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Abstract

Motivated by the need for designing efficient and robust fully-distributed computation in highly dynamic networks such as
Peer-to-Peer (P2P) networks, we study distributed protocols for constructing and maintaining dynamic network topologies with
good expansion properties. Our goal is to maintain a sparse (bounded degree) expander topology despite heavy churn (i.e.,
nodes joining and leaving the network continuously over time). We assume that the churn is controlled by an adversary that has
complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is
oblivious to the random choices made by the algorithm.

Our main contribution is a randomized distributed protocol that guarantees with high probability the maintenance of a
constant degree graph with high expansion even under continuous high adversarial churn. Our protocol can tolerate a churn rate
of up to O(n/ polylog(n)) per round (where n is the stable network size). Our protocol is efficient, lightweight, and scalable,
and it incurs only O(polylog(n)) overhead for topology maintenance: only polylogarithmic (in n) bits needs to be processed
and sent by each node per round and any node’s computation cost per round is also polylogarithmic. The given protocol is a
fundamental ingredient that is needed for the design of efficient fully-distributed algorithms for solving fundamental distributed
computing problems such as agreement, leader election, search, and storage in highly dynamic P2P networks and enables fast
and scalable algorithms for these problems that can tolerate a large amount of churn.
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I. INTRODUCTION

Peer-to-peer (P2P) computing has emerged as one of the key networking technologies with many application systems,
e.g., Skype, BitTorrent, CrashPlan, Symform, Bitcoin etc. For example, systems such as CrashPlan [1] and Symform [2] are
relatively recent P2P-based storage services that allow data to be stored and retrieved among peers [3]. Such peer-based
data sharing avoids costly centralized storage and retrieval and is inherently scalable. However, these systems are not fully
P2P; they also use dedicated centralized servers in order to guarantee high availability of data — this is necessary due to
the highly dynamic and unpredictable nature of P2P. Indeed, a key reason for the lack of fully-distributed P2P systems is
the difficulty in designing highly robust and efficient algorithms for large-scale dynamic networks. Designing efficient and
lightweight distributed computation protocols that are provably robust to the high amount of dynamism (where both nodes and
edges change continuously over time) in a P2P network is thus an important step in realizing the goal of fully-autonomous
decentralized computation even under the presence of large-scale dynamism and failures.

P2P networks are highly dynamic networks characterized by a high degree of churn, in which nodes continuously join
and leave the network. Measurement studies of real-world P2P networks [4], [5], [6], [7] show that the churn rate is quite
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high: nearly 50% of peers in real-world networks can be replaced within an hour. (However, despite a large churn rate, these
studies also show that the total number of peers in the network is relatively stable.) P2P algorithms have been proposed
for a wide variety of tasks such as data storage and retrieval [3], [8], [9], [10], [11], collaborative filtering [12], spam
detection [13], data mining [14], worm detection and suppression [15], [16], privacy protection of archived data [17], and
recently, for cloud computing services as well [2], [18]. However, all algorithms proposed for these problems have no
theoretical guarantees of being able to work in a dynamically changing network with a very high churn rate. This is a major
bottleneck in implementation and wide-spread use of P2P systems.

Motivated by the above considerations, several recent papers have taken steps towards designing provably efficient and
robust algorithms for solving fundamental distributed computing problems in highly dynamic (with high churn) peer-to-peer
networks. The work of [19] studies the fundamental distributed agreement problem in dynamic P2P networks with churn. Its
main contribution is an efficient and scalable randomized distributed algorithm (i.e., each node processes and sends only
polylogarithmic messages per round, and local computation per node is also lightweight) that guarantees stable almost-
everywhere agreement1 with high probability even under very high adversarial churn rate (up to linear in n per round, where
n is the network size) in a polylogarithmic number of rounds. The work of [21] presented an efficient distributed algorithm
for Byzantine agreement that works despite the presence of Byzantine nodes and high adversarial churn. This algorithm could
tolerate up to O(

√
n/polylog(n)) Byzantine nodes and up to O(

√
n/ polylog(n) churn per round, took a polylogarithmic

number of rounds, and was scalable. The work of [59] presented an efficient distributed algorithm for Byzantine leader
election that could tolerate up to O(n1/2−ε) Byzantine nodes (for a small constant ε > 0) and up to O(

√
n/ polylog(n)

churn per round, took a polylogarithmic number of rounds. The work of [22] focussed on the problem of storing, maintaining,
and searching data in P2P networks. It presented a storage and maintenance algorithm that guaranteed with high probability,
that data items can be efficiently stored (with only O(1) copies of each data item) and maintained in a dynamic P2P network
with churn rate up to O(n/ polylog(n)) per round.

A crucial ingredient that underlies all the above results is the assumption that though the topology — both nodes and
edges — can change arbitrarily from round to round and is controlled by an adversary, the topology in every round is a
(bounded-degree) expander graph. In other words, the adversary is allowed to control the churn as well as change the topology
with the crucial restriction that it always remains an expander graph in every round. The assumption of an ever-present
underlying expander facilitates the design of efficient algorithms that are highly robust (tolerating a large amount of churn per
round). However, this is a very strong assumption, that itself needs to be satisfied if one desires truly-distributed protocols
that work under little or no assumption on the underlying topology. This motivates designing a distributed protocol that
actually maintains an expander topology under the presence of high adversarial continuous churn. Expanders have been used
extensively to model dynamic P2P networks in which the expander property is preserved under insertions and deletions of
nodes (e.g., see [23], [24], [25] and the references therein). However, none of these works guarantee the maintenance of an
expander under the more challenging situation of high continuous adversarial churn. This is a fundamental ingredient that is
needed to enable the applicability of previous results ([19], [21], [22], [59]) under a more realistic setting.

A. Our Main Result

Our main result is an efficient randomized distributed protocol that guarantees the maintenance of a sparse (bounded
degree) topology with high expansion despite the presence of a large adversarial churn. The number of node changes per
round is called the churn rate or churn limit. Though the churn rate can be large, we assume that the total number of nodes
in the network is stable. We consider a churn rate of up to O(n/polylog(n)), where n is the stable network size. We assume
that the churn is controlled by an oblivious adversary that has complete knowledge of what nodes join and leave and at what
time, but is oblivious to the random choices made by the algorithm. The adversary can remove any set of nodes up to the
churn limit in every round. At the same time, it should add (an equal amount of2) nodes to the network with the following
restrictions: (1) a new node should be connected to at least one existing node and (2) the number of new nodes added to an
existing node should not exceed a fixed constant (thus, all nodes have constant bounded degree).

Our protocol (cf. Section III) is efficient, lightweight, and scalable, since the overhead for maintaining the topology is
only polylogarithmic in n: requires only polylogarithmic in n bits to be processed and sent by each node per round and any
node’s computation cost per round is small (polylogarithmic in n). Our protocol guarantees that, despite a large adversarial
churn, with high probability3, there is a large expander subgraph (n − o(n) size) present in the network in every round.

1In sparse, bounded-degree networks, an adversary can always isolate some number of non-faulty nodes, hence “almost-everywhere” is the best one can
hope for in such networks [20].

2Our protocol can be adapted to work correctly as long as the number of nodes is reasonably stable over time, say, between n− κn and n+ κn for
some suitably small constant κ (for the same amount of churn per round, i.e., O(n/polylog n)).

3Throughout, with high probability (whp) means with probability at least 1− n−c, for some constant c > 1.



The degree of each node is always bounded above by a fixed constant; this is useful for applications, as the number of
connections (neighbors) of a node remains bounded and does not increase with the network size. The protocol assumes a
short (O(log n) round) initial “bootstrap” phase, where there is no churn4; after this, the adversary is free to exercise its
power to churn in/out nodes up to the churn limit. (A more detailed description is given in Section II.)

To the best of our knowledge, this is the first-known, fully-distributed protocol that guarantees expansion maintenance
under highly dynamic and adversarial settings. Our algorithm is local (does not require any global topological knowledge),
lightweight, and easy to implement. The protocol serves as a building block for enabling algorithms for fundamental distributed
computing problems such as agreement, search and storage, and leader election in dynamic P2P networks. In particular, the
expander maintenance protocol in conjunction with the protocols for agreement [19], and search and storage [22] enables a
fully-distributed and autonomous protocol for these problems.

B. Technical Contributions and Overview

The main technical challenge that we have to overcome is maintaining good topological properties in highly dynamic networks
where both nodes and edges can change by a large amount continuously. Indeed, when the churn rate is O(n/ polylog n),
in polylogarithmic number of rounds the entire network can be renewed! We would like distributed algorithms to work
correctly and efficiently in such networks that keep changing continuously over time (not assuming any eventual stabilization
or quiescence — unlike much of the earlier work on dynamic networks, e.g., [26], [27], [28], [29], [30], [31]). A technical
contribution of this paper is showing how random walks can be used in a dynamic network to maintain an expander topology
with high adversarial node churn (cf. Section IV). The basic idea is quite simple and is as follows: All nodes generate
tokens (which contain the IDs of the respective source nodes) and forward each token via random walks continuously over
time. These random walks, once they “mix” (i.e., reach close to the stationary distribution), reach essentially “random”
destinations in the network. Thus the destination nodes receive a steady stream of tokens from essentially random nodes,
thereby allowing them to sample nodes uniformly from the network. Crucially, the protocol uses the near-uniform distribution
over the origin of the random walk tokens in the expander protocol: these provide random connections which lead to good
expansion. While this basic idea is simple and clear, there are several technical challenges that have to be overcome to prove
that the protocol actually works. The interaction between the actions of the adversary and the protocol (both determine what
edges are added/deleted in every round) leads to complicated dependencies.

While it is easy to establish uniform sampling properties of a random walk in a static graph, this is no longer true in
a dynamic network with adversarial churn — the churn can cause many random walks to be lost and also can introduce
bias. Note that the protocol itself is continuously changing the network topology. This creates bias and dependencies in
the sampling process; the sampling process in turn determines how connections are established in the protocol and thus
determines the topology (which in turn determines how the tokens move subsequently). Another complication is that the
adversary can isolate certain nodes (by churning out their neighbors) and thus the protocol has to make sure that any node
that is cut off from the “core” network will quickly reconnect back; otherwise, the adversary can keep adding new nodes
to this cut-off part leading to network fragmentation.Another challenge is that nodes can only try a constant number of
re-connections per round, leading to a delay in connecting back to the core. This delay leads to some nodes getting isolated
from the core; the adversary can then pile new nodes onto these isolated nodes, which do not get fresh tokens from the core.
Moreover, new nodes that connect to the same old isolated node get the same copy of tokens; if these shared tokens are
directly used for forming connections, then these edges will be correlated and hence not sufficiently random to achieve good
expansion.

We describe some key features of our protocol (cf. Section III) that address the above challenges. First, as mentioned
earlier, it crucially uses random walks to obtain a supposedly “near-uniform” distribution of IDs of nodes from a recent past.
However, it is not clear, whether the “near-uniform” property is true for all tokens, even for those that appear mixed, i.e.,
have walked for Θ(log n) steps. The protocol uses a simple local criterion to decide how well connected it is to rest of
the network: if its number of received tokens is below a certain threshold, then it decides that all of its tokens and present
connections are not good and tries to “refresh” its edges. On the other hand, nodes that do get sufficiently many tokens also
refresh their connections, but with small probability; this is essential to maintain a graph that is random enough.

To simplify the analysis of the protocol, we follow a two-step proof idea (cf. Section IV). First, we define a stochastic
graph process called Υ-Process (cf. Section IV), that has to satisfy some properties; these properties capture the actions
of the adversary and the protocol, but it abstracts away the details of the distributed expander protocol. We show that the

4Without a bootstrap phase, it is easy to show that the adversary can partition the network into large pieces, with no chance of forming even a connected
graph.



Υ-process produces a sequence of graphs, each of which contains a large expander subgraph5 with high probability. In the
second step, we show that the expander protocol produces a sequence of graphs that conforms to this Υ-process. Our proof
crucially uses a technical result (cf. Sampling Lemma — Lemma 6) that shows that most random walks have the usual
desirable properties (near-stationary distribution and almost uniform origins) even in a highly dynamic adversarial network.
We note that our technique can handle churn up to O(n/polylog n). Informally, this is due to the fact that at least Ω(log n)
rounds are needed for the random walks to mix, before which any non-trivial computation can be performed. This seems to
be a fundamental limitation of a random walk based method.

C. Other Related Work

There has been a lot of work on P2P protocols for maintaining desirable properties (such as connectivity, low diameter,
high expansion, bounded degree) under churn (see e.g., [25], [32], [34] and the references therein), but these do not work
under large continuous adversarial churn. On the other hand, an important aspect of our protocol is that it works even when
the network is continually changing in an highly dynamic and adversarial manner. Most prior algorithms (e.g., [24], [35], [36],
[23], [37], [38]) will only work under the assumption that the network will eventually stabilize and stop changing or there is
a “repair” time for maintenance when there are no further changes (till the repair/maintenance is finished); these algorithms
do not work under high continuous adversarial churn. Law and Siu [24] provide a distributed algorithm for maintaining
an expander in the presence of limited number of insertions/deletions; their algorithm does not work for high continuous
adversarial churn. In [36] it is shown how to maintain the expansion property of a network in the self-healing model (there
are no changes during repair) where the adversary can delete/insert one node in every step. In the same model, [23] present a
protocol that maintains constant node degrees and constant expansion (both with probability 1) against an adaptive adversary,
while requiring only logarithmic (in the network size) messages, time, and topology changes per deletion/insertion. [35]
presented a self-stabilizing algorithm that converges from any weakly connected graph to a SKIP graph (which is an expander
with high probability) in time polylogarithmic in the network size. In [37] the authors introduce the hyperring, which is a
search data structure supporting insertions and deletions, while being able to handle concurrent requests with low congestion
and dilation, while guaranteeing O(1/ log n) expansion and O(log n) node degree. The k-Flipper algorithm of [38] transforms
any undirected graph into an expander (with high probability) by iteratively performing flips on the end-vertices of paths of
length k + 2. Based on this protocol, the authors describe how to design a protocol that supports deletions and insertions of
nodes. There has also been significant prior work in designing P2P networks that are provably robust to a large number
of Byzantine faults (e.g., see [39], [40], [41], [42], [43]). These focus on robustly enabling storage and retrieval of data
items under adversarial nodes. However, these algorithms will not work in a highly dynamic setting with large, continuous,
adversarial churn. The work of [33] presents a solution for maintaining a clustering of the network where each cluster contains
more than two thirds honest nodes with high probability in a setting where the size of the network can vary polynomially
over time; however the churn is limited to O(polylog n) per round and the network degree is also polylogarithmic in n. The
work of King et al. ([44]), which achieves distributed Byzantine agreement and leader election in static P2P networks, raised
the open question of whether one can design robust P2P protocols that can work in highly dynamic networks with a large
adversarial churn.

Kuhn et al. consider in [34] that up to O(log n) nodes (adversarially chosen) can crash or join per constant number of time
steps. Under this amount of churn, it is shown in [34] how to maintain a low peer degree and bounded network diameter
in P2P systems by using the hypercube and pancake topologies. There has been lot of work on dynamic network models
where only the edges change over time but the nodes remain fixed, see e.g., [45], [46], [47]; these works do not apply to the
churn setting considered here. Scheideler and Schmid show in [48] how to maintain a distributed heap that allows join and
leave operations and, in addition, is resistent to Sybil attacks. A robust distributed implementation of a distributed hash table
(DHT) in a P2P network is given by [43], which can withstand two important kind of attacks: adaptive join-leave attacks and
adaptive insert/lookup attacks by up to εn adversarial peers. This paper assumes that the good nodes always stay in the
system and the adversarial nodes are churned out and in, but the algorithm determines where to insert the new nodes. Naor
and Weider [41] describe a simple DHT scheme that is robust under the following simple random deletion model — each
node can fail independently with probability p. They show that their scheme can guarantee logarithmic degree, search time,
and message complexity if p is sufficiently small. Hildrum and Kubiatowicz [40] describe how to modify two popular DHTs,
Pastry [49] and Tapestry [50] to tolerate random deletions. Several DHT schemes (e.g., [51], [52], [53]) have been shown to
be robust under the simple random deletion model mentioned above. There also have been works on designing fault-tolerant
storage systems in a dynamic setting using quorums (e.g., see [54], [55]). However, these do not apply to our model of
continuous churn.

5This is essentially the best that can be shown, since at every point in time there can be a small set of nodes that are effectively isolated from the main
part of the network.



II. PRELIMINARIES

The Adversarial Network Model: We consider a synchronous dynamic network controlled by an oblivious adversary.
The adversary fixes a sequence of graphs H = (H1, H2, . . . ,Hi, . . .) with each Hi defined on a vertex set Vi. The size of
the vertex set is assumed to be stable, i.e., |Vi| = n for all i, and |Vi \ Vi+1| = |Vi+1 \ Vi| ∈ O(n/ logk n), where k is a
constant that will be fixed in the analysis6. The vertex set Vi refers to the set of nodes present in the network in round i.
Each node has a unique ID chosen from an ID space of size polynomial in n. The edges must be viewed as a rudimentary
set of connections provided by the adversary. The degree of each graph Hi is bounded by a constant denoted by deg(H).

For the first B = β log n rounds (for a sufficiently large constant β > 0), called the bootstrap phase, each Hi (1 6 i 6 B)
is a (an arbitrary) constant degree expander with expansion at least α > 0 7, a fixed constant. In the bootstrap phase (i.e.,
during the first B rounds), the adversary is silent, i.e., there is no churn and no edges are changed, and hence all the Hi’s
are identical. We can think of the bootstrap phase as an initial period of stability during which the protocol prepares itself
for a harsher form of dynamism.8

After the bootstrap phase, the requirements on the adversary are significantly reduced. It is only required to ensure that
any new node u that enters at, say, round i, must be connected in Hi to at least one other pre-existing node v, i.e., if
u ∈ Vi \ Vi−1, then, u must be connected to some v ∈ Vi−1 ∩ Vi in round i. The adversary must also ensure that the degree
bound deg(H) is not violated. The following subtleties are noteworthy. Firstly, we only require that a new node is connected
to a pre-existing node in its very first round upon entering the network. Secondly, after the bootstrap phase we don’t even
require each Hi to be connected — in fact, the only required edges in Hi are the edges connecting new nodes to pre-existing
nodes.

Our goal is to design a distributed protocol to maintain a graph process

G = (G1, G2, . . . , Gi, . . .)

over time such that each Gi, for i > B = Θ(log n) (i.e., after the bootstrap phase), has good expansion, while maintaining a
constant degree bound ∆ with high probability. The protocol must achieve this goal by dynamically adding/deleting edges
over time. Each Gi = (Vi, Ei) has the same vertex set as that of Hi, while the edges Ei (separate from the edges of Hi)
are determined by the actions of the adversary and the protocol. In each round i, the protocol can add a set E↓i of new
edges. Also, a set E↑i of edges that were added by the protocol in some previous round is lost — some explicitly removed
by the protocol and others removed implicitly because vertices to which they were incident were churned out. Thus, each
Ei = (Ei−1 \E↑i ) ∪E↓i . (E1 is empty). We emphasize that the graph Hi is only presented at round i and the protocol is
unaware of future graphs.

Communication Model: Communication is via message passing. If a node u knows the ID of another node v either
directly because u and v are neighbours in the current graph in G, or because they are neighbors in Hi (assuming we are
in round i), or indirectly through received messages, then u can communicate with v9. Each node can send and receive
messages of size polylogarithmic (in n) bits. Furthermore, each node is restricted to some constant M = ∆ + deg(H) number
of messages it can send and receive (and therefore, the number of nodes to which it can send and receive) in a single round.

Notice that a sender u can ensure that it sends out at most M messages intended for at most M recipients. However, due
to the distributed and parallel nature of the senders, they may not be able to ensure that the number of messages intended for
a single node is within the bound M . If more than M nodes send messages intended for v, it can only receive M messages,
while others must be dropped. We assume the following priority by which messages are either accepted or dropped:

1) All messages (say, of cardinality j 6M ) sent to v along edges in H and G are received successfully, and,
2) among the remaining messages intended for v, only an arbitrarily chosen subset of M − j messages reach v; the rest

are all dropped.
Adding/Deleting Edges in G: We assume the existence of a simple two-step “handshake” protocol (described in the next

paragraph) that allows any node u to propose an edge between itself and another node v (provided u knows v’s id); the
node v, in turn, can either explicitly accept or ignore (thereby implicitly rejecting) the proposal. Furthermore, a node u can
drop any edge (u, v) incident to it without consulting v; we assume that v will be immediately notified that (u, v) has been
dropped.

6For the sake of clarity, we do not seek to optimize constants and logn factors. Our analysis shows that k need not be > 3.
7This means that, for any subset S of up to n/2 nodes in the graph Hi, the number of edges across the cut given by S and the remaining nodes, is at

least α|S|.
8We note that in the unlikely event that our protocol fails in some round (that can happen with at most 1/nc, for sufficiently large c), then a bootstrap

phase is needed to get it started again, before it can handle adversarial churn again.
9This is a typical assumption in the context of P2P and overlay networks, where a node can establish communication with another node if it knows the

other node’s IP address.



Sequence of Events in a Round: We now describe the precise sequence of events that comprise a single round i in our
model:
1. The adversary presents the new graph Hi in which some of the old nodes have been churned out and some new nodes

have been churned in (assuming round i occurs after the bootstrap phase). The graph Gi−1 loses all edges that were
incident to nodes that were churned out.

2. Each node is then allowed to perform some local computation including private coin flips and send messages of size
polylogarithmic in n to up to M = ∆ + deg(H) other nodes. This communication step, among other purposes, is
particularly useful for nodes to send requests for adding edges.

3. Nodes can again perform some more local computation, and again send messages of size polylogarithmic in n to up to
M (a constant, defined above) other nodes. The messages sent in this step are typically responses to messages sent out
in the previous step. For instance, a node v that had received a request from a node u to form an edge could either
send an accept message or ignore it (implicitly rejecting the request).

4. Once v accepts node u’s edge request, edge (u, v) is added to the communication graph. The communication graph now
includes all the newly added edges, and is designated Gi.

We note that a round is comprised of a two-step protocol to add an edge: the requesting node sends a message to the
other node, which takes one more step to accept/reject. The above assumption is slightly different from the classic notion
of a round, where messages are sent only one way per round (hence implementing these two steps will actually take two
rounds). This assumption is not just a mere technicality; on the other hand it is needed. Using an information flow argument,
we prove (cf. Theorem 2) that there is no protocol in the classic synchronous round model (cf. [56]) that can maintain
connectivity (let alone expansion) for a large majority of the nodes, even if the churn is limited to Θ(

√
npolylog(n)) nodes

per round (cf. Section V).

III. EXPANDER MAINTENANCE PROTOCOL

A. High-level Overview and Intuition

Our protocol works by ensuring two interdependent invariants (whp). The first invariant is that the nodes can sample from
the set of IDs in the network almost uniformly at random. We implement this sampling via random walks. For the sampling
technique to work efficiently, we need our second invariant, namely, that the network maintains good expansion, and for this,
we employ a technique of connecting each node to a constant number of other nodes chosen (almost) uniformly at random,
thus bringing us back to our first invariant. With the two invariants being so intimately dependent on each other, the bootstrap
phase in which expansion is guaranteed is crucial in helping the protocol to get started. During this phase, the random walks
based sampling procedure gets started, which, in turn, allows the network to continue maintaining good expansion beyond
the bootstrap phase. While this high level idea is quite straightforward, there are some significant challenges (cf. Section I-B)
to be overcome in order to get the protocol to work.

Before we go into the protocol and its analysis in detail, we give a high-level overview of the main ideas and some
intuition into understanding its design (cf. Section III-B). Since nodes have to maintain bounded degree, and since each node
requests as well as accepts connection requests from other nodes, it is helpful to partition the degree set (with respect to a
particular node) into two sets — red and blue — where the number of blue edges will always be at most a constant fraction
(1/6) of the maximum number of edges (∆). Blue edges of a node are those that it requests and red edges are the ones
that it accepts; note that a red edge of some node will be a blue edge with respect to some other node. The main invariant
maintained by the protocol is the number of blue edges per node; if this number falls below a certain threshold δ (due to
loss of blue edges caused by churn), then the protocol will try to regain the lost blue edges. The mechanism for creating
new blue edges is as follows. Each node maintains a buffer (called the prioritized token buffer) that contains only “mature”
tokens (i.e., well-mixed tokens) prioritized by time (recent is higher priority). When a node wants to create a blue edge it
will choose one of these tokens and contact the node whose ID is contained in the token. An important idea in the protocol
is that a node may reconnect even though it may not have lost any blue edge. The protocol uses a simple mechanism to
decide when to reconnect: when the number of mature tokens it receives falls below a certain threshold, then it decides that
it is not well-connected to the rest of the network and refreshes its connections. The key Sampling Lemma (Lem. 6) shows
that this local criterion works; it also shows that most tokens are well-mixed (i.e., they are distributed in a near-uniform
fashion and hence the endpoints of the blue edges are as well) despite the actions of the adversary and the protocol.

As mentioned earlier, a main intuition behind the protocol is that it tries to maintain a graph that resembles a random
(bounded-degree) graph in every round whp. Thus, in addition to reconnections that are caused due to lost blue edges, in
every round, every node with probability Θ(1/polylog n), simply drops all its blue edges and reconnects again (cf. “Normal
mode” in Algorithm III.2 (line 7)). This refreshing of connections creates new “random enough” edges continuously in
the network, which is (also) useful in showing expansion properties in every round. Since the number of blue edges is



significantly less than the number of red edges there is a good (a constant) probability of establishing a connection in a
round (cf. Lemma 1).

A complication that the protocol needs to handle is that since nodes can accommodate only constant number of connections,
many connection requests are turned down in a round (which occurs with constant probability); thus many nodes that lose
connections may remain “cut-off” (i.e., isolated from the “core” network that has size n − o(n) whp) for a while. The
adversary can attach new nodes to these cut-off nodes; these new nodes will not get enough mature tokens, since the cut-off
nodes themselves are starved of tokens. This necessitates sharing of tokens between the new nodes and the cut-off nodes (cf.
“Reconnect mode” in Algorithm III.2); such sharing of tokens is problematic if continued for a long time (since tokens are no
longer independent among nodes). To address this, the protocol allows these cut-off nodes to contact nodes using these shared
tokens (called stale tokens) to obtain fresh mature tokens that are mixed well. We show in our analysis (cf. proof of Lemma
7), that nodes cannot remain cut-off for long and will reconnect to the “core” network in at most O(log n) rounds (whp).

This pseudocode is executed in every round i by each node v. Recall that each round consists of two communication steps,
but this procedure only requires one communication step. WLOG, we assume the first communication step is used, while the
second is ignored. A mature random walk token is one that has walked for at least τ ∈ Θ(log n) rounds.

Initiate new random walk tokens.

1: Node v initiates z ∈ Θ(log2k+1 n) random walk tokens containing v’s id.

Perform random walk step for tokens not yet matured.

2: During the bootstrap phase, send each immature token to a random neighbour in Hi. Skip to line number 13.
3: if v has self loops in Gi then
4: With probability θ/ logk−1 n mark an arbitrary self loop port p incident to v in Gi. (With the remaining probability

1− θ/ logk−1 n, no incident self loop is marked.)
5: // The constant θ must be large enough to ensure (whp) that the total number of marked self loop ports in the network

exceeds the total number of dangling blue ports.
6: for all tokens t at v do
7: Choose a port p (in Gi) uniformly at random from among the ∆ ports.
8: if p is either a dangling port or a marked port then
9: Eliminate t.

10: else
11: Send t along p (in communication step 1).
12: Unmark any marked port incident to v.

Handle mature tokens.

13: if the number of mature tokens v received is at least (1− η)z for a small fixed constant η > 0 then
14: // The above condition is useful because it is indicative of how well v is connected in the network.
15: // Note that this condition is also used in the expander protocol.
16: Node v inserts all mature tokens into its prioritized buffer. Designate these tokens as fresh.
17: else
18: All mature tokens received in the current round are discarded.

Algorithm III.1: Distributed Protocol for Random Walk-Based Sampling

B. Detailed Description of the Protocol

Degree Bound, Red Edges, Blue Edges: As stated in Section II, each node in Gi, for all i, must have an upper bound
of ∆ on its degree. Each node partitions its incident edges into 2 types: red and blue edges. In fact, every edge in Gi will be
blue at one of its ends (in particular, the end that proposed its creation) and red at the other. (Note that in G1, the red and
blue edges are empty — not yet created). Each node u seeks to have δ (where δ < ∆/6) blue edges, i.e, edges that are
created upon u’s proposal. As will be elaborated further, if u has fewer than δ blue edges at any time, then it will propose
more edge connections in an attempt to meet this quota. Out of the ∆ ports at each vertex, the protocol will set aside δ



This pseudocode is executed every round by each node v. Recall that each round consists of two communication steps. We
tag them as CS1 and CS2, respectively. Node v can either be in normal mode or reconnect mode. A node that has
newly entered the network (or in the bootstrap phase) is in reconnect mode until it manages to find δ blue edges. Once it
gets δ blue edges it switches to normal mode. The Random Walk Sampling procedure (cf. Algorithm III.1) is assumed to
be running simultaneously.

Whenever Node v is in normal mode

1: // The random walks based sampling procedure operates in CS1.
2: CS1: Receive requests for edges and tokens sent by nodes in reconnect mode.
3: if the number of mature tokens received in current round is < (1− η)z (cf. Line 13 of Algorithm III.1) then
4: Drop all incident blue edges and enter reconnect mode.
5: CS2: Accept as many edge requests as possible without exceeding ∆− δ red edges.
6: CS2: Provide Θ(log n) tokens (if available) to each node that requests tokens. Designate them as fresh tokens.

// Always ensure that Θ(log n) tokens are available for v’s own consumption.
7: With probability 1/ logk n:

(1) drop all incident blue edges,
(2) and enter reconnect mode.

8: if the number of blue edges is < δ then
9: Enter reconnect mode.

Whenever Node v is in reconnect mode

10: Ignore (and thus implicitly reject) any edge requests.
11: if Node v is new in the network then
12: CS1: Request tokens from neighbours in Hi.
13: CS2: Collect tokens sent by neighbours and store in the prioritized token buffer.
14: else if Node v has been in the network for more than one round then
15: if Fresh tokens are available in reserve then
16: CS1: Use the highest priority fresh tokens in the prioritized token buffer to make up to δ edge requests.
17: else if Stale tokens are available in the prioritized token buffer then
18: CS1: Use O(1) stale tokens chosen uniformly at random to request for fresh tokens.
19: else
20: Do nothing. // This situation arises in the bootstrap phase before tokens have mixed.
21: CS2: Provide tokens to each node that requests tokens: either c fresh tokens if available or all the stale tokens (but

never giving out the top c tokens which are always for v’s own use).
22: if the number of blue edges is δ then
23: Enter normal mode.

Algorithm III.2: Distributed maintenance protocol

ports — called blue ports — for blue edges. Any blue port that does not have an incident blue edge is called a dangling
port. A red port that does not have an incident red edge to another node will have a self-loop to itself (i.e., the edge will
leave and end at the same port). The remaining ∆− δ available ports are reserved for red edges and self loops. Ports and
self-loops prove useful later in the analysis of the protocol as they can be used to ensure regularity (cf. Section IV). Notice
that there can be at most δn blue edges, and therefore the same number of red edges, at any point in time. This ensures that
at least 0.8n nodes are guaranteed to have spare red ports at any time (this will be used later in the analysis (cf. Lemma 1)
to bound the probability of forming blue edges.)

We first describe a random walks based sampling procedure before introducing the details of our main expander maintenance
protocol. Although this sampling procedure is executed in tandem with the expander maintenance protocol, we describe this
in isolation for the sake of clarity. Algorithm III.1 provides the details in pseudocode format.

Random Walks Based Sampling: Each node u generates z ∈ Θ(polylog n) (more precisely z = Θ(log2k+1 n), where k
is the constant in the churn limit) tokens in each round t. Each token contains the following information: the ID of u that



generated it, as well as a counter to keep track of how many rounds have passed since the token has been generated. For
all tokens, the counter is initially set to zero, and in every round the node that currently holds the token is responsible for
incrementing its counter by one and forwarding it to one of its neighbors chosen uniformly at random. In other words, each
token is taking a random walk on the (possibly changing) edges of the network.

Each random walk token walks for up to τ = Θ(log n) rounds (τ is called the mixing time — cf. Lemma 5), after which
it is called a mature token. The number of mature tokens received by a node is indicative of whether they can be used
for sampling nodes (cf. Lemma 6). Thus, if a node receives fewer than (1 − η)z (for a sufficiently small fixed constant
η > 0) mature tokens in any round, those mature tokens are discarded. Otherwise, they are held in a prioritized token buffer
for consumption as samples for the next (at most) Θ(log n) rounds (thus a mature token stays in the current node for at
most O(log n) rounds till it is used by the current node to reconnect or transferred to another node due to some request).
Whenever a random node sample is required, the highest priority token from the buffer is picked (without replacement) and
the token’s starting location is used as a random sample.

Prioritized Token Buffer: Each node v has a prioritized token buffer of capacity C ∈ Θ(polylog n) for mature random
walk tokens. Each token that attains maturity in v is designated fresh and placed in the prioritized token buffer (possibly after
evicting a token of least priority). We assume for simplicity that (1− η)z > C, so a node can fill its buffer in a single round
when it receives > (1− η)z that can be used as samples. Sometimes, under a dearth for fresh tokens (this can happen when
nodes are “cut-off” as mentioned above in Section III-A), some tokens are copied and the copies are shared among several
nodes; such copied tokens are designated as stale. Fresh tokens are prioritized in the buffer over stale ones. Between two
tokens that are either both fresh or both stale, the token that matured most recently is prioritized. The top c = Θ(polylog n)
tokens in the buffer are set aside for v’s own consumption and are never shared; here, c is chosen such that C/c is a
sufficiently large. When there are at least C/2 tokens in the buffer, up to c fresh tokens are given out to requesting nodes.
When there are fewer than C/2 tokens, upon request for tokens, all tokens (except the top c tokens) are designated stale and
copies of the stale tokens are sent to the requester; note that in this case, the sender retains copies of the stale tokens.

Distributed expander maintenance protocol: Our distributed maintenance protocol will run on all nodes in the network,
and is initiated either at the beginning by each node present in V1, or by a churned-in node when it enters the network. Note
that the random walk sampling process as described above is running in the background to ensure the continued forwarding
of tokens and enabling each node to maintain a pool of matured tokens. Once the initial bootstrap phase has passed, the
adversary is allowed to make its proscribed changes to the network and the maintenance protocol will seek to maintain a
dynamic network G in which each Gi has good expansion.

We now describe the expander maintenance protocol from the perspective of a single node v, in particular, focussing on
the steps it must execute in each round. The node v can be in one of two modes depending on the number of the blue edges
it currently has: normal (has δ blue edges) or reconnect (< δ blue edges). The precise protocol in pseudo code format
is provided in Algorithm III.2.

The Normal Mode: The protocol starts with a check to see how many mature tokens v has received, which, as we
shall see, is indicative of how well v is connected to the rest of the network. If the number of such tokens is below the
required threshold of (1− η)z, it will drop/delete all of its existing blue edges and switch into reconnect mode during
which it will take the steps required to regain lost connections.

If, on the other hand, the number of mature tokens received is sufficient, i.e., at least (1 − η)z, then with probability
1−1/polylog n the node will continue in normal mode. With probability 1/polylog n, however, all the blue edges are dropped
and the node v will then switch to reconnect mode. This will ensure (whp) that no edge is more than O(polylog n)
rounds old in the network.

The Reconnect Mode: Node v enters reconnect mode whenever fewer than the stipulated number of blue edges
are incident to v, and needs to regain new connections. This situation arises under two circumstances: when the node has
just arrived and has not had a chance to establish connections, and when the node has lost some incident blue edges.

Note that a node v 6∈ V1 arrives only after the bootstrap phase as there is no churn during the bootstrap phase. As described
in Section II, the adversary chooses an existing node w to which the new node v is initially connected to. Upon connecting,
the existing node w will send v a package of O(polylog n) number of tokens. These tokens can be marked as “fresh” or
“stale”. Receiving “stale” tokens implies that node w itself was running low on fresh tokens, and thus needed to copy tokens
it already had to satisfy v’s request. As such, stale tokens affect the probability distribution of the nodes they contain and
create the possibility that too many nodes will have copies of the same tokens. We prove that the latter does not occur, but
the former requires another step to be added to the protocol: If v receives copied stale tokens, it first contacts one or more
nodes (drawn uniformly at random from those stale tokens) and requests a package of mature fresh tokens from them. If the
recipient node has fresh tokens to spare (i.e., without copying), it will send them. This intermediate step ensures that v uses
fully mixed mature tokens to seek new edges. Thus, upon receipt of those fresh tokens (or if the original tokens handed to v



were already fresh), v makes edge requests until it receives δ blue edges.

IV. THE Υ-PROCESS AND THE ANALYSIS OF THE PROTOCOL

The graph process G output by the expander maintenance protocol is the result of the interaction between two different
entities, namely, the adversary and the expander maintenance protocol itself. Furthermore, the protocol has two aspects to it
that further interact with each other. The first is the random walks based sampling (cf. Algorithm III.1) and the second being
the aspect of actually adding and deleting edges to ensure expansion (cf. Algorithm III.2). In order to aid in the analysis of
our algorithm, we unify these interacting computational entities into one mathematically coherent family of processes. A
member in this family is called an Υ-process and its behavior is the combination of (i) the actions of a particular adversary,
(ii) a particular choice of acceptable values for various parameters, and (iii) random bits available to the Υ-process. Being a
mathematical construction, we now present the Υ-process as a broad sequence of mathematical steps without delving into the
algorithmic mechanics by which those steps are implemented, thereby allowing us to focus on the mathematical essentials
needed for the analysis.

1: Let G1 be an arbitrary graph with node degree 6 ∆ that has a subgraph of size n−O(n/ logk n) that has expansion at
least α.

2: for i = 2, 3, . . . do
3: Arbitrarily choose a churn out set Cout ⊂ Vi−1 of cardinality at most O(n/ logk n).
4: Create a new set Cin of vertices of equal cardinality as Cout.
5: Establish vertex set Vi = (Vi−1 \ Cout) ∪ Cin.
6: Ei ← {e = (u, v) ∈ Ei−1|u ∈ Vi and v ∈ Vi} // Inherit edges from Gi−1 induced by Vi.
7: Create a graph Gi = (Vi, Ei). // We will need to modify Gi a bit more before finalizing it.

8: For every v ∈ Vi, initialize B(v) = δ. // B(v) is the number of blue edges v must have in Gi.
9: Choose V∗ ⊆ Vi to be the set of vertices with fewer than δ incident blue edges such that:

1) Cin ⊆ V∗,
2) |V∗| ∈ O(n/ logk−1 n), and
3) no node has been chosen as a member of V∗ for a contiguous period of Θ(log n) rounds.

10: for all v ∈ Vi \ V∗ do
11: With probability in Θ(1/ logk n) delete all blue edges incident at v and add v to V∗.
12: // This ensures (whp) that no blue edge is more than O(polylog n) rounds old.
13: for all v ∈ V∗ do
14: blue = the number of blue edges currently incident to v.
15: Set B(v) to an arbitrary value in [blue, δ].

16: while ∃v ∈ Vi with fewer incident blue edges than B(v) do
17: Arbitrarily pick a vertex v with fewer incident blue edges than B(v).
18: Arbitrarily select a set V ′ ⊆ Vi \ {v} of cardinality at least (say) 0.8n, where n = |Vi|, such that every vertex in V ′

has at the moment strictly fewer than ∆− δ incident non-self-loop red edges.
19: Define an almost uniform probability distribution Du over all u ∈ Vi \ {u} in the following sense:

1. Du 6 1/n+ 1/nc, for a suitably large constant c.
2. If the number of red edges is ∆− δ, then set Du = 0.
3. If u ∈ V ′, then Du must be in Ω(1/n).
// Of course,

∑
u∈Vi\{v}Du must equal 1.

20: A node u is drawn from Du and a new edge (v, u) (that is blue at v and red at u) is added.

21: Place a self loop on every unused port reserved for red edges.
22: // Note that unused ports reserved for blue edges are left dangling.
23: The graph Gi is now finalized.

Procedure IV.1: The Υ-Process



A. Overview and Intuition
An Υ-process generates a sequence of graphs G = (G1, G2, . . . , Gi, . . .). (For notational clarity, we use Gi = (Vi, Ei) to

denote a graph generated by the Υ-process and Gi to denote graphs generated by the expander maintenance protocol.)
The Υ-process is presented in detail in Procedure IV.1 on page 10. Before we go into the analysis, we present an overview

of the process and intuition behind its analysis. The main intuition behind the process is that it captures the actions of the
distributed maintenance protocol and the adversary.

The Υ-process starts off with being a bounded degree graph that contains a large expander subgraph—this captures the
graph formed at the end of the bootstrap phase of the protocol which lasts for Θ(log n) steps. The goal is to show that
(i) the sequence of graphs G generated by the Υ-process has the required expansion properties (cf. Lemma 2) and that
(ii) the execution of the expander maintenance protocol (starting from the end of the bootstrap phase) is an Υ-process (cf.
Lemma 7). In this regard, for all i > 1, the properties of Gi (the graph output by the Υ-process in round i) will correspond
to Gi+B , the graph output by the expander maintenance protocol in round i+B. In particular, each Gi will have degree at
most ∆, its edges will be partitioned into red and blue edges (in the same proportion) as in Gi+B . The process captures the
adversarial churn and the actions of the protocol. The lines 2-7 follow the actions of the adversary where, in each round, a
set of O(n/polylog n) nodes (determined by the adversary) are churned out and an equal number is churned in. The edges
that are not destroyed due to churn are carried over from the round to the next. On the other hand, if a blue edge is lost, it is
established again in a way that mimics the protocol. Recall that in the expander maintenance protocol, when a node has
fewer than δ blue edges, it tries to connect until it succeeds (or is churned out). Thus, it remains deficient of blue edges until
some round and then gets an edge chosen uniformly at random. This is captured in the Υ-process in the following generic
way. The Υ-process delineates the two decisions, namely, (i) when to add an edge and (ii) how to add an edge. From lines 8
until line number 15, the Υ-process is required to ensure the conditions (listed under line number 9). These lines do not
actually create the edges, but rather place budgets on the number of blue edges that need to be added to each node. This
budget can be set to an appropriate value (with δ being the maximum possible number of blue edges) that captures the
number of blue edges that a node has in the particular round of the protocol. The conditions specify the set of nodes V ∗ (of
size O(n/polylog n)) that have less than δ blue edges in the round comprising: (1) newly churned in nodes; (2) nodes that
choose to refresh their blue edges (with probability O(1/polylog n) as in the protocol). No node is in V ∗ for a contiguous
period of Ω(log n) rounds — this condition crucially captures the property that every node will regain its lost full quota of
blue edges in O(log n) rounds; we show that the protocol satisfies this condition whp (cf. Claim 1).

After the budgets are set, the edges are actually created at a later part (from line number 16 to 20) of the Υ-process
definition where the endpoints are chosen almost uniformly at random from a large set of vertices. Since the RW-Sampling
algorithm has been successfully running up until round i − 1 (as a consequence of our assumption that the expander
maintenance protocol has been an Υ-process until time step i− 1 in conjunction with Lemma 6), the expander maintenance
protocol also chooses the red end from the current set of vertices based on a distribution that is almost uniform over a large
fraction of current (i.e., round i) vertices.

Our analysis proceeds as follows. First we show that the graphs generated by the Υ-process contain a large-sized (n−o(n))
expander graph whp. Showing this requires the following main ingredients:
(1) Show that the random walk sampling will generate near-uniform random samples from a large-sized subset of the nodes
(Section IV-C). The Sampling Lemma (Lem. 6) shows this. For technical reasons it is difficult to work with the Υ process
graph Gi, since this graph is not regular, and more importantly, this graph is dynamically changing in every round (and
mixing takes Θ(log n) rounds). For the purpose of analysis, we convert the graph Gi to Ḡi (Algorithm IV.2). The new process
Ḡ1, . . . Ḡi, . . . is regular (i.e., all nodes have ∆ degree with no missing edges) and there is no churn in this process. Regularity
is obtained by introducing the so called ghost edges (which are simply virtual edges that take the place of missing edges in
Gi — they are determined in lines 10-14 of Algorithm IV.2) which allow us to apply techniques from [57]. Tokens that
travel through ghost edges are lost (and ghost edges are adversarially determined, since missing edges are) and some bias is
also introduced. (Nevertheless, the Sampling Lemma shows that these are within bounds and we obtain the desired sampling
result.)
(2) Since Gi is obtained by (adversarial) deletion of Θ(n/polylog n) nodes and edges from Ḡi, we show that this still leaves
a large expander subgraph in Gi, the Υ graph.
(3) The key Sampling Lemma shows the near-uniform distribution of tokens in the Υ process graph Gi, by appealing to the
distribution of real tokens (not ghost tokens) in Ḡi.

We then show (in Section IV-D), that our expander maintenance protocol under any adversarially generated H is indeed an
Υ-process. By appealing to the Sampling Lemma and Lemma 1, we show that the graph generated by using the connections
prescribed by the sampled tokens have the required expansion. The upshot is that the expander maintenance protocol indeed
outputs a sequence of graphs that (whp) have large expander subgraphs.



B. Expansion Analysis

To prove that a graph constructed and maintained via an Υ-process is indeed an expander, we need the following general
lemma. We show that a graph in which each node has at least δ edges, each generated by picking nearly uniformly at random
from a large set of the vertices, has high edge expansion α′.

Lemma 1. Let G = (V,E) be a random graph on n vertices formed by the following random process. For each vertex in V
we create δ incident blue edges such that the red end of each such edge e is chosen from a probability distribution D over
V defined in the following manner. For every v ∈ V , D(v) 6 1/n+ 1/nc for a suitably large constant c such that v has at
most ∆− δ red edges. (Hence, each node has degree at most ∆.) Furthermore, for an arbitrarily chosen subset Se ⊆ V of
cardinality at least 0.8|V |, D(w) is guaranteed to be > c1/n for every w ∈ Se, where c1 > 0 is a fixed constant. Then, with
high probability, G has an expansion of at least α′ for some suitable constant α′ > 0.

We need to prove that any subset S of some size c for c ∈ [1, n/2] has sufficient expansion. To this end, we show that
with probability 1/nl for some constant l, the number of blue edges leaving nodes of S and pointing back to S is bounded
below the minimum number needed for expansion of the set.

Proof: We now present the detailed argument. Consider a subset S of size c. We would like to upper bound the probability
that too many of the blue edges incident at nodes in S have their “red” end within S itself. Let E(U,W ) denote the set of
blue edges emanating from nodes in some set U that end at nodes in another set W . For our set S, we need to show that
|E(S, S̄)| > α′|S|. Since nodes in S have δ blue edges, we have δ|S| = |E(S, S̄)|+ |E(S, S)|; recall that E(S, S) denotes
all blue edges in S that are also red edges in S, i.e., have both endpoints in S. Thus, we require δ|S| − |E(S, S)| > α′|S|,
and we need to upper bound P[|E(S, S)| > (δ − α′)|S|]. Let γ = δ − α′.

Let e1, . . . , ecδ be the blue edges emanating from nodes in S. By the assumption in the statement of the lemma, we know
that the endpoint for a blue edge e at node v has almost uniform probability to be any node of the set Se, which consists
of at least 0.8n nodes in the graph. Let Xi denote an indicator random variable which is 1 if the i-th blue edge ei of S
emanating from ui ∈ S has its other endpoint also inside S. It is worth pointing out that while the set Se is different for
each edge e, we assume that the set S is defined (and invariant) for each e, since we are analyzing everything at one specific
time t at which all nodes of S are still in the graph. The upper bound for the probability that a blue edge leads back into S
is 1/n+ 1/nc, which we replace for simplicity in the analysis with the bound (1 + ε)/n, where ε is an appropriately chosen
constant.

Since the probability that e points to a specific node in S is 6 (1+ε)/(0.8)n, we can sum up over all elements of S to bound
the probability of e pointing to a node in S by 6 (1 + ε)c/(0.8)n. Conditioning on the event that X1 = 1, . . . , Xi−1 = 1,
decreases the number of available connection points for e inside of S and hence we have

P[Xi = 1 |
i−1∧
j=1

Xj = 1] 6
(1 + ε)c

(0.8)n
, (1)

for any 2 6 i 6 cδ. By the chain rule of conditional probability, we have

P[

i∧
j=1

Xj = 1] = P[Xi = 1 |
i−1∧
j=1

Xj = 1] · P[

i−1∧
j=1

Xj = 1] = P[X1 = 1]

i∏
j=2

P[Xj = 1 |
j−1∧
k=1

Xk = 1] 6

(
(1 + ε)c

(0.8)n

)i
, (2)

where the upper bound follows from (1).
Now consider the following experiment where we toss m coins, and suppose that we want to know the probability that for

some a 6 m, a or more coins came up heads. This probability can be upper bounded by the probability that a coins came
up heads, while leaving the outcome of other coin flips unobserved. Applying this reasoning to the choices of the blue edges,
we have

(
n
c

)
sets of size c and thus, considering (2), we get

P[∃S, |S| = c and |E(S, S)| > (δ − α′)|S|] 6
(
n

c

)(
cδ

cγ

)(
(1 + ε)c

(0.8)n

)cγ
.

We provide two separate upper bounds for the above inequality. The first upper bound handles the case for sets c ∈ o(n).
The second upper bound handles the case when c = κn for any positive constant κ 6 1/2.

For the first case, when c is strictly sublinear, we can apply the upper bound to the binomial coefficient:
(
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′+βγ+(γ−1) log c+(1−γ) logn) (3)

where we let β = log(((1 + ε)δe)/(γ0.8)) and β′ = log2 e. To show that this inequality applies, we observe that the term
(1− γ) log n in the exponent in (3) above dominates and yields an upper bound of 2−lc logn = n−lc , for sufficiently large δ.

For the second case, where size c = κn, since both n and c are very large, we can use a much tighter approximation to the
binomial coefficient. We use Stirling’s formula to approximate

(
n
k

)
∼ 2nH(k/n), where H(ε) = −ε log2(ε)−(1−ε) log2(1−ε),

the binary entropy of ε.
Thus when c = κn for κ a constant 6 1/2, we have:(

n

c

)(
δc

γc

)(
(1 + ε)c

0.8n

)γc
6 2n(−κ log(κ)−(1−κ) log(1−κ)−κδ((γ/δ) log(γ/δ)+(1−γ/δ) log(1−γ/δ))+log(β)γκ)

where in this case β = (1 + ε)c/(0.8)n.
The expression in parentheses in the exponent will be negative for all values of κ in the specified range for sufficiently

large (but still constant) κ. Therefore, we have P[∃S, |S| = c and |E(S, S)| > (δ − α′)κn] 6 2−εn, which will be well
below n−l for any constant l. Thus, over all c we pick maxc lc and set constant δ appropriately so that lc > 4. Thus, over
all Θ(n) set sizes c ∈ [1, n/2], with probability > (1− n−3) graph G has an edge expansion α′.

C. Sampling Via Random Walks

We now turn our attention to analyzing the random walks based sampling algorithm (cf. Algorithm III.1) on G. Our goal
is to leverage the result of [57] in which it is shown that random walks mix in dynamic networks without churn. Towards
this goal, for a given G, we construct another sequence of graphs Ḡ = (Ḡ1, Ḡ2, . . .) in which the graphs are regular and we
do not have any effects of churn (cf. Algorithm IV.2). For the purpose of analysis, we simulate the random walks based
sampling algorithm on Ḡ so that we can apply the result from [57] (cf. Lemma 5, since Ḡi is an expander it has a second
largest eigenvalue bounded away from 1), and show how to translate the result back to G in a suitable manner (cf. Lemma 6).
We are now able to make the following claims:

1: // We describe how each Ḡi = (V̄i, Ēi) is constructed at the start of round i based on Gi created in line number 23 of the
Υ-process.

2: // Assume that Ḡ1 = G1 and for all i > 1, Ḡi−1 has been constructed. So we will focus on constructing Ḡi.
3: V̄i = Vi.
4: Ēi = Ei. Designate edges in Ēi to be real edges.
5: Consider any arbitrary bijection B between V̄i \ V̄i−1 and V̄i−1 \ V̄i, which exists because |V̄i \ V̄i−1| = |V̄i−1 \ V̄i|.
6: for each v ∈ V̄i \ V̄i−1 do
7: Copy the state of B(v) ∈ V̄i−1 \ V̄i on to v. In particular, v now has all the random walk tokens previously in B(v). //

Thus, in effect, there is no churn.
8: Tag all vertices in V̄i that have no self-loops.
9: Ensure that vertices with self-loops are untagged. The number of untagged vertices is > 0.8n because δ < ∆/6, so the

at most nδ blue edges would have exhausted red edges in fewer than 0.2n nodes.
10: for each dangling port p in some v ∈ V̄i do
11: Pick a vertex v′ uniformly at random from a set of untagged vertices.
12: Pick a self-loop port p′ in v′ and tag v′ so it is not picked again.
13: Add an edge e = (v, v′) to Ēi connecting p to p′.
14: Designate e to be a ghost edge.
15: Finalize Ḡi = (V̄i, Ēi).

Algorithm IV.2: Procedure to construct Ḡ



Lemma 2. For all i, the graph Ḡi has expansion α′ for some constant α′ > 0, with high probability. In addition, for each
Gi, there exists a subgraph Ĥi of size n− o(n) with constant expansion α for α′ > α > 0.

The result is established by showing that Lemma 1 applies to Ḡi for the first statement. For the second statement, we use
a modification of a result found in [58] and show that by removing all nodes incident to a ghost edge in Ḡi we end up with
a subgraph that has expansion α. This subgraph is isomorphic to a subgraph of Gi, which therefore also has expansion α.

Proof of Lemma 2: For showing that Ḡi has sufficient expansion, we will show that the preconditions for Lemma 1
hold. The edge set Ēi consists of real edges and ghost edges as described above. Considering the union of both sets of edges,
every node v ∈ V̄i has δ blue edges, and the endpoint of each blue edge is chosen from a set V ′ of untagged vertices, which
will have cardinality at least 0.8n. This can be seen by using a simple balls-in-bins argument. If one tosses δn balls into
bins with capacity at least (∆− δ)/2, for appropriately chosen ∆ and δ, one can ensure that at least 0.8n of the bins are not
at capacity. Note that the actual bin capacity is ∆− δ, but we cut it in half artificially for the proof to ensure sufficient space
for new blue edges. Since this capacity condition is constantly maintained over the evolution of the graphs Ḡi, for each new
blue edge formed, there will always be at least 0.8n nodes with at least (∆− δ)/2 red edges with self loops to choose from.
Furthermore, for every v, for every edge e with blue endpoint at v, by the construction above the red end of e is chosen
uniformly at random from set V ′. Therefore, we can apply Lemma 1 and it follows that Ḡi is an expander with expansion α′

for some constant α′ with high probability.
For the second part of the statement in the Lemma, we can apply an adaptation of a result in [58], which states that a

graph G with expansion φ can have the edges of an arbitrary fraction ε of the nodes adversarially removed and yet still
contain a subgraph of size Θ(n) that has a slightly decreased (but still constant) expansion. For our setting, we need a variant
of this result that the remaining subgraph has size > n− o(n), if a set of size o(n) is removed from the original graph (cf.
Lemma 3). For our graph Ḡi, we look at the subgraph induced by all nodes that are not incident to one or more ghost edges.
We note that this subgraph, Ĥi is identical in both Ḡi and Gi (i.e. there is a one-to-one mapping of nodes and edges from
Ĥi ⊂ Ḡi to a subgraph Ĥ

′

i ⊂ Gi). Applying Lemma 3, establishes the second claim in the lemma.
For completeness, we restate the following lemma; the original proof is in [59].

Lemma 3. Let G be a n-node graph with expansion φ and constant node degree d and suppose that all nodes in a set F
are removed from G, where |F | = o(n). Then, for any positive constant c < 1, there exists a subgraph H of G such that

1) H has expansion cφ, and
2) |H| > n− |F |

(
1 + 1

φ(1−c)

)
.

Proof: We adapt the proof of Theorem 2.1 in [58]. Let GF be the graph yielded by removing the set F from G. Perform
the following iterative procedure (cf. Algorithm Prune in [58]): Initialize G0 = GF . In iteration i > 0, let Si be any set
of up to |V (Gi)|/2 nodes with expansion smaller than cφ. If Si exists, prune Si from Gi, i.e., Gi+1 = Gi \ Si. Let H be
graph that we get after the final iteration; note that H has expansion > cφ.

We now lower bound the size of H . Suppose that the pruning procedure stops after m iterations. For the sake of a
contradiction, suppose that

|F |
φ(1− c)

<

∣∣∣∣∣
m⋃
i=0

Si

∣∣∣∣∣ .
Define the set S =

⋃`
i=0 Si where ` is the smallest index such that exactly one of the following two cases holds:

First, assume that |S| 6 n/2. Let NGi
(Sj) denote the neighbors in Gi \ Sj of nodes in set Sj . We make use of the

following result whose proof follows analogously to Lemma 2.6 of [58]:

Lemma 4 (cf. Lemma 2.6 in [58]). Suppose that we execute procedure Prune(c). For all j with 0 6 j < m, it holds that
|NGF

(⋃j
i=0 Si

)
| 6 cφ|

⋃j
i=0 Si|.

Since G has expansion of φ, it holds that |NG(S)| > φ|S|. On the other hand, Lemma 4 implies that |NGF
(S)| 6 cφ|S|.

Thus we get |F | > φ|S| − cφ|S| = φ(1− c)|S| and hence |S| 6 |F |/(φ(1− c)), yielding a contradiction.
Now, consider the case where |S| > n/2. Then, it follows that∣∣∣∣∣

`−1⋃
i=0

Si

∣∣∣∣∣ 6 |F |
φ(1− c)

, (4)

but |S`| > n/2− |F |
φ(1−c) . (Note that if S` 6 n/2− |F |

φ(1−c) , then |S| 6 n/2 and the first case applies.) Recalling that F = o(n),
it follows that S` ∈ Θ(n). Since S` was removed when executing Prune(c), we know that |NG`

(S`)| 6 cφ|S`| and, by the



expansion of G, we have |NG(S`)| > φ|S`| as S` 6 n/2. Thus

|NG(S`)| − |NG`
(S`)| > φ(1− c)|S`| = Θ(n)

We observe that the size of the neighborhood of S` must have been reduced by Θ(n) either due to the removal of nodes in F or
because of the pruning of the sets S0, . . . , S`−1. This, however, yields a contradiction, since |F |+

⋃`−1
i=0 Si = O(|F |) = o(n).

Thus we have shown that |
⋃m
i=0 Si| 6

|F |
φ(1−c) and hence |H| > |G| − |F |(1 + 1/(φ(1− c)), which completes the proof.

Now consider the execution of the sampling algorithm (cf. Algorithm III.1) on Ḡ (instead of G) in which any dropped
token (that chose a dangling port p in G) is actually sent along the ghost edge (incident at p). Once a token goes through a
ghost edge, it is called a ghost token. Tokens that never passed along ghost edges are called real tokens. Therefore, we can
apply the results from [57] to get the following lemma.

Lemma 5 (cf. [57]). For the dynamic graph Ḡ = (Ḡi)i>1 described above, there is a τ ∈ Θ(log n) that we call its mixing
time such that, if a node received a random walk token t in round i that originated in round i′ = i− τ , then, the probability
that t originated from any particular node in V̄i′ is within [1/n− 1/nc, 1/n+ 1/nc] for any fixed c that depends on the
constant hidden in the asymptotic description of τ .

The definition of a mature token (cf. Section III) is based on the parameter τ defined in Lemma 5. It must be noted that in
the statement of Lemma 5, we are precluding any knowledge of whether t is a ghost token or a real token. If, for instance,
we know a posteriori that t is a real token, but most of the tokens received by the node v were ghost tokens, then, Lemma 5
cannot be applied. Under this scenario, the distribution of starting vertices for t is not guaranteed to be uniform. However, if
a node receives a sufficiently large number of real tokens, then, intuitively, we can conclude that that node is well connected
and likely to receive well-mixed random walk tokens. We now wish to formalize this observation.

The following Sampling Lemma shows the key property, namely the near-uniform distribution of tokens in the Υ process
graph Gi, by appealing to the distribution of real tokens (not ghost tokens) in Ḡi.

Lemma 6 (Sampling Lemma). Recall that z is the number of random walk tokens initiated by each node every round. Let d
be any node in Ḡi (at round i) and let Td be the set of mature real tokens received by d in round i.

1) The number of nodes |{d ∈ V̄i | Td > (1 − η)z}| that receive at least (1 − η)z mature tokens is (whp) at least
n−O(n/ logk n) when z ∈ Ω(log2k+1 n).

2) Furthermore, if |Td| > (1 − η)z, then we are guaranteed with high probability that for each t ∈ Td, there is a set
S ⊆ V̄i−τ of cardinality at least (1− ε)n, for some small ε > 0, such that the probability that t originated at any s ∈ S
is in Θ(1/n). (We note specifically, that the upper bound on the probability is at most 1/n+ 1/nc for some suitably
large constant c.)

Proof: Consider the following experiment. Let t be a token chosen uniformly at random from the set of all tokens that
were initiated at round i− τ . Let Rd be the event that the token t reached d at time step i as a real token, i.e., t ∈ Td. (The
arrival at time step i implies that t matured on entering d.) As a consequence of Lemma 5, we get P[Rd] 6 1/n+ 1/nc for
any fixed c, but we cannot lower bound P[Rd] using Lemma 5 because Rd requires the token t to reach d as a real token,
which will not happen (for example) when d is connected only via ghost edges.

Consider some d ∈ V̄i such that P[Rd] 6 c′/n for any fixed c′ that is less than 1− η. Then, E [|Td|] 6 c′z; recall that t is
a random token initiated in round i− τ . Under this circumstance, P[|Td| > (1− η)z] 6 1/poly(n), as long as z is sufficiently
large. (This follows by an application of a Chernoff bound which is possible due to the independence of the random walks.
In particular, whether a random walk reaches d or not is independent of other random walks.) Thus, we condition the rest of
the proof on Td < (1 − η)z for all d with P[Rd] 6 c′/n. Under this conditioning, if |Td| > (1 − η)z, then P[Rd] > c′/n
(which we will use at the end of the proof).

To focus our attention on such nodes that receive at least (1− η)z tokens, we define D := {d ∈ V̄i||Td| > (1− η)z}. We
now wish to prove that |D| is large (i.e., item (2) of the lemma). We do this by showing that (i) whp no node in D gets too
many tokens and that (ii) there are sufficiently large number of real tokens, thus implying that D must be large enough to
ensure that all the real tokens have recipient nodes in D. To show (i), consider any d ∈ D; it has E [|Td|] 6 (1 + 1/nc−1)z.
A simple application of Chernoff bound ensures that the P[|Td| > (1 + 1/ logk n)z] 6 1/poly(n), when z ∈ Ω(log2k+1 n).
We now need to prove that

∑
d |Td| is large. Notice that Ḡi are ∆-regular and the number of ghost edges is at most

O(n/ logk−1 n) and whp the number of tokens passing through a ghost edge is at most O(z). Therefore, whp, the number
of tokens that become ghost tokens (over all ghost edges in all τ ∈ O(log n) rounds) is at most O(nz/ logk−2 n). Thus, at
least nz −O(nz/ logk−2 n) tokens are (whp) real. With items (i) and (ii) (mentioned earlier in this paragraph) proved, one
can deduce that |D| > n−O(n/ logk n) (whp), when z ∈ Ω(log2k+1 n). This proves the first statement in the lemma.



Consider a random walk token t chosen uniformly at random from the set of all tokens that originated in round i− τ . To
prove the second statement, let Os denote the event that a random walk token t originated at s ∈ V̄i−τ in round i− τ . Thus,
P[Os] = 1/n. Now fix a d ∈ D and define a corresponding S = {s ∈ V̄i−τ |P[Rd|Os] > c′′/n} for any fixed c′′, 0 < c′′ < c′.
We want to show that S is large, i.e., of size at least (1 − ε)n. Recall that E[number of real tokens that reached d] =
z
∑
s P[Rd|Os] > c′z (since P[Rd] > c′/n). Thus, we can conclude that∑

s

P[Rd|Os] > c′. (5)

Recall that P[Rd|Os] 6 1/n+ 1/nc 6 (1 + ε′)/n for every s and any ε′ > 0. Let K = n− |S|. To see how large K can
get, we set |S| summation terms in Equation (5) to (1 + ε′)/n and the remaining K terms to c′′/n. Solving for K, we get
K < n

(
1+ε′−c′
1+ε′−c′′

)
. Recall that c′ can be any fixed constant strictly less than 1 while c′′ can be any fixed constant strictly

larger than 0. Thus, we can make ε =
(

1+ε′−c′
1+ε′−c′′

)
arbitrarily small and thereby leading to |S| > (1− ε)n for any fixed ε > 0.

Now fix a d ∈ D and an s ∈ S (where S is chosen corresponding to the d). Let t be chosen uniformly at random from
the set of all tokens that originated in round i− τ . Since P[Os|Rd] = P[Rd|Os]P[Os]

P[Rd] and all the terms in the right hand side
are Θ(1/n), it follows that P[Os|Rd] ∈ Θ(1/n) for all s ∈ S, thus proving item (2) of the lemma.

D. Viewing the Expander Maintenance Protocol as an Υ-Process

We start by arguing that at some round i ∈ Θ(log n), Gi is going to be an expander. This will form the basis upon which
our inductive statement (cf. Lemma 7) hinges. We note that the bootstrap phase runs for B = β log n, where the constant β
is sufficiently large and therefore, the bootstrap phase (along with the safety of a steady stream of mature tokens that starts
after the first τ rounds) lasts sufficiently long for the network to form the first expander. This formation of the first expander
can be easily argued based on (i) Lemma 5, which proves that the nodes will get a steady stream of mature tokens after the
first τ rounds, and (ii) Lemma 1, which ensures that, once all the nodes connect using blue edges (which will happen in at
most B = Θ(log n) rounds, where B is the length of the bootstrap phase), the graph is indeed an expander (whp).

In the proof of the following lemma we make use of the fact that, when a node u initiates a blue edge to some node v in
the expander maintenance protocol, then v was (almost) uniformly chosen from a large set, as described in the Υ-process (cf.
Algorithm IV.1).

In light of Lemma 2, it is sufficient to show that, if the expander maintenance protocol (in conjunction with the adversary’s
behavior) has been an Υ-process until some round i− 1 (for i > Θ(log n)), then it will continue to be an Υ-process in round
i (whp); we will formalize this now.

Lemma 7. Suppose the expander maintenance protocol (cf. Section III) has been an Υ-process until round i− 1. Then, with
high probability, the expander maintenance protocol will continue to be an Υ-process in round i and (as a consequence
of Lemma 2) the graph Gi that it creates at time step i will also contain a large n− o(n)-sized expander subgraphs with
expansion at least α.

Proof: To see that this is indeed the case, we walk through the activities of both an Υ-process (as required by its
definition), and the expander maintenance protocol.

As argued above, the graph after the end of the bootstrap phase, i.e., GB+1, is an expander (B = Θ(log n)). The Υ-process
also starts with the graph being an expander (line 1 of Algorithm IV.1). We next show that the graph generated henceforth
by the protocol (i.e., GB+2 onwards) will be an Υ-process.

It is easy to see that until line number 7, the behavior of the Υ-process matches the behavior of the adversary.
Recall that in the expander maintenance protocol, when a node has fewer than δ blue edges, it tries to connect until

it succeeds (or is churned out). Thus, it remains deficient of blue edges until some round and then gets an edge chosen
uniformly at random. The Υ-process delineates the two decisions, namely, (i) when to add an edge and (ii) how to add an
edge.

From line 8 until line number 15, the Υ-process is required to ensure two conditions listed under line number 9. These
lines do not actually create the edges, but rather place budgets on the number of blue edges that need to be added to each
node. After the budgets are set, the edges are actually created at a later part (from line number 16 to 20) of the Υ-process
definition. We need to prove that (whp) the expander maintenance protocol will also maintain the two conditions and we will
revisit this shortly.

The edges are actually added between line number 16 to 20 of the Υ-process definition, where the red ends are chosen
almost uniformly at random from a large set of vertices. Since the RW-Sampling algorithm has been successfully running up
until round i− 1 (as a consequence of our assumption that the expander maintenance protocol has been an Υ-process until



time step i− 1 in conjunction with Lemma 6), the expander maintenance protocol also chooses the red end from the current
set of vertices based on a distribution that is almost uniform over a large fraction of current (i.e., round i) vertices.

In the For loop starting in line number 10, the Υ-process refreshes the edges of vertices chosen at random, which the
expander maintenance protocol also performs. After the decision to refresh has been made, the edges (as usual) are chosen
almost uniformly at random from a large fraction of current nodes.

We now have to prove the two conditions (see line number 9, conditions (2) and (3)) that any Υ-process must ensure are
in fact upheld by the expander maintenance protocol. Denote by Xi the nodes that start to have fewer than δ blue edges in
round i, i.e., they either had all δ blue edges in round i− 1 or were only churned in at the current round i. In particular, we
focus on the set Xi−Θ(logn). In order to show that the two conditions are upheld, it suffices to show the following claim.

Claim 1. The nodes in Xi−Θ(logn) have all obtained the requisite number of blue edges at least once since round i−Θ(log n)
w.h.p.

Before proving the claim, we first see why it is sufficient. Since in any round at most O(n/ logk n) nodes can become
deficient of blue edges (i.e., fewer than δ blue edges) and all of them reconnect w.h.p within O(log n) rounds (as a consequence
of the claim), the number of nodes that are deficient of blue edges is at most O(n/ logk−1 n), and thus both conditions will
be ensured.

Proof of Claim 1: Consider a node f ∈ Xi−Θ(logn) that received a fresh set of Ω(log2 n) mixed tokens in round
i−Θ(log n). The node f retains some of its tokens to itself and the remaining set T of tokens (that number O(log2 n)) are
given to any node(s), say node a, that might be attached to f by the adversary. Now suppose a has still not received any
fresh tokens and another node b is attached on to it. Then, the same set T of tokens are passed along by a to b. In fact,
a constant number of such new nodes may be attached to a, and all of them will share the same set T of tokens. Thus,
let YT (j) be the set of nodes in round i − Θ(log n) + j, 0 6 j 6 Θ(log n), that are in possession of the same set T of
tokens and are trying to get fresh tokens. Note that YT (0) is a constant. As long as |YT (j)| stays bounded within O(log n),
the probability that a node in YT (j) does not get fresh tokens in round i−Θ(log n) + j is conservatively bounded from
above by 1/ log n. This is because, the node can fail to get fresh tokens because (i) it made requests for fresh tokens to
nodes that were already requested for fresh tokens by other nodes in YT (j), (ii) it made requests for fresh tokens to nodes
that were already requested for fresh tokens by nodes outside of YT (j) (but such requests are made by nodes with a token
set independent of T and there can only be O(n/polylogn) such requests), or (iii) it made requests to nodes that did not
themselves possess fresh tokens (which can only be O(n/polylogn many in number). Thus, E[YT (j + 1)] 6 εE[YT (j)] for
any ε > 1/ log n. Recursively, E[YT (Θ(log n))] ∈ εΘ(logn)E[YT (0)] 6 1/nc, for any constant c. Thus, by a straightforward
application of the Markov’s inequality, we can ensure that P[YT (Θ(log n)) > 1] 6 1/nc. The same argument can also be
made for nodes possessing fresh tokens and trying to gain the required δ blue edges. Moreover, the same argument can
be made over the entire set Xi−Θ(logn). Each node can fail to get its requisite fresh tokens or the requisite δ blue edges
(whichever the case may be) with probability at most O(1/ log n). Thus, we again see that the expected number of nodes in
Xi−Θ(logn) that have not yet acquired their requisite number of blue edges dwindles exponentially, and a similar Markov’s
inequality application completes the argument. Thus, by the current round i, the nodes in Xi−Θ(logn) have all obtained the
requisite number of blue edges at least once since round i − Θ(log n) (whp), thus completing the proof of Claim 1 and
Lemma 7.

From the above, our main theorem follows:

Theorem 1. The expander maintenance protocol maintains the network communication graph sequence G1, G2, . . . , as
graphs that contain large n− o(n)-sized expander graphs with expansion at least α for a number of rounds that is at least
a polynomial in n with high probability.

V. IMPOSSIBILITY OF MAINTAINING CONNECTIVITY IN THE CLASSIC SYNCHRONOUS ROUND MODEL

Recall that, during a single round in our model (cf. Section II), a node u can send a message to a node v, which can then
perform some local computation (taking into account the message received from u), and finally v can send some messages
that are delivered by the end of the round. We assume that this entire sequence is atomic with respect to the actions of the
adversary, i.e., nodes do not join or leave the network before the sequence is complete. This is in contrast to the classic
synchronous model where such a sequence would span 2 rounds, because any message sent in round r can only be processed
by the receiver at the start of round r + 1. While it might appear that this assumption is just a mere technicality, we will
now prove that there is no algorithm that can maintain connectivity (let alone expansion) for a majority of the nodes in the
classic synchronous round model, even if the churn is limited to only Θ(

√
npolylog(n)) nodes per round.



Theorem 2 (Impossibility without Single-Round Handshakes). Let m and c be arbitrary positive constants such that
c > m > 1. Consider a synchronous n-node network where an oblivious adversary can subject C(n) = Ω(

√
n logc n) nodes

to churn in each round. Moreover, suppose that every node can send messages of size O(logm n) to at most ∆ distinct nodes
per round, where ∆ > 2 is an arbitrary fixed integer. Then, there is an adversarial strategy that, with high probability, leads
to a round where the network contains at least n/2− o(n) nodes that are partitioned into Θ(n) (disconnected) components.

We present a high-level overview of the proof. The main idea is to add new nodes in layers of exponentially increasing
size while limiting the information flow between these newly added nodes and the remaining network. This ensures that,
after the construction of the last layer (containing C(n) nodes), only a polylogarithmic number of the IDs of nodes in this
layer are known to the remaining network and vice versa. Moreover, we need to ensure that the nodes in the layer do not
know too much about each other to avoid the case where the layer itself forms a well-connected graph. We leverage the
low information flow to create a bottleneck that slows down the integration of these newly added nodes into the remaining
network. Note that, up until the point where the layer nodes can communicate successfully with the remaining network, they
will form small disconnected components. We then repeat this layer construction process several times at other points in the
network, which results in a situation where at least half of the nodes are in such layers (and hence disconnected). For lack of
space, we defer the full proof to the full version of the paper.

VI. CONCLUSION

We presented a protocol that guarantees that the underlying topology has high expansion despite large amount of dynamism
and adversarial churn. Since high expansion is needed for implementing many fundamental distributed computing tasks in
an efficient and robust manner, this protocol serves as a basic ingredient. It will be interesting to improve our protocol to
tolerate even higher churn (say, linear in n) and different types of adversaries.
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