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Abstract 16 

Bone morphogenetic proteins (BMPs) are secreted extracellular matrix-associated proteins 17 

that regulate a wide range of development processes, including limb and kidney formation. A 18 

critical element of BMP regulation is the presence of secreted antagonists that bind and 19 

inhibit BMP binding to their cognate Ser/Thr kinase receptors at the plasma membrane. 20 

Antagonists such as Noggin, Chordin, Gremlin (Grem1) and twisted gastrulation-1 (Twsg1) 21 

have been shown to inhibit BMP action in a range of different cell-types and developmental 22 

stage-specific contexts. Here, we review new developments in the field of BMP and BMP 23 

antagonist biology during mammalian development, and suggest strategies for targeting these 24 

proteins in human disease.  25 

Introduction  26 

The first bone morphogenetic protein (BMP) was discovered by Dr. Marshall Urist, an 27 

orthopaedic surgeon in UCLA, in the 1960s. These proteins were shown to trigger the 28 

formation of bone and cartilage from mesenchymal stem cells in culture [1]. Since then, more 29 

than 22 members of the BMP family have been identified, along with a smaller set of plasma 30 

membrane receptors that activate a well-defined canonical signalling pathway involving the 31 

Smad1/5/8 proteins. Today, it is clear that BMP signalling extends beyond bone and cartilage 32 

formation, and is involved in such diverse biological processes as stem cell and organ 33 

formation, muscle development, iron metabolism, vascular biology and cancer. In addition, it 34 

is increasingly appreciated that a counterbalance of BMP and TGFβ signalling exists in many 35 

physiological processes and disease states. In 2010, we published a review in this journal 36 

summarising, to the best of our ability, the “state of play” regarding BMP signalling. It is an 37 
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indication of the pace of progress in the BMP field that a new review updating readers on 38 

developments is warranted a mere four years later. The emerging data describing BMP-TGFβ 39 

counter-regulatory signalling will also be discussed herein.  40 

BMP signalling 41 

BMPs are secreted members of the transforming growth factor-beta (TGFβ) family of 42 

signalling molecules. Both secreted BMPs and their antagonists are thought to associate with 43 

the extracellular matrix, restricting their diffusion and action to neighbouring cells [2]. 44 

Glycosylation of these proteins likely affects their interaction with the ECM and their 45 

function [3]. A range of BMP ligands bind to type I receptors (BMPRI or activin-like kinase 46 

(ALK)-2, ALK3 or ALK6). This complex then binds to a type II receptor (BMPRII), which 47 

phosphorylates the type I receptor in the GS glycine-serine repeat domain [4, 5]. The 48 

activated type I receptor phosphorylates a set of Smad proteins called receptor-Smads (R-49 

Smad1/5/8), which bind to a nuclear Smad called Smad4. This complex accumulates in the 50 

nucleus, where it is recruited to transcriptional complexes to mediate BMP-dependent gene 51 

transcription (Fig. 1). Smad-response elements are present in BMP gene targets such as 52 

inhibitor of differentiation (Id 1-3) genes, SnoN, and inhibitory Smad6 [6-8], which mediate 53 

many of the downstream effects of BMP signalling.  54 

A similar pathway is utilized by TGFβ ligands, which engage a distinct set of membrane 55 

receptors, and involve Smad2/3 as the R-Smads that regulate TGFβ-mediated gene 56 

expression. Each level of the BMP pathway is tightly regulated, emphasising the critical 57 

nature of maintaining tight control of BMP signalling in cells and tissues. BMP ligands are 58 

synthesised and secreted as larger propeptides that are then cleaved by extracellular pro-59 

protein convertases such as Furin [9, 10]. Mature BMPs form dimers which interact with 60 

BMPRI/II receptors forming a hexameric complex (Fig. 1).  61 
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New data has identified additional membrane proteins that may regulate BMP signalling. 62 

Endoglin (CD105), a type I membrane glycoprotein, is a novel co-receptor for TGFβ1/BMP 63 

signalling [11]. Endoglin regulates BMP-9 and BMP-10 signalling via interaction with the 64 

ALK1/type I receptor, and TGFβ1 signalling via ALK5/type II TGFβ receptor binding [12]. 65 

Members of the repulsive guidance molecule (RGM) family of receptors have also been 66 

shown to be required for BMP, but not TGFβ signalling [13]. Receptors such as RGMa and 67 

DRAGON (RGMb) are required for BMP-2 and BMP-12 mediated gene expression, whereas 68 

Hemojuvelin (RGMc) is involved in regulating BMP-dependent iron homeostasis via 69 

hepcidin expression in liver [14]. Another co-receptor called Cripto interacts with the ALK4 70 

type I receptor for Nodal, a member of the TGFβ family [15].  71 

Both BMP (Smad1/5/8) and TGFβ (Smad2/3) signalling requires Smad complexes to 72 

transduce their signals to the nucleus. Anchor proteins such as Endofin recruit and present 73 

Smad1 proteins to the BMP receptors for phosphorylation, and also mediate receptor 74 

dephosphorylation via its protein phosphatase binding motif [16]. SARA (Smad anchor for 75 

receptor activation) regulates TGFβ1-mediated Smad2/3 phosphorylation in a similar manner 76 

[17]. Additional proteins such as ERBIN and C18ORF1 compete with SARA for binding to 77 

Smad2/3 to influence TGFβ1 signalling [18, 19]. Both Endofin and SARA bind to PI3K in 78 

the endosomes, and are regulated by EGFR signalling [20, 21]. Binding of SARA to RNF11 79 

as part of the ESCORT-0 complex also regulates lysosomal degradation of EGFR [21, 22].  80 

In contrast to rapid substrate phosphorylation observed with receptor tyrosine kinases 81 

engaged by growth factors such as insulin and epidermal growth factor, the kinetics of BMP-82 

mediated Smad1/5/8 phosphorylation are much slower [23]. One reason for this may be the 83 

competition between Smad1/5 and inhibitory Smad6 for binding to the type I receptor [24, 84 

25]. The methyltransferase PRMT1 methylates Smad6 on Arginine, leading to Smad6 85 



5 
 

dissociation from the type I receptor, thereby facilitating Smad1/5/8 phosphorylation and 86 

BMP signalling (Fig. 1, [23]). Similar repression of BMP signalling is facilitated by FK-87 

binding protein 12 (FKBP12), which binds to BMP type I receptors and inhibits their 88 

activation (Fig. 1 [26]). Both biochemical and crystal structure data analysing the interaction 89 

of ALK2 receptor with FKBP12 has provided critical insights into the protein complex, 90 

suggesting reasons for why the R206H ALK2 mutation decreases FKBP12 binding, and leads 91 

to overactive BMP signalling and heterotopic ossification [27, 28]. Interestingly, FK506, a 92 

drug that binds to FKBP12 was shown to relieve this inhibition and reverse dysfunctional 93 

BMP-2 signalling in models of pulmonary artery hypertension [26]. A new protein in the 94 

BMP pathway called protein associated with Smad1 (PAWS1) also binds to Smad1 and is 95 

phosphorylated by ALK3/BMPR1A [29]. PAWS1 is required for Smad4-independent BMP-2 96 

activation of ASNS and NEDD4 genes in PC3 prostate cancer cells [29].  97 

Recent findings are providing evidence for crosstalk between BMP and other pathways such 98 

as TGFβ, Wnt, and Hedgehog. The type III TGFβ receptor (TGFβR3, also known as 99 

betaglycan [30] is required for BMP-2 signalling in epicardial cells [31, 32]. Endoglin, 100 

another co-receptor for BMP/TGFβ proteins has been shown to regulate crosstalk of TGFβ1 101 

and fibronectin/αvβ1 integrin signalling in endothelial cells [33]. BMP pathways can engage 102 

Smad2 and Smad3 in embryonic cells and in invasive ovarian, prostate and breast cancer 103 

cells [34], while TGFβ1 can activate Smad1/5/8 phosphorylation in a range of epithelial cells, 104 

regulating breast cancer cell migration [35, 36]. Furthermore, TGFβALK5Smad3 105 

signalling potently inhibits BMP-induced gene transcription and cell invasion via the 106 

formation of a Smad3 and pSmad1/5 complex that binds to BMP-response elements, 107 

ultimately repressing BMP target gene transcription [37]. This finding suggests that Smad3 is 108 

not only critical for TGFβ-induced inhibition of BMP signalling, but also contributes to limit 109 

the transcriptional output in response to TGFβ [37].  110 
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Crosstalk between BMP and Wnt/β-catenin signalling has been identified in several cell 111 

types. Indeed, activation of Wnt3a or overexpression of β-catenin/TCF4 activated BMP-2 112 

expression in osteoblasts [38]. Also, BMP-2 induced osteoblast differentiation via the rapid 113 

generation of reactive oxygen species (ROS), linking BMP-2 to NADPH oxidase-4 (Nox4)-114 

generated ROS and osteoblast differentiation [39].  In addition, Dishevelled/Par1b can 115 

facilitate TGFβ1 signalling during Xenopus mesoderm development and in mammalian 116 

HEK293 cells [40]. Others demonstrated that BMP-2 mediated chemotaxis of mesenchymal 117 

C2C12 mouse myoblast cells occurs via PI3Kinase signalling, with BMPRII binding to the 118 

p55γ/p110α class 1a of the PI3Kinase family [41]. BMP-2 mediated generation of PIP3 119 

triggered recruitment of the LL5β protein, and was required for actin reorganisation and 120 

chemotaxis in these cells [41]. 121 

Negative regulation of BMP signalling 122 

BMP signalling is regulated on multiple levels in cells, including intracellularly by inhibitory 123 

Smads (Smad 6, 7), miRNAs, methylation and extracellularly by pseudoreceptors such as 124 

BMP and Activin Membrane Bound Inhibitor (BAMBI) and BMP antagonists including 125 

Grem1 (Fig. 1, [7, 8]). For example, expression of BAMBI in endothelial cells reduces non-126 

canonical TGFβ1-mediated Smad1/5 and ERK1/2 phosphorylation, resulting in the inhibition 127 

of angiogenesis [42]. Below, we discuss emerging mechanisms controlling BMP signalling.  128 

BMP Antagonists: new insights from crystal structures  129 

BMP signal transduction is closely regulated by a set of structurally diverse extra-cellular 130 

secreted protein antagonists, which bind BMPs with high and specific affinity and disrupt 131 

ternary receptor complex formation. These antagonists range in size from 170-250 amino 132 

acids for the DAN/Cerberus family (including Gremlin1, PRDC and Coco) to larger multi-133 
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domain proteins such as Chordin (948 aa) and Follistatin (344 aa). BMP antagonists are 134 

secreted in a pro-form and the leucine/valine rich signal sequence (20aa) is cleaved by 135 

proprotein convertases, revealing the N-terminus BMP-interacting domain [43].  136 

BMP-antagonist crystallography has provided new insights into the activity and nature of 137 

their molecular interactions [44-47]. Human BMP antagonists do not share significant 138 

sequence similarity overall (Fig 2); however, identity increases towards the C-terminus, also 139 

termed the cystine knot domain (or Von Willebrand type C domain). The cystine knot is a 140 

defining feature of BMP antagonists, and is formed by 6 cysteine residues: two pairs of 141 

intramolecular disulphide bonds that form a ring, and a third cysteine pair which bonds 142 

through the ring completing the knot. TGFβ family members have seven conserved cysteine 143 

residues, whereas BMP antagonists have 6 cysteine residues.  Other conserved structural 144 

features of the TGFβ family members are that of the wrist and knuckle epitopes [48]. The 145 

knuckle epitope is formed by four anti-parallel β-sheets and the wrist is formed by a four-turn 146 

alpha-helix at the region of dimerization. Two BMP monomers form an antiparallel dimer, 147 

covalently linked through a disulfide bond. Ternary co-crystal 3D structures of BMP-BMP-148 

receptor complexes show that type I receptors interact with the wrist motif and type II 149 

receptors interact with the knuckle region [49-51]. The BMP antagonists Noggin and Chordin 150 

have 4 additional amino acids, generating ten-membered rings. The disulphide bridges in the 151 

cysteine rings ensure a strict structural conformation of the antagonists by ensuring correct 152 

folding of the peptide, backbone stability and exposure of key hydrophobic residues [43, 48]. 153 

Two co-crystal structures of BMP-BMP antagonist vividly demonstrate the similarities and 154 

differences in antagonist binding. The first co-crystal, BMP-7 in complex with Noggin, 155 

reveals a butterfly structure (Fig. 3a). The structure also reveals that the Noggin dimer forms 156 

a two-fold axis of symmetry with a head-to-head conformation rather than the overlapping 157 
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antiparallel conformation of its BMP ligand [44].  The Noggin clip extends and interacts with 158 

both wrist and knuckle residues, thus obstructing the BMP ligand to type I and type II 159 

receptor binding [44]. The second co-crystal, BMP-2 in complex with von Willebrand type C 160 

(VWC1) domain of Crossveinless-2 (CV2), shows considerable similarity in the prevention 161 

of BMP receptor binding, with CV2 antagonist interactions occurring at both wrist and 162 

knuckle epitopes of BMP-2 (Fig. 3b). Sequence similarity in the clip regions of Noggin and 163 

CV2, however, is not significantly shared [47]. A third structure, Follistatin in complex with 164 

Activin, highlights further antagonistic diversity by blockade of type I and type II receptor 165 

binding sites by a peripheral clamp mechanism and not with clip domains as observed with 166 

Noggin and CV2 [52, 53]. 167 

The VWC1 domain of CV2 is responsible for binding BMPs and is not only found in 168 

Chordin family members, but has also been identified in a diverse range of other extracellular 169 

proteins [47]. This X-ray resolved co-complex structure reveals the interaction of the VWC1 170 

domain, but does not fully explain the intricacies of its binding. It still remains unclear as to 171 

how the linear peptide of the clip segment contributes strongly to the overall binding energy, 172 

yet is assumed to be highly flexible when unbound. A second structural ensemble of VWC1 173 

unbound to other proteins resolved by NMR revealed that the clip segment and a 30-residue 174 

subdomain termed SD1 of the VWC domain is preformed in its unbound state (Fig. 3c). The 175 

highly flexible nature of the clip segment exhibited strong affinity to BMP-2. The NMR 176 

structure showed that the N-terminal segment of the clip was flexible and disordered, whereas 177 

subdomain 1 exhibited a small and rigid three-stranded β sheet core. This rigidity contributed 178 

to the pre-defined orientation of the clip in a paperclip or hook-like architecture that brought 179 

the clip in close proximity to its final BMP binding site; therefore, likely lowering the overall 180 

binding energy cost and increasing affinity to the complex [54, 55]. 181 
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Further, a recently detailed set of data demonstrates that the DAN family of protein 182 

antagonists form highly stable non-covalent dimers [56]. The antagonists, Protein Related to 183 

Dan or Cerberus (PRDC, also known as Gremlin2) and DAN, form non-covalent 184 

homodimers that do not require the unpaired cysteine residue of the cystine knot [56]. PRDC 185 

and DAN dimers are highly stable, as they did not dissociate after treatment with DTT, 186 

heating to 100 oC, or incubation with 4M urea [56]. The crystal structure of PRDC/Gremlin2 187 

has also been resolved, and it shows that PRDC forms a non-covalent head-to-tail growth 188 

factor-like dimer with an extensive hydrogen bond network between monomers (Fig. 3d, 189 

[46]). Mutagenesis of PRDC identified residues belonging to the DAN domain on the convex 190 

surface, rather than the N-terminus that are critical for BMP binding affinity. An N-terminal 191 

latch mechanism for BMP binding was therefore proposed due to the observed flexibility and 192 

potential for conformational sampling of the N-terminal domain that exposes the DAN 193 

domain residues upon interaction with a BMP ligand [46].  194 

The diversity of structures already seen within the family of BMP antagonists provides 195 

mechanistic and functional information that contributes to our understanding of the finely 196 

tuned specificities and affinities for BMP antagonists to BMP ligands and, in turn, to BMP 197 

signal transduction.  The structures of many more cysteine knot domain containing proteins, 198 

BMP antagonists and BMP co-complexes, remain to be resolved, and this information will 199 

aid in the understanding of BMP antagonist-mediated regulation of BMP signalling in 200 

physiological and disease conditions. 201 

 202 

Interactions between BMP antagonists 203 

A complex choreography of interactions between BMP antagonists has recently been 204 

demonstrated. Noggin and Grem1 interact to maintain a BMP signalling-free zone in the 205 
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mouse embryo, which is required for Sonic hedgehog (Shh)-mediated induction of the 206 

sclerotome or early vertebrae [57]. Moreover, limb development requires the regulation of 207 

Grem1 and Fgf10 expression by HoxA and HoxD genes, further supporting a link between 208 

Grem1 signalling and Shh signalling [58]. Noggin and Grem1, but not Chordin, were shown 209 

to be important for BMP-4 mediated clathrin-dependent endocytosis in mouse endothelial 210 

cells [59]. Using fluorescently labelled BMP-2, BMP-2 was found to be internalised in HeLa 211 

cells via a clathrin-dependent pathway, with Noggin and Grem1 increasing BMP-2 uptake. In 212 

contrast, Chordin decreased BMP-2 uptake, suggesting BMP ligand and receptor interactions 213 

on the cell surface involve cooperative binding of BMP antagonists such as Noggin and 214 

Grem1, as well as other proteins such as the Endoglin CD105 co-receptor [60]. Another 215 

example of antagonist cooperation was recently demonstrated for the BMP modulators BMP 216 

endothelial cell precursor derived regulator (BMPER) and twisted gastrulation (Twsg1). 217 

BMPER is the human ortholog of crossveinless-2 found in Drosophila, and was shown to 218 

activate BMP-4 at low concentrations, but inhibit BMP-4 signalling at higher concentrations, 219 

in an endocytic trap-and-sink mechanism in mouse endothelial cells [59]. BMPER has also 220 

been implicated in endothelial cell biology and angiogenesis, where the BMP antagonist 221 

Twsg1, but not Noggin or Chordin, was found to increase HUVEC sprouting in vitro and 222 

endothelial cell growth in a Matrigel plug assay in vivo [61, 62]. Interestingly, these Twsg1-223 

dependent effects were inhibited by the addition of recombinant BMPER, suggesting a 224 

delicate equilibrium exists whereby Twsg1 and BMPER interact to control each other’s pro-225 

angiogenic activity in endothelial cells [61]. 226 

 227 

MicroRNA regulation in BMP signalling 228 
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There has been a dramatic increase in the identification of miRNAs that regulate BMP 229 

signalling (Table 1). Among these is miR-21, which has been detected in skin epidermis, 230 

specifically keratinocytes, and is highly expressed in hair follicle tumours [63]. miR-21 is a 231 

downstream target of BMP-4 in mouse keratinocytes, and treatment of these cells with BMP-232 

4 dramatically reduced miR-21 levels, an effect that was reversed by overexpression of the 233 

BMP antagonist Noggin [63]. Furthermore, miR-21 regulates two groups of BMP-4 target 234 

genes in keratinocytes that are involved in tumour suppression and cell differentiation.  In 235 

addition, BMP-4 downregulates the miR302~367 cluster in a Smad1/5 dependent manner in 236 

human primary pulmonary artery smooth muscle cells (PASMCs) [64]. BMPRII was found 237 

to be the target of miR302, and therefore inhibition of miR-302 by BMP-4 increases BMP-4 238 

signalling by stabilizing the BMPRII transcript [64]. Also, miR-656 represses the expression 239 

of BMPR1A in U87 glioma cells and inhibits glioma tumorigenesis [65]. Similarly, BMP-2 240 

mediated glioma growth was inhibited by lentiviral miR-656 expression in mice suggesting a 241 

tumour suppressor role for miR-656 [65]. MiR-130a also targets BMP type I receptors, in this 242 

case ALK2 in liver cells [66]. The levels of miR-130a are increased by iron deficiency, which 243 

leads to a decrease in BMP-6/Smad1/5 signalling. As a result, levels of hepcidin, the main 244 

iron regulatory hormone in the body, are reduced, leading to increased iron availability in the 245 

circulation [66].  miR-22 has been identified as a master regulator of BMP-7/6 in the kidney 246 

[67], where BMP-7/6 have been proposed to act as anti-fibrotic BMPs in chronic diseases of 247 

the kidney, lung and other tissues (e.g. [68]). miR-22 deletion reduces the severity of kidney 248 

injury induced by unilateral ureteral obstruction (UUO), with higher levels of both BMP-7 249 

and BMP-6 evident in miR-22-/- kidneys post-UUO [67]. A concomitant increase in 250 

BMPRIb levels and pSmad1/5/8 phosphorylation was also observed in miR-22-/- kidneys, 251 

with miR-22 binding sites identified in the 3’ untranslated region of BMP-7, 6 and BMPRIb 252 

[67]. Interestingly, miR-22 is itself a transcriptional target of BMP-7/6 signalling, with 253 
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several BMP response elements identified in the miR-22 promoter. This study identifies miR-254 

22 as a key regulator of kidney fibrosis, and suggests that an auto-feedback loop likely exists 255 

between BMP-7/6 and miR-22 in the normal kidney and regulates kidney physiology (Table 256 

1). 257 

As well as inhibiting the expression of BMPs and their membrane receptors, some miRs have 258 

been shown to target BMP antagonists. Noggin expression is repressed by miR-200c/141 in 259 

dental epithelial-like cells through transcriptional upregulation of miR-200c by Pitx2, which 260 

binds to promoter elements in the miR200c/141 cluster to control the development of mouse 261 

incisors [69]. Similar to miR-22, expression of miR-200c is regulated by BMP signalling, 262 

creating a negative feedback loop during tooth development [69]. Noggin3 expression is also 263 

controlled by miR-92a during cartilage and skeletal formation in Zebrafish [70]. Degradation 264 

of Noggin3 mRNA by miR-92a allows sustained BMP activity, which facilitates the survival 265 

and differentiation of chondrocytes [70]. Therefore, miR-92a and Noggin3 act in opposition 266 

to regulate BMP signalling during cartilage formation. In addition, miR-27b  directly targets 267 

the 3’ UTR of Grem1, and regulates Grem1-mediated gene expression changes in lung 268 

fibroblast cells, adding to the efforts to identify the as-yet-undefined role of miR-27b in 269 

fibrosis in vivo (Table 1, [71]).  270 

BMP antagonist signalling: focus on Gremlin1 271 

Grem1 has been well characterised as a secreted antagonist that regulates BMP action during 272 

development, controlling limb and kidney formation [73, 74]. New data have identified that 273 

Grem1 may have its own intrinsic signalling capability, independent of BMP antagonism 274 

(Fig. 5). In kidney studies, treatment of mouse mesangial cells with high glucose or 275 

conditioned medium containing Grem1 increased the expression of TGFβ1, CTGF and 276 

collagen type IV proteins associated with diabetes-induced damage to the glomerulus [121]. 277 
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Increased ERK1/2 phosphorylation was also observed in cells treated with Grem1, likely 278 

contributing to the enhanced mesangial cell proliferation observed under these conditions 279 

[121]. Exposure of human tubular epithelial cells (HK-2) to recombinant Grem1 caused 280 

phenotypic changes resembling epithelial-mesenchymal transition (EMT), with decreased E-281 

cadherin and increased myofibroblast markers such as vimentin and alpha smooth muscle 282 

actin (α-SMA) [122]. Grem1 had a similar profibrotic effect on renal fibroblasts, and 283 

silencing of Grem1 using siRNA prevented TGFβ1-induced EMT in HK-2 cells [122]. 284 

Grem1 has also been implicated in aristolochic acid-induced EMT and fibrosis [123].  285 

Several reports have identified novel non-BMP binding partners for Grem1. Grem1 can bind 286 

to Slit proteins to negatively regulate monocyte chemotaxis [124], and Grem1 can bind to 287 

fibrillin microfibrils in mesothelioma cells ([89]). A novel function for Grem1 is as a 288 

proangiogenic regulator where Grem1 can bind to VEGFR2 in a similar manner to that of 289 

VEGF in endothelial cells and can increase angiogenesis in vitro and in vivo [125]. This 290 

effect involves Grem1 binding to heparin and heparin sulphate proteoglycans on the surface 291 

of endothelial cells [126]. In addition, the engagement of αvβ3 integrins and the formation of 292 

αvβ3/VEGFR2 complexes are involved in Grem1-mediated angiogenesis [127]. The 293 

identification of Grem1 as a novel proangiogenic factor has implications in highly 294 

vascularised tumours and also in the field of endothelial cell biology. Recently the effect of 295 

Grem1 on human umbilical cord haematopoietic progenitors was explored, showing that the 296 

balance between Grem1 and BMP-2 and BMP-4 are involved in atherosclerotic plaques [128, 297 

129] . The phosphorylation of ERK1/2 is a downstream effect of Grem1 activation (e.g. [89, 298 

121]. Consistently, embryonic fibroblasts isolated from grem1-/- mice display reduced ERK 299 

phosphorylation compared to wild-type cells [130]. The BMP antagonist Gremlin2 (also 300 

called PRDC) has recently been shown to activate JNK signalling in embryonic stem cells 301 

during their differentiation into atrial cardiomyocytes [131]. 302 
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BMP and BMP antagonist signalling in development and disease 303 

The critical role of BMPs and their secreted antagonists in development and disease has been 304 

highlighted by the identification of dramatic phenotypes in mice lacking either BMPs or 305 

BMP antagonists (e.g. [72-76]). In the adult, it is increasingly appreciated that subversion of 306 

the equilibrium between the activities of BMP agonists and antagonists may underlie several 307 

pathologies including cancer, skeletal disorders and fibrosis of kidney, lung, liver, eye and 308 

heart. In addition, a counterbalance between BMP and TGFβ signalling exists in many tissues 309 

and disease contexts, whereby BMP signalling can act to “dampen” TGFβ signalling and vice 310 

versa (Fig. 4). In addition, BMP antagonists can act to amplify TGFβ signalling via inhibition 311 

of BMP signalling. Some recent examples of this are discussed below. 312 

Cancer  313 

BMPs and their antagonists play a critical role in stem and progenitor cell biology regulating 314 

the balance between differentiation and expansion respectively. In basal cell carcinoma, 315 

cancer-associated fibroblasts secrete the BMP antagonists follistatin and Grem1 [77]. These 316 

antagonists act in a paracrine fashion to facilitate self-renewal and continued proliferation of 317 

cancer cells, overwhelming BMP control of proliferation. In human basal cell carcinoma 318 

Grem1 expression was detectable in the tumour stroma but not in adjacent normal skin [77]. 319 

Recently, Grem1 was identified at the cancer invasion front, suggesting a role for this BMP 320 

antagonist in colorecetal cancer metastasis [78, 79]. Grem1 has also been identified as a 321 

prognostic marker of pancreatic neuroendocrine tumours, and correlates with increased 322 

angiogenesis and increased patient survival [80]. 323 

In melanoma, autocrine inhibition of cell proliferation by BMP-7 was attenuated by the BMP 324 

antagonist Noggin which promotes tumour progression [81]. The BMP antagonist Coco has 325 

also been demonstrated to play an important role in promoting proliferation of breast cancer 326 
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cells which have extravasated to the lung. Initially, local production of BMPs limits the 327 

proliferative capacity of these cells, which is overcome by the antagonistic activities of Coco. 328 

Importantly, the Coco expression signature has been shown to predict metastatic relapse to 329 

the lung in humans [82]. In contrast to this oncogenic role, inhibition of BMP signalling has 330 

been shown to suppress tumour growth and lung metastases in a murine model of breast 331 

cancer [83]. 332 

Within a tumour microenvironment, progression versus stasis may be dependent on cancer 333 

stem cell (CSC) mediated-self renewal or differentiation. BMP-2 regulates CSC-induced 334 

differentiation, suggestive of a net tumour suppressive role. Increased BMP-2 expression, but 335 

conversely, decreased BMP-2 activity was detected in CSCs isolated from glioblastomas 336 

[84]. This apparent paradox was explained by the enhanced secretion of Grem1 from CSCs, 337 

leading to inhibition of BMP-2 and increased p21 signalling [84, 85]. TGFβ1, in contrast, 338 

acts to maintain cancer stem cells in their undifferentiated state, and antibodies such as 1D11 339 

which target the TGFβ1 receptor have been shown to have efficacy in certain cancer subtypes 340 

(Fig. 4, [86, 87]).  341 

The CSC example above provides a useful example of the opposing actions of BMPs versus 342 

TGFβ1 to maintain homeostasis in different cells and tissues, which is an important theme 343 

emerging from the field. The crosstalk in BMP and TGFβ1 signalling has been discussed 344 

above, and other examples of BMP versus TGFβ1 signalling in tissue fibrosis and EMT and 345 

regulation by KCP-1 will be discussed below. A further example of BMP versus TGFβ 346 

balance involves the formation of muscle mass, where BMP-mediated signalling increases 347 

muscle mass, whereas myostatin, a member of the TGFβ/activin family negatively regulates 348 

this process (summarised in Fig. 4,  [88]).  349 
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Grem1 is highly expressed in mesothelioma tumour samples and primary mesothelioma cells. 350 

The high expression of Grem1 along with Slug, a transcriptional regular of E-cadherin, is 351 

connected with resistance to paclitaxel-induced cell death. Interestingly, silencing Grem1 352 

with siRNA inhibits cell proliferation and induces a reduction in cancer cell survival upon 353 

treatment with paclitaxel [89]. It was suggested that upregulation of fibrillin-2 provides a 354 

mechanism for Grem1 localisation to the extracellular matrix of the tumour (Fig. 5, [89]). 355 

Grem1 has been shown to bind to A549 lung cancer and HeLa cells in a BMP and VEGFR2 356 

independent manner [90]. Additionally, stably transfected A549 cells expressing Grem1 357 

increased tumour growth in vivo compared to mock transfected A549 cells, further 358 

suggesting that Grem1 may potentiate tumour growth (Fig. 5, [90]). 359 

 360 

Diabetes and Diabetic Retinopathy 361 

The dual BMP/Wnt antagonist Sostdc1 (also known as USAG-1) plays a role in pancreatic 362 

islet function. Levels of Sostdc1 were upregulated in islets from non-immune-mediated lean 363 

diabetic mice, and a subset of sostdc1-/- mice displayed enhanced insulin secretion and 364 

improved glucose tolerance after high-fat diet feeding compared to wild-type controls [91]. 365 

Interestingly, sostdc1-/- islets displayed significant reductions in Grem1 and CTGF 366 

expression, suggesting a complex interplay between the BMP modulators may exist in islets 367 

[91].  368 

Both diabetic nephropathy (DN) and retinopathy (DR) are microvascular complications of 369 

diabetes that develop in a significant number of diabetic patients. The underlying 370 

mechanisms involved in DR overlap with DN (see below). For example, exposure of retinal 371 

pericytes to high glucose increased Grem1 expression [92]. A potential role of Grem1 in 372 

proliferative vitreoretinopathy was also identified [93]. Transition of lens epithelia to 373 

mesenchymal cells and subsequent matrix accumulation is a feature of glaucoma [94]. Grem1 374 



17 
 

expression is increased in the glaucomatous trabecular meshwork cells and tissues and 375 

elevates intraocular pressure (IOP) [95]. In this context, Grem1 potentiates the effects of 376 

TGFβ matrix accumulation by attenuating BMP-4 signalling [95]. Furthermore, treatment of 377 

human trabecular meshwork cells with recombinant Grem1 induced ECM cross-linking lysyl 378 

oxidase (LOX) genes [96]. Grem1-mediated LOX gene induction involved both canonical 379 

(Smad) and non-canonical (JNK and p38 MAPK) signalling [96]. These data provide 380 

important insights into the potential contribution of Grem1 to increased intraocular pressure 381 

and glaucoma.   382 

Kidney disease 383 

Human Greml1 was first described in the context of experimental models of diabetic 384 

nephropathy (DN), a chronic complication of diabetes associated with glomerulosclerosis and 385 

tubulointerstitial fibrosis [97, 98]. Further investigation revealed that i) increased expression 386 

of Grem1 correlated with DN disease severity [99], ii) a Grem1 gene variant was associated 387 

with DN in patients and iii) grem1+/- mice were protected from early stage sequelae of DN 388 

[100]. siRNA-mediated targetting of Grem1 in the kidney also resulted in protection from DN 389 

in a murine model, linked to increased BMP-7 activity [101] Consistently, tubular epithelial 390 

overexpression of Grem1 exacerbated injury in response to folic acid-induced nephropathy 391 

[102]. In podocytes, Grem1 aggravates injury to cells grown in high glucose, and triggers a 392 

downregulation of nephrin and synaptopodin, key proteins of the glomerular basement 393 

membrane [103]. siRNA targetting of Grem1 rescued podocytes from high glucose-induced 394 

injury, supporting the hypothesis that Grem1 is a primary driver of renal cell damage during 395 

diabetes. This study suggests that this effect may be due to Grem1 inhibition of BMP 396 

signalling, leading to increased TGFβ1-mediated Smad2/3 phosphorylation [103].  397 
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Mice lacking Grem1 die shortly after birth due to the absence of kidneys, arising from a 398 

failure of ureteric bud outgrowth and GDNF/Wnt11 signalling during embryogenesis [73]. 399 

The allelic reduction of BMP-4 reverses this phenotype, and grem1−/−;BMP-4+/− mice 400 

develop normal kidneys as a result of a corrected “volume” of BMP signalling [104]. 401 

Similarly, the complete inactivation of BMP-7 restored ureteric bud outgrowth in grem1-/- 402 

mice, but did not restore normal kidney formation due to the loss of nephrogenic progenitor 403 

cells [105]. BMP-6 null mice manifest increased tubulointerstitial damage and renal fibrosis 404 

in response to unilateral ureteric obstruction compared to wild-type mice [106], identifying 405 

BMP-6 as another major regulator of renal fibrosis in the kidney [107].  406 

Further evidence for the importance of BMP agonist antagonist interactions in the mature 407 

kidney was provided by investigations of USAG-1 and Twsg-1. USAG-1 is the most 408 

abundant BMP antagonist expressed in the kidney and negatively regulates renoprotection by 409 

BMP-7 in numerous experimental models of glomerular and tubular injury [108]. Using a 410 

model of Alport syndrome (a hereditary form of nephritis), the deletion of USAG-1 411 

attenuated renal injury likely due to enhanced BMP-7 suppression of MMP-12 expression 412 

[109]. Interestingly, the ability of the lipid lowering agent simvastatin to ameliorate renal 413 

fibrosis has been linked to the repression of USAG-1 expression, thus enhancing anti-fibrotic 414 

BMP-7 signalling [110]. This USAG-1/BMP-7 axis has also been implicated in 415 

supernumerary incisor formation, with enhanced BMP-7 signalling in usag1-/- mice thought 416 

to drive this process [111]. Podocyte injury and loss is considered an important factor in 417 

initiating glomerular injury and proteinuria in DN and other renal conditions. Twisted 418 

Gastrulation (Twsg1) has been shown to be the dominant BMP antagonist secreted by 419 

podocytes, and acts in synergy with chordin or chordin-like molecules to modulate BMP 420 

activity [112]. Twsg1 antagonises BMP-7-induced podocyte differentiation, and is expressed 421 

in damaged glomeruli of a mouse model of podocyte injury and proteinuria. Consistently, 422 
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twsg1-/-mice were relatively resistant to podocyte injury suggesting that future 423 

pharmacological strategies targetting Twsg1 may be a useful avenue for the treatment of 424 

renal disease [112].   425 

Disorders of the liver 426 

Gremlin, along with follistatin, was identified as a marker of liver fibrosis using gene array 427 

screens of hepatic stellate cells induced to undergo transdifferentiation into myofibroblasts 428 

[113]. Upregulation of Grem1 was also identified in chronic hepatitis, liver cirrhosis and liver 429 

cancer as a result of hepatitis C, with Grem1 expression correlating with the stage of liver 430 

cancer in the patients [114]. Using a CCl4 mouse model of liver fibrosis, it was shown that 431 

treatment with BMP-7 could attenuate the severity of damage and improve liver function 432 

[115]. Levels of Grem1 were increased in the fibrotic liver, and treatment with BMP-7 further 433 

increased Grem1 expression, which is difficult to rectify given the current dogma regarding 434 

the pro-fibrotic role of Grem1 and the anti-fibrotic role of BMP-7. Furthermore, adenoviral 435 

delivery of BMP-7 suppressed CCl4 induced liver fibrosis in mice [116]. Many of these 436 

effects are likely related to changes in TGFβ1 expression, which is thought to be the major 437 

cytokine driving liver fibrosis and regulating liver carcinogenesis [117].  438 

Miscellaneous 439 

BMPs and their antagonists such as BMP-4, BMP-7, Grem1 and Twsg1, are involved in 440 

lymphopoiesis, where they are expressed in specific compartments in the bone marrow and 441 

thymus [118]. Surprisingly, the conditional knockout mice lacking BMP-7 or Twsg1 in 442 

haematopoietic cells had no effect on B and T cell number [118]. However, Twsg1-deficient 443 

B cells demonstrated hyperresponsiveness after B-cell receptor stimulation [119]. Conditional 444 

knockout of Grem1 in the ovaries of female mice altered early folliculogenesis, but did not 445 

affect overall fertility compared to wild-type mice [120].  446 
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All of the data above point to a critical role for BMP and BMP antagonist signalling in 447 

serious human diseases such as cancer, diabetic kidney disease and liver fibrosis. It is clear 448 

that a delicate balance between BMP and TGFβ signalling exists in many cells, and 449 

perturbations in this balance as a result of changes in BMP antagonists such as Grem1 can 450 

contribute to the development of human disease. The following section will highlight recent 451 

efforts to develop new treatments for diseases where an imbalance of BMP/TGFβ signalling 452 

is implicated.   453 

Therapeutic potential of BMP and BMP antagonists in human disease 454 

Targeting BMPs in human disease 455 

Pharmacological targeting of BMP action has long been a focus point for many. Given their 456 

key role in bone formation, the delivery of recombinant human BMPs has been developed to 457 

accelerate impaired fracture healing in the long bones and spinal cord (reviewed in [132, 458 

133]). Recombinant human BMP-2 (available as InFuse® from Medtronic), and rhBMP-7 459 

(available as OP-1 from Olympus) are sometimes used as adjunct therapies for the treatment 460 

of non-union fractures [134]. However, the therapeutic benefit of these rhBMPs is hampered 461 

by the high costs of treatment, a shortage of robust data from double blind clinical trials, and 462 

a range of adverse effects in patients [132, 135].  463 

BMP-7 signalling has been a key target for reversing fibrosis or scar formation in the kidney, 464 

heart, lung and other organs. A wealth of in vitro and in vivo evidence suggests that BMP-7 465 

possesses anti-fibrotic activity, due to its ability to reverse TGFβ1-mediated fibrosis in many 466 

tissues. For example, in the mouse heart, subcutaneous delivery of rhBMP-7 reduced cardiac 467 

fibrosis as a result of pressure overload, and also decreased vascular calcification due to 468 

excess vitamin D levels [136, 137]. Intracolonically delivered adeno-associated virus-469 

mediated delivery of rhBMP-7 (AAV-BMP-7) reduced the severity of acute ulcerative colitis 470 
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in rats [138]. Oral administration of AAV-rhBMP-7 suppressed CCl4-hepatic fibrosis in mice 471 

[116]. Delivery of AAV-rhBMP-7 also reduced the infarct size in a stroke model of middle 472 

cerebral artery occlusion in mice [139]. A gene therapy approach using gold nanoparticles 473 

containing the BMP-7 gene inhibited fibrosis in a rabbit model of corneal damage [140].  474 

In the kidney, administration of rhBMP-7 has been shown to attenuate the severity of renal 475 

fibrosis induced by a range of insults including ischaemic injury [141], nephrotoxic serum 476 

nephritis [142] and diabetic nephropathy (DN) [143]. Despites its potential benefits, rhBMP-477 

7 displayed a lack of efficacy in treating lung, skin or kidney fibrosis [144, 145]; however, 478 

several groups are still developing therapeutic agents based on BMP-7 and/or activation of 479 

the ALK3 BMPRIA receptor. 480 

A peptide mimetic of BMP-7 called THR123 was recently developed. THR123 is a 16-amino 481 

acid cyclic peptide corresponding to the finger 2 region of BMP-7 and was designed based on 482 

the predicted BMP-ALK3 binding regions using TGF-β2 and BMP-7 crystal structures [146]. 483 

THR123 binds to the ALK3 receptor in vitro, and administration of THR123 reverses kidney 484 

fibrosis in a range of mouse models including nephrotoxic serum nephritis, diabetic 485 

nephropathy and the col4a3 knockout mouse model of Alport syndrome [146]. However, 486 

some questions have been raised regarding the ability of THR123 to activate the ALK3 487 

receptor, and whether a hydrophyllic peptide containing a C-terminal sequence that would 488 

favour digestion in the GI tract would reach therapeutic doses after oral administration [147].  489 

Other small molecule activators of BMP signalling have been identified through a library 490 

screen of bioactive compounds using a BMP responsive luciferase assay in human cervical 491 

cancer cells [148]. Two lead compounds, both members of the flavonoid chalcone family, 492 

were identified and shown to have both canonical (Smad1/5/8 phosphorylation) and non-493 

canonical (ERK phosphorylation) activity [148]. In vivo, these chalcone molecules induced 494 
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ventralisation of Zebrafish embryos, a hallmark of BMP activation during development 495 

[148]. Screening the Spectrum collection of drug compounds, natural products and bioactive 496 

molecules (2320 compounds in total) using BMP-responsive luciferase activity identified 497 

tilorone as a strong inducer of BMP activity. Importantly, tilorone decreased the degree of 498 

fibrosis in a mouse model of silica-induced lung fibrosis [149]. Increased pSmad1 499 

phosphorylation was detected in the lungs of these mice, with concomitant reductions in 500 

TGFβ1 signalling [149]. These data, along with previous results using THR123 indicate that 501 

inducers of BMP-7 signalling may have therapeutic benefit for the treatment of fibrosis in the 502 

lung and kidney. Other strategies aimed at boosting BMP signalling in disease have focussed 503 

on the kielin/chordin-like protein-1 (KCP-1). KCP-1 (also called Crim2) binds to BMP-7 and 504 

enhances its engagement with the BMPRI receptor [150]. Kcp1-/- mice developed severe 505 

renal fibrosis in response to unilateral ureteric obstruction (UUO) and folic acid-induced 506 

nephropathy [150]. Conversely, KCP-1 binds to TGFβ1 and inhibits it interaction with its 507 

receptor [151]. Indeed, transgenic mice overexpressing KCP-1 in the proximal tubules 508 

displayed attenuated fibrosis in the kidney, and revealed that pSmad1 levels (BMP target) 509 

were increased, while pSmad3 (TGFβ1 target) was reduced (Fig. 4, [152]).  510 

TGFβ1 is the primary pro-fibrotic cytokine that mediates tissue fibrosis, and strategies aimed 511 

at inhibiting TGFβ1 signalling (such as through BMP-7 and its analogues) have been pursued 512 

by many. Recently the administration of lipoxin A4 (LXA4), an anti-inflammatory lipid 513 

mediators that inhibits injury in the kidney and other tissues (e.g. [153-155]), have proven 514 

effective in reducing renal fibrosis in response to unilateral ureteric obstruction (UUO) in 515 

mice. The mechanism of LXA4 was a reduction in TGFβ1-mediated signalling and a 516 

corresponding decrease in extracellular matrix-associated gene expression in kidney 517 

epithelial cells [153]. The anti-fibrotic effect of LXA4 involves the induction of let7c 518 

miRNA, which targets several elements of the TGFβ1 signalling pathway [156]. MiRNA-519 
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200b was also identified as a repressor of TGFβ1-induced epithelial-mesenchymal transition 520 

(EMT) via targeting of the E-box binding transcription factors ZEB1 and ZEB2 [157].  521 

Targetting BMP Antagonists in human disease 522 

While the therapeutic benefit of boosting BMP signalling is evident in fibrosis of the kidney 523 

and lung, other diseases, as a result of excessive BMP signalling, may benefit from BMP 524 

inhibition. An inhibitor of BMP signalling called Dorsomorphin was identified in a screen for 525 

molecules that disrupt dorsoventral patterning in Zebrafish embryos [158]. Dorsomorphin 526 

blocked pSmad1/5/8 phosphorylation via inhibition of ALK2, ALK3 and ALK6 receptor 527 

signalling [158]. Dorsomorphin also provided evidence for an essential physiological role for 528 

hepatic BMP signalling and iron metabolism [158]. Dorsomorphin and its derivatives (e.g. 529 

LDN-193189) reduced the severity of fibrodysplasia ossificans progressive (FOP) in mouse 530 

models, by inhibiting of BMP signalling [158, 159]. Moreover, Dorsomorphin induced the 531 

myocardial differentiation of mouse embryonic stem cells via inhibition of BMP signalling 532 

[160]. The ability of Dorsomorphin to disrupt dorsoventral patterning in zebrafish, due to 533 

“off-target” anti-angiogenic effects on the VEGF type 2 receptor (Flk1/KDR) [161]. Further 534 

structure activity studies identified a potent and selective inhibitor of ALK2 called DMH1 535 

that disrupted zebrafish dorsoventral patterning but not vascular development [161]. DMH1 536 

induced the formation of beating cardiomyocytes from mouse embryonic stem cells, 537 

highlighting a novel role for BMP inhibition during cardiomyogenesis [162]. In addition, a 538 

novel class of BMPRI ALK2 inhibitors, based on the structure of Dorsomorphin have been 539 

identified and the lead compound, K02288 inhibits BMP-4-mediated Smad1/5/8 540 

phosphorylation at nanomolar concentrations in C2C12 cells. In addition, K02288 induced 541 

dorsalization of Zebrafish embryos, similar to that seen with Dorsomorphin [158, 163].  542 

Targeting Grem1 in human disease 543 
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Given the wealth of data implicating increased Grem1 in diseases of the kidney, lung, liver 544 

and in cancer, an obvious strategy is to design therapeutic inhibitors of Grem1 to treat these 545 

conditions. Data supporting this hypothesis was provided by reports showing that grem1+/- 546 

mice developed less severe early symptoms of DN compared to wild-type [100]. In addition, 547 

siRNA-mediated targeting of Grem1 reduced the severity of kidney injury [101]. Furthermore 548 

Grem1 may be a potential target for lung disease, in particular idiopathic pulmonary fibrosis 549 

(IPF) and pulmonary artery hypertension (PAH). Grem1 is expressed in macrophages and the 550 

alveolar epithelial lining of the normal lung [164], and in the interstitium of lungs with IPF 551 

[164].  Transient overexpression of Grem1 in rat lungs using adenovirus resulted in alveolar 552 

epithelial cell activation and thickening, along with an increase in inflammatory cell 553 

infiltration [165]. Collagen deposition and accumulation of α-SMA myofibroblasts were 554 

observed in fibroblastic foci. Interestingly, the BMP-4 precursor protein co-555 

immunoprecipitated with Grem1, suggesting that Grem1 binding to BMP-4 causing the 556 

reduction in Smad1/5/8 phosphorylation [165]. In parallel with Grem1 activation, FGF-10, an 557 

epithelium protectant, was elevated in fibrotic lung epithelial cells, whereas FGF-7 and 9 558 

were decreased, suggesting that a Grem-BMP-FGF-10 loop may exist in the fibrotic lung 559 

[165]. 560 

It has previously been shown that mutations in the BMPRII are implicated in heritable PAH 561 

[166]. Levels of Grem1 are also increased in lung biopsies from PAH patients, likely as a 562 

result of hypoxia-induced upregulation in pulmonary endothelial cells [167, 168]. Similar to 563 

DN in the kidney, grem1 haploinsufficiency protects against hypoxia-induced increases in 564 

vascular resistance in mice [167]. A novel strategy to target Grem1 using a therapeutic 565 

monoclonal antibody was recently developed and tested in a mouse model of PAH. Mice 566 

treated with the Grem1 targeting antibody showed a reduction in pulmonary vascular 567 

remodelling and right ventricular pathology [169]. In addition, a Grem1 antibody reduced 568 
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cancer cell migration and invasiveness, independent of BMP and VEGFR2 binding [90]. 569 

These data are an important proof-of-principle demonstrating that therapeutic targeting of 570 

Grem1 may provide new avenues to improve the treatment of cancer, as well as fibrotic 571 

conditions of the lung and kidney and other organs (summarised in Fig. 5).   572 

Concluding remarks 573 

This review has attempted to summarise the numerous, recent findings regarding BMP 574 

signalling. Despite a number of important advances in deciphering the signalling modalities 575 

of BMPs and their antagonists, many challenges remain. More experiments are needed to 195 576 

antagonists during developmental processes, physiology and disease. A clear pattern of 577 

crosstalk and competing effects between BMPs and TGFβ is emerging in different tissues. 578 

The identification of cross-interactions between BMP antagonists such as Noggin and Grem1 579 

presents additional complexities in elucidating BMP signalling [170]. There is a strong 580 

possibility that tissue and disease context may determine the specific interactions of BMPs 581 

and their antagonists, as well as with TGFβ. Identifying these interactions will increase the 582 

opportunities for pharmacological intervention to modify BMP/BMP antagonist signalling, 583 

similar to the Grem1 targeting approach developed in pulmonary artery hypertension. We 584 

eagerly anticipate future developments in this field, and emerging BMP-targeting therapies 585 

that will improve disease treatment and patient outcomes. 586 

 587 

Figure Legends 588 

Figure 1. Complex regulation of BMP signalling. BMPs are processed by proprotein 589 

peptidases to generate mature dimers which then bind to two copies of the type I and type II 590 

BMP receptors, generating a heterohexameric complex. Binding of BMP homodimers to their 591 

cognate receptors leads to phosphorylation of the type I receptor by the type II receptor in the 592 
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GS domain. Activated BMP receptors then phosphorylate Smad1/5/8 proteins which dimerise 593 

with Smad4 and accumulate in the nucleus, where they mediate changes in BMP-regulated 594 

gene expression. Regulation of this pathway occurs extracellularly via the binding of 595 

extracellular antagonists such as Grem1 and Noggin (1), or in the plasma membrane via the 596 

action of pseudoreceptors such as BAMBI (2). In addition, inhibitory constraints on receptor-597 

mediated Smad1/5/8 phosphorylation occur via FKBP12 binding and inhibitory Smad6 598 

binding, which is relieved by the action of a PRMT1 methyltransferase (3). Additional 599 

regulation of BMP signalling occurs via cytosolic phosphatases and ubiquitin ligases such as 600 

Smurf (4), and via miRNA (5) and methylation (6) mediated control of BMP-mediated gene 601 

expression. 602 

Figure 2. Sequence homology of BMP antagonists. (a) Multiple sequence alignment of the 603 

cysteine knot regions of BMP antagonists. Red boxes indicate highly conserved cysteine 604 

residues. (b) Phenogram of BMP antagonists based on sequence similarity.  605 

Figure 3. Structures of BMPs and BMP antagonists. Cartoon representation of protein 606 

structure of (a) BMP-7 in complex with Noggin (PDB entry 1M4U), (b) BMP-2 in complex 607 

with VWC1 domain of Crossveinless-2 (PDB entry 3BK3), (c) PRDC dimer (PDB entry 608 

4JPH) and (d) NMR resolved unbound structure of VWC1 of CV2 (PDB entry 2MBK) 609 

superimposed to X-ray resolved bound structure of VWC1 of CV2 in complex with BMP-2 610 

(PDB entry 3BK3). All protein structure representations generated using PyMol (DeLano 611 

2002). 612 

Figure 4. BMP and TGFβ signalling play counteregulatory roles in some cases of 613 

physiology and disease. Some examples of the counteracting regulation of cellular responses 614 

by BMP-7 and TGFβ are shown. BMP-7 signalling acts to inhibit fibrosis in kidney and lung, 615 

whereas TGFβ is well established as a primary fibrotic driver in many tissues. BMP-7 616 
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signalling is potentiated by the binding of Kielin/Chordin-like protein-1 (KCP-1), which 617 

facilitates BMP-7 binding to its cognate receptors. In contrast, KCP-1 binds to TGFβ and 618 

prevents it binding to its receptors, thus inhibiting its signalling. BMP-7 and TGFβ signalling 619 

are also counter balanced in cancer stem cell differentiation and the regulation of muscle 620 

mass (see text for details). 621 

Figure 5. Grem1 signalling occurs via diverse mechanisms in cells. (a) Grem1 dimers bind 622 

to BMP dimers and prevent engagement of BMP receptors, preventing BMP signalling and 623 

gene expression (see text for details). (b) Grem1 binds to VEGFR2 in endothelial cells and 624 

promotes angiogenesis. Heparin sulphate proteoglycans (HSPGs) and αvβ3 integrins are 625 

required for this response [125, 126]. (c) Grem1 has been shown, via an unidentified 626 

mechanism, to activate cancer cell invasion and proliferation. This effect occurs 627 

independently of BMP VEGFR2 signalling [90]. (e) Grem1 can bind to Slit1 and 2 and 628 

facilitates their binding to the Robo receptor, leading to inhibition of monocyte chemotaxis 629 

[124]. (f) Grem1 associates with fibrillin microfibrils and triggers Slug expression, leading to 630 

EMT and mesothelioma cell survival [89].  (g) Grem1 can bind to and sequester BMP-4 631 

precursor protein, preventing mature BMP-4 secretion [171].  632 
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Table 1. Summary of miRNAs regulating BMP signalling. 654 

miRNA Target Biological Function/Consequence Reference 
 

Osteoblast and Bone 
 

miR-140-
5p 

BMP-2 Enriched miRNA in undifferentiated hMSCs which 
directly represses BMP-2 expression and 
subsequent BMP-2 mediated osteogenesis, 
thereby negatively regulating osteogenic lineage 
commitment 

Hwang S, 2014 
[172] 

miR-542-
3p 

BMP-7 Inhibits BMP-7-mediated osteogenesis, 
suppressing osteoblast differentiation and 

Kureel J, 2014 
[173] 
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promoting apoptosis 

miR-208 Ets1 Regulates BMP-2 stimulated preosteoblast 
differentiation in a mouse cell line 

Itoh T, 2010 [174] 

miR-30 
family 

Smad1 
Runx2 

Negatively regulate BMP-2 mediated osteogenic 
differentiation in vitro 

Wu T, 2012 [175] 

miR-155 SOCS1 Induced by TNF-α. Targets SOCS1. Plays a role in 
modulating TNF-α inhibition of BMP induced 
osteoblast differentiation of MC3T3-E1 cells 

Wu T, 2012 [176] 
 

 
 Cancer  
 
miR-885-

3p 
BMPR1A Inhibits Smad1/5/8 phosphorylation and Id1 

expression, supresses angiogenesis in vitro and in 
vivo, impairs HT-29 colon cancer cell xengraft 
growth in vivo  

Xiao F, 2014 [177] 

miR-656 BMPR1A Downreguated in glioma cell lines and tissues. 
Overexpression of miR-656 suppresses glioma 
cell proliferation, neurosphere formation, migration 
and invasion, as well as tumour growth in vivo 

Guo M, 2014 [65] 

miR-365 SHC1 
BAX 

Induces gemcitabine resistance in pancreatic cells, 
Downregulation of apoptosis-promoting genes and 
upregulation of invasion-promoting genes in 
pancreatic cancer cells. 

Hamada S, 2014 
[178] 

miR-192 RB1 
 

Downregulated in breast cancer. BMP-6 treatment 
of MDA-MB-231 cells results in upregulation of 
miR-192. BMP-6 caused inhibition of cell 
proliferation in vitro and decreased tumour growth 
in vivo. 

Hu F, 2013 [179] 

miR-17-
92a 

TGFβR2 
Smad2 
BMP 
genes 

Upregulated in cancer stroma, may contribute to 
cancer progression 

Nishida N, 2012 
[180] 

 
Muscle 

miR-675-
3p, 5p 

Smad1 
Smad 5 
Cdc6 

Promotes muscle differentiation and regeneration Dey BK, 2014 
[181] 

miR-26a Smad1 
Smad4 

Required for skeletal muscle differentiation and 
regeneration in vivo 

Dey BK, 2012 
[182] 

 
Miscellaneous 

 
miR-30b BMP-7 Inhibits BMP-7, is involved in EMT induced by 

methylglyoxal in peritoneal mesothelial cells in rat 
model 

Liu H, 2014 [183] 

miR-135a BMPR1A 
BMPR1B 

Overexpression of miR-135a inhibits transcription 
of BMPR1A and BMPR1B. May play a role in 
regulating tooth formation via regulation of BMP 
signalling 

Kim EJ, 2014 
[184] 

miR-26a Smad1 Overexpression of miR-26a inhibits pulmonary 
surfactant synthesis in type II epithelial cells from 
pulmonary alveolus 

Zhang XQ, 2014 
[185] 
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miR-26a Smad1 Regulates angiogenesis in vitro and in vivo. 
Inhibits BMP/Smad signalling pathway. Targeting 
miR-26a, triggered angiogenesis and decreased 
myocardial infarct size in a mouse model 

Icli B, 2013 [186] 

miR-21 BMPRII 
RhoB 

Hypoxia and BMPRII signalling upregulate miR-21 
in vitro in human pulmonary artery endothelial 
cells. miR-21 expression is increased in pulmonary 
hypertension 

Parikh VN, 2012 
[187] 

miR-21 BMP-
dependent 

tumour 
suppressor 

genes 

miR-21 expressed in epidermis and skin follicle 
epithelium. Downstream target of BMP-4 in mouse 
keratinocytes e.g. ID1-3, Msx-2 
 
 

Ahmed MI, 2011 
[63] 

miR-302-
367 

TOB2 
DAZAP2 
SLAIN1 

Maintaining pluripotency and self-renewal of 
human embryonic stem cells by targeting BMP 
inhibitors. Modulation of TGF-β, BMP signalling 
during neural induction 

Lipchina I, 2011 
[188] 

miR-24 Trb3 miR-24 targets Trb3, decreasing Smad expression 
and BMP signalling 
PDGF inhibits BMP mediated changes in 
pulmonary smooth muscle cells and also induces 
expression of miR-24 

Chan MC, 2010 
[189] 

miR-22 BMP-6 
BMP-7 

BMPR1B 

Inhibits BMP-7 and -6 but also induced by BMP-7 
and -6 via a negative feedback loop. 
BMP-7 and -6 expression are increased in kidneys 
of miR-22 null mice. Targeted deletion of miR-22 
attenuated renal fibrosis in UUO model 

Long J, 2013 [67] 

miR-27b Grem1 Regulates Grem1-mediated fibrotic gene 
expression changes in vitro 

Graham JR, 2014 
[71] 

miR-92a Noggin3 Targets Noggin3. Maintains BMP signalling during 
pharyngeal cartilage formation 

Ning G, 2013 [70] 

miR-302-
367 

BMPRII  BMP signalling downregulates miR 302-367 
expression. Overexpression of miR-302 
downregulates BMP signalling 

Kang H, 2012 [64] 
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 660 

Table 2. Targetting BMP signalling in human disease. 661 

 662 

Disease Target Novel 
treatment 

Rationale Outcome Reference 

Kidney 
 

Alk-3 THR123 A peptide mimetic 
of BMP-7. 
Evidence for BMP-
7 being anti-
fibrotic 

Reversed renal 
fibrosis in a range 
of mouse models 
including DN. 

Sugimoto H, 
2012 [146] 
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Grem1 Grem1 siRNA  Grem1 contributes 
to pathogenesis of 
DN 

Attenuated DN 
characteristics and 
recovered BMP-7 
signalling 

Zhang Q, 
2010 [101] 

Lung 
 

BMPR2 FK506 
(tacrolimus) 

Dysfunctional 
BMPR2 signalling 
is implicated in 
pathogenesis of 
PAH 

Reversed 
dysfunctional 
BMPR2 signalling 
in vitro  
 
Reversed severe 
PAH in vivo 

Spiekerkoetter 
E, 2013 [26] 

Grem1 Grem1 
antibody 

Grem1 contributes 
pathogenesis of 
PAH 

Reduced 
pulmonary 
vascular 
remodelling and 
right ventricular 
pathology in 
mouse model of 
PAH 

Ciuclan L, 
2013 [169] 

BMP Tilorone Increased Grem1 
expression and 
decreased BMP 
signalling in 
idiopathic 
pulmonary fibrosis 

Reduced degree of 
fibrosis in mouse 
model of silica-
induced lung 
fibrosis 

Lepparanta 0, 
2013 [149] 

Liver 
 

ALK3 
 
 
 
 
 
 
 
 

ALK2 

LDN-193189 
DMH2 

VU0465350 
(Antagonists 

of BMP 
receptors) 

 
 
 

VU0469381 
(Antagonists 

of BMP 
receptors) 

Inhibiting BMP 
signalling 
promotes liver 
regeneration 

Inhibited 
Smad1/5/8 
phosphorylation 
and in vitro and in 
vivo. Enhanced 
liver regeneration 
after partial 
hepatectomy. 
 
No effect on liver 
regeneration  

Tsugawa D, 
2014 [190] 

Hepcidin 
BMP-6 

Neutralizing 
BMP-6 

antibody 

Hepcidin and 
hemojuvilin gene 
mutations 
implicated in 
juvenile 
hemochromatosis. 

Inhibited hepatic 
hepcidin 
expression 
Increased serum 
iron and transferrin 
saturation in vivo 

Andriopoulos 
Jr B, 2009 
[191] 

Skeletal 
 

TGF-β 1D11 
(Neutralizing 

antibody) 

Altered TGF-β 
signalling 
contributes to 
pathogenesis of 
osteogenesis 
imperfect 

Restored bone 
phenotype in  
Crtap-/- and 
Col1a2tm1.1Mcbr 
models of 
osteogenesis 
imperfecta and 
corrected lung 
abnormalities in 
Crtap-/- mice. 

Grafe I, 2014 
[192] 

ALK2 LDN-193189 
(Inhibitor or 
BMP type I 

receptor 
kinases) 

ACVR1 gene 
mutation that 
results in 
constitutive 
activation of ALK2 

LDN-193189 
inhibited 
Smad1/5/8 and 
reduced ectopic 
ossification in vivo 

Yu, P 2008 
[193] 
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in patients with 
fibrodysplasia 
ossificans 
progressive (FOP)  

rhGDF-5/β-
TCP 

rhGDF-5/β-
TCP 

rhGDF-5 has been 
shown to have 
osteoinductive 
properties and a 
rhGDF-5/β-TCP 
device has shown 
to promote 
periodontal 
regeneration in 
vivo 

2- to 3-fold higher 
amount of new 
bone and new 
cementum 
formation with 
rhGDF-5/β-TCP 
compared to  OFD 
alone 
 
Potential therapy 
for periodontal 
regeneration 

Windisch P, 
2012 [194] 

Cancer Grem1 Grem1 
antibody 

Grem1  Reduced cancer 
cell migration and 
invasiveness in a 
BMP and VEGFR2 
independent 
manner 

Kim M, 2012 
[90] 

 
Anaemia 

 
Activin/TGF-

β 

 
RAP-011 
(Soluble, 

activin 
receptor type 

IIA ligand 
trap) 

 
RAP-011 is a 
novel erythroid 
stimulating agent 
that inhibits 
downstream 
signalling of activin 
or TGF-β 
members 

 
Increased 
haemoglobin 
concentration, did 
not deplete splenic 
iron stores in 
hepcidin 
antimicrobial 
peptide 
overexpressing 
mice. 
 
Potential 
therapeutic for 
human anaemia 

 
Langdon JM, 
2014 [195] 
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