the modified Bessel function, [22, eq. (8.447)] as well as
the definition of the incomplete gamma function [22, eq.

(8.350.2)], the incomplete MGF of X , defined as M(x, s) ,∫∞
t

exp(−sx)fX(x)dx, can be deduced as

M(x, s) =
2
√
πhµ

Γ(µ)

×
∞∑
k=0

H2k(µ/X)2µ+2kΓ(2µ+ 2k, 2µh t /X) + s t

k!Γ(µ+ k + 1/2)
(
2µh t /X + s

)2µ+2k
. (10)

III. OUTAGE PERFORMANCE ANALYSIS

In this section, the OP of cognitive AF relaying system over
i.n.i.d. η− µ fading will be obtained. The OP, i.e., Pout(γth),
is defined as the probability that the instantaneous SNR γend at
SU-D is below a specified SNR threshold γth, i.e., Pout(γth) =
Pr{γend 6 γth}.

A. The Lower Bound Analysis for OP

Theorem 1. For integer values of µgℓ and µhℓ
, ∀ℓ = {1, 2},

a tight lower bound for OP is given as (11) on the top of the
next page, where F|g1|2

(
γ
γP

)
is given by (6) and∑̃

k1,p1
k2,p2

=
1

Γ(µg1)Γ(µh1)

(
hg1

Hg1

)µg1
(
hh1

Hh1

)µh1

×
µg1−1∑
k1=0

µg1−k1−1∑
p1=0

µh1
−1∑

k2=0

µh1
−k2−1∑
p2=0

1

p1!p2!

(
γQ
γP

)p2

,

∑̂
k1,p1
k2,p2

=
1

Γ(µg2)Γ(µh2)

(
hg2

Hg2

)µg2
(
hh2

Hh2

)µh2

×
µg2−1∑
k1=0

µg2−k1−1∑
p1=0

µh2
−1∑

k2=0

µh2
−k2−1∑
p2=0

1

p1!p2!

(
γQ
γP

)p2

.

Proof: See Appendix A.
It is noted that, for the special case of Nakagami-m fading

channels, i.e., µgl = mgl , µhl
= mhl

and ηgl = ηhl
=
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Pout(γth) ≥1−

1− F|g1|2

(
γth
γP

)
−
∑̃
k1,p1
k2,p2

(
γth
γP

)p1
[
a(k1)
g1 Am1

g1

(
a
(k2)
h1

Ap2

h1
exp

[
−
(
Ag1

γth
γP

+Ah1

γQ
γP

)]

+ (−1)µh1 b
(k2)
h1

Bp2

h1
exp

[
−
(
Ag1

γth
γP

+Bh1

γQ
γP

)])
+ (−1)µg1 b(k1)

g1 Bp1
g1

×
(
a
(k2)
h1

Ap2

h1
exp

[
−
(
Bg1

γth
γP

+Ah1

γQ
γP

)]
+ (−1)µh1 b

(k2)
h1

Bp2

h1
exp

[
−
(
Bg1

γth
γP

+Bh1

γQ
γP

)])]

+
∑̃
k,p,q

(
γth
γQ

)p a
(k)
g1 Ap

g1

(µh1 + p− q − 1)!

 (−1)qΓ
(
µh1 + p− q,Ag1

γth

γP
+Ah1

γQ
γP

)
(
Ag1

γth

γQ
+Ah1

)µh1
+p−q

+
(−1)µh1Γ

(
µh1 + p− q, Ag1

γth

γP
+Bh1

γQ
γP

)
(
Ag1

γth

γQ
+Bh1

)µh1
+p−q

+ (−1)µg1 b(k)g1 Bp
g1

×

 (−1)qΓ
(
µh1 + p− q,Bg1

γth

γP
+Ah1

γQ
γP

)
(
Bg1

γth

γQ
+Ah1

)µh1
+p−q +

(−1)µh1Γ
(
µh1 + p− q,Bg1

γth

γP
+Bh1

γQ
γP

)
(
Bg1

γth

γQ
+Bh1

)µh1
+p−q




×

1− F|g2|2

(
γth
γP

)
−
∑̂
k1,p1
k2,p2

(
γth
γP

)p1
[
a(k1)
g2 Ap1

g2

(
a
(k2)
h2

Ap2

h2
exp

[
−
(
Ag2

γth
γP

+Ah2

γQ
γP

)]

+ (−1)µh2 b
(k2)
h2

Bp2

h2
exp

[
−
(
Ag2

γth
γP

+Bh2

γQ
γP

)])
+ (−1)µg2 b(k1)

g2 Bp1
g2

×
(
a
(k2)
h2

Ap2

h2
exp

[
−
(
Bg2

γth
γP

+Ah2

γQ
γP

)]
+ (−1)µh2 b

(k2)
h2

Bp2

h2
exp

[
−
(
Bg2

γth
γP

+Bh2

γQ
γP

)])]

+
∑̂
k,p,q

(
γth
γQ

)p a
(k)
g2 Ap

g2

(µh2 + p− q − 1)!

 (−1)qΓ
(
µh2

+ p− q,Ag2
γth

γP
+Ah2

γQ
γP

)
(
Ag2

γth

γQ
+Ah2

)µh2
+p−q

+
(−1)µh2Γ

(
µh2 + p− q, Ag2

γth

γP
+Bh2

γQ
γP

)
(
Ag2

γth

γQ
+Bh2

)µh2
+p−q

+ (−1)µg2 b(k)g2 Bp
g2

×

 (−1)qΓ
(
µh2 + p− q,Bg2

γth

γP
+Ah2

γQ
γP

)
(
Bg2

γth

γQ
+Ah2

)µh2
+p−q +

(−1)µh2Γ
(
µh2 + p− q,Bg2

γth

γP
+Bh2

γQ
γP

)
(
Bg2

γth

γQ
+Bh2

)µh2
+p−q


 . (11)

η → 0(l = 1, 2) [15], where mgl and mhl
denote Nakagami

fading parameters, (11) becomes identical to a previously
known result, i.e. [7, eq. (13)]. This can be easily proved
as follows. By letting µgl = mgl , µhl

= mhl
and η → 0,

we have h −H → 1/2, h +H → ∞ and h/H → 1; hence,
A → m/X and B → ∞. Utilizing these results and after some
mathematical manipulations yield [7, eq. (13)]. For arbitrary
values of µgℓ and µhℓ

, a lower bound for OP can be obtained
as follows:

Theorem 2. For arbitrary values of µgℓ and µhℓ
, ∀ℓ = {1, 2},

a lower bound for OP can be deduced as

Pout(γth) ≥
2∑

ℓ=1

[
Yµgℓ

(
Hgℓ

hgℓ

,

√
2hgℓµgℓγth

XγP

)

×Yµhℓ

(
Hhℓ

hhℓ

,

√
2hhℓ

µhℓ
γQ

XγP

)]

+
2∑

ℓ=1

[
J (µgℓ , µhℓ

, ηgℓ , ηhℓ
, γth, γP , γQ)

]
(12)
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where J (µgℓ , µhℓ
, ηgℓ , ηhℓ

, γth, γP , γQ) is given as

J (µgℓ , µhℓ
, ηgℓ , ηhℓ

, γth, γQ) =
1

2
+

F|gℓ|2(Λ)

2

+
1

π

∫ ∞

0

1

ω
Im
{
M|gℓ|2(Λ, ȷω)M|hℓ|2 (−ȷqω)

}
dω,

(13)

where Λ = γQ/γP , and q = γth/γQ.

Proof: See Appendix B.

B. The Asymptotic Analysis for OP

In order to obtain further insights on the system per-
formance, high-SNRs asymptotic expressions for OP will
be derived, wherefrom the diversity and coding gains can
be deduced. Without loss of generality, it is assumed that
γP = ξγQ, where ξ is a positive constant. An asymptotic OP
expression for arbitrary-valued fading parameters is deduced
in the following theorem.

Theorem 3. For arbitrary values of µgℓ and µhℓ
, ∀ℓ = {1, 2},

when γQ → ∞, the asymptotic approximation for OP is
obtained as

Pout(γth)
γQ→∞
= Θ ·

(
γth
γQ

)min(2µg1 ,2µg2 )

, (14)

where

Θ =

 Θ1, if µg1 < µg2

Θ1 +Θ2, if µg1 = µg2

Θ2, if µg1 > µg2

(15)

and Θ1,Θ2 are given by

Θ1 =
h
µg1
g1 h

µh1

h1

4µg1µh1Γ(2µg1)Γ(2µh1)

(
2µg1

ξΩ1

)2µg1
(
2µh1

ξΩ3

)2µh1

+

√
πµ

µh1
+0.5

h1
h
µg1
g1 h

µh1

h1

µg1Γ(2µg1)Γ(µh1)H
µh1

−0.5

h1
Ω

µh1
+0.5

3

×
(
2µg1

Ω1

)2µg1

L(µg1 , µh1 , hh1 ,Ω3, y),

and

Θ2 =
h
µg2
g2 h

µh2

h2

4µg2µh2Γ(2µg2)Γ(2µh2)

(
2µg2

ξΩ2

)2µg2
(
2µh2

ξΩ4

)2µh2

+

√
πµ

µh2
+0.5

h2
h
µg2
g2 h

µh2

h2

µg2Γ(2µg2)Γ(µh2)H
µh2

−0.5

h2
Ω

µh2
+0.5

4

×
(
2µg2

Ω2

)2µg2

L(µg2 , µh2 , hh2 ,Ω4, y),

respectively, where L(µgℓ , µhℓ
, hhℓ

,Ωi, y) is given as

L(µgℓ , µhℓ
, hhℓ

,Ωi, y) =

∫ ∞

1
ξ

y2µgℓ
+µhℓ

−0.5

× exp

(
−2µhℓ

hhℓ

Ωi
y

)
Iµhℓ

−0.5

(
2µhℓ

Hhℓ

Ωi
y

)
dy

which cannot be derived in closed form.

Proof: See Appendix C.

Note that the integral in (14) can be easily evaluated
numerically by employing available in popular mathematical
software packages such as Matlab, Maple or Mathematica. An
asymptotic OP expression in closed-form for integer-valued
fading parameters is deduced in the following theorem.

Theorem 4. For integer values of µgℓ and µhℓ
, ∀ℓ = {1, 2},

when γQ → ∞, the asymptotic approximation for OP is
obtained as

Pout(γth)
γQ→∞
= Θ′ ·

(
γth
γQ

)min(2µg1 ,2µg2 )

, (16)

where

Θ′ =

 Θ1′ , if µg1 < µg2

Θ1′ +Θ2′ , if µg1 = µg2

Θ2′ , if µg1 > µg2

(17)

and Θ1′ ,Θ2′ are given by

Θ1′ =
h
µg1
g1 h

µh1

h1

4µg1µh1Γ(2µg1)Γ(2µh1)

(
2µg1

ξΩ1

)2µg1
(
2µh1

ξΩ3

)2µh1

+
h
µg1
g1

2µg1Γ(2µg1)Γ(µh1)

(
hh1

Hh1

)µh1
(
2µg1

Ω1

)2µg1

×
µh1

−1∑
k=0

(µh1 + k − 1)!

k!(µh1 − k − 1)!(4Hh1)
k

(
µh1

Ω3

)µh1
−k

×

[
(−1)k

Γ (2µg1 + µh1 − k,Ah1/ξ)

A
2µg1+µh1

−k

h1

+ (−1)µh1
Γ (2µg1 + µh1 − k,Bh1/ξ)

B
2µg1+µh1

−k

h1

]
,

and

Θ2′ =
h
µg2
g2 h

µh2

h2

4µg2µh2
Γ(2µg2)Γ(2µh2

)

(
2µg2

ξΩ2

)2µg2
(
2µh2

ξΩ4

)2µh2

+
h
µg2
g2

2µg2Γ(2µg2)Γ(µh2)

(
hh2

Hh2

)µh2
(
2µg2

Ω2

)2µg2

×
µh2

−1∑
k=0

(µh2
+ k − 1)!

k!(µh2 − k − 1)!(4Hh2)
k

(
µh2

Ω3

)µh2
−k

×

[
(−1)k

Γ (2µg2 + µh2 − k,Ah2/ξ)

A
2µg2+µh2

−k

h2

+ (−1)µh2
Γ (2µg2 + µh2 − k,Bh2/ξ)

B
2µg2+µh2

−k

h2

]
,

respectively.

Proof: See Appendix D.
According to (14) and (16), the diversity gain Gd and the

coding gain Gc can be given by

Gd = min(2µg1 , 2µg2), (18)

and

Gc =
1

γth
Θ−1/min(2µg1 ,2µg2 ), (19)

respectively. Specially, for integer values of µgℓ and µhℓ
, ∀ℓ =

{1, 2}, Θ in (19) can be replaced by Θ′ in (17).
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As it can be observed from Theorem 3 and Theorem 4,
the diversity gain only depends on the more severe fading
channel between two hops of the secondary network, whereas
the primary network only affects its coding gain.

C. Diversity-Multiplexing Tradeoff

According to [4], the diversity-multiplexing tradeoff can be
formulated as

d(r) = lim
γQ→∞

− logPout(γQ, r)

log γQ
, (20)

where r is the normalized spectral efficiency. The outage
threshold γth can be expressed in terms of the spectral
efficiency R (bit/s/Hz) as γth = 22R − 1. Furthermore, R
can be expressed in terms of r as R = r log2(1 + γQ) [4].
Consequently, γth can be deduced as

γth = (1 + γQ)
2r − 1. (21)

By substituting (21) into (14) or (16), Pout(γQ, r) can be
readily obtained. Finally, plugging it into (20), d(r) can be
deduced as

d(r) = min(2µg1 , 2µg2)(1− 2r). (22)

From (22), it is evident that the maximum diversity order,
i.e., min(2µg1 , 2µg2), can be achieved as r → 0, while the
maximum normalized spectral efficiency, i.e., 1/2, can be
achieved as d → 0. In addition, the DMT only depends on
the more severe fading channel of the secondary network and
is independent of the primary network.

IV. NUMERICAL AND COMPUTER SIMULATION RESULTS

In this section, various performance evaluation results ob-
tained using the OP expressions presented in Sections III are
presented. In order to validate the accuracy of the proposed
analytical framework, all numerical results are accompanied
by equivalent ones obtained via Monte-Carlo. Without loss of
generality, for the simulations in Figs. 1 and 2, it is assumed
that the average channel powers of all links are given by
Ωi = γQ, i = {1, 2, 3, 4}, whereas in Fig. 3, the average
channel power is written as Ωi = 1/d4i , where di denotes
the distance between the transceivers. The outage threshold
γth is set to 3 dB for all considered analysis. Moreover, it
is assumed that ξ = 1, i.e., γP = γQ. From Figs. 1-4, it
can be observed that the derived OP lower bounds are very
tight and the asymptotic results predict well the diversity and
coding gains, thus validating the correctness of the proposed
analysis.

Fig. 1 depicts the OP of the considered network, assuming
ηh1 = ηh2 = 0.7, µg1 = 2 and µh1 = µh2 = 1, respectively. In
order to investigate the impact of parameters µg2 , ηg1 and ηg2 ,
several different cases are considered. As it can be observed,
the outage performance improves as µg2 increases and/or
ηg1 , ηg2 increase. In addition, it is obvious that, there is a
significant increase in diversity gain when µg2 increases from
1 to 3, however, the same diversity gain can be achieved when
µg2 = 3. This is because the diversity gain depends on the
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Fig. 1: OP of the considered network over η − µ fading
channels with parameters ηh1 = ηh2 = 0.7, µg1 = 2, µh1 =
µh2 = 1.
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Fig. 2: OP of the considered network over η − µ fading
channels with parameters ηg1 = ηg2 = 0.7, µg1 = 2, µg2 = 3.

more severe fading channel between two hops of the secondary
network.

Fig. 2 shows the impact of the primary network on the
OP performance for different values of µh1 , µh2 and ηh1 , ηh2 ,
assuming ηg1 = ηg2 = 0.7, µg1 = 2 and µg2 = 3. By
keeping the parameters of secondary network fixed, several
different schemes are considered. It can be observed that
the OP performance improves when µh1 and µh2 increase
from µh1 = µh2 = 1 to µh1 = µh2 = 5 and/or ηh1 , ηh2

increase. Moreover, as expected, the fading parameters of
interference links only affect the coding gain, without affecting
the diversity gain, just as our preceding analysis.

To evaluate the effect of PU’s position on the considered
network, Fig. 3 portrays the OP of cognitive AF relay network
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Fig. 3: OP of the considered network over η − µ fading
channels with parameters η = 0.7, µg1 = 2, µg2 = 3, µh1 =
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Fig. 4: Diversity order d(r) in (22) versus normalized spectral
efficiency r for different fading severity parameters.

for different PU’s position with η = 0.7, µg1 = 2, µg2 =
3 and µh1 = µh2 = 1, respectively. It is assumed that all
SUs are located in a straight line. The coordinates of SU-
S, SU-R and SU-D are (0,0), (1/2,0) and (1,0), respectively.
Moreover, PU-D can be located in three different positions,
namely (0.44,0.44), (0.55,0.55) and (0.66,0.66). From Fig. 3, it
can be observed that the position of PU-D significantly affects
the OP performance of the secondary network. Interestingly,
when PU-D is located at (0.66,0.66), the best performance can
be obtained.

Finally, Fig. 4 depicts the diversity order d(r) versus the
normalized spectral efficiency r, for different fading severity
parameters. It is obvious that the maximum diversity order
can be achieved as r → 0, whereas the maximum normalized

spectral efficiency, i.e., 1/2, can be achieved as d → 0, thus
validating the proposed theoretical analysis.

V. CONCLUSION

In this paper, a comprehensive analytical framework for
the performance evaluation CRN operating over η-µ fading
channels has been presented. To ensure the QoS provision
at the primary network, both maximum tolerable interference
power at PU and maximum allowable transmit power at SU
have been taken into account. Tight lower bounds as well as
asymptotic expressions of OP for cognitive AF relay network
have been obtained. Moreover, a concise frequency-domain
approach for evaluating the OP with arbitrary-valued fading
parameters was presented. Our findings reveal that diversity
gain and the DMT of secondary networks are independent
of the primary networks. More specifically, they are solely
determined by the more severe fading hop among the two
hops of the secondary network. In addition, the only impact
from primary network that can be observed is the coding gain
which is severely degraded when the PU is located nearby
the secondary network. The generality and computational
efficiency of these results render themselves as efficient tools
for both theoretical analysis and practical applications.

APPENDIX A
PROOF OF THEOREM 1

It can be observed that γend in (3) is upper bounded by
γend 6 min{γ1, γ2} [25], yielding

Pout(γth) > Pr{min(γ1, γ2) 6 γth}
= 1− (1− Fγ1(γth)) (1− Fγ2(γth))

= Fγ1
(γth) + Fγ2

(γth)− Fγ1
(γth)Fγ2

(γth). (A-1)

In order to obtain a lower bound for OP, the CDFs of γ1 and
γ2, i.e., Fγ1(γ) and Fγ2(γ), are required. Specifically, Fγ1(γ)
is given as

Fγ1(γ) = Pr
{
min

(
γQ

|g1|2

|h1|2
, γP |g1|2

)
6 γ

}
= Pr

{
γP |g1|2 6 γ,

γQ
|h1|2

> γP

}
︸ ︷︷ ︸

F1

+ Pr
{
γQ

|g1|2

|h1|2
6 γ,

γQ
|h1|2

6 γP

}
︸ ︷︷ ︸

F2

. (A-2)

Using [22, eq. (8.467)], the modified Bessel function Iµ−0.5(z)
in (6), with µ > 0 being an integer, is expressed in closed form
as

Iµ−0.5(z) =
1√
π

µ−1∑
k=0

(µ− 1 + k)!

k!(µ− 1− k)!

×
[
(−1)k exp(z)− (−1)µ−1 exp(−z)

(2z)k+0.5

]
. (A-3)
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Since |g1|2 and |h1|2 are independent, the first term of (A-2),
i.e., F1, can be expressed as

F1 =Pr
{
|g1|2 6 γ

γP

}
· Pr
{
|h1|2 6 γQ

γP

}
= F|g1|2

(
γ

γP

)
· F|h1|2

(
γQ
γP

)
. (A-4)

By employing (6), F|g1|2(·) and F|h1|2(·) can be readily
obtained, then substituting the resulting expressions into (A-4),
F1 can be easily deduced. As far as F2 is concerned, one
obtains:

F2 = Pr
{
|g1|2 6 γ

γQ
|h1|2, |h1|2 > γQ

γP

}
=

∫ ∞

γQ
γP

f|h1|2(y)

∫ γ
γQ

y

0

f|g1|2(x)dxdy

=

∫ ∞

γQ
γP

f|h1|2(y)F|g1|2

(
γ

γQ
y

)
dy. (A-5)

From (5) and (6), f|h1|2(·) and F|g1|2(·) can be readily
deduced, respectively. By substituting the resulting expressions
into (A-5) and employing [22, eq. (3.351.2)], F2 can be
obtained. Moreover, substituting F1 and F2 into (A-2), the
CDF of γ1 can be obtained as (A-6) on the top of the next
page.

Following a similar line of arguments, Fγ2(γ) can be
directly derived from (A-6) by substituting the respective
parameters by their counterparts (i.e., µg1 → µg2 , µh1 → µh2 ,
hg1 → hg2 , hh1 → hh2 , Hg1 → Hg2 , Hh1 → Hh2 ,
a
(k1)
g1 → a

(k1)
g2 , a(k2)

h1
→ a

(k2)
h2

, b(k1)
g1 → b

(k1)
g2 , b(k2)

h1
→ b

(k2)
h2

,
a
(k)
g1 → a

(k)
g2 , b

(k)
g1 → b

(k)
g2 , Ag1 → Ag2 , Ah1 → Ah2 ,

Bg1 → Bg2 , Bh1
→ Bh2

and Ω3 → Ω4). Finally, utilizing
the CDFs of γ1 and γ2, a tight lower bound for OP can be
deduced as Pout(γth) = 1 − [1− Fγ1

(γth)] [1− Fγ2
(γth)],

thus concluding the proof.

APPENDIX B
PROOF OF THEOREM 2

Following a similar line of arguments as in the proof of
Theorem 1, in order to obtain the required bound, F1 and F2

defined in (A-4) and (A-5) need to be evaluated for arbitrary
values of fading parameters. In order to deduce an analytical
expression for (A-5), integrals of the form

J (µgℓ , µhℓ
, ηgℓ , ηhℓ

, γth, γP , γQ)

=

∫ ∞

γQ
γP

f|h1|2(y)F|g1|2

(
γ

γQ
y

)
dy. (B-1)

need to be evaluated. For arbitrary values of the µ fading
parameters, the computation of (B-1) is very difficult. In order
to circumvent this problem, J (µgℓ , µhℓ

, ηgℓ , ηhℓ
, γth, γP , γQ)

can be reformulated as

J (µgℓ , µhℓ
, ηgℓ , ηhℓ

, γth, γP , γQ)

=

∫ ∞

Λ

Pr
{
|gℓ|2 6 qy

∣∣|hℓ|2 = y

}
f|hℓ|(y)dy (B-2)

where q = γ
γQ

and Λ = γQ/γP . By invoking the Gil-
Pelaez theorem [26], J (µgℓ , µhℓ

, ηgℓ , ηhℓ
, γth, γP , γQ) can be

expressed as (13), thus concluding the proof.

APPENDIX C
PROOF OF THEOREM 3

Using the lower bound Pout(γ) = Pr{min(γ1, γ2) 6 γ},
Pout(γ) can be approximated at high SNRs as Pout(γ) =
Fγ1(γ) + Fγ2(γ) − Fγ1(γ)Fγ2(γ) ≃ Fγ1(γ) + Fγ2(γ). From
[17, eqs. (14),(15)], for x → 0+, the asymptotic approximation
for fX(x) can be expressed as

fX(x) ≃ hµ

Γ(2µ)

(
2µ

X

)2µ

x2µ−1, (C-1)

where µ ∈ {µg1 , µg2 , µh1 , µh2} and h ∈ {hg1 , hg2 , hh1 ,
hh2}. Employing (C-1), one can finally obtain the asymptotic
approximation for FX(x) as

FX(x) ≃ hµ

2µΓ(2µ)

(
2µ

X

)2µ

x2µ. (C-2)

For arbitrary values of fading parameters, when γQ → ∞,
by substituting (5) and (C-2) into (A-4) and (A-5), the CDF
of γ1 can be approximated as

Fγ1(γ)
γQ→∞
=

h
µg1
g1 h

µh1

h1

4µg1µh1Γ(2µg1)Γ(2µh1)

(
2µg1γ

ξΩ1γQ

)2µg1
(
2µh1

ξΩ3

)2µh1

+

√
πµ

µh1
+0.5

h1
h
µg1
g1 h

µh1

h1

µg1Γ(2µg1)Γ(µh1)H
µh1

−0.5

h1
Ω

µh1
+0.5

3

×
(
2µg1γ

Ω1γQ

)2µg1

L(µg1 , µh1 , hh1 ,Ω3, y). (C-3)

Similarly, the asymptotic expression for Fγ2(γ) can be directly
obtained from (C-3) after replacing the parameters by their
counterparts. Finally, utilizing Pout(γ) ≃ Fγ1(γ) + Fγ2(γ),
Theorem 3 can be readily deduced.

APPENDIX D
PROOF OF THEOREM 4

For integer values of fading parameters, when γQ → ∞,
substituting the modified Bessel function in closed form (A-3)
into (6), and then substituting (5) and (C-2) into (A-4) and
(A-5), the CDF of γ1 can be approximated as

Fγ1(γ)
γQ→∞
=

h
µg1
g1 h

µh1

h1

4µg1µh1Γ(2µg1)Γ(2µh1)

(
2µg1γ

ξΩ1γQ

)2µg1
(
2µh1

ξΩ3

)2µh1

+
h
µg1
g1

2µg1Γ(2µg1)Γ(µh1)

(
hh1

Hh1

)µh1
µh1

−1∑
k=0

× (µh1 + k − 1)!

k!(µh1 − k − 1)!(4Hh1)
k

(
µh1

Ω3

)µh1
−k (

2µg1γ

Ω1γQ

)2µg1

×

[
(−1)k

Γ (2µg1 + µh1 − k,Ah1/ξ)

A
2µg1

+µh1
−k

h1

+ (−1)µh1
Γ (2µg1 + µh1 − k,Bh1/ξ)

B
2µg1+µh1

−k

h1

]
. (D-1)
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Fγ1(γ) = F|g1|2

(
γ

γP

)
+
∑̃
k1,p1
k2,p2

(
γ

γP

)p1
{
a(k1)
g1 Ap1

g1

(
a
(k2)
h1

Ap2

h1
exp

[
−
(
Ag1

γ

γP
+Ah1

γQ
γP

)]

+(−1)µh1 b
(k2)
h1

Bp2

h1
exp

[
−
(
Ag1

γ

γP
+Bh1

γQ
γP

)])
+ (−1)µg1 b(k1)

g1 Bp1
g1

×
(
a
(k2)
h1

Ap2

h1
exp

[
−
(
Bg1

γ

γP
+Ah1

γQ
γP

)]
+ (−1)µh1 b

(k2)
h1

Bp2

h1
exp

[
−
(
Bg1

γ

γP
+Bh1

γQ
γP

)])}

−
∑̃
k,p,q

(
γ

γQ

)p

 a
(k)
g1 Ap

g1

(µh1 + p− q − 1)!

 (−1)qΓ
(
µh1

+ p− q, Ag1
γ
γP

+Ah1

γQ
γP

)
(
Ag1

γ
γQ

+Ah1

)µh1
+p−q

+
(−1)µh1Γ

(
µh1 + p− q, Ag1

γ
γP

+Bh1

γQ
γP

)
(
Ag1

γ
γQ

+Bh1

)µh1
+p−q

+
(−1)µg1 b

(k)
g1 Bp

g1

(µh1 + p− q − 1)!

×

(−1)qΓ
(
µh1 + p− q,Bg1

γ
γP

+Ah1

γQ
γP

)
(
Bg1

γ
γQ

+Ah1

)µh1
+p−q +

(−1)µh1Γ
(
µh1 + p− q,Bg1

γ
γP

+Bh1

γQ
γP

)
(
Bg1

γ
γQ

+Bh1

)µh1
+p−q


 . (A-6)

Similarly, the asymptotic expression for Fγ2(γ) can be directly
obtained from (D-1) after replacing the parameters by their
counterparts. Finally, utilizing Pout(γ) ≃ Fγ1(γ) + Fγ2(γ),
thus concluding the proof.
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