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Enhanced AIMD based decentralized 
residential charging of EVs 

 
1.  Introduction 
 
In recent years with government policy incentivizing sustainable society 
developments and rapid technological advances by the automotive industry, electric 
vehicles (EVs) are increasingly being prioritized as a means of reducing pollution, 
combating climate change and improving energy security. Many countries have set 
ambitious targets for EV penetration. The Irish Government, for example, has set a 
target of 10% for the penetration of EVs in Ireland by 2020 (Foley et al., 2011). China 
is targeting 20% - 30% EV penetration by 2030. Similarly, Europe is aiming to have 
48 million EVs on the road by 2015 while the US has set a target of 100 million for 
the same time frame (IEA, 2011). 
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Moving from combustion engine to Electric Vehicle (EV) based transport is recognized as having a major 

role to play in reducing pollution, combating climate change and improving energy security. However, the 

introduction of EVs poses major challenges for power system operation. With increasing penetration of EVs 

uncontrolled coincident charging may overload the grid and substantially increase peak power requirements. 

Developing smart grid technologies and appropriate charging strategies to support the role out of EVs is 

therefore a high priority. In this paper we investigate the effectiveness of distributed Additive Increase and 

Multiplicative Decrease (AIMD) charging algorithms, as proposed in (Stüdli et al., 2012a, 2012b), at 

mitigating the impact of domestic charging of EVs on low-voltage distribution networks. In particular, a 

number of enhancements to the basic AIMD implementation are introduced to enable local power system 

infrastructure and voltage level constraints to be taken into account and to reduce peak power requirements. 

The enhanced AIMD EV charging strategies are evaluated using power system simulations for a typical low 

voltage residential feeder network in Ireland. Results show that by using the proposed AIMD based smart 

charging algorithms 50% EV penetration can be accommodated, compared to only 10% with uncontrolled 

charging, without exceeding network infrastructure constraints. 
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Electric vehicles can generally be classified as being either battery electric, battery 
and combustion engine hybrids or fuel cell based (Lopes et al., 2011). Among these, 
battery electric vehicles (BEVs) and hybrids electrical vehicles (HEVs) obtain their 
energy by plugging into the electricity grid and are collectively referred to as plug-in 
EVs (PEVs), with hybrids typically referred to as PHEVs. PHEVs have become a 
very popular topic for research and development since 2007 (Shao et al., 2009) due to 
their potential to overcome the range anxiety adoption barrier associated with BEVs. 
However, as battery capacities continue to grow BEVs are also likely to be widely 
adopted (Khan and Kockelman, 2012; SEAI, 2007). 

From a power systems perspective a major concern is that, as an increasing number 
of EVs plug into the grid in residential areas, if charging is not regulated it is likely 
that coincident uncontrolled charging of EVs will overload local distribution networks 
and substantially increase peak power requirements (Qian et al., 2011; Clement-Nyns 
et al., 2009).  Not surprisingly therefore, developing smart grid infrastructure and 
charging strategies to mitigate the impact of the role out of EVs on the grid have been 
the focus of considerable research effort in recent years (Qian et al., 2011; Sortomme 
et al., 2011; Richardson et al., 2012a). Clement-Nyns et al. (2011) have proposed a 
coordinated charging method which seeks to minimize power losses and maximize 
the main grid load factor. A technique employing linear programming to determine 
the optimal EV charging rate was investigated in Richardson et al. (2012b) as a means 
of maximizing the total power that can be delivered to EVs while meeting distribution 
network constraints. In Clement-Nyns et al. (2009) a coordinated charging algorithm 
using both quadratic and dynamic programming was developed to shift EV loads to 
off-peak times while minimizing the power losses for both deterministic and 
stochastic data. In Galus et al. (2011) a transportation micro-simulation was employed 
to secure power system operation using a multi-agent system (MAS) to coordinate EV 
charging behavior. In Fan (2012), to maximize a customer’s own utility, a simple 
adaption strategy based on price feedback was effectively used to solve the distributed 
EV charging problem in the smart grid. Most recently, Stüdli et al. (2012a, 2012b) 
have proposed charging strategies based on Additive Increase and Multiplicative 
Decrease (AIMD) algorithms that can be implemented in a decentralized fashion to 
maximize power utilization by EVs while achieving a fair allocation of power across 
customers. 

The major advantages offered by AIMD over the other approaches proposed to date 
are its low computational complexity and minimal communication requirements.  
However, the basic AIMD implementation considered in Stüdli et al. (2012a, 2012b) 
only considers the operation of the algorithm from the perspective of the consumer 
and the fair distribution of available power. Practical power system infrastructure and 
operating constraints were not considered. In this paper, which is an extended version 
of Liu and McLoone (2012), we propose a number of enhancements to the basic 
AIMD charging algorithm that take account of the power system structure, mitigate 
the impact of EVs on the grid from the perspective of transformer loading levels and 
voltage profiles, and reduce peak power requirements by responding to time-of-day 
pricing. Using a custom OpenDSS-Matlab simulation platform, the enhanced AIMD 
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implementations are evaluated for a typical low-voltage residential feeder network 
with 50% EV penetration. 

The remainder of the paper is structured as follows. Section 2 provides an overview 
of the decentralized AIMD charging strategy proposed by Stüdli et al. (2012a, 2012b). 
Section 3 then introduces the proposed enhanced AIMD algorithm implementation 
and sets out the underpinning assumptions for its applicability. Section 4 describes the 
simulation test bed and distribution network model employed in our simulations. Then 
in Section 5 results of our simulation studies are presented and discussed and finally, 
conclusions are presented in Section 6. 
 
2.  Decentralized AIMD charging 
 
The basic idea of AIMD was originally applied in the context of decentralized 
congestion control in communication networks (Shorten et al., 2006). Stüdli et al. 
(2012a, 2012b) proposed applying AIMD to EV charging problems and investigated a 
number of practical scenarios including domestic charging of EVs. In this scenario 
each active domestic EV charge point executes the following basic decentralized 
AIMD algorithm (Figure 1). 

              
while battery not charged do 
 if capacity event then  
   generate uniform random number, p 
      if p < pi then 
         𝑐𝑖(𝑘 + 1) = 𝛽(1). 𝑐𝑖(𝑘)  
      else 
           𝑐𝑖(𝑘 + 1) = 𝛽(2). 𝑐𝑖(𝑘) 
   end if 
 else      
   𝑐𝑖(𝑘 + 1) = 𝑐𝑖(𝑘) + α.𝛥𝛥  

end if 
 end while            

Figure 1 Basic decentralised AIMD smart charging algorithm 
 

Here, 𝑐𝑖(𝑘) is the charge rate of the ith EV at time instance k; 𝛼 is an additive 
constant value in kW/s;  𝛽(1),𝛽(2) are multiplicative constants, which are selected at 
random with probability 𝑝𝑖, and 𝛥𝛥 is the time interval between EV charge rate 
updates. Thus, during operation each EV charge point additively increases its charge 
rate until a “capacity event” occurs at which point it applies a multiplicative decrease 
to the charge rate. A capacity event is deemed to have occurred when the total power 
𝑃(𝑘) demanded by all active EV charger points at time instance k exceeds the 
maximum available power 𝑃 � (𝑘) at that time instant. Here 𝑃(𝑘) is computed as 
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                                                                 𝑃(𝑘) = � 𝑐𝑖(𝑘)
𝑁(𝑘)

𝑖=1

                                                  (1)   

 
where 𝑁(𝑘)  is the number of active chargers at the kth time instant. In the 
decentralised AIMD framework proposed by Stüdli et al. (2012a, 2012b) the 
𝑃(𝑘) < 𝑃 � (𝑘) capacity event condition is monitored by a central monitoring station 
(server) at the main distribution network substation which broadcasts a message to the 
charge points when events occur.  Thus, the decentralised AIMD approach assumes a 
simple radial communication topology, as depicted in Figure 2, with each EV charge 
point equipped with a communication device that is able to receive signals broadcast 
by the central monitoring station.  
 

 

Figure 2 Decentralised AIMD smart charging communication topology 
 
As discussed in Stüdli et al., (2012b), the key characteristic of the AIMD algorithm is 
that it guarantees an equitable ‘average’ distribution of the available power between 
active EV charge points if each charge point chooses the same α ,𝛽 and  𝑝 , 
parameters.  The elegance of the approach is that it achieves this desirable property 
while requiring a minimum of communication infrastructure and only limited 
computing capabilities on each EV. In addition, the simple communication topology 
and minimal communication bandwidth make it a highly scalable and cost effective 
solution. 
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3.  Enhanced AIMD smart charging strategy 
 
As already noted, practical power system infrastructure and operating constraints 
were not considered in the decentralized AIMD EV charging strategy investigated by 
Stüdli et al., (2012a, 2012b), rather the focus was on developing a charging strategy 
that distributes available power fairly between customers in a variety of user 
orientated charging scenarios (e.g. domestic, workplace, motorway service station, 
shopping mall and parking area charging). In this section we introduce a number of 
enhancements to the basic decentralized AIMD EV charging method so that power 
system constraints on voltages and infrastructure loading are taken into account. In 
addition, we modulate the available power signal in response to a varying electricity 
price (CER 2009; SEAI 2012) to affect a shift in EV loads away from periods of high 
demand, thereby reducing peak-power capacity requirements and ultimately the cost 
to the consumer. The overall objective is to achieve benefits for both utilities and 
customers with all EVs sharing the maximum amount of available power fairly while 
ensuring that the distribution network continues to operate within acceptable limits.  
 
3.1  Assumptions 

We make several assumptions with regard to EVs and the residential EV charging 
infrastructure, which are consistent with previous studies in (Richardson et al., 2010, 
2012b; Stüdli et al., 2012a, 2012b; Galus et al., 2011). The assumptions are as 
follows: 

(i) All EV batteries have a capacity of 20 kWh. 
(ii) Each EV charger is connected to a standard household outlet at 230V. 
(iii) The maximum power output from the EV home charger cannot exceed 3.7kW. 
(iv) Each EV has the ability to adapt its charge rate in real-time and continuously.  
(v) Power flow for EV charging is unidirectional from grid to vehicle (i.e. 

vehicle-to-grid is not considered). 
 

3.2  Communication topology and infrastructure requirements 

In order to incorporate power system constraints into the decentralized AIMD 
charging algorithm in a practical and scalable way a hieratical communication 
topology paralleling the topology of the grid is proposed, as shown in Figure 3. The 
complexity of the communication and charger infrastructure required depends on the 
power system constraints that are taken into account. 

At its simplest the AIMD algorithm only requires the broadcasting capability of the 
main substation sever and the receiving capability of each EV charger as envisaged by 
Stüdli et al., (2012a, 2012b) and depicted in Figure 2. However, equivalently, this can 
be implemented in a cascaded fashion as shown in Figure 3 with the central 
monitoring station at the main distribution substation relaying it generation capacity 
event broadcasts to the local distribution substations, which in turn relay the broadcast 
to the EV charge points in their local area.  
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An advantage of this hierarchical approach is that it reduces transmitter power 
requirements and can take advantage of existing communication infrastructure that 
typically exists on the transmission network. More importantly, it offers the 
possibility of responding to local infrastructure capacity events such as overloading of 
a substation transformer. To enable this each substation has to have a local monitoring 
station (substation server) to receive generation capacity event broadcasts from the 
central monitoring station (main substation server), detect local infrastructure capacity 
events and broadcast capacity event information to the charge points in its area. It 
should be noted that since the AIMD algorithm does not distinguish between capacity 
event types no modifications are required to the EV charge points to accommodate 
infrastructure capacity events. 

However, this is not the case for line voltage events. Since line voltage issues are 
inherently local to the user, they cannot be detected at the local substation. Instead 
they have to be sensed by the individual EV charge points and the information relayed 
back to the local substation. Therefore, in order to respond to voltage events each EV 
charger needs to have the capability to continuously sense its own socket voltage and 
transmit a voltage event message to its local substation when the voltage drops below 
an acceptable level.  

 

 

Figure 3 Communication topology for the Enhanced AIMD implementation 
 

3.3  Enhanced AIMD algorithm 

  With the appropriate communication and sensing infrastructure in place, as outlined 
above, the basic AIMD smart charging algorithm running on each charge point can be 
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modified to respond to voltage, infrastructure and generation capacity events as 
shown in Figure 3. Here, 𝑉𝑖(𝑘) is the line voltage of the ith EV charge point at the 
kth time instant, 𝑉𝑒𝑒𝑒𝑒𝑒 is a threshold voltage level below which a voltage event is 
triggered and voltage event message transmitted to the local substation server, and  
𝑉𝑚𝑖𝑒 < 𝑉𝑒𝑒𝑒𝑒𝑒 is the minimum acceptable voltage level below which the EV charger 
enters a protective self regulation mode. The remaining parameters are as defined 
previously for the basic AIMD implementation. 

 
                

while battery not charged do 
 if capacity event then     
  generate uniform random number, p 
      if p < pi then 
          𝑐𝑖(𝑘 + 1) = 𝛽(1). 𝑐𝑖(𝑘)  
      else 
      𝑐𝑖(𝑘 + 1) = 𝛽(2). 𝑐𝑖(𝑘) 
  end 
 else 
  𝑐𝑖(𝑘 + 1) = 𝑐𝑖(𝑘) + α.𝛥𝛥  
 end if 
 if 𝑉𝑖(𝑘) < 𝑉𝑒𝑒𝑒𝑒𝑒 
  transmit voltage event message 
 end if 
    if 𝑉𝑖(𝑘) < 𝑉𝑚𝑚𝑚   (self regulation) 
     𝑐𝑖(𝑘 + 1) = 0   
 end if 

 end while            

Figure 4 Enhanced decentralised AIMD smart charging algorithm 
 
The local monitoring station for a given residential area broadcasts a capacity event 

signal to the active EV charge points in its area if any of the following conditions are 
satisfied: 

(i) A generation capacity event is broadcast by the main substation 
(ii) A voltage event message is transmitted by any of the charge points in its 

residential area 
(iii) A local infrastructure constraint violation is detected (e.g. transformer 

overload) 
 

In addition to monitoring infrastructure constraints, the central monitoring station at 
the main substation is responsible for determining the power available and 
broadcasting a generation capacity event when this is exceeded. The total 
instantaneous power consumption is given by 
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                                            𝑃(𝑘) = �ℎ𝑗(𝑘)
𝑁

𝑗=1

+ � 𝑐𝑖(𝑘)
𝑁(𝑘)

𝑖=1

 ,                                                (2) 

 
where ℎ𝑗(𝑘) represents the non-EV power consumption for the 𝑗th house on the 
distribution network at time 𝑘, 𝑐𝑖(𝑘) is the charge rate of the ith active EV charge 
point, 𝑁 is the number of houses on the distribution network and 𝑁(𝑘) is the 
number of active charge points. The instantaneous available power is computed as  
 

                                                 𝑃 � (𝑘) = 𝑃𝑟𝑟𝑒𝑒𝑟 − 𝜆 .                                               (3) 
 
Here 𝑃𝑟𝑟𝑟𝑟𝑟 (kVA) is the maximum capacity that can be drawn from the substation 
and is the lesser of the available generation capacity or the substation rating, while 
𝜆 (kVA) is a constant ‘safety margin’ for secure operation. 

Compared to the basic AIMD EV charging strategy which provides a globally fair 
charging solution in response to central generation capacity events, the Enhanced 
AIMD implementation introduces a locally fair charging solution which offers greater 
protection to the grid infrastructure and optimum usage of available power. For 
example, if one of the local transformers is overloaded but overall generation capacity 
is not being exceeded at the main substation, the basic AIMD implementation would 
fail to respond, while the enhanced implementation will decrease only the charge rates 
of the EVs in the corresponding local area to protect the transformer. A globally fair 
charging solution in these circumstances would require that charge rates of EVs in 
unaffected areas also be reduced, but this would lead to under utilization of available 
generating capacity.  

While responding to voltage constraint violations within the AIMD framework 
adds substantially to the complexity of EV charge point infrastructure the local 
sensing of voltage at each EV allows a degree of self-regulation/fail-safe mode to be 
introduced whereby each EV switches off whenever the detected line voltage drops 
below a minimum acceptable level, 𝑉𝑚𝑚𝑚, irrespective of whether a capacity event has 
been received or not (as implemented in Figure 4).  Since severe generation capacity 
and infrastructure overloading events generally cause significant voltage issues, this 
offers a degree of robustness to communication system failures. This self regulation 
mode violates the conditions for locally fair charging, but provided there is a 
sufficient margin between 𝑉𝑚𝑚𝑚 and 𝑉𝑒𝑒𝑒𝑒𝑒 it will only rarely be activated. 

 
3.4  Price-adjusted available power 

AIMD is inherently an instantaneous algorithm with no temporal visibility hence it 
cannot take a longer term view in determining EV charge rates. However, a simple 
heuristic modification can be introduced to the available power calculation that allows 
the temporal context to be taken into account in a meaningful way with negligible 
impact on overall system complexity. The heuristic is to modulate the available power 



9 
 

signal 𝑃(𝑘)  with time-of-use pricing information so that an artificial reduction in 
available power is created at times of high electricity prices, that is:  

 
 𝑃 � (𝑘) = 𝑃𝑟𝑟𝑒𝑒𝑟 − 𝜆 −  (𝐸(𝑘) − 𝐸𝑚𝑖𝑒). 𝜉 .                                     (4) 

 
Here 𝜉 is a constant tuning parameter, 𝐸(𝑘) (cent/kWh) is the Time-of-Use (TOU) 
price at time 𝑘 and 𝐸𝑚𝑖𝑒 is the minimum TOU price during the day. Since the TOU 
prices reflect the peak demand periods on the grid, this modification essentially drives 
EV load to off-peak times. To implement price-adjusted AIMD charging the only 
additional requirement is that TOU pricing information be made available to the 
central monitoring station. Where this information is pre-defined and fixed (SEAI, 
2012), it can be pre-programmed into the central monitoring station software. 
Otherwise it can be periodically relayed to the station via a communication link.  
 

4. Simulation platform 
 
4.1  Distribution network 

To evaluate the performance of the proposed enhancements to the basic AIMD 
charging strategy a test distribution network incorporating EVs is simulated based on 
a typical LV residential feeder layout. A simplified schematic diagram for the test 
network is given in Figure. 5. In our simulations, the voltage is set at 1.0pu at the 
source end of the external grid. A 2MVA distribution substation is connected to the 
external grid to bring the voltage level to 10kV. This substation feeds three local 
substations / distribution transformers (e.g. pole-mounted distribution transformers) 
serving residential areas. Each distribution transformer is connected by an unbalanced 
transmission line of different length (modeled as Pi-Equivalent circuits). Both 
household loads and EV charging loads are connected at the secondary side of each 
distribution transformer. As illustrated in Figure 5, the household loads with EV 
charging points are separated into three phases, and the number of houses connected 
to each phase is indicated in parenthesis. Non-EV charging loads are lumped together 
using balanced three phase modeling. The distance between each house connected to 
a given phase is randomly chosen between 10-50m. Further details of the transmission 
line parameters can be found in Appendix A. 

To simulate EVs connecting to this network and charging over a period of time a 
custom OpenDSS-Matlab simulation platform was developed. OpenDSS (EPRI 2010), 
an open source electric power Distribution System Simulator, was used to simulate 
the power system and calculate the instantaneous power flows and voltage profiles for 
the test network. Matlab was used to simulate typical residential EV connection, SOC 
and disconnection patterns (randomly generated for each EV) and to create a wrapper 
programme to simulate the operation of the network over a period of time for varying 
household and EV loads. The main steps performed by the wrapper programme are 
summarized in Figure 6. Here 𝑁𝑠𝑖𝑚  denotes the number of time steps in the 
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simulation and is simply the duration of the simulation 𝛥𝑠𝑖𝑚 divided by the sampling 
interval 𝛥𝛥. 

 

 
 
Figure 5 Schematic diagram of the distribution network 
 

                   
for 𝑘 = 1,2, … ,𝑁𝑠𝑖𝑚 

(i) Determine the set of EVs (𝑖 = 1,2, … ,𝑁(𝑘)) currently connected 
to the grid (based on a simulation of typical residential EVs 
connection and disconnection patterns) 

(ii) For each EV compute its instantaneous charge rate, 𝑐𝑖(𝑘) , 
according to the selected AIMD algorithm 

(iii) For each household (𝑖 = 1,2, … ,𝑁) generate its current non-EV 
load, ℎ𝑖(𝑘) 

(iv) Generate an updated OpenDSS simulation parameters file 

(v) Call the OpenDSS software to simulate the current state of the 
distribution network 

(vi) Record the current values of relevant EV and distribution 
network states (connection status, SOC, line voltages, substation 
power flows etc.) 

 end for                  

Figure 6  OpenDSS-Matlab Wrapper Programme for EV charging simulation 
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4.2  Residential power consumption profiles 

In our simulation study we consider a typical Irish grid residential distribution 
network over a 72 hour period for both summer charging and winter charging 
scenarios. Residential power consumption profiles for these scenarios were generated 
based on residential customer smart meter electricity trial data provided by the 
Commission for Energy Regulation (CER) in Ireland (CER 2012). This consisted of 
time series demand data for 4225 residential customers over 536 days, sampled every 
30 minutes starting from 15th of July 2009. The non-EV household load profiles for 
each of the 160 houses in our test network were generated by randomly selecting load 
profiles from the CER dataset and upsampling them using linear interpolation to the 
desired sampling interval 𝛥𝛥. Summer scenario profiles were generated from the 
period 22nd of July to 24th of July 2009 and the winter profiles we generated from the 
period 22nd of January to 24th of January 2010. For ease of consideration, the power 
factor of each household load is set to a fixed value of 0.88 lagging. A comparison 
diagram of the average load consumption for 4225 residential smart meters during 
both periods is shown in Figure 7. As expected this shows that the average power 
consumption during typical Irish winter days is much higher than during summer days. 
In particular, the peak power consumption during the three winter days is more than 
50% greater than the summer peaks.  

 
Figure 7 Average summer and winter residential power consumption profiles in 
Ireland as computed from smart meter trial data of 4225 customers (CER 2012) 
 
 
4.3  EV connection and SOC patterns 

Analysis of Irish traffic survey data (CSO 2009) reveals that the majority of 
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commuters arrive home between 4pm-8pm each day. To model this in our simulation 
EV home arrival times are generated from a normal distribution centered at 6 pm with 
a standard deviation of 1 hour. It should be noted that the mean home arrival time 
falls during the time interval normally associated with peak-power on the Irish grid 
(5pm to 7pm), hence unregulated EV charging has the potential to substantially 
increase peak-power requirements on the grid. 

The initial state of charge (SOC) of each EV at plug-in is also selected randomly 
from a uniform distribution over the interval 5kWh to 15kWh.  EVs are assumed to 
remain connected to the grid overnight and discontent only when fully charged. 
 
4.4  Simulation parameters 

 For our AIMD algorithm implementations 𝐸𝑚𝑖𝑒 and 𝐸(𝑘) are set in accordance 
with the TOU pricing employed in the aforementioned smart meter trials, (CER 2009, 
SEAI 2012), 𝜉 = 12, 𝑃𝑟𝑟𝑒𝑒𝑟 is set to 450kVA and  λ = 50kVA. The voltage event 
threshold 𝑉𝑒𝑒𝑒𝑒𝑒 is set as 0.92pu and 𝑉𝑚𝑖𝑒 is selected as 0.9pu, which is the minimum 
acceptable voltage level in Ireland (ESB 2007), and the capacity limit and safety 
margin for each distribution transformer is set as 150kVA and 20kVA, respectively. 
Charging is performed in accordance with the assumptions set out in Section 3.1. We 
also assume that each EV is automatically disconnected from the grid when it is fully 
charged and that the power factor of EV loads is 1.0pu. This is consistent with the 
assumptions made in Richardson (2012b). 

Updates are performed every 5 minutes (i.e. 𝛥𝛥 = 300 𝑠). This value was selected 
as a compromise between temporal resolution and simulation computational 
complexity. In practical deployments, to achieve satisfactory response times to 
time-critical generation capacity and voltage events update rates of less than 1 second 
are needed. It is also feasible to implement the AIMD based charging algorithms so 
that they respond instantaneously to voltage and capacity events while adhering to a 
more modest fixed update interval for the additive step of the algorithm. 

For convenience, while simulations are performed over 3 day periods starting at 
midnight on the first day (t=0), EV charging is only implemented for the complete 
charging cycles which occur between days 1 and 2 and days 2 and 3.  

 
 
5.  Results 
 

Utility companies hope that in the short to medium term (10-20 years) smart 
charging strategies will enable them to accommodate the extra loads represented by 
EV charging without needing to upgrade their distribution network infrastructure. To 
predict the impact of EV charging on the grid we assume a maximum penetration of 
EVs of 50% in the medium term and simulate the operation of the local both 
distribution network under these circumstances for various charging scenarios for 
summer and winter grid loads. The charging scenarios considered are uncontrolled 
charging (UnCtrl), the basic AIMD algorithm (AIMD-G) proposed by Stüdli et al., 
(2012a, 2012b) and a number of enhanced AIMD implementations introduced in this 
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paper namely:  
• AIMD charging with generation and local infrastructure capacity events 

handling (AIMD-GI); 
• price-adjusted AIMD charging with generation and local infrastructure 

capacity events handling (AIMD-GIP);   
• AIMD charging with generation capacity, local infrastructure capacity and 

line voltage events handling (AIMD-GIV); 
• price-adjusted AIMD charging with generation capacity, local infrastructure 

capacity and line voltage events handling (AIMD-GIVP); 

Table 1 provides a summary comparison of the performance of each of these 
strategies in terms of their impact on the grid and on the consumer. For completeness 
the metrics for the grid without EVs are also shown (NoEV). To facilitate direct 
comparison between each charging strategy for both winter and summer scenarios all 
simulations were performed using the same (randomly generated) EV initial State of 
Charge (SOC) and plug-in times. 
 

TABLE 1 
COMPARISON OF ALL TESTED SCENARIOS CONSIDERED 

Scenarios Minimum 
voltage 

(p.u) 

Maximum 
Load 
(%) 

Max. Local 
Infrastructure 

Load (%) 

Duration of 
voltage dips 

(min.) 

Average 
Cost 

(cents/kWh) 

Average 
charge 

rates (kW) 

Summer 
NoEV 

UnCtrl 
AIMD-G 

AIMD-GI 
AIMD-GIP 

 
0.9280 

0.8868 
0.8950 

0.9025 
0.9133 

 
64.37 

117.57 
99.56 

98.36 
91.51 

 
74.08 

115.83 
96.16 

89.95 
92.65 

 
0 

80 
10 

0 
0 

 
- 

19.47 
14.02 

13.72 
11.68 

 
- 

3.70 
2.05 

1.98 
1.66 

AIMD-GIV 
AIMD-GIVP 

0.9134 
0.9170 

97.37 
91.38 

90.49 
89.74 

0 
0 

13.61 
11.66 

1.90 
1.64 

Winter 
NoEV 
UnCtrl 

AIMD-G 
AIMD-GI 

AIMD-GIP 

 

0.9015 
0.8630 

0.8940 
0.8990 

0.8996 

 

104.08 
156.94 

110.21 
109.79 

104.92 

 

102.15 
145.74 

108.59 
103.70 

102.39 

 

0 
320 

65 
25 

10 

 

- 
19.47 

12.20 
11.88 

10.78 

 

- 
3.70 

1.47 
1.45 

1.42 
AIMD-GIV 

AIMD-GIVP 

0.9006 

0.9010 

109.33 

104.89 

103.46 

102.36 

0 

0 

11.89 

10.75 

1.44 

1.38 

Note: Maximum Load: Maximum loading as a percentage of the main substation rating (400kVA); 
Max. Local Infrastructure Load: Maximum local infrastructure (i.e. distribution transformer) 
loading as a percentage of infrastructure rating; Duration of voltage dips: Total time in minutes over 
the 3 days that the voltage drops below 0.9pu; Average cost: Average charging cost per kWh; Average 
charge rates: Average charge rates of all active EVs over two days.  
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The charging strategies listed in Table 1 are essentially in order of increasing 
sophistication, and not surprisingly the results reflect a corresponding increase in 
performance with the best results obtained with the price-adjusted AIMD smart 
charging algorithm (AIMD-GIVP). To complement the results in the Table a series of 
plots are provided for this algorithm as follows. Figures 8 to 10 show the voltage 
profiles, transformer power flows and main substation power flow obtained for the 
summer scenario. The corresponding plots for the winter scenario are given in Figures 
11 to 13. In each case the plots for No EVs on the grid and uncontrolled charging are 
included for comparison. The daily price variation signal   𝐸(𝑘)  employed with 
AIMD-GIVP and AIMD-GIP is plotted in Figure 14. This is also the price 
information used for calculating the average cost of charging with each strategy 
reported in Table 1.  Finally, Figure 15 provides a comparison of the EV load profile 
obtained using AIMD-GIV and AIMD-GIVP.  
 
5.1  Uncontrolled charging 

Uncontrolled charging, also known as uncoordinated charging or opportunistic 
charging, is where each EV begins charging at the maximum rate once it is plugged in 
and continues charging at this rate until fully charged. The minimum non-EV voltage 
on all buses during the summer peak-periods was found to be 0.93pu. With 
uncontrolled EV charging coinciding with peak-power several bus voltages drop to 
0.89pu. The power flows at the substation and distribution transformers are 
marginally overloaded during peak-times as a result of EV charging and the 
demanded power exceeds the available power at the main substation by 18%. 

The simulation results show that the impact of uncontrolled EV charging is much 
greater in the winter scenario with greater voltage sags (0.86 pu), increased 
overloading of transformers and demanded power exceeding the available power by 
57%. Thus, for our test distribution network uncontrolled charging at 50% EV 
penetration cannot be supported. Simulations conducted for different EV penetration 
levels (not included) show that the maximum level that can be sustained under these 
conditions is 10%. 
 
5.2  Enhanced AIMD Smart charging 

From a grid infrastructure perspective the inclusion of generating (G), infrastructure (I) 
and voltage (V) constraints has the desired effect of mitigating the impact of EV 
charging on the grid. Maximum loading is reduced relative to uncontrolled charging 
with available power being fully utilized when spare capacity exists relative to the 
residential load (98-99% loading during the summer). In the winter the maximum 
load is exceeded even when there are no EVs on the grid, hence the target of 100% 
cannot be achieved. However, the maximum load is driven towards the minimum 
achievable level of 104%. A similar pattern is observed with the local infrastructure 
loading. The fact that the minimum achievable loading levels are not reached is 
simply a consequence of the need for a capacity event threshold to be exceeded in 
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order for AIMD to respond, coupled with the relatively slow response times employed 
in the simulation study (determined by the multiplicative constants, 𝛽(1),𝛽(2) and the 
update interval 𝛥𝛥). However, this is not a limitation of the approach as rapid 
response times can be obtained in a number of ways, as discussed in Section 4.4. 

From a consumer perspective the quality of service in terms of the maintenance of 
voltage levels is important, and this also improves with increasing sophistication of 
charging strategies. For example, in the winter scenario the minimum voltage on the 
grid with AIMD-G, AIMD-GI and AIMD-GIV smart charging is 0.8940pu, 0.8990pu 
and 0.9006pu, respectively, compared to 0.86pu with uncontrolled charging. More 
importantly, the duration of the voltage dips experienced by consumers, which 
amounts to 320 minutes with uncontrolled charging, is substantially reduced using 
AIMD-G (65 minutes) and AIMD-GI (25 minutes) and eliminated completely with 
AIMD-GIV. 

A further benefit to the consumer of employing the enhanced AIMD algorithms is 
that the average cost of charging is also reduced. However, it should be noted that this 
is an indirect consequence of AIMD adapting to the imposed G, I and V constraints 
and not a deliberate objective of the algorithm. AIMD is purely focused on 
distributing available power fairly regardless of price. This is evident from the fact 
that the average cost of charging with AIMD is more expensive in the summer than in 
the winter even though the total demand for power on the grid is much greater in the 
winter. The reason for this is that, due to the lower household demand in the summer 
(Figure 7), there is much greater availability of power for EV charging during the 
peak-price period and this typically coincides with the period when most EVs plug-in 
for charging. 
 
5.3  Price adjusted charging 

Employing the price-adjustment mechanism explicitly attempts to shift load to 
off-peak times on the basis that high prices equate to peak load. Its effectiveness is 
clearly evident when comparing the power flows for uncontrolled and AIMD-GIVP 
smart EV charging in Figures 9, 10, 12 and 13. In the summer scenario, in particular, 
the peak power has been postponed from 6 pm until after 9 pm, reflecting a 
corresponding shift in the EV charging load. This is further highlighted in Figure 15, 
which shows a comparison of the EV load profile obtained using AIMD-GIV and 
AIMD-GIVP.  

In general, the overall performance of all AIMD implementations is improved 
substantially when the price adjustment heuristic is included (compare AIMD-GI with 
AIMD-GIP and AIMD-GIV and AIMD-GIVP in Table 1). From Table 1 it is also 
noteworthy that AIMD-GIP provides comparable performance to AIMD-GIV and 
thus is an attractive proposition if the added expensive and complexity required to 
implement AIMD-GIV is an issue. 

Not surprisingly, price adjusted AIMD implementations also result in the lowest 
charging costs for consumers, by virtue of directly limiting the amount of charging 
that takes place at peak-price times. However, since reducing the cost to the consumer 
was not an explicit objective of the heuristic, its parameters were not adjusted 
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accordingly, and hence charging costs in the summer remain higher than in the winter 
with both AIMD-GIP and AIMD-GIVP. Practically, the price-adjustment mechanism 
can be modified to ensure that no charging takes place during peak price periods in 
either the summer or winter by adapting 𝜉  to track seasonal demand, thereby 
ensuring consistent cost reductions all year round. 

A potential weakness of modulating available power by TOU pricing information is 
that it assumes a correspondence between price and peak loading, which is not 
necessarily guaranteed. However, there is no restriction on the choice of modulating 
signal that can be employed with AIMD. The available power signal can easily be 
adjusted in response to a real-time pricing signal or any other signal that reflects 
periods of stress on the grid, so long as the signal is available at the central monitoring 
station. Hence, the AIMD framework offers the possibility of fairly shedding 
discretionary load to improve system security (demand side management).    
 
 
 

 
Figure 8 Minimum voltage level on residential area buses with and without EV 
charging superimposed (AIMD-GIVP smart charging, summer scenario) 
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Figure 9 Main Substation power flow with and without EV charging superimposed 
(AIMD-GIVP smart charging, summer scenario) 

 
Figure 10 Distribution transformer power flows with and without EV charging 
superimposed (AIMD-GIVP smart charging, summer scenario): (a) residential area A; 
(b) residential area B; (c) residential area C. 
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Figure 11 Minimum voltage level on residential area buses with and without EV 
charging superimposed (AIMD-GIVP smart charging, winter scenario) 

 
Figure 12 Substation power flow with and without EV charging superimposed 
(AIMD-GIVP smart charging, winter scenario) 

0 10 20 30 40 50 60 70
0.85

0.9

0.95

1

Time(hours)

Vo
lta

ge
(p

u)

 

 
No EV on grid
Uncontrolled charging
Smart charging

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

Time(hours)

Po
we

r(k
VA

)

 

 
No EV on grid
Uncontrolled charging
Smart charging



19 
 

 
Figure 13 Distribution transformer power flows with and without EV charging 
superimposed (AIMD-GIVP smart charging, winter scenario): (a) residential area A; 
(b) residential area B; (c) residential area C. 
 

 
Figure 14 Plot of the TOU electricity price signal 𝐸(𝑘) 
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Figure 15 Comparison between EV loads obtained using Enhanced AIMD smart 
charging with and without price adjusted available power (summer scenario). 

 
 
6. Conclusions 
 

A number of novel enhancements to the basic AIMD EV charging algorithm 
proposed by Stüdli et al. (2012a, 2012b) have been introduced and explored in this 
paper. These include modifications that take account of capacity, infrastructure and 
voltage constraints on the grid and a hieratical communication topology that facilities 
their implementation in an efficient and scalable manner. A price-adjusted available 
power heuristic is also introduced as a means of encouraging shifting of EV charging 
load to off-peak times. 

Results for a simulation of a representative low-voltage residential distribution 
network with 50% EV penetration demonstrate that each of the proposed 
modifications has a positive effect with regard to mitigating the impact of EV 
charging on the grid with the best results achieved when all the modifications are 
combined in one algorithm, namely, AIMD-GIVP (price-adjusted AIMD with 
generation, infrastructure and voltage event response capabilities). In particular, for 
the scenarios considered in the paper, AIMD-GIVP is able to comfortably support up 
to 50% EV penetration without adversely affecting customers or requiring 
strengthening of the distribution network infrastructure. In fact, a significant reduction 
in the cost of EV charging can be achieved for the customer using AIMD smart 
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charging relative to uncontrolled charging with the greatest reduction obtained when 
using TOU price-adjusted available power implementations.  

In conclusion, the proposed enhanced AIMD charging strategies provide an 
effective and scalable solution for residential charging of EVs offering significant 
benefits to both EV owners and utility companies. More generally, the AIMD 
framework has the potential to be a flexible platform for implementing demand side 
management functionality in a fair and equitable way. 
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Appendix A  

TABLE II 
LINE PARAMETERS 

Cable (MV) 

Phases 

 

3 

Service cable (LV) 

Phases 

 

1 

    

Rmatrix(Ω/km) 

(Series resistance matrix) 
�
0.2847 0.0978 0.0947
0.0978 0.2911 0.0978
0.0947 0.0978 0.2847

�  

 

Positive sequence resistance 

(Ω/km) 

0.82 

Xmatrix(Ω/km) 

(Series reactance matrix) 
�
0.6641 0.2778 0.2359
0.2778 0.6431 0.2778
0.2358 0.2778 0.6641

� 

 

Positive sequence reactance 

(Ω/km) 

0.30 

Cmatrix(nF/km) 

(Shunt nodal capacitance matrix) 
�

8.9836 −2.2951 −1.115
−2.2951 9.7049 −2.328
−1.115 −2.328 8.9836

� 
Capacitance (μF) 

Rated current(A) 

0.15 

80 
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