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Abstract: The marine brown alga Halidrys siliquosa is known to produce compounds with 

antifouling activity against several marine bacteria. The aim of this study was to evaluate 

the antimicrobial and antibiofilm activity of organic extracts obtained from the marine 

brown alga H. siliquosa against a focused panel of clinically relevant human pathogens 

commonly associated with biofilm-related infections. The partially fractionated methanolic 

extract obtained from H. siliquosa collected along the shores of Co. Donegal; Ireland; 

displayed antimicrobial activity against bacteria of the genus Staphylococcus; Streptococcus; 

Enterococcus; Pseudomonas; Stenotrophomonas; and Chromobacterium with MIC and 

MBC values ranging from 0.0391 to 5 mg/mL. Biofilms of S. aureus MRSA were found to 

be susceptible to the algal methanolic extract with MBEC values ranging from 1.25 mg/mL 

to 5 mg/mL respectively. Confocal laser scanning microscopy using LIVE/DEAD staining 

confirmed the antimicrobial nature of the antibiofilm activity observed using the MBEC 

assay. A bioassay-guided fractionation method was developed yielding 10 active fractions 

from which to perform purification and structural elucidation of clinically-relevant 

antibiofilm compounds. 
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1. Introduction 

The marine environment favors the formation of microbial biofilms on virtually all inanimate 

submerged surfaces [1]. In contrast, the majority of marine eukaryotic organisms, especially benthic, 

slow-moving or photosynthetic ones require their exposed biotic surfaces to remain relatively free 

from fouling [2,3]. Thus, they have evolved a plethora of antifouling strategies aimed at preventing the 

settlement and colonization of unwanted microbial pathogens and microfoulers [4] responsible for 

conditioning surfaces and providing cues for the settlement of macrofouling species such as  

barnacles [5]. The antifouling strategies adopted by marine organisms range from the purely 

mechanical, such as the production of mucus by fish [6], the nanopatterning of shark skin [7], or the 

periodical shedding (ecdysis) and replacement of the rigid exoskeleton by Crustaceans [8] to the 

biosynthesis of specific antifouling bioactives including a multitude of antimicrobials and quorum 

sensing inhibitors (QSIs) such as the renown halogenated furanones [9–11]. 

As all benthic marine photosynthetic organisms, brown algae are restricted to the euphotic zone 

where the fouling pressure is typically highest. As a result, the capacity to synthesize effective antifouling 

bioactives appears to have evolved as a principal antifouling strategy within this phylum [12–15]. 

Compounds produced by brown algae include major metabolites derived from isoprene (complex 

diterpenoids) [16], volatile compounds (cyclic or acyclic short-chain hydrocarbons (C8 or C11) arising 

from enzymatic conversion of long chain fatty acids), fucoidans, phlorotannins and fucoxanthins 

exhibiting antioxidant, antibiotic, antifungal, antiviral and anti-cancer activities [17]. Halidrys 

siliquosa is a brown alga found in rock pools and in the shallow subtidal waters of the Atlantic coasts 

of Europe, of the Baltic Sea, of Ireland and the British Isles [18]. Previous studies suggest this species 

relies heavily on an arsenal of chemicals to protect itself from grazing, fouling, pathogens and 

parasites. In fact the production of bioactives with anti-trypanosomal and anti-leishmanial activity [19], 

with antifouling activity against several marine bacteria [20] and displaying antimicrobial activity 

against some human pathogens [19,21,22] has been reported making this organism an ideal candidate 

for the isolation and characterization of bioactive compounds displaying antimicrobial or antibiofilm 

activity against clinically relevant human pathogens commonly associated with biofilm-related 

infections, especially ones displaying resistance to current antibiotics. 

The aetiology of a significant number of acute and chronic human infections has been associated 

with the biofilm mode of growth of pathogenic bacteria [23]. In fact, current estimates suggest that the 

majority of human infections involve biofilms [24]. Within a biofilm, bacteria are provided with a 

greater degree of protection against challenging environmental conditions, natural and synthetic 

antimicrobials, chemical insults, mechanical removal, bacteriophages, external predation and elements 

of the body’s immune system such as leukocytes [25–35]. The successful formation of a biofilm within 

a human host often results in the development of a chronic, untreatable infection characterized by an 

elevated tolerance to conventional antibiotic treatment [36] and with an established capacity for 
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evading host immune detection and response [37]. In fact, biofilm associated infections often fail to 

respond to standard antimicrobial therapy based on classical susceptibility studies using planktonic 

cultures (such as the minimal inhibitory concentration (MIC) and minimal bactericidal concentration 

(MBC)) and concentrations of antibiotics up to 100–1000 fold higher than those necessary to treat 

planktonically growing bacterial cultures are often required to completely eradicate the same bacteria 

growing in biofilms [38,39]. 

Microbial biofilms provide a favourable environment for the intra- and inter-specific horizontal 

transmission of genetic elements with the consequent dissemination of antimicrobial resistance (AMR) 

genes [40,41]. In the clinical environment a clear relationship between antimicrobial use and the 

emergence of multiresistant strains has been observed [42,43], severely undermining the efficacy of 

previously successful courses of treatment for both acute and chronic infections. For example, 

Staphylococcus aureus has gradually re-emerged as a clinically relevant pathogen due to its resistance 

to antibiotics and the increased availability and use of indwelling medical devices [43–45]. Multi-resistant  

S. aureus (MRSA) infections in the US have a crude mortality rate of 25% along with long 

hospitalizations periods [46,47]. S. aureus biofilm-related infections are currently involved in the 

majority of cases of Osteomyelitis, are often associated to chronic wound infections (such as diabetic 

foot ulcers, venous stasis ulcers and pressure sores) and represent the major cause of infection and 

failure of indwelling medical devices [45]. In the nosocomial environment, S. aureus biofilm 

infections are also commonly associated to the use of stents, ventilators, urinary and intravenous 

catheters, infusion pumps, mechanical heart valves, aspirators, pacemakers, stitch materials, ear and 

central nervous system shunts and cosmetic surgical implants [48] and can generally occur anywhere 

the skin barrier is compromised and bacteria can be introduced through a hematogenous route or 

through direct exposure during surgery [49]. 

Within the past two decades, the growing costs and efforts required to develop and market novel 

antibiotics has caused many major pharmaceutical companies to completely exit this field and focus 

their research efforts on products unlikely to lose their effectiveness over a short period of time such as 

antidepressants, statins, and anti-inflammatory medications. As a consequence there has been a 

continuous decrease in the number of new antibacterial drugs approved for marketing globally with an 

88% drop in the approval of novel systemic antibiotics since the mid-1980s [50]. This scenario points 

to the likelihood of a substantial increase in morbidity and mortality worldwide, justifying and 

necessitating renewed interest in research aimed at the discovery of novel antibiofilm compounds and 

strategies focused on countering the emergence of antimicrobial resistance. An example of one such 

promising strategy is the inhibition of QS (QSI), the cell-to-cell signaling system responsible for 

regulating the expression of genes necessary for virulence factor production, for the production of 

products required for bacteria-host interactions and for the regulation of biofilm development [51–60]. 

The QSI approach aims at disarming rather than killing pathogens whilst rendering them more 

susceptible to conventional antimicrobial treatments [61] and to the host immune responses [62]. 

Moreover, as QS is not involved in mechanisms essential for the survival of bacteria, its inhibition is 

unlikely to produce a harsh selective pressure apt to cause the emergence of resistance [63]. 

The immense chemical diversity of marine algae provides a rich potential for the necessary, 

upcoming concerted global effort required for the discovery of novel antimicrobials and strategies apt 

to tackle bacterial infection and the emergence and diffusion of AMR in the 21st century. 



Mar. Drugs 2015, 13 3584 

 

 

2. Results 

The workflow showing the different steps involved in the extraction and initial bioassay-guided 

fractionation of H. siliquosa yielding 10 active fractions from which to perform the isolation and 

characterization of novel antibiofilm compounds is shown in Figure 1. 

 

Figure 1. Work flow showing the different steps involved in the extraction and initial 

bioassay-guided fractionation of H. siliquosa. Fresh algal samples were extracted with 

MeOH yielding crude methanolic extract E1. Extract E1 was de-proteinized yielding 

extract E2 and precipitate P1. Extract E2 was eluted through silica using hexane:ethyl 

acetate yielding extract E3 which was further screened for antimicrobial and antibiofilm 

activity against a panel of clinically-relevant human pathogens. Extract E3 was further 

fractionated using flash chromatography and active fractions analyzed using HPLC prior to 

future purification and structural elucidation. 

2.1. MIC, MBC and MBEC Values of Extract E3 

The MIC, MBC and MBEC values for extract E3 against a focused panel of human pathogens was 

determined (Table 1). The results confirmed the susceptibility results observed using the disc diffusion 

assay. Planktonic cultures of the Gram positive pathogens S. aureus ATCC 29213, S. aureus NCTC 

12981, S. aureus MRSA ATCC 33593, S. aureus MRSA 10442 and S. aureus MRSA ATCC 43300 

proved susceptible to extract E3 with MIC and MBC values ranging from 0.1562 to 0.3125 mg/mL. 
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Biofilms of S. aureus MRSA 33593 and S. aureus MRSA 10442 were found to be susceptible to 

extract E3 with MBEC values of 1.25 mg/mL and 5 mg/mL respectively. Planktonic cultures of 

S. epidermidis 35982, S. epidermidis 13360, S. epidermidis 12228 and S. epidermidis MRSE 11964 

were also susceptible to the extract with MIC values ranging from 0.1562 mg/mL to 0.625 mg/mL and 

MBC values ranging from 0.3125 mg/mL to 1.25 mg/mL however the mature biofilm of all three 

strains proved resistant to the extract with no MBEC values observed. Planktonic cultures of 

Staphylococcus haemolyticus NCTC 11042 and Staphylococcus hominis NCTC 11320 were also 

susceptible to the extract with MIC values ranging from 0.1562 mg/mL to 0.625 mg/mL and MBC 

values ranging from 0.3125 mg/mL to 1.25 mg/mL whereas biofilm cultures proved resistant, with no 

MBEC values observed up to and including the highest concentrations of extract tested (5 mg/mL). 

Planktonic cultures of Streptococcus pyogenes NCTC8306, Streptococcus agalactiae NCTC 8542 and 

Streptococcus pneumonia NCTC7465 proved particularly susceptible to the extract with MIC values 

ranging from 0.0391 mg/mL to 0.1562 mg/mL and MBC values ranging from 0.0391 mg/mL to 

0.1562 mg/mL whereas biofilm cultures of Streptococcus pyogenes NCTC8306 proved resistant, with 

no MBEC values observed (>5 mg/mL). Planktonic cultures of Streptococcus sanguinis NCTC 7863 

were resistant to extract E3 at the highest concentration tested (5 mg/mL). Planktonic cultures of 

Enterococcus fecalis 779 were found to be susceptible to extract E3 with and MIC and MBC value of 

0.3125 mg/mL and 0.625 mg/mL however complete eradication of mature biofilms was not achieved 

(MBEC > 5 mg/mL). The Gram negative pathogens Proteus mirabilis ATCC 7002, P. aeruginosa 

PAO1, P. aeruginosa NCTC 12903, Escherichia coli NCTC 12241, and E. coli ATCC 11303  

proved less susceptible to extract E3. However, Stenotrophomonas maltophilia NCTC 10257  

(MIC = 0.3125 mg/mL, MBC = 0.625 mg/mL, MBEC = 5 mg/mL) and C. violaceum ATCC 12472 

(MIC = 0.1562 mg/mL, MBC = 0.3125 mg/mL) were both found to be susceptible to the extract. The 

yeast Candida albicans failed to display susceptibility to the extract E3 using the disc diffusion assay 

and the effect of the extract on this pathogen was not studied further. 

Table 1. Antimicrobial and antibiofilm activity of H. siliquosa extract E3. 

Pathogenic Strain  MIC (mg/mL) MBC (mg/mL) MBEC (mg/mL) 

S. aureus ATCC 29213  0.3125 0.3125 NoA 
S. aureus NCTC 12981 (ATCC 25923) 0.1562 0.3125 NT 
S. aureus MRSA ATCC 33593 0.1562 0.1562 1.25 
S. aureus MRSA NCTC 10442 0.1562 0.3125 5 
S. aureus MRSA ATCC 43300  0.3125 0.3125 NoA 
S. epidermidis ATCC 35982 0.1562 0.3125 NT 
S. epidermidis NCTC 13360 (ATCC 12228) 0.1562 0.3125 NoA 
S. epidermidis MRSE NCTC 11964 0.625 1.25 NoA 
S. haemolyticus NCTC 11042 0.1562 0.3125 NoA 
S. hominis NCTC 11320  0.3125 0.3125 NoA 
S. pyogenes NCTC 8306 (ATCC 12204) 0.0391 0.0391 NoA 
S. agalactiae NCTC 8542 0.1562 0.1562 NT 
S. pneumoniae NCTC 7465  0.0391 0.0781 NT 

  



Mar. Drugs 2015, 13 3586 

 

 

Table 1. Cont. 

S. sanguinis NCTC 7863 NoA NoA NoA 
E. faecalis ATCC 779 0.3125 0.625 NoA 
P. mirabilis ATCC 7002 1.25 NoA NoA 
P. aeruginosa PAO1 2.5 5 NoA 
P. aeruginosa NCTC 12903 (ATCC 27853) 2.5 5 NT 
S. maltophilia NCTC 10257 (ATCC 13637) 0.3125 0.625 NoA 
E. coli NCTC 12241 5 5 NT 
C. violaceum ATCC 12472 0.1562 0.3125 NoA 
C. albicans NoA NoA NoA 

Minimum inhibitory concentration (MIC), Minimum bactericidal concentration (MBC) and Minimum 

biofilm eradication concentration (MBEC) of H. siliquosa extract E3. Values are expressed in mg/mL.  

NoA = no activity observed up to and including the highest concentration of extract tested (5 mg/mL).  

NT = not tested. 

 

Figure 2. LIVE/DEAD staining and CLSM (60×) of (left) untreated 72 h S. aureus 

(MRSA) ATCC 33593 biofilms and (right) S. aureus ATCC 33593 72 h biofilms following 

24 h challenge with H. siliquosa extract E3 (1.25 mg/mL). Treated MRSA ATCC 33593 

biofilms appeared mostly dead (red) confirming the antimicrobial activity seen during 

screening. The X–Y projections of the treated biofilm suggest a good penetration of the 

antimicrobial compounds within the exopolymeric matrix with a consistent antimicrobial 

activity throughout all layers of the biofilm.  
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2.2. CLSM of S. aureus (MRSA) ATCC 33593 Biofilms Challenged with H. siliquosa Extract E3 

Following 24 h of growth, control MRSA ATCC33593 biofilms appeared viable, with most of the 

biofilm cells staining green. Untreated 24 h control biofilms were found to be approximately 7–10 µm 

in thickness. 24 h MRSA ATCC 33593 biofilms challenged with H. siliquosa extract E3 displayed 

extensive cell death mostly staining red, confirming the antibiotic nature of the bioactive compounds 

involved (Figure 2). X–Y analysis of the biofilms suggested an effective penetration of the antimicrobials 

within the biofilms’s exopolymeric matrix, with antimicrobial activity involving all layers of the 

biofilm, including the lower, typically less metabolically active ones. The extract appeared to affect the 

integrity of the biomass causing the dispersal of large portions of the biofilm. 

2.3. Extract Toxicity Screen Using the Galleria Mellonella Model 

The G. mellonella wax moth larvae model provides a quick, economical, and reliable evaluation of 

the toxicity of new antimicrobial agents in vivo prior to testing using more expensive mammalian  

models [64]. Extract E3 failed to display toxicity against G. mellonella larvae up to and including the 

highest concentration of extract tested (20 μL of 16 mg/mL working solution) over a period of six days 

with 100% survival. Controls containing 8% w/v Tween 80 prepared in PBS did not highlight any 

activity due to the presence of Tween 80 or PBS. 

2.4. Normal Phase Flash Chromatography/Bioassay Guided Fractionation 

Extract E3, obtained through Hexane:ethyl acetate elution of extract E2, was fractionated using 

normal phase automated Flash chromatography into 98 fractions. Each of the 98 fractions was then 

screened for antimicrobial activity using the disc diffusion assay and the TLC overlay assay using both 

C. violaceum ATCC12472 and S. aureus MRSA ATCC 33593. Rf values for UV-visible compounds 

were calculated and related to compounds displaying activity in the TLC overlay and disc diffusion 

assays on C. violaceum and MRSA 33593. Clear antimicrobial activity against both test strains was 

present in fractions 35 and 36 and fractions 43–53 (strongest between 46 and 52) (Figure 3). 

 

Figure 3. Disc diffusion assay against C. violaceum ATCC 12472 of fractions obtained 

using Flash Chromatography. Antimicrobial activity was detected in fractions 35–36  

(not shown) and 46–52. 
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2.5. HPLC Analysis of Fractions 

The composition of the methanolic extracts E1 and E2 and extract E3 (obtained through 

Hexane:ethyl acetate elution of extract E2) prior to fractionation and of the 98 fractions obtained using 

normal phase flash chromatography of extract E3, were analyzed using reverse phase HPLC equipped 

with a photodiode array detector (PDA) set to analyze wavelengths of 200–400 nm. The analysis of 

extracts E1, E2 and E3 confirmed the removal of putatively non-active constituents present in extract 

E1 following diethyl ether precipitation/filtration (extract E2) and silica binding (extract E3). As 

expected, the 3-dimensional chromatogram of extract E3 (Figure 4A) displayed a lower chemical 

complexity than the chromatograms obtained for the initial crude extract E1 and extract E2 (data not 

shown). The HPLC analysis of the 98 fractions obtained performing automated flash chromatography 

confirmed the successful fractionation of extract E3 with each fraction containing between 2 and  

7 compounds. The composition and elution pattern of the compounds present in the 10 active fractions 

obtained using normal flash chromatography and analyzed using the PDA suggests a correlation 

between the antimicrobial activity observed against MRSA 33593 and the presence of 3 peaks 

(compounds) which can be seen displaying similar absorption, in the most active fraction, fraction 48 

(Figure 4B,C). 

2.6. Screening Fresh H. siliquosa Fronds for Antimicrobial and QSI Activity 

The overlay method [65] was used to screen fresh algal fronds for antimicrobial activity against  

E. coli ATCC 11303, P. aeruginosa PAO1, P. aeruginosa PA14, E. cloacae, E. faecium DSM 25390,  

S. aureus MRSA ATCC 33593, and K. pneumonia 204. Marked antimicrobial activity was observed 

against S. aureus MRSA ATCC 33593 and the two QS-reporter strains C. violaceum ATCC 12472 and 

C. violaceum CV026 and weak antimicrobial activity was observed against P. aeruginosa PAO1 and 

PA14 (Figure 5). A very weak antimicrobial activity was detected against E. coli ATCC 11303 

consisting in an inhibition zone of approximately 2 mm surrounding the fresh algal sample. The 

pronounced antimicrobial activity displayed by fresh H. siliquosa fronds against reporter strains  

C. violaceum ATCC 12472 and CV026 prevented the detection of QSI or QS compounds using these 

two reporter strains. The overlay of fresh H. siliquosa fronds using QSI reporter Serratia sp. ATCC 

39006 failed to detect relevant QSI or antimicrobial activity against this strain. 
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(A) 

 
(B) 

 
(C) 

Figure 4. (A) 3-dimensional absorbance scan (200–400 nm) using the Photo Diode Array 

detector (PDA) of extract E3 highlighting the chemical complexity of the extract; (B) Main 

portion of the 3-dimensional absorbance scan of active fraction 48, obtained following 

bioassay-guided fractionation using automated flash chromatography, showing the 

presence of 3 main compounds considered to represent the antimicrobial activity identified 

in the study, each with absorbance peaks at approximately 220 and 290 nm suggesting a 

similar class of compounds; (C) HPLC chromatogram (290 nm) of active fraction  

47 displaying the elution pattern of the three compounds (green, white and red arrows) 

putatively responsible for the antimicrobial activity detected in fractions obtained previously 

through normal phase fractionation and tested using disc diffusion and TLC overlays.  
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Figure 5. Screening fresh H. siliquosa fronds for antimicrobial, QSI and QS activity using 

the overlay method. (A) Very weak antimicrobial activity (2 mm inhibition zone) against  

E. coli ATCC 11303; (B) No antimicrobial activity detected against K. pneumonia NCTC 

204; (C) Pronounced antimicrobial activity of H. siliquosa against S. aureus (MRSA) 

ATCC 33595; (D,E) Weak antimicrobial activity of H. siliquosa against P. aeruginosa 

PAO1 and PA14; (F) No antimicrobial nor QSI activity detected against Serratia sp. 

ATCC39006; (G) No antimicrobial activity against E. cloacae. (H,I) Pronounced 

antimicrobial activity of H. siliquosa against QSI reporter strain C. violaceum ATCC 

12472 and QS reporter strain C. violaceum CV026. 
 

2.7. Disc Diffusion Assays Using Halidrys siliquosa Extracts 

The crude methanolic extract (E1), the diethyl ether treated, de-proteinized extract (E2), the precipitate 

P1 and the extract (E3) of H. siliquosa were screened for antimicrobial activity using the disc diffusion 

assay. Antimicrobial susceptibility discs loaded with 100 µL of extracts E1, E2 and E3 at 4 mg/mL all 

displayed strong antimicrobial activity against S. aureus (MRSA) ATCC 33593 (with diameters of 

inhibition of E1 = 10 mm, E2 = 12 mm, E3 = 13.5 mm) and C. violaceum ATCC 12472 (Figure 6)  

(E1 = 10 mm, E2 = 11 mm, E3 = 12 mm). P1 failed to display significant antimicrobial activity. 

Disc diffusion assays were used to screen extract E3 for antimicrobial activity against a panel of 

clinically relevant human pathogens. H. siliquosa extract E3 was found to be active against the Gram 

positive pathogens of the genus Staphylococcus, Streptococcus, and Enterococcus and the Gram 

negative pathogens C. violaceum, P. mirabilis, and S. maltophilia. P. aeruginosa PAO1 was not found 

to be susceptible to the extract. The results of the disc diffusion assays are summarized in Table 2. 
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Figure 6. Antimicrobial activity of Halidrys siliquosa extracts. Disc diffusion assay on  

C. violaceum ATCC12472 of 100 µL of (A) crude methanolic extract E1 (4 mg/mL) (left), 

(B) extract E2 (4 mg/mL) (center) and (C) extract E3 (4 mg/mL) (right). 

Table 2. Antimicrobial activity of Halidrys siliquosa extract E3. 

Pathogenic Strain E5 CIP1 P1 TE10 CN10 
Extract E3 

(4 mg/mL) 

S. aureus ATCC 29213 (−) 19 mm 9 mm 22 mm 16 mm 11 mm 

S. aureus NCTC 12981 (ATCC 25923) 19 mm (−) 11 mm (−) 16 mm 11.5 mm 

S. aureus MRSA ATCC 33593 (−) 19 mm (−) (−) 8 mm 13.5 mm 

S. aureus MRSA NCTC 10442 (−) 18 mm (−) (−) 16 mm 13 mm 

S. aureus MRSA ATCC 43300 (−) 16 mm 8 mm 18 mm 9 mm 10.5 mm 

S. epidermidis ATCC 35982 (−) 26 mm (−) 22 mm 14 mm 13.5 mm 

S. epidermidis NCTC 13360 (ATCC 12228) 21 mm 22 mm (−) (−) 20 mm 12 mm 

S. epidermidis MRSE NCTC 11964 11 mm (−) (−) (−) (−) 7 mm 

S. haemolyticus NCTC 11042 18 mm 20 mm (−) (−) 16 mm 13.5 mm 

S. hominis NCTC 11320 27 mm 25 mm 26 mm (−) 26 mm 10 mm 

S. pyogenes NCTC 8306 (ATCC 12204) (−) 26 mm (−) 20 mm 15 mm 15 mm 

S. agalactiae NCTC 8542 20 mm 15 mm 11 mm 21 mm 17 mm 13 mm 

P. mirabilis ATCC 7002 (−) 26 mm (−) (−) 16 mm 6 mm 

P. aeruginosa PAO1 (−) 19 mm (−) (−) 18 mm 0 mm 

S. maltophilia NCTC 10257 (ATCC 13637) (−) 30 mm (−) 16 mm 20 mm 10 mm 

E. coli NCTC 12241 18 mm 14 mm 11 mm 27 mm 19 mm 10 mm 

C. violaceum ATCC 12472 20 mm 32 mm (−) 25 mm 20 mm 12 mm 

C. albicans n.a. n.a. n.a. n.a. n.a. 0 mm 

Antimicrobial activity of Halidrys siliquosa extract E3. Zones of inhibition (mm) using the disc diffusion assays. Control 

antibiotics: Erythromycin 5 µg (E5), Penicillin 1 Unit (P1), Tetracycline 10 µg (TE10), Ciprofloxacin 5 µg (CIP1) and 

Gentamycin 10 µg (CN10). Disc diffusion using 100 µL of MeOH extract at 4 mg/mL. (−) = no. activity detected,  

n.a. = not tested (yeast). 

2.8. TLC Overlay Assays 

The extracts E1, E2 and E3 were resolubilized in MeOH and developed on normal phase TLC 

plates using MeOH:Hex 50:50 as a mobile phase. The plates were screened for antimicrobial activity 

by overlaying with soft LB agar inoculated with either C. violaceum ATCC 12472 or S. aureus 

(MRSA) ATCC 33593. Two distinct bands of antimicrobial activity were detected against S. aureus 

(MRSA) ATCC 33593 (results not shown). Three distinct bands of antimicrobial activity were 
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detected against C. violaceum ATCC 12472 (results not shown). The two distinct bands of 

antimicrobial activity observed against MRSA ATCC 33593 coincided (same Rf value) with two of 

the three bands of antimicrobial activity observed against C. violaceum ATCC 12472 suggesting the 

same 2 compound(s) or groups of compounds contribute to the cumulative antimicrobial activity 

observed against these two test strains. The results also suggest the presence of two or more classes of 

antimicrobial compounds with substantially different molecular structures resulting in differing 

polarities and migratory speed in the TLC system used. We can thus assume the final antimicrobial 

activity exhibited by the crude extract using the disc diffusion assay or the MIC assay against MRSA 

ATCC 33593 is the result of the additive or synergistic activity of 2 distinct groups of compounds 

whereas the activity observed against C. violaceum ATCC 12472 is the result of the additive or 

synergistic activity of 3 distinct groups of compounds. 

3. Discussion 

According to the estimates of the Centers for Disease Control (CDC) and the National Institute of 

Health (NIH), 65%–80% [66,67] of all bacterial infections worldwide are associated with biofilms [24,68]. 

Such infections are typically characterized by an inherent resistance to antibiotics, an extraordinary 

capacity to evade the host immune system [37] and by an increased rate of horizontal genetic transfer 

leading to the acquisition and spread of antibiotic resistance and multi-resistance. The occurrence of 

biofilm-mediated infections, especially as a result of the medical use of implantable devices and 

catheters, is on the rise [69,70] and the identification of novel compounds with the capacity to inhibit 

bacterial colonization and biofilm formation is of crucial importance. The production of bioactives and 

in particular antimicrobials synthesized by the brown macroalgae is well documented in the literature. 

In this work, the marine brown alga Halidrys siliquosa was screened for the production of antimicrobial 

and antibiofilm compounds against a panel of clinically relevant human pathogens commonly 

associated with biofilm-related infections such as Cystic Fibrosis (CF) and infections associated with 

the use of indwelling medical devices such as urinary catheters [71,72] or intravenous catheterization 

in the nosocomial environment [73,74]. A simple protocol yielding an easily replicable organic extract 

designated E3 with a defined composition suitable for the purification of antibiofilm compounds 

produced by this alga was developed (Figure 1). 

Disc diffusion assays using the organic extract E3 revealed a broad-spectrum antimicrobial activity 

against Gram positive pathogens of the genus Staphylococcus, and Streptococcus. The Gram negative 

pathogen P. mirabilis ATCC7002 was found to be less susceptible to the extract than many of the 

susceptible Gram positive test strains. The Gram negative pathogen S. maltophilia NCTC10257 was 

also found to be susceptible to the extract, with an inhibition zone similar to that observed for many of 

the Gram positive pathogens found to be susceptible. S. maltophilia is considered an emerging 

opportunistic pathogen most frequently associated with pulmonary infections with a significant 

fatality/case ratio [75,76]. On the contrary, the Gram negative P. aeruginosa PAO1 and the yeast 

Candida albicans were found to be insensitive to the extract E3. 

MIC, MBC and MBEC values of extract E3 confirmed the susceptibility of several test strains. 

Importantly, biofilms of S. aureus (MRSA) 33593 and S. aureus (MRSA) NCTC10442 were found to 

be susceptible to the extract with MBEC values of 1.25 mg/mL and 5 mg/mL respectively. The 



Mar. Drugs 2015, 13 3593 

 

 

increased rate of infections caused by methicillin-resistant S. aureus (MRSA) and the treatment-limiting 

toxicities of many current antibiotics highlight the growing need for novel drugs [43]. LIVE/DEAD 

staining of S. aureus ATCC 33593 biofilms following 24 h challenge with algal extract viewed using 

CLSM showed extensive cell death in mature biofilms treated with extract E3 confirming the antibiotic 

nature of the bioactive compounds involved. Although planktonically grown cultures of E. coli 

(NCTC12241), the single largest cause of catheter-associated UTIs (CAUTIs) [71], were found to be 

susceptible to the algal extract (MIC = MBC = 5 mg/mL), the biofilms of this pathogens remained 

unaffected across the range of concentrations tested (up to and including 5 mg/mL) with no MBEC 

value observed. The extract was also found to be active against plaktonic cultures of E. faecalis  

ATCC 779 (MIC = 0.3125 mg/mL, MBC = 0.625 mg/mL) however biofilms of this pathogens 

exhibited no susceptibility. 

The agar overlay method was used to screen fresh H. siliquosa algal fronds for antimicrobial 

activity against a small panel of human pathogens. Significant antimicrobial activity was observed 

against S. aureus MRSA ATCC33593. A weak antimicrobial activity was observed against 

P. aeruginosa PAO1, PA14 and Escherichia coli ATCC 11303. No antimicrobial activity was detected 

against K. pneumonia NCTC 204, E. cloacae or E. faecium DSM 25390. Although the overlay 

protocol requires relatively little sample preparation and is relatively high-throughput, care must be 

taken in interpreting the results as the inhibitions observed could be attributable to the production of 

bioactives by microbial epiphytes, the presence of contaminants or residual sodium chloride. 

Moreover, the effects of seasonal and geographical variation on bioactive production are well 

documented and in 1976, Hornsey and Hide examined the relationship between the production of 

bioactives and seasons reporting a spring time peak of antimicrobial activity for H. siliquosa [22]. 

Disc diffusion assays on S. aureus (MRSA) ATCC 33593 and C. violaceum ATCC 12472 using 

extracts E2 and P1 confirmed the presence of antimicrobial activity in E2 but not in P1 suggesting the 

bioactive(s) responsible for the antimicrobial activity were effectively extracted using methanol and 

are not proteinaceous in nature. All three extracts (E1, E2 and E3) displayed strong antimicrobial 

activity against S. aureus (MRSA) ATCC 33593 and C. violaceum ATCC 12472 with the antimicrobial 

activity increasing from E1 to E3. This gradual increase in antimicrobial activity E1–E3 can be 

explained in part by the gradual removal of non-active constituents and the consequential rise in the 

relative concentration of the bioactives responsible for the antibiotic activity observed. 

Quorum sensing inhibition represents a novel approach to attenuate bacterial virulence and limit the 

emergence of pathogenic traits, causing bacteria to fail to adapt to the host environment and establish 

an infection [62,77]. Quorum sensing inhibitors from marine algae have been reported previously, 

most notably halogenated furanones from the red alga Delissea pulchra [10,78,79]. Accordingly, 

H. siliquosa was screened for QS and QSI activity using Gram negative N-acyl-homoserine lactone 

(AHL)-based reporters. Fresh algal fronds were overlaid with QS reporter strain C. violaceum CV026 

and QSI reporters C. violaceum ATCC 12472 and Serratia sp. ATCC 39006. The AHL QS system in 

Serratia sp. ATCC39006 relies on smaI and smaR (secondary metabolite activator) to regulate the 

synthesis of two AHL signalling molecules, N-butanoyl-L-homoserine lactone (C4-HSL) and  

N-hexanoyl-L-homoserine lactone (C6-HSL). At high cell densities, these two AHLs inhibit the DNA 

binding activity of SmaR (de-repression), resulting in the production of PigQ, PigR and Rap, and the 

activation of prodigiosin biosynthesis [80]. The Gram negative human pathogen P. aeruginosa utilizes 
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an analogous locus, the rhl system, where rhlI directs the synthesis of N-(butanoyl)-L-homoserine 

lactone (C4-HSL), which interacts with the cognate regulator rhlR and activates target gene promoters. 

In P. aeruginosa, the RhlR-C4-HSL complex has been found to regulate the expression of rhlAB, 

required for rhamnolipid production, lasB, aprA, the stationary-phase sigma factor, RpoS, and the 

production of secondary metabolites such as pyocyanin and cyanide [81,82]. 

Pigment production by reporter strain Serratia sp. ATCC 39006 was not affected in the proximity 

of the fresh fronds suggesting the absence of QSI compounds capable of interfering with the  

C4-HSL-based QS-pathway. The strong antimicrobial activity displayed by the organic algal extract 

against reporters C. violaceum ATCC 12472 and C. violaceum CV026 prevented the detection of QSI 

or QS inducing compounds. 

The TLC overlay assay was conducted both to study the composition of the organic extracts E1, E2 

and E3 and of the 98 fractions obtained using flash chromatography, and to identify the compound(s) 

responsible for the antimicrobial activity observed. The TLC overlay assay is a convenient method 

which aids in determining whether an antimicrobial activity is attributable to the presence of a single 

compound or multiple compounds. Agar overlays of TLC plates of extract E3 highlighted the presence 

of 2 distinct groups of antimicrobial compounds active against S. aureus (MRSA) ATCC33593 and  

3 distinct groups of compounds active against C. violaceum ATCC12472. Therefore, the antimicrobial 

activity observed when performing the disc-diffusion assay against the test pathogens used in the study 

is likely to be the result of an additive effect of multiple bioactives. Moreover, the fact that the two 

bands of inhibition observed against S. aureus MRSA ATCC33593 have the same Rf values as the 

ones observed against C. violaceum ATCC12472 suggests that the same bioactives could be in part 

responsible for the bioactivities observed against these two test strains. Whilst C. violaceum does not 

represent a significant target pathogen in its own right, it possesses an antimicrobial susceptibility 

profile comparable to clinically relevant pathogens such as the ones displayed by the S. aureus and 

MRSA strains used in this study with the benefit of providing a clear zone of clearance against an 

otherwise pigmented lawn of bacteria. Although the TLC overlay assay allows the separation and 

identification of different activities within an extract, its resolution is limited and dependant on the 

utilization of an ad hoc mobile phase allowing the effective separation of bioactive compounds with 

comparable polarity. Moreover, the TLC system used allowed the visualization of compounds that 

absorb in the visible region of the light spectrum and at 254 or 265 nm limiting the portion of 

compounds that could be visualized. For these reasons, further fractionation was performed using 

automated Flash chromatography and fractions analyzed using an HPLC system equipped a PDA 

detector allowing a deeper and more accurate analysis of the composition of the extracts or fractions 

being analyzed. Based on the composition analysis of the active fractions and the elution pattern of the 

compounds present in the 98 fractions obtained through normal phase fractionation and monitored 

using HPLC at 290 nm and 220 nm, the antimicrobial activity detected in fractions 42–52 using the 

disc diffusion and TLC overlay assays can be correlated to the presence of 3 peaks which can be seen 

in the crude extract with retention times of 15.7 min, 17.2 min and 20.8 min (Figure 4B,C). The extraction 

and bioassay-guided fractionation method developed provides a simple replicable protocol yielding  

10 active fractions from which to perform purification and structural elucidation of clinically-relevant 

antibiofilm compounds produced by H. siliquosa. Structural elucidation of the three bioactive 

compounds responsible for the antimicrobial and antibiofilm activity observed is currently underway. 
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The wax moth G. mellonella provides a non-mammalian model for evaluating the toxicity of novel 

antimicrobial agents in vivo [83]. Toxicity studies using the G. mellonella model showed no toxicity of 

extract E3 up to 0.32 mg/larvae over a period of 6 days with 100% survival of larvae treated with 

20 µL of 16 mg/mL E3. Future work will attempt to assess the antimicrobial efficacy in vivo of 

H. siliquosa extract using this model. The variety of antimicrobial activities observed using methods 

such as the TLC overlay coupled with the absence of toxicity against G. mellonella suggests this alga 

remains an ideal subject for future studies involving the identification, purification and structural 

elucidation of marine-derived, medically relevant natural products. 

4. Experimental Section 

4.1. Bacterial Strains Used in This Study 

Bacteria used in this study were Staphylococcus aureus (MRSA) ATCC 10442, S. aureus (MRSA) 

ATCC 33593, S. aureus (MRSA) ATCC 43300, S. aureus ATCC 12981, S. aureus ATCC 29213, 

Staphylococcus epidermidis MRSE ATCC 11969, S. epidermidis ATCC 13360, S. epidermidis ATCC 

35982, S. epidermidis ATCC 12228, Staphylococcus haemolyticus ATCC 11042, Staphylococcus 

hominis ATCC 11320, Streptococcus pneumoniae NCTC 7465, Streptococcus sanguinis ATCC 7863, 

Streptococcus pyogenes ATCC 8306, Streptococcus agalactiae NCTC 8542 AB, Enterococcus fecalis 

ATCC 779, Stenotrophomonas maltophilia ATCC 10257, Proteus mirabilis ATCC 7002, Pseudomonas 

aeruginosa (PAO1), P. aeruginosa (PA14), P. aeruginosa ATCC12903, Escherichia coli ATCC 

11303, E. coli ATCC 12241, E. coli ATCC 8196, E. cloacae, Enterococcus faecium DSMZ 25390, 

Klebsiella pneumonia NCTC 204 and the yeasts Candida albicans and C. tropicalis NCTC 7393.  

All pathogenic test strains were cultured in Luria Bertani (LB) broth at 37 °C with shaking at 100 rpm 

unless otherwise specified. 

C. violaceum ATCC 12472 (cultured in LB broth at 37 °C) and Serratia sp. ATCC 39006 (cultured 

in LB broth at 28 °C) were used to screen for the production of QSIs. C. violaceum CV026 (cultured in 

LB broth (kanamycin 25 µg/mL) at 28 °C) was used to screen for the production of AHL-based 

quorum sensing (QS) inducers. 

All strains used in this study were stored in cryovials containing overnight cultures in LB broth 

supplemented with 15% glycerol at −80 °C. 

4.2. Galleria Mellonella Larvae Used in the in Vivo Toxicity Study 

Sixth-instar G. mellonella larvae were obtained commercially from livefoodsdirect.co.uk and  

stored at 15 °C prior to use. Dead larvae and those with dark spots or showing signs of melanisation 

were discarded. 

4.3. Chemicals and Reagents 

Chemicals and solvents were purchased from Sigma Aldrich (Poole, Dorset, UK) and VWR 

international (Lutterworth, UK). All reagents and solvents were of the highest purity and were used 

without further purification. 
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4.4. Sample Collection 

A quantity of 2.25 kg (wet weight) of fresh specimens of Halidrys siliquosa was collected by 

SCUBA diving at several locations along the northern coast of the island of Ireland. A small portion of 

fresh alga was used to screen fresh algal fronds. The remainder was stored at −80 °C. 

4.5. Screening Fresh H. siliquosa for Antimicrobial and QSI Activity 

Fresh fronds of H. siliquosa were screened for antimicrobial and QSI activity using the protocol 

developed by McLean et al. [65] with slight modifications; fronds were cut to a suitable size and were 

rinsed in sterile-filtered seawater (SSW) before being placed onto an LB agar plate and overlaid with  

10 mL of LB 0.5% agar containing an overnight culture of C. violaceum ATCC12472 (5 μL), 

Serratia sp. ATCC39006 (5 μL), C. violaceum CV026 (50 μL) or the different pathogenic test strains 

(50 μL) to be tested. Following overnight incubation plates were examined for the presence of clear 

halos indicative of antimicrobial activity, opaque halos surrounding C. violaceum ATCC12472 or 

Serratia sp. ATCC39006 indicative of QSI, or violacein production by CV026 in the presence of  

exogenous autoinducer. 

4.6. Solvent Extraction of Halidrys siliquosa 

Fresh samples of H. siliquosa were extracted at room temperature (RT) with HPLC-grade methanol 

(MeOH). Fresh algal samples (blades and thalli) were cleaned manually removing any visible 

epiphytes and then washed thoroughly with SSW to remove any remaining debris. Two hundred grams 

of washed sample was placed in a glass beaker and extracted at room temperature in 400 mL of MeOH, 

on a horizontal shaker (90 rpm) for 4 h. The first methanolic extract was then collected and replaced 

with 400 mL of fresh MeOH for an additional 4 h. A total of three extractions were performed on each 

algal sample. The combined extracts were filtered using Whatman No 1 filter paper (Oxoid, UK) and 

dried using a Büchi Rotavapor R-210 (Flawil, Switzerland) in a water bath at 30 °C. The resulting dark 

brown oil was freeze-dried in an Edwards Modulyo benchtop freeze drier (Edwards, UK). Following 

filtration and freeze-drying, the blades and thalli (200 g wet weight) of H. siliquosa yielded 2.865 g of 

crude extract. The crude methanolic extract was designated (E1). 

The crude extract was then re-solubilized in 100 mL of MeOH and 100 mL of ice-cold diethyl ether 

and kept overnight at −80 °C inducing the precipitation of proteinacous components of the crude 

extract thereby allowing a first crude partitioning of the compounds originally in the crude extract. 

Following overnight incubation at −80 °C, the methanolic extract was filtered using a Whatman No 1 

filter paper. Overnight precipitation and filtration were repeated twice. The extract was then reduced to 

dryness under reduced pressure in a rotary evaporator at a temperature not exceeding 30 °C. This 

secondary methanolic extract was designated (E2). The proteinaceous precipitate was dried under a 

stream of nitrogen. This extract was designated (P1). 

To remove any compounds that would bind irreversibly to silica, the dried extract E2 (2.3 g) was  

re-solubilized in 5 mL of Hex:EtOAc 50:50 and eluted through a glass column packed with silica gel 

60A (Fluorochem, Hadfield, UK) using 1.5 L of Hex:EtOAc 50:50 as the mobile phase. This extract 

was designated (E3). 
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Dried extracts E1, E2, E3 and precipitate P1 were stored in glass vials at −20 °C. The strategy used 

for the extraction and testing of Halidrys siliquosa extract is summarized in Figure 1. 

4.7. Screening for Antimicrobial Activity—Disc Diffusion Assay 

The antibiotic susceptibility testing on pathogenic test strains was performed using a modified 

version of the Kirby Bauer disc-diffusion method [84]. Extracts E1, E2, E3 and precipitate P1  

re-solubilized in MeOH to yield solutions of 10 mg/mL. The re-solubilised solutions were pipetted 

onto sterile paper disks 6 mm in diameter (Whatman, UK) by transferring a maximum of 10 µL 

volumes at a time to achieve the desired test concentrations. Air-drying was allowed between multiple 

loadings. Sterile forceps were used to transfer the dried discs in triplicate, onto single LB agar plates. 

A disc loaded with 100 µL MeOH and allowed to air dry was also included as a solvent control. 

Control discs of standard antibiotics were used when appropriate: Penicillin 1 Unit (P1), Tetracycline 

10 µg (TE10), Erythromycin 5 µg (E5), Gentamycin 10 µg (CN10) and Ciprofloxacin 5 µg (CIP1) 

(Oxoid Limited, Thermo Scientific, Basingstoke, UK). The diameter of the zone of inhibition (mm) 

was calculated as the mean of three independent experiments (biological replicates). 

The LB agar plates were then overlaid with 10 mL of LB 0.5% agar inoculated with 5 µL of an 

overnight culture of C. violaceum ATCC12474 or Serratia sp. ATCC39006 or 50 μL of overnight 

culture of each pathogenic test strain to be tested. Three replicate plates of each extract were prepared. 

Plates were incubated overnight at 37 °C or 28 °C for 24 h before being examined for the presence of 

opaque halos indicating QSI inhibition or clear halos indicating antimicrobial activity. 

4.8. MIC/MBC Determination 

Broth microdilution tests were carried out based on the protocol described in NCCLS guidelines 

(NCCLS, 2000), with slight modifications. A working solution of each extract to be tested was 

prepared by dissolving the extract E3 in Tween 80 (8% w/v) and LB broth and sterilised using a 

0.22 µm filter. From this stock solution, serial two-fold dilutions in LBB were carried out in 96-well 

microtitre plates over the concentration range 5–0.0024 mg/mL. Test organisms were grown for 24 h at 

37 °C in LB broth. Overnight cultures were used to prepare inocula of approximately 2 × 105 CFU/mL. 

The microtitre plate for the determination of MIC and MBC was set up including Tween 80 controls. 

All controls and test concentrations were prepared as a minimum of four replicates and each assay was 

repeated in triplicate. Microtitre plates were incubated for 24 h at 37 °C in a stationary incubator. 

Following incubation, the MIC for each extract was determined reading absorbance at 600 nm. The 

MBCs were derived by transferring 20 µL of the planktonic suspension from the test wells to LB agar 

plates. Following incubation in a stationary incubator at 37 °C for 24 h plates were examined for 

99.9% killing. 

4.9. Antibiofilm Activity of H. siliquosa Crude Extracts 

The MBEC assay was conducted using the H siliquosa extract E3 prepared as for the MIC tests, as 

previously described. A 96-well microtitre plate was inoculated with the test strains as follows: column 1 

containing 200 µL of LBB (blank), column 2–12 containing 100 µL of LBB and 100 µL of test 
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inoculum (prepared as previously for MIC determinations at a final density of 2 × 105 cfu/mL). The 

MBEC assay plates (Innovatech Inc., Edmonton, Canada) were transferred to a gyrorotary incubator 

(37 °C, 95% relative humidity) for 24 h to allow growth of test biofilms. Negative growth/sterility 

controls were included in each plate (6 replicates). Planktonic (CFU/mL) and biofilm viable counts 

(BFU/peg) at 24 h were measured. Following the 24 h growth period, the peg lid of the MBEC assay 

plate was transferred to rinse plate and each peg gently rinsed three times by immersion in wells 

containing 300 µL of sterile PBS. 

After rinsing, the lid was transferred to a challenge plate containing a range of doubling dilutions of 

extract E3 over the concentration range of 5–0.0024 mg/mL and an untreated (LB broth) and an LB 

broth containing Tween 80 (8% w/v) control. Following exposure of the biofilm to the challenge for 

24 h the peg lid was removed from the challenge plate and rinsed three times in 300 µL of sterile PBS. 

After rinsing, four pegs were broken off from each of the test columns and used to determine biofilm 

viable counts. The lid with the remaining pegs was transferred to a “recovery” plate containing LB 

broth. Biofilms were sonicated for 5 min and the peg lid discarded. The recovery plate was incubated 

overnight and visually checked after 24 h for turbidity. In addition, optical density measurements for 

each plate were recorded at 550 nm, clear wells were taken as evidence of biofilm eradication, and, an 

MBEC value assigned as the lowest concentration at which no growth was observed after 24 h incubation. 

4.10. TLC Overlays-Bioassay Guided Fractionation 

Normal phase TLC plates (silica gel with fluorescent indicator 254 nm, Sigma-Aldrich, Dorset, UK) 

were spotted with extracts resolubilized in MeOH and developed using the mobile phase 50:50 

MeOH:HEX, allowed to air-dry overnight in a fume hood and then positioned at the bottom of an 

empty Petri dish. The TLC sheets were then overlaid with 10 mL of 0.5% LBA containing a  

1 × 108 cfu/mL inoculum of the test strain. Once set, plates were placed at 37 °C for 24 h before being 

examined for halos of QSI/antimicrobial activity. The TLC overlay assay was conducted using 

C. violaceum ATCC12472 and S. aureus (MRSA) ATCC33593. 

4.11. Confocal Laser Scanning Microscopy of S. aureus Biofilms Treated with H. siliquosa Crude Extracts 

S. aureus ATCC 33593 (methicillin and gentamicin resistant) biofilms were grown on polycarbonate 

coupons (10 mm diameter) in a dual channel continuous flow cell chamber (FC-271-AL, BioSurface 

Technologies Corp., Bozeman, MT, USA) for 3 days. Fresh LB broth at 37 °C was allowed to flow 

through the flow cell at a rate of 0.1 mL/min for 3 h to condition the surface of the coupons and 

facilitate adhesion. The flow was then stopped and 1 mL of mid-log S. aureus ATCC 33593 

suspension was injected into each of the two chambers of the flow cell and allowed to stand for 1 h to 

allow initial adhesion of bacterial cells onto the coupons’ surface. Following the adhesion step, the 

flow of LB broth was turned on at a rate of 0.1 mL/min for 72 h. The LB broth flow was then stopped 

and the line feeding the growth chamber to be challenged was aseptically connected to a bottle 

containing 300 mL of LB broth containing filter-sterilised (0.22 μm), H. siliquosa extract E3 at  

4 mg/mL. The flow was then turned on again at a flow rate of 0.1 mL/min for 24 h. At the end of the 

challenge period, the two chambers were rinsed with 0.9% NaCl solution through the flow cell  

(0.4 mL/min) for 10 min before proceeding to staining. Following the rinse step the flow was stopped 
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and biofilms grown on polycarbonate coupons were stained with LIVE/DEAD BacLight Bacterial 

Viability Kit L13152 (Molecular Probes, Eugene, OR, USA) by injecting 2 mL of staining solution 

into each chamber and allowing it to stand for 15 min. Light exposure was minimised by covering the 

flow cell with aluminium foil. After 15 min of staining, 0.9% NaCl solution was allowed to flow 

through two chambers for 10 min to rinse away any excess die. The flow was then stopped, the flow 

cell opened, and the coupons mounted on glass slides for examination with confocal laser scanning 

microscope (Leica TCS SP2 Confocal Microscope, Leica Microsystems, Milton Keynes, UK).  

Z-stacks of confocal images were rendered into 3D mode using Volocity software (PerkinElmer,  

Seer Green, UK). 

4.12. Extract Toxicity Screen Using the Galleria Mellonella Model 

From a 50 mg/mL stock solution of E3 containing 8% w/v Tween 80, ten doubling dilutions of each 

extract were prepared in PBS. Twenty microliters of each concentration (20 µL of the highest 

concentration equated to 0.32 mg/larva) was inoculated into 10 larvae weighing between 0.2 and 0.3 g, 

through the base of the last left proleg. Larvae were incubated in Petri dishes containing wood 

shavings as a source of nutrition at 30 °C for 48 h and examined visually for viability over a period of 

6 days. As controls, larvae were treated with sterile PBS alone or with a solution of 8% w/v Tween 80 

prepared in PBS. 

4.13. Bioassay Guided Fractionation of Antibiofilm Bioactives from Halidrys siliquosa 

H. siliquosa extract E3 was further fractionated using normal phase automated Flash chromatography 

(Isolera Biotage™). Each of the 98 fractions obtained was then screened for antimicrobial activity 

using the disc diffusion assay and the TLC overlay assay against C. violaceum ATCC12472 and 

MRSA 33593 prior to analyzing the composition using analytical HPLC. 

A quantity equal to 2.5 g of extract was dissolved in 2 mL of Hex/EtOAc 50:50 and loaded onto a 

Biotage™ SNAP Cartridge KP-Sil 50 g and fractionated using an Isolera Biotage™ automated Flash 

chromatography system (Biotage, Uppsala, Sweden) using the solvent system A = Hexane, B = EtOAc 

and the following gradient: V = 0, A = 90%, B = 10%; V = 2100 mL, A = 60%, B = 40%,  

flow = 25 mL/min. Mode: “collect all” 21 mL per fraction. 

The composition of each fraction was monitored by TLC (silica gel with fluorescent indicator  

254 nm, Sigma-Aldrich, Dorset, UK) and visualized using a UV lamp 254–365 nm. Retention factor 

(Rf) values were calculated and related to compounds displaying activity in the TLC overlay and disc 

diffusion assays on C. violaceum and S. aureus MRSA 33593. 

HPLC analysis was performed using a Waters 2695 HPLC system equipped with a Waters 

Photodiode Array (PDA) detector 2996 (Waters Limited, Elstree, UK). Analytical analysis of the  

98 fractions obtained using normal phase flash chromatography was performed using a Luna® 5 µm 

C18(2) 100 Å, LC Column 150 × 4.6 mm (Phenomenex®, Macclesfield, UK). The analysis was 

performed at 216 and 254 nm using the solvent system A = H20 + 0.1% formic acid, B = ACN +  

0.1% formic acid and the following gradient: t0′ A = 70%, B = 30%; t50′ A = 30%, B = 70%;  

flow = 2 mL/min. 
  



Mar. Drugs 2015, 13 3600 

 

 

5. Conclusions 

The brown macroalga Halidrys siliquosa was found to be a rich source of diverse and potentially 

novel antimicrobial and antibiofilm compounds with clinical relevance. Previous work on this alga had 

reported antimicrobial activity against a series of opportunistic human pathogens including S. aureus,  

E. coli, Bacillus subtilis, Streptococcus pyogenes, Proteus morganii [22] and Mycobacterium 

tuberculosis [19]. In this work, the refined extract E3 obtained with Hexane:ethyl acetate elution 

through silica was found to display a broad-spectrum antimicrobial activity against opportunistic 

pathogens of the genus Staphylococcus, Streptococcus, Enterococcus, Pseudomonas, Proteus, 

Stenotrophomonas, and Chromobacterium with MIC and MBC values ranging from 0.0391 to 

5 mg/mL. Biofilms of S. aureus MRSA ATCC 33593 and S. aureus MRSA NCTC 10442 were found 

to be susceptible to extract E3 with MBEC values of 1.25 mg/mL and 5 mg/mL respectively. Extract 

E3 failed to display toxicity against G. mellonella larvae up to and including the highest concentration 

of extract tested (20 μL of 16 mg/mL working solution) over a period of six days with 100% survival. 

Although the antimicrobial efficacy remains to be tested in vivo, the results suggest the presence of 

compounds that could be used against the emerging cystic fibrosis pathogen Stenotrophomonas 

maltophilia [85,86] or in a treatment strategy for Staphylococcal biofilm-related infections.  
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