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Abstract

Reactions that can damage DNA have been simulated using a combination of molec-

ular dynamics and density functional theory. In particular, the damage caused by the

attachment of a low energy electron to the nucleobase. Simulations of anionic single

nucleotides of DNA in an aqueous environment that was modelled explicitly have been

performed. This has allowed us to examine the role played by the water molecules

that surround the DNA in radiation damage mechanisms. Our simulations show that

hydrogen bonding and protonation of the nucleotide by the water can have a significant

effect on the barriers to strand breaking reactions. Furthermore, these effects are not

the same for all four of the bases.
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Introduction

Ionising radiation can damage the DNA of living cells in a variety of ways. This damage

can cause mutations that lead to diseases such as cancer years after exposure.1 The effect

radiation has on biological tissue has been harnessed in the treatment of cancer, where

radiation therapy targets tumorous cells with the aim of killing them. There has been

sustained interest, during the past decade, in the molecular level details of the damage

process, with a view to understanding and further enhancing the efficacy of treatments.

Ionising radiation can damage DNA in a cell directly,2,3 or it can excite molecules in the

cellular surroundings. These excited state species can go on to interact with DNA strands

and cause damage.4 It is common to examine the DNA damage process in water as it is

the principle component of the cell5 and because the radiochemistry of water is reasonably

well known.6,7 Whether it is the low-energy electrons (LEE) or the OH· radicals that are

generated by the radiolysis of water that cause the damage to DNA is less clear and is

difficult to investigate experimentally. Sanche et al,8,9 have demonstrated that electrons with

energies as low as 0 eV can cause strand breaks in dry DNA. Nguyen et al10 have shown

that the low energy electrons produced following the radiolysis of water, cause the most

damage to aqueous DNA. In particular, their results suggest that reductive damage caused

by low energy electrons lead to more strand breaks than oxidative damage caused by OH·

radicals. However, experiments have also highlighted the pronounced effect the environment

can have on the LEE damage process in DNA11–13 but results on the role played by water are

mixed. Structural waters appear to reduce the damage,13 while adding bulk water increases

the damage done by LEEs.12 These water molecules can affect the damage process by (a)

modifying the effective potential felt by the excess electron and (b) influencing the dynamics

of any dissociated fragments.

The mechanism via which low-energy electrons cause DNA strand breaks has been stud-

ied extensively.14–20 The electron attachment process is generally assumed to happen via

electronic resonances at positive energies to form metastable states called transient negative
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ions (TNI). These species can survive long enough to allow for energy transfer to vibrational

motion to occur. This transfer process can lead to dissociative electron attachment (DEA).

Whether a molecule will dissociate or not is dependent on the energetic barrier for dissoci-

ation and on the energy difference between the resonant state and the ground state of the

anion.

Clearly, conventional ground state electronic structure methods, which are suitable for

the study of large molecules and for the explicit treatment of the environment, cannot be

used to study processes such as TNI formation and DEA. At the same time, however, R-

matrix calculations,21 although well-suited to the study of DEA in molecular targets, are very

challenging for large molecules such as full nucleotides.22 In addition, such calculations do not

provide information on the dynamics of the dissociated fragments. Preliminary simulations

of DEA-like dissociation in solvated nucleobases indicate that there is a pronounced caging

effect, which causes the anion to transfer its excess energy to the environment and then

reform.23 We have thus assumed in this work, as is common in a number of other papers,

that after a relatively short equilibration, the excess electron settles in the LUMO of the

system, which is generally located in the DNA nucleobase. This means that the problem is

thus now one of determining the ground state electronic structure for a solvated anion and

the thermally activated processes that this species can undergo.

A series of recent studies have demonstrated that water molecules in the solvation envi-

ronment17,24,25 can have a significant effect at the level of resonances,26 caging23 and ground-

state thermodynamics.27–30

These studies have shown that the ease of the strand breaking reaction is dependent on

the particular nucleotide and that the barrier to strand breaking is significantly higher when

the DNA is solvated. In addition, there has been a suggestion that the DNA anion can react

with the surrounding water molecules and become protonated and that furthermore this has

an effect on the size of the barrier. This is in agreement with some experimental observations

that would seem to suggest that protonation of DNA anions can prevent strand breaks.31
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In this work we thus chose to systematically investigate the ease with which the various

ground-state anions of the DNA bases will protonate and the effect this protonation has

on the thermally-activated strand breaking reaction. We found that most of the anions are

highly likely to protonate and that this can have a significant and perhaps under appreciated

effect on the reactivity of DNA.

Methodology

We simulated each of the DNA nucleotides, Adenosine (dAMPH), Cytidine (dCMPH),

Thymidine (dTMPH) and Guanosine (dGMPH) monophosphates, separately using a com-

bination of molecular dynamics (MD) and density-functional theory (DFT). Each of these

molecules were placed in a cubic box of 15 Å that was filled with 100 explicit DFT water

molecules. All simulations were run using CP2K and the ab initio Quickstep (QS) module.32

Energies and forces were calculated using the PBE functional33 in conjunction with GTH

pseudo potentials,34 and a TZVP-GTH basis set. An additional electron was introduced

and unconstrained MD was performed for 6.5 ps in order to allow the anion to equilibrate to

a low-energy configuration. During these MD simulations temperature was fixed at 300 K

using a CSVR thermostat with a relaxation time of 0.1 ps. The strand breaking and proto-

nation reactions are activated processes that will not be observed on the simulation timescale

so they were investigated using the Blue Moon ensemble approach.35 In all these calcula-

tions the constraints were placed on an inter-atomic distance and were used to accelerate

the formation and cleavage of chemical bonds.

Results and discussion

The aqueous environment around a DNA strand will screen the electrostatic interactions

between charges. This effect can be easily incorporated into any model by using a polarizable

continuum. However, water can also form hydrogen bonds to the DNA potentially stabilising
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high energy anions. It can also react with the DNA and cause it to become protonated. To

study these two effects we thus chose to investigate single DNA nucleotides dissolved in

water molecules that were modelled explicitly in a similar manner to Smyth and Kohanoff.29

They initially simulated the neutral system and then vertically attached an electron to the

base. We took the configurations from their work and then relaxed the solvated anion for a

further 6.5 ps. This relaxation gave the hydrogen bonding network sufficient time to adapt

to this more highly charged solute molecule and, by the end of the relaxations, we found

that the water molecules around the base had rearranged themselves so as to form explicit

hydrogen bonds between the solvent and the solute. The shortest hydrogen bonds that

formed during these relaxations are shown in figure 1. Furthermore, the dAMPH– was found

to spontaneously protonate at the site shown in figure 1 during relaxation. To test whether

adding an additional electron to the base promotes hydrogen bond formation we took the

final configuration from our simulations, removed the electron and re-equilibrated. We found

that in all the bases the hydrogen bonds shown in figure 1 broke during these simulations,

which does indeed suggest that these bonds only form when the additional electron is present.

To investigate how the charged nucleotide decomposes we ran a number of simulations

using the Blue Moon ensemble. In these MD simulations a Lagrange multiplier was used to

constrain an interatomic distance to a particular value. The average value of the Lagrange

multiplier in such simulations is equal to the potential of mean force associated with the

constraint. Hence, if we calculate this quantity for a number of intermediate distances

between having the bond formed and broken, we can determine the free energy change

associated with breaking the bond using numerical integration.

The first reaction that we studied using this technique was the protonation of the base

at the sites shown in figure 1. In these calculations the distance between the electronegative

atoms highlighted in figure 1 and the hydrogen atom on the nearest water molecule was

used as a CV. The free energies obtained are shown in figure 2 together with error bars

that were calculated using block averaging. Protonation is clearly favourable for dCMPH–
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and dTMPH– and unfavourable for dGMPH–. The protonation of dAMPH– is barrier-less,

which goes some way towards explaining why this base protonates spontaneously in unbiased

MD simulations. dCMPH– and dTMPH–, meanwhile, have two minima that are separated

by a barrier that is less than 1 kcal mol-1. In one of these minima the proton is bonded

directly to the electronegative atom, while in the other the proton is covalently attached to

the water and hydrogen bonded to the electronegative atom. Protonation of dGMPH– is

not favourable as for this base there is no minimum in the free energy surface for structures

that have the excess proton covalently bound to the base. This result is in agreement with

those discussed in36 where it is suggested that the guanine radical anion is deprotonated at

ambient temperature in the crystal structure.

Our simulations have shown that upon electron attachment, protonation is likely for

many of the bases. This effect has not been included in many of the calculations that

have thus far been performed on the strand breaking (damage) reactions although Smyth

and Kohanoff29 have suggested that the barrier to the strand breaking reaction increases

when the base is protonated. To examine whether this was the case we ran two sets of

Blue Moon simulations for each of the nucleotides. In these calculations two restraints

were used, the first of which was on the length of the C3’-O3’ bond. Multiple simulations

were performed with this bond length constrained to a number of different values in order

to extract the free energy profiles shown in figure 3. Two calculations at each of these

bond lengths were performed. In the first of these the distance between the electronegative

atom highlighted in figure 1 and the hydrogen atom on the nearest water molecule was

constrained to be 1.8 Å which we found from unconstrained simulations was the typical

distance between the electronegative site and the non-covalently-bound hydrogen in a base-

water hydrogen bond. In the second of these calculations this same distance was constrained

to be 1.05 Å which our unconstrained simulations told was the typical length of the covalent

bond between the base and the protonating hydrogen atom. The results from these two sets

of calculations were analysed separately in order to extract the free energy profiles for the
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strand breaking reaction in the protonated and deprotonated configurations. Figure 3 shows

that the protonation of the base has a significant effect on free energy of reaction. This

reaction is free-energetically-unfavourable whenever an additional proton is attached to the

base. Furthermore, the barrier to reaction increases for all the bases apart from dAMPH·–

upon protonation. For dCMPH·– this effect is particularly significant. dAMPH·– behaves

differently to the other bases - the barrier to the strand breaking reaction is 4 kcal mol-1 lower

when the system is protonated but is similar to the barriers for the deprotonated versions

of the other bases. dAMPH– is the base that protonates spontaneously in unbiased MD

simulations and for which, figure 2 would suggest the deprotonated configuration in which

the electronegative atom is a hydrogen bond acceptor, is not stable. Intuitively, one would

expect the barrier to increase for the protonated system as the addition of the proton would

stabilise the negatively charged anion. The fact that singly protonating dAMPH– lowers the

barrier to the reaction may simply be a consequence of the fact that there is no truly stable

configuration of this system in which there is a hydrogen bond between the electronegative

atom and a water molecule. We thus examined what effect a second protonation would have

on the barrier to the strand breaking reaction. The site at which the second proton was

added is shown circled with blue dashed line in figure 1. The top right panel of figure 3

shows that the barrier to the strand breaking reaction increases in this doubly protonated

system in agreement with our hypothesis.

The results shown in figure 3 connect what is observed in experiments with findings from

simulations. Our results suggest that understanding whether or not the negatively charged

nucleotide will protonate is highly important as protonation can have a significant effect on

both the ease of the strand breaking reaction and the position of the equilibrium. To give an

example of how significant protonation effects can be, consider the recent article by Wang

et al.37 They showed that strand breaking on a DNA strand is significantly less likely to

occur at Cytosine sites. If one only examines the free energy barriers for the deprotonated

systems there is no explanation for this result - the barriers to the strand breaking reaction
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in the deprotonated bases are all reasonably similar. However, the barrier to the strand

breaking reaction is significantly higher for protonated Cytosine, which together with the

result in figure 2 that tells us that it is easy to protonate this base, helps explain Wang’s

results. Furthermore, the fact that the protonated dCMPH·– ion is stable in our results

is in agreement with theoretical results from Gu et al.31 who obtained similar results in

geometry optimisation and energy minimisation calculations using the B3LYP functional in

Gaussian03. It also agrees with ab initio simulation results performed using a continuum

solvation model by Naumov and von Sonntag38 who argued based on energetic considerations

that the Cytosine radical anion should protonate quickly in water. In fact, it is known from

experiment39 that the Cytosine radical anion is so basic (its pKa is 13 as opposed to 10 in

all other bases) that when this species appears in a DNA double helix it will extract the

proton from its complementary Guanine to form a protonated Cytosine and deprotonated

Guanine.40

There is a considerable amount of evidence that suggests that strand breaks are most

likely to occur at the Guanine site on the DNA strand.17,27,37,41–44 In particular, Wang et

al37,41 have found that dissociation by the addition of electrons to the Guanine base, results

in significant quantities of single and double strand breaks. The fact that strand breaks are

likely to occur at Guanine sites is in agreement with the results shown in figure 3. Figure 2

shows that Guanine will be deprotonated, while figure 3 shows that the barrier for breaking

the C3’-O3’ bond in the deprotonated dGMPH– is only 19 kcal mol-1 and that the total free

energy change upon reaction is approximately zero.

Our results show that strand breaking reactions are more likely to occur at the purines

(dGMPH– and dAMPH·–) than they are at the pyrimidines. Figure 2 shows that Adenine

will most likely be protonated, while figure 3 shows that the barrier to the strand breaking

reaction in protonated dAMPH·– is 18 kcal mol-1. In addition, the free energy change for the

Adenine strand breaking reaction is considerably less positive than the free energy change for

both the Cytosine and Thymine strand breaking reactions. This difference we observe in the
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propensity for each of the bases to undergo strand breaking is consistent with experimental

work by Zheng et al43 who observed that the extent of damage to short polynucleotide

sequences (GCAT) is lower when Guanine and Adenine are absent.

Previous theoretical works15,17,45 have focussed on the breaking of the C3’-O3’ bond as

experiments have seemed to suggest that this is the most likely bond to break in the DNA

strand.43,46,47 We chose to also investigate the glycosidic bond to see if the results from our

models are in agreement with these observations. Similarly to the calculations that were

performed on the breaking of the C3’-O3’ bond we ran Blue Moon ensemble calculations to

determine the barrier to the glycosidic bond breaking reaction in both the protonated and

deprotonated nucleotides. The results from these calculations are shown in figure 4. Once

again we find that the free energy changes for the strand breaking reactions are all positive

and hence that the strand breaking reaction is unfavourable. For both purines, the barrier

for breaking the glycosidic bond is about 5 kcal mol-1 higher than the barrier for breaking the

C3’-O3’ bond. In doing this comparison we compare the barriers for protonated dAMPH·– and

deprotonated dGMPH– as these nucleotides will most likely be in these forms in solution.

Intriguingly, the barriers for breaking the glycosidic bonds in the pyrimidines are similar

(dTMPH–) and slightly lower (dCMPH–) than the barriers for breaking the corresponding

C3’-O3’ bonds. When damage occurs at these bases one should therefore expect similar

numbers of broken glycosidic and C3’-O3’ bonds. This is precisely what has been observed

by Gu et al31 who demonstrated that, after electron attachment to protonated Cytosine,

N-C bond cleavages are more abundant than C-O bond cleavages. Nevertheless, the fact

remains that the most important damage reactions to DNA involve C3’-O3’ cleavage. Our

results suggest that this is because the easiest bonds to break are the C3’-O3’ bonds involving

the purines. The barriers to all strand breaking reactions are higher for the pyrimidines and

these reactions are thus less likely.
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Conclusion

The simulations we have performed have demonstrated that the aqueous environment plays

a significant role in DNA damage reactions. Hydrogen bonds can form between the base and

the surrounding water molecules and these serve to stabilise the anion. These results are in

agreement with previous results from Kumar and Sevilla48,49 who showed that the barrier to

dissociation of a dTMPH– ground-state, radical anion was increased when hydrogen bonding

effects from a microsolvated environments were included. We have further shown that, as

well as hydrogen bonding to the base, water molecules can donate protons to the base. This

thermally-activated reaction is favourable for all bases other than Guanine. The manner in

which protonation and hydrogen bonding affects the behavior of anions in excited states is a

matter of current investigation. What is clear from this work, however, is that protonating

the anionic nucleobase when it is in the ground state makes the thermally-activated strand

breaking reaction unfavourable. The solvent thus has a significant effect and one that cannot

be easily incorporated into continuum solvation models.

Surprisingly we have found that there are marked differences between the various different

bases. The purines have the lowest barriers to strand breaking reactions and will break at

the C3’-O3’ bond. Pyrimidines, meanwhile, have higher barriers to reaction but the barriers

for breaking the C3’-O3’ bond and the glycosidic bond are similar. How these differences will

manifest themselves in longer single stranded DNA or in double stranded DNA, where the

bases are less solvent accessible, is interesting and will be the subject of future studies.
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Figure 1: Each of the four nucleotides dGMPH–, dAMPH–, dCMPH– and dTMPH–. The
nearest water molecules to each base (circled in red) is hydrogen bonded to the site where we
protonated each of the bases. When studying the doubly protonated dAMPH··– we added
the second proton to the N-site on the nucleobase that is shown hydrogen bonded to the
water molecule circled by a blue dashed line.
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Figure 2: Free energy profiles as a function of the distance between the protonation sites
shown in figure 1 and the hydrogen atom belonging to the hydrogen-bonded water molecule
calculated from our Blue Moon ensemble simulations. The free energy profiles for dAMPH–,
dCMPH–, dGMPH– and dTMPH– are the solid black line, the dotted red line, the dashed
green line and dot-dashed blue line respectively. The average value for the Lagrange multi-
plier at each constraint value was calculated by averaging over a 1.5 ps simulation. To test
convergence we divided these trajectories into four equally long pieces and calculated block
averages. The points on the graph show the free energy that was obtained by integrating
between these constraints as well as the associated, negligible error bars that were obtained
by calculating the standard deviation from our block averages. The vertical dashed line indi-
cates the typical length of a bond involving a hydrogen atom and thus indicates the point at
which the nucleobase becomes protonated. It is clear that with the exception of dGMPH–,
the free energy of the nucleotides is minimised when it is protonated.
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Figure 3: Free Energy profiles as a function of the length of the C3’-O3’ (Phosphodiester)
bond. The barriers in each of these profiles give a measure of the ease with which this bond is
cleaved in the four nucleotides. The free energy profiles in these figures were calculated in the
manner described in the caption to figure 2 so error bars are included. Two calculations were
performed for each nucleotide one in which an additional restraint was used to ensure that
a proton was attached to the site indicated in figure 1 (solid red line) and one in which the
site was forced to be deprotonated (dashed black line). It is clear that with the exception
of Adenine, the barrier is higher to break the C3’-O3’ bond when the base is protonated.
Adenine is a special case as it spontaneously protonated during the equilibration of the
system, which is in-line with what would be expected given the shape of the protonation
free energy profile for this base (see figure 2). For dAMPH– we also studied the doubly
protonated base and found that the second protonation increased the height of the barrier
(dot dashed blue line in upper right panel).
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Figure 4: Free Energy profiles as a function of the length of the N-C (Glycosidic) bond.
The barriers in each of these profiles give a measure of the ease with which this bond is
cleaved in the four nucleotides. The free energy profiles in these figures were calculated in
the manner described in the caption to figure 2 so error bars are included. Two calculations
were performed for each nucleotide one in which an additional restraint was used to ensure
that a proton was attached to the site indicated in figure 1 (solid red line) and one in which
the site was forced to be deprotonated (dashed red line). Protonation increases the barrier
for glycosidic strand breaking in all bases other than dGMPH–. Comparison of the barriers
in this figure with those shown in figure 3 shows that breaking of the glycosidic bond is
competitive with breaking the C3’-O3’ bond for the pyrimidines (dCMPH– and dTMPH–).
However, for the purines the barrier to breaking the C3’-O3’ bond is energetically less costly
than breaking the glycosidic bond.

19



Graphical TOC Entry

20


