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Small RNAs from plants, bacteria and fungi within
the order Hypocreales are ubiquitous in
human plasma
Meabh Beatty, Jasenka Guduric-Fuchs, Eoin Brown, Stephen Bridgett, Usha Chakravarthy, Ruth Esther Hogg
and David Arthur Simpson*

Abstract

Background: The human microbiome plays a significant role in maintaining normal physiology. Changes in its
composition have been associated with bowel disease, metabolic disorders and atherosclerosis. Sequences of
microbial origin have been observed within small RNA sequencing data obtained from blood samples. The aim of
this study was to characterise the microbiome from which these sequences are derived.

Results: Abundant non-human small RNA sequences were identified in plasma and plasma exosomal samples.
Assembly of these short sequences into longer contigs was the pivotal novel step in ascertaining their origin by
BLAST searches. Most reads mapped to rRNA sequences. The taxonomic profiles of the microbes detected were
very consistent between individuals but distinct from microbiomes reported at other sites. The majority of bacterial
reads were from the phylum Proteobacteria, whilst for 5 of 6 individuals over 90% of the more abundant fungal
reads were from the phylum Ascomycota; of these over 90% were from the order Hypocreales. Many contigs were
from plants, presumably of dietary origin. In addition, extremely abundant small RNAs derived from human Y RNAs
were detected.

Conclusions: A characteristic profile of a subset of the human microbiome can be obtained by sequencing small
RNAs present in the blood. The source and functions of these molecules remain to be determined, but the specific
profiles are likely to reflect health status. The potential to provide biomarkers of diet and for the diagnosis and
prognosis of human disease is immense.

Keywords: Small RNAs, Fungi, Plasma, Microbiome, Metagenomics, Next generation sequencing, MicroRNA,
Biomarker, Blood, Y RNA

Background
It has been estimated that there are at least ten times
more microbial cells associated with our bodies than
there are human cells [1,2]. Recent advances in high
throughput, metagenomic sequencing approaches have
facilitated identification of this diverse population of mi-
crobes at the genomic level. Characterisation of this
microbiome, led by the Human Microbiome Project [3],
has revealed that its composition varies widely between
body sites and between individuals [2,4-7].

The microbiome has a significant influence upon
health. The majority of microbes are found in the gut
and have essential roles in normal human physiology
and immune responses [1,8]. The composition of the gut
microbiome is correlated with diet [9] and may be linked
with the pathophysiology of bowel disorders [10,11],
obesity [12-14], atherosclerosis [15-17], diabetes [18],
rheumatoid arthritis [19,20] and neurodevelopmental
disorders [21]. Inflammatory bowel conditions have been
linked with the intestinal fungal community [4,22].
Most metagenomic studies to date have involved isola-

tion of DNA from external body sites or from the re-
spiratory or digestive tracts, with fecal samples being the
most commonly used source for investigation of the gut
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microbiome. Certain small RNAs are stable in the blood
and in particular microRNAs have been widely studied
as potential predictors of disease [23,24]. However, we
and others [25-27] have observed the existence of add-
itional, exogenous small RNAs of potential microbial
origin. Indeed, Wang et al. have documented the exis-
tence of RNA from bacteria and fungi in plasma and
suggested that they may serve as signaling molecules or
indicators of human health [25]. The origin of these
small RNAs is unclear, but they are almost certainly de-
rived from microbes inhabiting the gut or respiratory
tract, rather than from viable microbes within the circu-
lation. Nonetheless, it seems likely that the subset of the
total human microbiome which contributes to these
blood-borne small RNAs is linked with health status.
The ability to reliably determine the composition of this
microbiome from the sequences of the small RNAs
present in a blood sample could form the basis of an ex-
tremely valuable diagnostic test.
The aim of this study was to construct a profile of the

microbiome from which the exogenous small RNAs
present in human plasma are derived. The merging of
overlapping sequences to generate contigs facilitated iden-
tification of the origin of the short RNA sequences. The
microbiome profiles generated were consistent across 6
individuals (3 from this study and 3 from publicly available
data [28]). In addition to bacterial sequences, a large pro-
portion of reads matched fungal sequences. To our sur-
prise, the majority of these were assigned to the order
Hypocreales. This work has further demonstrated the
feasibility of generating a microbiome profile from small
RNAs in plasma [25]. The ease of obtaining blood samples
will facilitate analysis of this microbiome in a wide range
of physiological and disease conditions. These findings
also raise the intriguing questions of whether these ex-
ogenous RNAs have any functional implications and why
sequences from one fungal order are so abundant.

Results
RNA was extracted from three plasma samples and small
RNA libraries prepared using an Illumina kit. Each library
was sequenced on a MiSeq (Illumina). The unique reads
and raw sequencing data have been deposited in Gene Ex-
pression Omnibus (GEO), accession number GSE52981.
Sequencing data for three plasma exosomal small RNA
libraries prepared with a kit from Bioo Scientific were
downloaded from GEO [28]. For one of these samples
data from libraries prepared with an NEB kit and an
Illumina kit (as used in this study) were also available. The
strategy for analysis of the sequencing data was to filter
out reads derived from human genes, assemble the
remaining reads into contigs, annotate these by alignment
to known sequences and perform a phylogenetic classifi-
cation (Figure 1).

The proportions of reads annotated to human genes are
illustrated in Figure 2A (absolute numbers in Additional
file 1). As expected, a large proportion of reads repre-
sented microRNAs, but remarkably, in the whole plasma
samples prepared in this study, a similar proportion
mapped to Y RNAs. Y RNAs are small cytoplasmic non-
coding RNAs that can be cleaved to form smaller RNAs
independently of the microRNA pathway [29]. The vast
majority of reads (>99%) mapped to hY4, with small num-
bers to hY5, hY3 and hY1. A smaller but significant
number of Y RNA sequences were present in the plasma
exosome samples. In small RNA sequencing datasets from
whole blood, which included cellular RNAs (GEO acces-
sion GSE46579), hy4-derived RNAs were present at levels
comparable to an abundant microRNA [30]. The dif-
ferences in Y RNA abundance observed between studies
can be attributed to differences in sample collection
(eg whole plasma or plasma exosomes) and library prepa-
ration, which result in differing distributions of small
RNA read lengths (Additional file 2: Figure S1). The small
RNAs detected corresponded to the 5p and 3p arms of
the predicted secondary structure of hY4 (Figure 3A).
Taqman small RNA RT-qPCR assays employ a stem-loop
reverse transcription primer and are therefore expected to
be specific for the target small RNA and not detect the full
length precursor RNA. Therefore the low Cp values ob-
served with the assays targeting the most abundant hY4
sequences from each arm both confirmed the presence of
these small RNAs in plasma and suggested that they are
indeed much more abundant than any individual micro-
RNA (Figure 3B). To further confirm the presence of hY4
fragments, RNA was polyadenylated, reverse transcribed
with an oligo-dT adaptor and PCR performed with
primers specific for the putative hY4 fragments. The size
of the product amplified using the 5p primer was con-
sistent with presence of the small RNA template detected
in the sequencing rather than full length hY4 RNA
(Figure 3C).
A significant number of unannotated reads remained

in all samples. The randomly cloned DNA sequences ob-
tained in conventional metagenomic studies are typically
assembled into contigs to enhance identification of hom-
ology with known genes. Although this strategy would
not be applicable to discretely processed small RNAs,
such as microRNAs, we reasoned that it could aid detec-
tion of longer RNAs which are processed to generate
multiple small overlapping RNAs. All the unannotated
reads were therefore pooled and assembled into 41542
contigs. For annotation purposes, the 5142 contigs with
significant hits (E < 1×10−3) in a megablast search of the
NCBI non-redundant database were assigned the iden-
tity of the top hit (lineages listed in Additional file 3).
The unnannotated reads from each sample were rea-
ligned to these contigs and the proportions of reads
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mapping to different taxonomic categories calculated
(Figure 2B-F). Most identifiable reads were assigned to
Metazoa, Bacteria or Fungi. Although some metazoan
reads could be derived from food [31], many are likely to
be misassigned due to similarity with human sequences.
A small percentage of contigs matched plant se-

quences, but due to the conservation of rRNA across
the kingdom Viridiplantae, the top blast hits did not
reliably identify their source, but rather reflected the
composition of the database (a preponderance of algal
sequences was observed). However, in most instances
the sequences were sufficiently divergent from human
rRNA to support the notion that they are derived from
dietary plant material (Figure 4).
The phylogenetic profile of the bacterial microbiome

was remarkably similar between individuals (Figure 2C),
with Proteobacteria being the most abundant phylum.
This is consistent with an origin in the gut. The number
of reads matching fungal sequences was higher than ex-
pected and of these, more than 90% in 5 of 6 individuals
were from the phylum Ascomycetes (Figure 2D). Remar-
kably, it was possible to further define the origin of almost

all these reads to within the class Sordariomycetes and
order Hypocreales (Figure 2E-F). The predominance of se-
quences from the Hypocreales is illustrated when the
numbers of reads mapping to each fungal order are placed
on a phylogenetic tree comprising all orders with at least
one matching contig (Figure 5).
For the 20 exogenous contigs represented by the most

reads, the top 5% of BLAST hits (min score 50) were ana-
lysed with the MEGAN taxonomic classification tool
[32,33]. They all mapped to rRNA, 16 of the 20 to fungal
sequences, with the lowest common taxonomic rank for 5
of the top 6 being the fungal order Hypocreales or lower
(Figure 6). The relative abundances of contigs across the
samples were very consistent. Contig 44, which mapped
to Hypocreales rRNA, was the most abundant in 5 of the
6 individuals. Notably 9 of the top BLAST hits for the 20
contigs were to the genus Fusarium. The mycoprotein
Quorn is derived from Fusarium venenatum [34]. Al-
though it is intriguing to speculate that the sequences we
observe are derived from Quorn, it seems unlikely that all
6 subjects would have had this in their diet. In addition,
although several contigs align very closely with published

Raw sequences 

MiRBase:  
Human microRNAs; non-human 

microRNAs 
Human non-coding RNA: 

 Y RNA, rRNA, tRNA 
 

Matching reads 
discarded 

Non-matching reads 

De novo assembly of con�gs 

BLAST annota�on 

Phylogene�c analysis 

Trimmed sequences 

Matching reads 
discarded Align to human genome 

Figure 1 Schema of the strategy for analysis of sequencing data. Reads that did not align to human sequences or other known microRNAs
were assembled into contigs. These were annotated by BLAST alignment to the NCBI nr database and phylogenetic analysis performed with the
gi numbers of the top resulting hits.
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F. venenatum rRNA sequences, they match even more
closely to other species (Additional file 4: Figure S2).
The contigs assigned to Hypocreales are extremely

similar to the published sequences. For example, contig
44 has a similarity of 98.6% identity over 1162 nucleo-
tides to Hypocreales Cordycipitaceae Cordyceps gunnii
28S ribosomal RNA (Figure 7A). This contig can also be
aligned, with lower similarity, to rRNA from many other
species. A region of contig 44 across which many or-
thologous sequences were available was selected and a
multiple alignment made (Figure 7B). The phylogram
derived from this alignment illustrates that contig 44 is
considerably more similar to sequences from several spe-
cies within Hypocreales than to those within Malasseziales
and even more dissimilar to the human rRNA sequence
(Figure 7C). Contigs generated from analysis of samples

from the study by Wang et al. [25] were also similar to
fungal sequences and indeed some were identical to contig
44 for >700 bp (Additional file 5: Figure S3).
All the most abundant contigs fall within the mature

rRNA regions but the distribution of detected reads is
very uneven (Figure 8). Although the variation in cover-
age could be partially due to experimental bias (ie dif-
ferential cloning efficiency of sequences [35]) it is also
likely to reflect in vivo abundances.

Discussion
Highly expressed small RNAs derived from Y RNAs hY1
and hY3 have been reported in tumours and high ex-
pression in serum suggested by RT-PCR [36]. We also
observed a small number of sequences matching hY1
and hy3, but the presence of extremely abundant hY4

Figure 2 Distribution of human reads by gene type and other reads by organism. Each individual is represented by a number: 1–3 this
study (whole plasma); 4–6 Huang et al.[28] (plasma exosomal RNAs). The library preparation method is indicated as follows: a = Illumina; b: NEB;
c = Bioo Scientific). (A) 100% stacked columns illustrating the proportions of reads annotated to human genes, non-human microRNAs or unannotated.
(B) The proportions of unannotated reads (from (a)) subsequently assigned to superkingdom or kingdom. (C) Bacterial reads assigned to Phyla (those
comprising <0.5% in all samples are not illustrated). (D) The proportions of fungal reads by phyla. (E) The proportions of reads assigned to classes
within the phylum Ascomycetes. (F) The proportions of reads assigned to orders within the class Sordariomycetes.
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fragments, confirmed by RT-qPCR, was unexpected. Our
ability to detect Y RNA fragments as such a large propor-
tion of total small RNAs in this study may relate to prac-
tical details of the library preparation protocol employed,
particularly the size range selected. Y RNAs form part of
the RoRNP, which also contains the proteins Ro60 and La,
but their function is poorly understood [37]. They are re-
quired for chromosomal replication [38] and are over-
expressed in tumours [39]. It has been demonstrated that
double-stranded RNA oligonucleotides comprising the
stem of the Y RNA are sufficient to reconstitute DNA rep-
lication in vitro [40]. Y RNAs are rapidly degraded during
apoptosis to generate fragments similar in size to those
observed in this study [41]. Although it has been sug-
gested that small RNAs derived from Y RNAs may act
analogously to microRNAs, the formation of Y3 and Y5
RNA fragments has been shown to be Dicer independent
[29]. Given the abundance of the hY4 fragments in
plasma, it is an intriguing possibility that they may have
some, as yet unknown function.

The detection of microbial sequences in plasma sup-
ports previous reports of circulating enterobacterial
transcripts [27] and the most detailed study of these se-
quences to date by Wang et al. [25], who performed ex-
tensive control experiments to rule out potential sources
of contamination. However, the possibility that observa-
tions of exogenous RNAs result from contamination re-
mains a serious concern [42]. Spurious detection of such
sequences could arise due to contamination during sam-
ple handling, library preparation or sequencing or result
from errors in data analysis. It is difficult to envisage
how contamination with identical sequences could occur
in studies undertaken in diverse locations by independ-
ent investigators, ie as detected in this study and by
Huang et al. [28] and Wang et al. [25] (Additional file 5:
Figure S3). In addition, analysis of data from the sequence
runs prior to those reported in this study confirmed that
they were not the source of contamination. In this study
reads were assembled to try to improve mapping accuracy
and reduce the computational requirements for database

Figure 3 Small RNAs derived from the non-coding hY4 RNA present in plasma. (A) The predicted secondary structure of hY4 is shown in
dot-bracket notation above the sequence and the reads mapping to the 5p and 3p arms indicated below (numbers refer to the reads detected
in sample 1a). The positions of the most abundant 5p and 3p reads (and much less frequent short reads) are indicated by arrows adjacent to the
hY4 structure. (B) Custom Taqman small RNA assays targeting the hY4-5p or 3p RNAs corresponding to the most abundant reads amplified
products several threshold cycles before individual microRNAs (eg miR-22 in sample 1a). (C) RT-PCR with primers specific for the putative hY4
fragments and performed upon RNA that had been polyadenylated, amplified products with lengths consistent with the presence of the small
RNA templates detected in the sequencing rather than full length hY4 RNA. A product of the predicted size (79 bp) was detected with the hY4
5p primer, whereas a longer product of 143 bp would have been amplified from full length hY4 RNA. M: Marker, sizes in bp; Lane 1, hY4 5p;
Lane 2, No RT; Lane 3, hY4 3p; Lane 4, No RT.
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searching. The observation of similar mapping results
without assembly of the sequence reads (Additional file 6:
Figure S4) supports the proposed phylogenetic origins.
The taxonomic breakdown of the originating organisms

achieved with our contig-based strategy is in broad agree-
ment with that reported by Wang et al.; Proteobacteria
were the most abundant bacterial phylum in both studies,
with Bacteroidetes also commonly detected, whilst
Ascomycota was the most abundant phylum of Fungi in
both studies. However, our data suggest an even greater
predominance of Ascomycota and we can assign many of
these reads down to the level of Order (Hypocreales).
Whilst members of this order have occasionally been re-
ported as opportune pathogens in immunocompromised
patients [43], they are more commonly plant or insect par-
asites [44], while Hypocrea jecorina is a widely used source
of cellulases [45]. It is remarkable that the vast majority of
fungal reads should be derived from a small number of

closely related species or potentially even a single species.
From where do all these sequences originate?
The composition of both the fungal and bacterial

plasma microbiome detected suggests that the sequences
do not result from contamination from the skin micro-
biome during collection of blood samples. Whilst the
human skin microbiome varies widely, it is dominated
by the bacterial phylum Actinobacteria (and to a lesser
degree Firmicutes and Proteobacteria) [1,5] and the fun-
gal genus Malassezia of the Basidiomycota phylum [6].
Reads from Actinobacteria comprised an average of 1.5%
percent of bacterial reads in 5 of 6 samples and only
17.6% in the remaining sample. Firmicutes averaged 1%
percent across all samples, although Proteobacteria were
the most abundant (50%). With regard to fungi, only 3
contigs (91 reads) were assigned to Malassezia. It seems
unlikely that contamination during sample processing
could result in such similar microbiome profiles in three

Figure 4 Alignment of contigs with sequences that could potentially be derived from food. Selected BLAST hits aligned using MAFFT and
visualised with Jalview, coloured by BLOSUM62 score. A) Contig 2129 exhibits complete identity across the kingdom Viridiplantae 28S rRNA.
Alignment with potential dietary plant and meat foodstuffs and the human rRNA gene. B) Contig 2062 is very similar to many chloroplast rRNA
sequences and is shown aligned to several of the best hits and potential dietary sources. 1 - Pseudendoclonium akinetum: 2 - Trichosarcina mucosa:
3 - Lycopodium clavatum: 4 - Zygnema: 5 - Solanum Lycopersicum: 6 - Solanum tuberosum: C) All the lineages to which Contig 1748 has a perfect
match, including many potential food sources. Representative sequences from each species are aligned and coloured by percentage identity
(1: Fragaria vesca, 2: Medicago truncatula, 3: Lotus japonicus, 4: Glycine max, 5: Arabidopsis thaliana, 6: Solanum lycopersicum, NB: A 30 bp insertion
present in Glycine max immediately 5 prime of the contig 1748 sequence is omitted to facilitate visualisation). Full lineage of core eudicotyledons
is [root; cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta;
Magnoliophyta; eudicotyledons].

Beatty et al. BMC Genomics 2014, 15:933 Page 6 of 12
http://www.biomedcentral.com/1471-2164/15/933



independent plasma small RNA datasets and across mul-
tiple library preparation methods.
Small RNA sequences have been reported to enter the

circulation from the gastrointestinal tract [31] and
pharmacological preparations of small interfering RNAs
(siRNAs) have been demonstrated to cross the gut wall
following oral administration [46-48]. The gut therefore
seems the most likely origin for microbial plasma small
RNAs. The human gut, in contrast to skin, is predo-
minantly colonised by the bacterial phyla Bacteroidetes

and Firmicutes [1,5], and by the fungal phylum Ascomycota
[4]. It is therefore conceivable that the gut is the source,
but one would not expect the observed predominance of
sequences from Hypocreales. Perhaps the niche occupied
by these species within the gut predisposes them to uptake
into the circulation. The respiratory tract is another
potential source and indeed Fusarium is one of the four
most common pathogenic fungi detected, along with
Candida, Aspergillus and Cryptococcus [49]. Although
some microRNAs may be absorbed from the gut

Figure 5 Order-level phylogenetic profile of fungal small RNAs. The tree illustrates the taxonomic composition of the contigs derived from
small RNAs isolated from the plasma samples of six individuals. All orders within the kingdom Fungi which have matching sequences are
illustrated. The numbers of contigs assigned to each taxonomic group are indicated within the tree. The numbers on the right are the total
number of reads assigned to each order; the order Hypocreales, highlighted in green, is the most abundant.
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unshielded to survive exposed in the circulation for se-
veral hours [31,50], many are protected from degradation
by association with lipids and proteins [51,52] and there is
some evidence that the exogenous RNAs may be similarly
protected [25]. Indeed rRNA fragments have been shown
to enter argonaute protein complexes [53]. Differential
stability could contribute to over-representation of certain
sequences.
In addition to RNAs of microbial origin, some se-

quences potentially derived from foodstuffs were detected.
Notably the greatest proportion of reads matching plant
sequences were found in sample 3, which was obtained
from the one individual who reported following a vege-
tarian diet. Although it has been reported that plant
microRNAs (xenomiRs) are not reliably detected in
plasma after ingestion [54,55] the possibility of genetic
material from food entering the circulation is supported
by the detection of plant chloroplast DNA in the blood of
cows [56]. The unequivocal assignment of significant
numbers of circulating small RNAs to plant rRNA in this

study raises the exciting possibility that it may be possible
to quantify diet from a simple blood test.
Great care must be taken when comparing between

studies because differences in sample collection and li-
brary preparation can have profound effects upon the
small RNA profiles observed and the proportion of reads
mapping to Y RNAs or exogenous small RNAs. None-
theless, the detection of these same small RNAs in di-
verse studies confirms that they are a common feature
of the circulation.

Conclusion
Abundant fragments derived from the non-coding hY4
RNA, but of unknown function, have been detected in
human plasma. RNAs from a diverse range of microbes
are also present, but the majority of fungal sequences
are from species in the Order Hypocreales. This raises
questions about how these exogenous RNAs reach the
circulation, whether they are functional and why specific
fungi are so highly represented. This work has

Figure 6 Taxonomic profile and relative expression between individuals of abundant contigs. (A) The top 20 contigs ranked according to
the total number of reads aligned to them from all samples. All the contigs matched rRNA and the top BLAST hit is shown. The lowest common
taxonomic rank was assigned by analysis of the BLAST hits with scores within 5% of the top hit. The proportion of reads mapping to each contig
in individuals and overall is indicated. (B) Phylogenetic tree of the top 20 contigs generated with MEGAN. The number of contigs assigned at
each node is indicated.
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demonstrated the feasibility of determining the micro-
biome that contributes small RNAs to the blood. The
profile of microbial sequences detected is almost cer-
tainly influenced by the composition of the wider micro-
biome, particularly in the gut. Given the integral role of
the human microbiome in normal health and pathology,
it seems likely that knowledge of the plasma microbiome
will be soon prove to be of clinical importance.

Methods
Sample collection and RNA extraction
Three healthy individuals aged 20–40 years were recruited
from Belfast, N. Ireland, UK: male, Caucasian (sample 1);
female, Caucasian (sample 2); and male, Indian (sample 3).
All participants completed a food-frequency questionnaire
which included questions on any special dietary require-
ments. A blood sample was taken in EDTA-treated tubes

Figure 7 Alignment of contig 44 to rRNA sequences. (A) BLAST alignment of contig 44 with Cordyceps gunnii 28S ribosomal RNA gene.
(B) Section of multiple alignment between contig 44 and rRNA sequences from exemplar species in the orders Hypocreales or Malasseziales and
human rRNA. (C) Phylogram illustrating the divergence between Hypocreales/contig 44, Malasseziales and human rRNA sequences.

Figure 8 Distribution of reads along Hypocreales rRNA gene. The positions of the most abundant contigs along the rDNA are indicated at
the top of the figure. The read coverage for contig 44 is shown. Abbreviations: SSU: Small subunit; LSU: Large subunit; ITS: Internal Transcribed
Sequence.
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and plasma was separated immediately by centrifugation
for 10 minutes at 1,000 g and subsequently at 10,000 g for
10 minutes prior to RNA extraction using a miRNeasy kit
(Qiagen, Crawley, UK). RNA purity and quantity were de-
termined using a Nanodrop spectrophotometer (Thermo
Scientific) and Qubit fluorimeter (Life Technologies).
RNA integrity was assessed using RNA 2000 and small
RNA chips on a Bioanalyzer (Agilent).

Ethics and consent
This study was conducted according to the guidelines
laid down in the Declaration of Helsinki and all pro-
cedures involving human participants/patients were ap-
proved by the Research Ethics Committee of the School
of Medicine and Dentistry, Queen’s University Belfast
(Ref:11/05v3). Written informed consent was obtained
from all participants.

Deep sequencing
Small RNA libraries were prepared using a Truseq small
RNA sample prep kit (Illumina) following the manufac-
turer’s protocol. This included size selection using a 6%
PAGE Gel; the region between the custom Illumina
markers was excised, corresponding to insert sizes of ap-
proximately 20–35 nucleotides. Cluster generation and
sequencing with 40 nucleotide reads on a MiSeq was per-
formed at the Trinity Genome Sequencing Laboratory,
Dublin [57].

Data analysis
Sequencing data were analyzed using Genomics work-
bench software v5.5.1 (CLCbio, Aarhus, Denmark). After
removal of adapter sequences, reads >15 bp and with at
least 2 copies were aligned, allowing 2 mismatches, to
miRBase (Release 19), a database of human non-coding
RNA downloaded from Ensembl using Biomart [58] and
the human genome (hg19). The remaining unannotated
reads were pooled and assembled into contigs using the
de novo assembly algorithm of Genomics workbench.
Reads from each individual sample were then mapped
back to the contigs. For subsequent phylogenetic ana-
lyses the putative origins of contig sequences were
assigned using the sequence identifier (gi) numbers of
the top hits determined by megablast [59,60] (available
online [61]) against the NCBI non-redundant database
(E-value <0.001). Lists of gi numbers were uploaded to
the metagenomic analysis tools [62] available through the
Galaxy platform [63,64], specifically to ‘Fetch taxonomic
representation’, ‘Summarize taxonomy’, ‘draw phylogeny’
and ‘Find lowest diagnostic rank’. Microsoft Access data-
bases were used to integrate datasets. Taxonomic clas-
sification of the top 5% of BLAST hits was performed
using the MEtaGenome ANalyzer (MEGAN) analysis tool
[32,33]. The lowest common ancestor was assigned

following manual removal of individual hits with obviously
incorrect taxonomic classifications (ie matching the query
and top blast hits but not other sequences from their
alleged species). Optimal RNA secondary structures were
predicted using the Vienna RNAfold webserver [65,66].
Additional multiple sequence alignments were performed
using the Multiple Alignment using Fast Fourier Trans-
form (MAFFT) program [67] available online [68] or
Clustal Omega [69,70], available through the EBI server
[71]. Multiple alignments were visualised with Jalview [72]
and phylograms with Archaeopteryx [73]. Custom Perl
scripts were used for manipulating sequence files.

RT-PCR
Y-RNA custom small RNATaqman assays (Life Technolo-
gies) were designed to target the following sequences:
HY4_5p; GGCUGGUCCGAUGGUAGUGGGUUAUCAG
AACU and HY4_3p; CCCCCCACUGCUAAAUUUGA
CUGGCUU . Taqman reverse transcription and PCR were
performed according to the manufacturer’s instructions
on a LightCycler480 platform (Roche).
For detection of Y-RNA fragments, RNA was polyade-

nylated using E. coli Poly(A) Polymerase I (Ambion) and
reverse transcribed using Super Script III reverse tran-
scriptase (Life Technologies) and an oligo-dt adaptor:
GCGAGCACAGAATTAATACGACTCACTATAGGTTT
TTTTTTTTTVN. PCR was performed using the com-
mon reverse primer GCGAGCACAGAATTAATACGAC
and either an HY4_5p primer: GGCTGGTCCGATGG
TAGT or HY4_3p primer: CCCCCCACTGCTAAAA
TTTGA. 35 cycles of PCR were performed with the fol-
lowing conditions 94°C 30 sec; 56°C 30 sec; 72°C 1 minute
using Hotstar Taq DNA polymerase (Qiagen).

Availability of supporting data
The data sets supporting the results of this article are
available in the Gene Expression Omnibus (GEO) re-
pository [74]. The sequencing data generated in this
study has accession number GSE52981 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52981) and
the publicly available plasma small RNA sequencing data
[28] analysed has accession number GSE45722.

Additional files

Additional file 1: Excel spreadsheet. Number of reads from each
sample annotated by gene type or phylogenetic category.

Additional file 2: Figure S1. Distribution of read lengths in a range of
sequencing libraries prepared from blood. The percentages of reads of
each length are shown for libraries prepared from plasma, exosomes
isolated from plasma or whole blood, including cells. Both the source
material and library preparation protocol (eg size selection) influence the
insert sizes observed. References: Huang et al. [28]; Wang et al. [25];
Leidinger et al. [30].
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Additional file 3: Excel spreadsheet. Full lineages of the top blast hits
of all contigs.

Additional file 4: Figure S2. Multiple alignment of Contig_1808 with
fungal rRNAs. Contig 1808 is aligned with the five most similar sequences
in the NCBI nr database and the rRNA sequence of Fusarium venenatum.

Additional file 5: Figure S3. Analysis of plasma sequence data from
Wang et al. [25]. (a) Taxonomic composition of the contigs derived
from small RNAs isolated from a normal plasma sample (ERR248695),
determined from BLAST searches using MEGAN. (b) Alignment of one
contig derived from sample ERR248695 from the study by Wang et al.
[25] with contig 44 from this study, demonstrating total identity.

Additional file 6: Figure S4. Phylogenetic profiles predicted from
individual reads or contigs. A random subset of the reads that were
unannotated to human databases was generated from Sample 3A.
These were input either directly or after assembly into contigs to BLAST
searches of the nt database. Similarities with fungal sequences are a key
feature detected by both approaches. Using this subset of sequences no
contigs with potential bacterial origin were detected, probably reflecting
the relatively low abundance of putative bacterial reads in this sample in
comparison to fungal reads (see Figure 2D). (a) Phylogenetic profile
predicted using MEGAN to interpret BLAST searches using contigs
assembled from the reads. The number of hits at each node is indicated.
(b) Phylogenetic profile predicted from BLAST searches of individual
reads. The similarity between the trees suggests that mapping of
assembled reads is broadly consistent to the results with individual reads.
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