
Singh, Dhirendra and Padgham, Lin and Logan, Brian
(2016) Integrating BDI agents with Agent-based
simulation platforms. Autonomous Agents and Multi-
Agent Systems . pp. 1-22. ISSN 1387-2532

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/32388/1/2015jaamas-bdi-abm.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33576147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

Autonomous Agents and Multi-agent Systems manuscript No.
(will be inserted by the editor)

Integrating BDI agents with Agent-Based Simulation
Platforms

Dhirendra Singh · Lin Padgham · Brian
Logan

Received: date / Accepted: date

Abstract Agent-Based Models (ABMs) is increasingly being used for explor-
ing and supporting decision making about social science scenarios involving
modelling of human agents. However existing agent-based simulation platforms
(e.g., SWARM, Repast) provide limited support for the simulation of more
complex cognitive agents required by such scenarios. We present a framework
that allows Belief-Desire-Intention (BDI) cognitive agents to be embedded in
an ABM system. Architecturally, this means that the “brains” of an agent
can be modelled in the BDI system in the usual way, while the “body” exists
in the ABM system. The architecture is flexible in that the ABM can still
have non-BDI agents in the simulation, and the BDI-side can have agents that
do not have a physical counterpart (such as an organisation). The framework
addresses a key integration challenge of coupling event-based BDI systems,
with time-stepped ABM systems. Our framework is modular and supports
integration of off-the-shelf BDI systems with off-the-shelf ABM systems. The
framework is Open Source, and all integrations and applications are available
for use by the modelling community.

Keywords BDI · Agent-Based Modelling · Simulation · Integration

Supported by ARC Discovery DP1093290, ARC Linkage LP130100008, and Telematics Trust
grants

D. Singh
School of Computer Science and Information Technology, RMIT University, Australia
E-mail: dhirendra.singh@rmit.edu.au

L. Padgham
School of Computer Science and Information Technology, RMIT University, Australia
E-mail: lin.padgham@rmit.edu.au

B. Logan
School of Computer Science, University of Nottingham, UK
E-mail: bsl@cs.nott.ac.uk

2 Dhirendra Singh et al.

1 Introduction

Agent-Based Models (ABMs) are increasingly being used for exploring and
supporting decision making about social science scenarios involving modelling
of human agents (e.g. [22,16,1]). This paper presents work to enable developers
to easily combine cognitive agent modelling platforms with more traditional
ABM systems which typically use simpler agents.

Agent-based simulations are often built using toolkits such as Repast [34]
or NetLogo [56], which provide a graphical development interface and a suite of
tools to assist in the analysis of simulation results. In such toolkits, the agents
are relatively simple entities that respond reactively to their environment.
This approach has been very successful in the ecological domain. However,
for social science simulations involving humans, it can be challenging to rep-
resent human-like behaviour using simple reactive agents. For example, our
work with social science researchers and with the emergency services in mod-
elling residents in emergency situations [49,36,46], has highlighted the need
for a rich cognitive model for agents in such simulations. Informal validation
by emergency services personnel often involves determining how believable the
modelled behaviours of residents are, based on what they typically see during
actual bushfires. We have found the Belief, Desire, Intention (BDI) model to
be a good candidate for this, as it is able to capture complex behaviours in a
compact way using a goal-plan hierarchy, while at the same time being intu-
itive for non-programmers. A recent paper [2] surveyed a substantial number
of approaches to modelling humans for simulation, of which BDI systems were
one. While we focus here on BDI systems, our integration framework could
equally well be applied to whichever cognitive framework implementation is
preferred, so long as that system can meet some basic requirements such as
input of environmental percepts, specification of actions within the environ-
ment, and an ability to manage failed and durative actions. However our own
experience has been only with different BDI platforms, and so we refer to the
BDI cognitive platform, rather than a more generic cognitive platform. The
incorporation of some form of cognitive agents beyond production rules seems
essential if we are to capture human behaviour in an appropriate manner for
many social simulations involving humans.

BDI [39] agents are based on a simplified model of human behaviour, which
balances pro-active goal seeking behaviour, and reactive responses to changes
in the environment. BDI programming languages and platforms, such as JACK
[12], Jadex [11] or JASON [7] facilitate the high level specification of complex
human behaviour, and have been demonstrated to be very efficient for build-
ing complex applications [5]. In addition to the “core” AgentSpeak family of
languages exemplified by JACK, Jadex and JASON, a wide variety of exten-
sions have been developed, encompassing aspects such as social norms and
organisational structures (e.g. [15]), learning (e.g. [50]), planning (e.g. [45]),
teams (e.g. [52]), etc.

Rather than attempt to build yet another simulation platform, we have
taken the approach of developing an infrastructure which supports integra-

Integrating BDI agents with Agent-Based Simulation Platforms 3

BDI System ABM System

actions

percepts

status
A1

A2

A3

A1

A2

A3

Fig. 1 Conceptual BDI-ABM integration architecture

tion of a wide range of cognitive agent modelling platforms, with a similarly
wide range of agent-based simulation platforms or applications.1 In this paper
we describe in some detail this infrastructure and a number of the different
applications developed.

Conceptually the infrastructure provides a mechanism whereby some agents
in the simulation have a “brain”, the decision making component, in the BDI
system, while the “body” carries out actions in the ABM system. These oper-
ate synchronously as described further in Section 4 passing information about
actions, percepts and the status of actions. This is shown in Figure 1. Some
agents may not require a BDI “brain” while others may influence the simula-
tion by communication with other agents in the BDI system, but not require
embodiment in the ABM.

We first describe briefly the BDI agent paradigm and ABMs in the next
section. We note the requirements regarding each of these that are necessary
for using our infrastructure. Then, in Section 3, we present the conceptual
framework for the BDI-ABM integration, followed in Section 4 by the technical
integration we have developed. Section 5 covers some specific applications we
have developed. Finally, in Section 6 we briefly describe the key similarities
and differences between our approach and related work from the literature,
and conclude.

1 The support infrastructure, along with the code required for a number of specific sys-
tems and several example applications, is freely available at http://tiny.cc/bdi-abm-

integration.

4 Dhirendra Singh et al.

2 Background

2.1 Agent-Based Modelling

Early work in individual-based modelling demonstrated that complex group
behaviours such as flocking and following can emerge from the application
of simple rules by individuals in a population (e.g., [42]). Agent-based mod-
elling and simulation is an extension of this approach, in which each individual
retains information about its current and past states, and its behaviour is con-
trolled by an internal decision process. In agent-based modelling (ABM), the
system of interest is conceptualised in terms of agents and their interactions.
Agents often correspond to natural kinds, such as people, vehicles, etc. The
agents in an ABM are situated in an environment, and are able to sense the
state of the environment (e.g., via smell, hearing, vision), and perform actions
that change the state of the environment or the perceptible characteristics
of the agent (e.g., moving from one location to another, communicating with
other agents, etc.). The environment may contain passive objects (e.g., topog-
raphy) and active objects and processes which change spontaneously during
the course of the simulation (e.g., weather) and/or in response to the actions
of the agents (e.g., the amount of water available in a reservoir). This focus on
interaction through the medium of an environment means that agent-based
models are often spatially explicit, i.e., the individuals are associated with a
location in geometrical space. Such spatially explicit agent systems are some-
times called situated in the agent literature, e.g., [17].2

The evolution of an agent-based model is determined by the current in-
ternal state of each individual agent (which may include an internal world
model, or a history of previous events) and the sensory information it receives.
At each simulation step, each agent chooses an action based on its state and
the percepts it has received at this step. These actions are then executed, re-
sulting in changes to the environment which are perceived by the agents at
the next simulation step, which may in turn change their state and influence
the decisions they make, and so on. This reliance on individual choice to drive
the simulation means that ABM is most suited to bottom up modelling—when
individual entity behaviour is known (or assumed) and emergent properties
are of interest. It can also be used when the entities comprising the system are
heterogeneous, or when the behaviour of entities is discrete or stochastic in a
way that can’t easily be aggregated. It is especially useful when the choice of
action to be performed is based on the local environment and/or individual
variation across members of a population, for example where the choice of
action is strategic, since it is likely that the optimal strategy for an individual
depends on the strategies adopted by others in the group.

Agent-based models can be used to explore the effects of model parameters:
factors such as income distribution, social network, climate, etc., can all be

2 In some ABMs, the environment consists solely of other agents and the percepts and
actions available to the agents are limited to the exchange of messages. However in this
paper, we focus on spatially explicit ABMs.

Integrating BDI agents with Agent-Based Simulation Platforms 5

Beliefs

Goals

Plan

library

Intention Stacks

events

Environment actions

Fig. 2 The BDI architecture

altered and the effects on the agents’ behaviour can be observed. If we are con-
fident that the decision procedure is robust, then we can use the behaviour of
the agents to predict the emergent behaviour of real populations. As a result,
agent-based modelling and simulation is increasingly being used for explor-
ing and supporting decision making about social science scenarios involving
modelling of human agents. However, while existing agent-based simulation
platforms (e.g., SWARM, Repast) allow the development of relatively simple
reactive agents in which the choice of action is based on a few simple rules,
they provide only limited support for simulating the more complex, cognitive
agents required by such scenarios. One way of modelling such cognitive agents
is by drawing on the tools developed in the cognitive agents community, and
in particular the Belief-Desire-Intention paradigm, and we outline this work
in the next section.

2.2 BDI Agents

The Belief Desire Intention paradigm is a cognitive framework with its roots in
philosophy [10,14], which has been extensively used in describing and develop-
ing “intelligent agents”. While any cognitive agent framework based on beliefs,
goals and intentions is part of the broader BDI paradigm, here we focus on
systems and languages in the AgentSpeak family, as it comprises a large group
of languages and implemented development environments, and these are the
languages with which we are most familiar.

BDI agent programs are essentially a set of plan rules of the form
G : ψ ← P , meaning that plan P is a reasonable plan for achieving the goal (or
responding to the percept) G when (context) condition ψ is believed true. The
body of P is made up of sub-goals, which have associated plans, and actions.

6 Dhirendra Singh et al.

Goal

Plan

Action

M:msg

RespondBushfire

EvacuateHouse

PrepareMode

GetCar

Walk(Car) Drive(Door)

ArrangeLift

M:ReqLift

AssembleFamily MoveSafeLoc

DriveToLoc

DetermineLoc Drive(L)

WaitPickUp

Remain

Fig. 3 Example BDI goal-plan hierarchy for a resident agent in the bushfire situation

A plan rule can be chosen for instantiation, and its plan body executed, if the
context condition ψ is True according to the agent’s beliefs. The plan trigger
G may be an internally generated goal such as a sub-goal that is part of the
programmed behaviour of a plan, an external event from the environment such
as a percept, or a message from another agent.

BDI languages in the AgentSpeak [40] family, such as PRS [21], JACK [58]
and JASON [9], follow the general architecture shown in Figure 2. In this setup,
an agent is situated in an environment that it perceives (via events) and in
which it acts (via actions). Here, beliefs are typically represented within some
form of database system, and desires are implemented as goals (for various
technical reasons). The programmed plan rule templates exist within a plan
library, from which plan instances are created at run time, whenever the pro-
grammed context conditions hold. These plan instances, or intentions, are
managed internally using FIFO stacks (intention stacks) where active higher
level plans progressively end up at the bottom, while the more immediate lower
level plans (sub-goals) at the top are executed first. The execution engine (rep-
resented with gears) that manages the BDI execution loop–to continuously
perceive, reason, and act–follows Rao and Georgeff’s abstract interpretor [41].

Given a plan library consisting of a set of plan rules, the corresponding
collection of goals and plans can be represented as a goal-plan tree as shown
in Figure 3, which is a part of the design of a simple resident agent in a bushfire
situation. This is basically an AND/OR tree where goals have links to some
number of plans, one of which must be chosen (OR), and plans have links to
some number of (sub)goals/actions, all of which must be accomplished (AND)
for the goal to succeed.

In the program of Figure 3, the agent has two programmed choices (plans)
for responding to a bushfire warning (RespondBushfire) event. These are to
either EvacuateHouse, or Remain at home (not detailed for the sake of brevity).
If the agent chooses to evacuate (the context condition evaluates to True and
the plan is selected), then it must do three things: prepare a mode of trans-

Integrating BDI agents with Agent-Based Simulation Platforms 7

portation (PrepareMode), assemble the family members (AssembleFamily),
and then move to a safe location (MoveSafeLoc), all of which are in themselves
complex tasks (sub-goals). Eventually the deliberation leads to leaf plans where
the agent actually performs an action in the environment, such as contacting
a neighbour to arrange a lift (by sending message M:ReqLift), or driving to
the safe location (Drive(L)).

BDI programs assume that environments are dynamic and can change
rapidly. Therefore, the agent does not form a complete plan of action upfront,
as is the case in classical planning [43]. Instead, deliberation over a choice is
left to the last possible moment. For instance, when the agent decides to evac-
uate (selects the EvacuateHouse plan), it does not know exactly how it will
do so (whether it will end up driving or arranging a lift with a neighbour).
Further, BDI programs assume that actions they perform in the environment
can fail. For instance, the plan to get the car (GetCar) could fail if the car
turned out to have a flat battery. When a plan fails, the BDI failure recovery
mechanism allows the agent to reconsider its options for its most immediate
goal (it may still be possible to achieve the PrepareMode goal by arranging a
lift with a neighbour). This way of reasoning is not dissimilar to how humans
operate. In fact, we have found the BDI representation to be intuitive also for
non-programmers, such as social scientists and emergency services personnel,
making informal validation of behaviours by domain experts feasible.

3 Conceptual Framework

In this section we describe the conceptual framework we have introduced in
Figure 1, where the agent is split between two systems – the cognitive part in
the BDI system, and a physical part in the ABM system.

3.1 BDI Agent View

In the BDI world view, an agent is situated in an environment that it perceives,
via percepts, and in which it acts, via actions. In the integrated setting, per-
ceiving and acting, in relation to the environment, happens inside the ABM,
where the physical agent interacts with the physical world of the domain. It is
the ABM agent that obtains environmental information available to it, such as
about its surroundings, and performs environmental actions that make sense
in the given situation. The percepts/actions arrows in Figure 1, on the other
hand, are communications between the BDI-ABM counterparts, and need not
be the same as the percepts/actions in the ABM. More than likely in fact,
these are one-to-many mappings to environment level percepts/actions, that
capture higher-level concepts.

A percept going from the ABM agent to its BDI counterpart, is typically
a higher-level percept composed from lower-level observations in the environ-
ment. For example, in the bushfire evacuation scenario, a road-congestion

8 Dhirendra Singh et al.

percept may be composed by the ABM agent whenever it observes several cars
queued up ahead and its own speed has dropped below a certain threshold.
This setup is not dissimilar to that found in robotic agent systems, where the
vision subsystem processes lower-level video frames to produce object percep-
tion, for consumption by higher-level reasoning subsystems.

In the same way, an action going from the BDI agent to its ABM counter-
part must typically be decomposed into a sequence of lower-level environment
actions that the ABM agent knows how to perform. Note that BDI systems
in general allow running several intentions in parallel, which can lead to an
agent performing multiple compatible actions at any given time. For instance,
in response to a fire alert, a parent agent could be driving to the school to
pick up their children, while trying to contact the school on the phone at the
same time.

A central tenet in BDI systems, in contrast to classical planning systems,
is that environments are dynamic. Combined with the view that executing
plans take time to complete, i.e., actions are durative, this means that the
enabling conditions of a plan can change during its (long) execution. For this
reason, BDI agents do not commit to a full plan of action upfront. Instead,
plan selection for sub-tasks (sub-goals) is deferred to the time when the agent
is actually in the situation when that choice has to be made. Since a BDI agent
always evaluates the situation before committing to the next sub-task of the
plan, it also has the ability to suspend or altogether abort its current plan
of action based on any new information it has received (via percepts). Even
actions it performs in the environment are allowed to fail, for reasons beyond
its control. From a simulation point of view, all this means that actions sent
by the BDI agent may be executed by the ABM agent for the duration of sev-
eral simulation cycles; the drive-to(location) action being a case in point.
Our integration framework also allows for executing actions to be suspended,
aborted, or failed. We cover the technical details of this in Section 4.

3.2 BDI Programming View

In the integrated BDI-ABM setting, the BDI system retains autonomy. It can
proactively start a new course of action, and/or suspend or abort an existing
course of action. That is to say that the BDI agent is not restricted to merely
reacting to events in the ABM environment (captured by percepts coming from
the ABM). Technically, this is possible because the BDI system is invoked on
each ABM cycle, even if there are no percepts or actions statuses to deliver
from the ABM side. This gives the BDI agents the opportunity to initiate new
actions in any simulation cycle.

From a BDI programming point of view, the developer has flexibility in the
level of abstraction used for the BDI-ABM percepts/actions, and how they are
composed/decomposed into environment level percepts/actions in the ABM.
For instance, in the bushfire evacuation simulation, the decision to drive to
a given evacuation shelter is put into action by the BDI agent by sending a

Integrating BDI agents with Agent-Based Simulation Platforms 9

drive-to(shelter) action, which results in the ABM agent (MATSim agent
in this case) planning a route (a series of links to traverse on the road network)
from its current position to the destination, and inserting this new driving leg
into its travel plan. The route planning in this case happens at the ABM level,
simply because the ABM (MATSim) already has advanced route planning
routines along with all the necessary information about the road network and
current traffic conditions to produce a reasonable travel plan for the agent.

Overall, the workflow for the BDI programmer remains unchanged in this
integrated setting. The key addition is the added responsibility of implement-
ing the BDI level percepts/actions in terms of the ABM level percepts/actions.
We will describe this in more detail in Section 5. Once the application-specific
BDI actions and percepts are agreed upon, development can typically be done
in parallel on the BDI and ABM application code.

3.3 Integrated BDI-ABM View

The conceptual framework of Figure 1 realises the integration of an off-the-
shelf BDI system with an off-the-shelf ABM system. In this integrated setting,
the two systems run independently, and our framework provides the “glue”
that manages the synchronisation and data passing between them.

A key issue at the system level is that the ABM is time-stepped and op-
erates on a simulation clock, whereas the BDI system is event-based, and
therefore does not model time explicitly. Conceptually we resolve this by mak-
ing the ABM the “master” that drives the integrated simulation, and making
the BDI system the “slave” that gets called by the ABM system once on each
simulation cycle. This master-slave relationship does not preclude the BDI
system from pro-actively initiating actions, since the the BDI system is called
at every simulation cycle, as mentioned earlier.

An interesting conceptual question here is how to recognise if the corre-
sponding amount of time has elapsed in the event-based BDI system which
does not have an equivalent to the ABM clock function. In other words, what
is a suitable “reasoning cycle” in the BDI system, corresponding to each sim-
ulation cycle, after which control can be passed back to the ABM? We use
the BDI system state where all agents are idle, to signify the end of the BDI
reasoning cycle. This is reasonable, since in this state, the BDI system can
only be activated by an external event, which in this case can only come from
the ABM. So upon reaching this state, it is safe to return control back to the
ABM which can then progress to the next simulation cycle. One nuance here
is that one could end up in the situation where a BDI agent becomes idle after
sending a message to another agent that is already idle. For the duration that
the second agent has not received the message, it is conceivable that the BDI
system becomes momentarily idle if all other agents are idle. To avoid such
cases, we explicitly keep track of agent-to-agent messages, incrementing the
counter whenever a message is sent, and decrementing it when a message is

10 Dhirendra Singh et al.

received. We declare the system as idle only when all agents are idle and the
message counter equals zero.

Agent-to-agent communication in this setting also brings up an interest-
ing question. Should two BDI agents be allowed to communicate directly with
each other, or should all agent-to-agent communication be done only between
two agents in the ABM? A reasonable option is to enforce the latter, since,
after all, what does it mean for two brains to talk to each other without a
physical medium. That said, all BDI systems directly support agent-to-agent
communication, and if the way in which the medium impacts communication
is not being modelled, then it is certainly more efficient to bypass the overhead
of communicating via the ABM. Moreover, since our framework supports BDI
agents that do not necessarily have a physical embodiment, such as an organ-
isation, then restricting communication to ABM agents alone does not suffice.
Finally, there may be good reason to model agent-to-agent communication at
a finer granularity than what is offered by the simulation clock, for instance
when one time step represents one simulated year and agent reasoning involves
agent-to-agent interactions over several days within the year. Therefore, we do
not impose any restrictions on how the agents communicate, and both ways
are supported.

In our setup of Figure 1, the responsibility of controlling and progressing
the simulation lies with the ABM. In this regard it is also worth discussing
the value of an external controller. For instance, one could conceive of an
alternative architecture where both the BDI and ABM systems are slaves, and
the master is some external controller that pulls together and orchestrates the
integrated simulation. This use case is not unusual, and in fact several general-
purpose integration frameworks exist, that could be considered.

The High Level Architecture (HLA) standard [30,24], for instance, allows
a geographically distributed simulation (federation) to be constructed by link-
ing together a number of simulation components (federates). The federates
may be written in different languages, and can run at different time steps. A
Federation Object Model (FOM) defines the types of and the relationships be-
tween the data exchanged by the federates in a federation. Each federate must
typically translate from its internal notion of simulated entities to HLA ob-
jects and interactions as specified in the FOM. A federate declares its interest
in objects and attributes at the beginning of a simulation by publishing any
attributes it may update during the simulation (via the RTI Ambassador) and
subscribing to attributes which it would like to receive updates for (via the
Federate Ambassador). To update the value of a particular attribute instance,
a federate must first acquire ownership of (i.e., write access for) that instance.
All communication between the federates in a federation is accomplished via
middleware called the Runtime Infrastructure (RTI). From the BDI-ABM in-
tegration perspective, while technically possible, use of HLA for control has
several drawbacks. Firstly, the HLA standard is rather complex. For simple
integration scenarios this can result in a significant implementation overhead,
as each federate must implement at least the core HLA functionality. As a re-
sult, considerable work may be required to integrate an existing ABM or BDI

Integrating BDI agents with Agent-Based Simulation Platforms 11

platform into an HLA federation. Secondly, the inter-operability supported by
the HLA comes at a computational cost, as every interaction in the simula-
tion must happen via the RTI. For MAS simulations which consist of many
lightweight components that access the simulation state frequently (relative
to the CPU they consume), the computational overhead of the RTI can be
significant. Lastly, HLA standard does not mandate an underlying network
protocol, which is left to the implementer of the RTI. This can severely limit
inter-operability in practice, as each federate must implement RTI and Feder-
ate ambassadors compatible with the RTI used by a particular federation.

In terms of data transfer between the BDI and ABM systems, we perform
two key optimisations. First, a single data container is passed between the
systems in each simulation cycle, as opposed to the BDI-ABM counterparts
sending individual messages. The data container bundles the messages for all
agents and delivers them all together to the other system. This simplifies the
synchronisation between the systems, and is also typically faster, specially if
the communication link between the BDI and ABM systems is network based.

Second, and importantly, not every percept that an agent may ever need
is computed and pushed to the BDI system on every cycle. This is because
the BDI agent processes information contextually, as it performs its course
of action, and so only certain information is useful in certain situations. For
instance, an evacuating agent may be interested in knowing that its elderly
neighbours have arranged for someone to pick them up, only when it is about
to leave. Once it is on the road, this information may no longer play a part
in its decision making. In such cases, it is more economical, for data transfer,
if the BDI agent pulled this percept from the ABM environment as needed.
Our framework supports this kind of information retrieval using BDI queries,
which we describe further in the next section.

4 Integration Architecture

In this section we describe the technical aspects of our integration framework.
Overall, the framework consists of three distinct layers as shown in Figure 4:
a generic layer, which realises the conceptual model shown in Figure 1; a
system layer, which provides the code necessary for linking a particular BDI or
ABM system into the generic layer; and an application layer, which provides
the application-specific code including agent behaviour and reasoning. The
pseudo code for the BDI-ABM runtime execution is shown in Algorithm 1. The
layer responsible for each step of the process is also indicated. The BDI and
ABM systems execute once per simulation time step, with the BDI application
providing action decisions to the ABM, while the ABM provides observations
and environmental information of interest, to the BDI module.

12 Dhirendra Singh et al.

BDI Interface

BDI System Integration
e.g., JACK

BDI Application Code
e.g., “fire” percept
response behaviour

ABM Interface

ABM System Integration
e.g., MATSim

ABM Application code
e.g., “drive to” ac-

tion implementation

Generic
Layer

System
Layer

Application
Layer

P, S

A, S

Fig. 4 Three-tiered BDI-ABM integration architecture showing information flow in each
synchronised simulation step; ABM system sends percepts list P to the BDI system and
receives back actions list A; S is the list of actions’ status’

Algorithm 1: Algorithm for the BDI-ABM runtime execution; com-
ments indicate the integration layer (G: Generic, S: System, A: Applica-
tion) in which the code executes

1 BDI and ABM applications initialised ; // A

2 Links established between BDI-ABM agent counterparts ; // A

3 for each time step do
4 ABM sends packaged information to BDI module ; // G

5 Information is distributed to individual BDI agents ; // S

6 for each BDI agent do
7 execute until idle (possibly querying ABM counterparts) ; // S

8 notify new actions or action status changes ; // A

9 BDI sends packaged information on agent actions to ABM ; // G

10 Information is distributed to individual ABM agents ; // S

11 for each ABM agent do
12 execute one time step ; // S

13 package percepts and action status ; // A

4.1 The Generic Layer

The generic layer provides the high level interface between the BDI and ABM
systems. It defines functions that allow the ABM to initialise/terminate the
BDI system and create/destroy BDI counterpart agents on the one hand, and
the BDI system to pull percepts from the ABM on the other. It ensures that
control is passed between the two systems in a synchronised manner.

The generic layer includes data structures for passing information between
the two systems. Table 1 shows the structure of the agent data container. Each
such container is tagged with the ID of the agent it belongs to, and a list of

Integrating BDI agents with Agent-Based Simulation Platforms 13

Table 1 Structure of an agent data container—a list of these containers is passed between
the ABM and BDI systems on each simulation cycle

Data Type Values

BDI action < instance id, action type, parameters, status >
where status is one of:
INITIATE—Initiated by BDI agent and to be executed
RUNNING—Being executed by the simulation agent
PASS—Completed as expected
FAIL—Aborted/failed by the simulation agent
DROPPED—Aborted by the BDI agent
SUSPENDED—Temporarily suspended by the BDI agent

Percept < percept type, value >
where value may be a complex type

Query < query, response >

these containers is passed between the two systems, inside a single composite
container, in each simulation cycle. The data in these containers represents a
BDI Action3, a Percept or a Query:

– BDI Actions are the high level actions initiated by BDI agents, that are
executed as a sequence of environment level actions by the ABM agent.
Note that BDI actions are durative, i.e., can execute for several simulation
cycles on the ABM. Action status is used by the ABM system to indicate
the status of active actions, such as success/failure. On the BDI side, action
status is used to initiate new actions, or suspend4/abort current actions.

– Percepts refer to the percepts that are pushed from the ABM to the BDI
system, providing information which conceptually should automatically be
noticed, or perceived, by each reasoning (BDI) agent. These percepts may
trigger some response from the BDI agent.

– Queries refer to the percepts that are pulled by the BDI system, accessing
information from the ABM, as and when needed. These queries are typi-
cally sent by the BDI agent during the evaluation of the context condition
of a plan. Queries only extract information from the ABM, and do not
change its state in any way.

4.2 The System Layer

The system layer contains platform-specific code for integrating particular
BDI and ABM platforms into the framework. It provides implementations for
the generic level functionality, as well as providing the code for packing and
unpacking of the generic layer data container message.

3 We call these actions BDI Actions to distinguish them from actions in the ABM which
may include lower-level actions.

4 Suspension is not yet fully implemented in the publicly available software.

14 Dhirendra Singh et al.

4.2.1 BDI System Layer

The BDI system layer has three main functions, to: provide a transparent pro-
gramming model for durative actions (explained below); collect actions from,
and distribute percepts to, individual agents (this is fairly straightforward,
and we do not discuss this any further here); and detect the end of a BDI
reasoning cycle (this we have covered already in Section 3).

As explained earlier, BDI actions may take several execution cycles to
complete on the ABM side. Where such an action is a synchronous step in an
agent intention (plan), the agent reasoning for that particular intention (plan)
must wait (block) until the action has completed with success or failure, unless
something happens such that the BDI agent wishes to abort. We do this by
providing a generic goal-plan pair: actionGoal and actionPlan. In order to
initiate the execution of a BDI action the BDI agent posts the action, such
as drive-to(loc)), as the goal actionGoal("drive-to",loc) from within
a plan body. This goal is then handled by the plan actionPlan as shown in
Algorithm 2. Here actionList is a list that contains all instances of actions
which are in the states described in Table 1.

Algorithm 2: Algorithm for actionPlan

1 Add action to actionList indexed on agentID, with action status=INITIATE

2 Wait for status to change // due to ABM message, or BDI decision making

3 if status==PASS then
4 finish, indicate that the goal actionGoal was achieved, i.e. action was executed

successfully, and remove action from actionList

5 if status==FAIL or DROPPED then
6 finish, indicate that the goal actionGoal failed, i.e. action was not executed

successfully, and remove action from actionList

7 if maintenance or parallel violation then
8 set status of action to DROPPED

A common reason in agent systems for aborting plan execution, is when a
maintenance condition, which in normal operation should hold for the duration
of plan execution, fails. Another reason is if there are parallel sub-goals being
pursued, and the programmer has indicated that if one parallel clause fails,
all should fail. Different BDI systems provide slightly different mechanisms for
this, but we basically handle such events by setting the relevant action status
to DROPPED (lines 7–8), which results in the action being aborted by the ABM,
and on the next cycle being removed from the action list by the BDI system.

So far we have developed BDI layer integrations for the following platforms:
JACK [12], Jadex [11], and GORITE [26].

Integrating BDI agents with Agent-Based Simulation Platforms 15

4.2.2 ABM System Layer

THE ABM system layer serves three key purposes, to: update actions status’;
perform an ABM time step; and distribute actions to, and collect percepts
from, individual agents. It also provides access to the step function of the
simulation in some manner, as this is used to maintain the synchronisation
between the two systems. Code must be integrated with the step function of
the ABM to manage the actionList that is passed between the two systems.

Typically an ABM agent contains a series of single time-step rules with
execution schedules or trigger conditions defining at which time-steps they
should run. As our BDI actions often need to be executed over multiple time-
steps our system level manages application level rules such that the sensor-
actuator agent will perform an appropriate portion of the action. For example
if the BDI action is to move to a given destination, the rule will move some
distance towards the destination in each step. There can be multiple rules
within an agent, each to perform a different action. These may be able to
be performed in parallel. In order for an ABM agent to execute the actions
specified in the actionList we provide a new system level rule, executed at
each time-step, which operates as follows:

Algorithm 3: Algorithm for handling BDI actions in the ABM

1 for each action in actionList do
2 if action.status == DROPPED then
3 remove action from the actionList and continue

4 if action.status == INITIATE then
5 read action parameters and change action.status to RUNNING

6 if action.status == RUNNING then
7 call the appropriate rule, indexed on agentID, to take one

(time)step towards the action’s completion

Note that an action will begin execution in the same time-step that its
status is set to RUNNING. When an action successfully completes, or fails, the
system level changes the status of the action to PASS or FAIL in the message to
be passed to the BDI agent, and then removes the action from its actionList.

The ABM layer integrations we have developed, provide support for the
following platforms: the general-purpose Repast [34] and GAMS [18] platforms,
the domain specific MATSim [3] traffic simulator, as well as an application-
specific Python-based simulator [20].

4.3 The application layer

The application layer is where a particular BDI system layer and a particular
ABM system layer is composed, together with all the specific logic for the
given domain, to form an executable program. Building application level code
requires,

16 Dhirendra Singh et al.

– identifying the application-specific BDI actions (e.g., drive-to) and per-
cepts (e.g., road-congestion),

– making design decisions, given that the agent is split between the BDI
and ABM systems (Figure 1), as to what reasoning is performed in which
system,

– writing functions on the ABM side to implement BDI actions and to collect
BDI percepts,

– writing BDI code that performs deliberation, taking into account its goals,
as well as incoming percepts from the ABM side, to perform BDI actions
using the generic action goal infrastructure of the BDI system layer, and

– creating an application scenario in the ABM (e.g., for a given number of
agents, distributed spatially in a certain configuration).

Once the application-specific BDI actions and percepts are agreed on, de-
velopment can typically be done in parallel on the BDI and ABM application
code. On the BDI side, this involves writing a program in the usual way (for
example, the resident behaviour in Figure 3), but using the system level generic
action goal for BDI actions and handling the ABM percepts coming in. Ap-
plication code on the ABM side implements BDI actions in terms of agent
actions in the ABM, as well as building the agent-specific BDI percepts by
querying ABM state.

5 Integrations and Application Examples

The three-tiered integration architecture we have described in Section 4 lends
itself to putting together simulation applications with BDI cognitive agents in
a modular and decoupled manner. The various components in the architecture
of Figure 4 are built as standalone Java libraries, packaged in JAR (.jar) files.
Building a new application typically involves pulling together the generic and
platform level JAR files, and writing the application level code for the problem
domain. Altogether, we have built five applications for very different domains
in this manner, as outlined in Table 2. In this section we describe two of these
in some detail – a bushfire evacuation application, and a conservation ethics
model.

5.1 Bushfire Evacuation Model

The bushfire evacuation model is a proof-of-concept decision support tool that
we have developed over several years with guidance from the Country Fire
Authority (CFA) in Australia. The tool aids the planning and preparation
for evacuations of regional towns in the event of imminent bushfires. It is a

5 http://repast.sourceforge.net/docs/RepastJavaGettingStarted.pdf

Integrating BDI agents with Agent-Based Simulation Platforms 17

Table 2 Application examples available in the BDI-ABM integration repository

Application Platforms Used Description

Bushfire
Evacuation

MATSim,
JACK

A GIS simulation of a bushfire evacuation in regional
Australia; uses OpenStreetMap for road network data;
Census and government databases for residential and
households data; Phoenix RapidFire [57] for simulating
fire spread; MATSim for simulating the traffic; JACK for
modelling residents’ responses to a bushfire warning

Zombies Jadex, Repast Extends the Repast Zombies and Human demonstration
simulation5 to build “smarter” zombies (programmed in
Jadex) that coordinate their moves when looking for hu-
man prey

Taxi Service GORITE,
MATSim

A GIS based simulation of a taxi company; uses MAT-
Sim for traffic simulation; taxi drivers are BDI agents
(GORITE); a taxi operator (exists only in GORITE, with
no physical representation in MATSim), manages jobs
broadcasts and assigns jobs based on requests from taxi
drivers; taxis have autonomy in which jobs they bid for

Conservation
Ethics

JACK, GAMS Builds on work by [25] that models (in GAMS) an
auction-based system where landholders bid on a range
of work packages aimed at conservation targets, such as
increasing the population of certain species, in an area;
adds BDI reasoning to the landholder agents, to capture
considerations other than financial, such as social and
ethical “barometers”

Vaccination
of Children

JACK,
Python-sim

Builds on work by [19] that models (in a standalone
Python-based simulation) the spread of diseases, such
as measles, in a population (up to a few hundred thou-
sand agents) over several decades; adds BDI reasoning
(JACK) to the decision making of parents w.r.t. vacci-
nation of their children; BDI reasoning is invoked only
for females and only during the years when vaccination
decisions have to be made

GIS-based model of a local area with its road network (extracted from Open-
StreetMap6), buildings (extracted from government datasets7), and population
(constructed using demographics data from census8). Residents are modelled
as BDI agents in JACK. Traffic flow simulation is done in MATSim [37]. The
simulator can inject time-stamped bushfire progression for the area, modelled
in Phoenix RapidFire [57]. A custom built visualiser allows user-interaction
with the simulation (Figure 5).

Community evacuation in response to bushfires is a relatively new policy
measure introduced after the devastating Black Saturday fires of 2009 in which
179 lives were lost. The first real evacuation was performed in 2014, for the
regional town of Halls Gap, VIC. As such, little or no evacuation data exists,
to aid evacuation planning. In this regard, a simulation tool that can be con-
figured for individual communities, and that gives fine grained understanding

6 www.openstreetmap.org
7 http://services.land.vic.gov.au/landchannel/content/productCatalogue
8 http://www.abs.gov.au/websitedbs/censushome.nsf/home/communityprofiles

18 Dhirendra Singh et al.

Fig. 5 Planning community evacuation for Halls Gap VIC, Australia: a custom visualiser
allows a user to interact with the simulation, here influencing the behaviour of an agent via
breakpoints at decision points in the BDI program.

of the nuances of evacuation in that community (such as local bottlenecks in
traffic flow) can be invaluable.

Our interactions with emergency services personnel over the past few years
have highlighted a key concern they have with any kind of modelling – that
people behave in complex ways, and unless this variation can be captured
in a convincing way, modelling of community response can have only limited
value. To this end we have found the BDI agent model to be a very powerful
tool. First, the BDI goal-plan hierarchy can capture incredible variation in
behaviour in a compact representation. Second, and importantly, BDI concepts
are intuitive to non-programmers, which allows emergency services personnel
to engage in the development and refinement of behaviour profiles, such as the
response of parents to a bushfire threat during school hours. We have found
that this kind of informal validation of individual behaviours by emergency
services personnel, leads to better confidence in and acceptance of the overall
outputs of the model.

This bushfire evacuation problem domain has been a driving force in the
development of our integration framework, since from the onset it was clear
that we needed a nice way to integrate BDI agent modelling with agent-based
modelling and simulation.

Figure 5 shows a snapshot of the interactive simulation which gives a bird’s
eye view of the local region. In this snapshot, cars, representing residents, can
be seen stationed at homes. Each resident is internally modelled as a BDI agent
in JACK and a physical agent in MATSim. In the event of a bushfire warning,
the BDI agents make the high level decisions about what to do (such as pick

Integrating BDI agents with Agent-Based Simulation Platforms 19

up kids) and where to go (such as to the school first), while the MATSim agent
carries out the actions by figuring out a route and driving to the particular
destinations. Overall, individual residents (cars) can be inspected during the
interactive simulation to find out where they are going, and importantly, why.

The simulation also consists of an Evacuation Controller agent, that models
an incident controller person who makes decisions about which regions of the
town to evacuate in which order. When it is time to evacuate based on a
progressing fire, the Controller orders the evacuation of the regions, as per the
decided schedule. Within the simulation, the Controller agent lives only in the
BDI side, and has no physical counterpart in the ABM.

Users can interact with the Controller to influence its behaviour, via the
custom visualiser. This is done by setting breakpoints at particular goals that
the agent has (corresponding to decisions about which region to evacuate to
which relief center, at what time, and using which route), giving the user the
opportunity to force different plan choices to what the agent would otherwise
select.

The actions and percepts in the system are as follows:

– Percept fire-alert: This percept is generated by the fire module, when
the developing fire has progressed enough to pose a risk to the town. The
Controller agent acts on this percept by broadcasting messages to all resi-
dents in each region, at appropriate times as determined by the schedule.

– Percept road-congestion: This percept is generated by MATSim and is-
sued to all evacuating residents who have been on a link for longer than
a factor of β times the free speed travel time, where β > 1. This allows
encoding of BDI behaviours where residents are known to take risks when
stuck in traffic jams.

– Action drive-to(loc): In both systems where we have used MATSim (see
Table 2), this is always one of the BDI actions. The MATSim counterpart
executes this high level BDI-action by planning the route from the current
position to the required location and inserting the relevant legs into the
MATSim plan. Standard MATSim behaviours will then cause the agent
to follow this route to the destination. The MATSim counterpart reports
when the action succeeds, or when it fails.

– Action take-route-to(loc, route): This action is used for sharing the
route-planning decision making between the BDI and ABM systems. Here
route is a list of way-points that map out a high-level plan of reaching the
destination loc, as determined by the BDI agent-based on reasoning about
the fire behaviour. This is then translated by the ABM side into a series
of legs (what would be computed by a sequence of drive-to(waypoint)

actions) that are inserted together into the travel plan for the agent.

Evacuating resident agents exhibit some of the known behaviours of resi-
dents in bushfires, such as driving to pick up children from school and/or loved
ones from nearby locations first, before driving to the designated evacuation
centres.

20 Dhirendra Singh et al.

5.2 Conservation Ethics Model

Market-based incentive schemes are increasingly being used worldwide to in-
crease landholder participation in local conservation and biodiversity man-
agement. One such scheme is the conservation auction–a competitive reverse-
auction mechanism where regional landholders submit a set of environmental
projects (bids) from which the conservation agency (auctioneer) selects suit-
able ones to satisfy its environmental objectives. In a multi-objective auction
model, the agency has a fixed target for conservation outcomes which it wishes
to secure at minimum cost, and allocates budget (selects projects) accordingly.
Landholders then act to achieve the contracted outcomes by the end of the
specified period, through on-ground actions on their land (the projects). In
Australia, there have been many conservation auction trials in recent years [25].

These monetary incentive schemes, however, do not take into account in-
trinsic motivation factors, or social norms, that play an important role in
landholders’ decisions to participate. For instance, motivation crowding the-
ory suggests that monetary incentives can have a negative impact on intrinsic
motivation in voluntary participation settings.

We have developed a model that we compare against a previously devel-
oped economic model of conservation auctions [25]. This work was done in
collaboration with authors of the original work, together with social science
experts. In the original simulation the landholder agents learn (using machine
learning techniques) to make successful bids in an iterated auction procedure.
The landholders are assumed to be rational economic agents. In the compara-
tor model we have four groups of landholders, with different bidding strategies
based on their conservation ethic–the extent to which a person cares about
conservation issues–and profit motive as follows:

– high conservation ethic and low profit motive: relatively many bids, at a
cost that is slightly over or slightly under actual cost recovery.

– high conservation ethic and high profit motive: a moderate number of bids
with a moderate profit.

– low conservation ethic and high profit motive: only those bids which give a
substantial amount of profit (actual amount, not simply percentage of cost
recovery).

– low conservation ethic and low profit motive: a small chance of random
participation.

Conservation targets are specified, similar to the original model, as the
population sizes of three threatened species (Red-Tailed Phascogale, Carpet
Python and Malleefowl) found in Western Australia. The auctioneer has a
target population size at the end of a specified contract period, however land-
holders do not know what the target is. Landholders bid on one or more
of 26 available projects, for conservation efforts delivering different combi-
nations of population size increases in the three species, for different costs.
Each landholder has the same cost model, which allows for economies of scale.
The auctioneer determines the bid winners such that the target can be met,

Integrating BDI agents with Agent-Based Simulation Platforms 21

while minimising the overall cost. The auction outcomes modify (potentially)
each landholder’s conservation ethic and profit motive for subsequent auction
rounds, resulting in emergent behaviour.

Here, landholders are modelled as BDI agents in JACK. The ABM is the
auction environment, and is the original model developed in GAMS [25]. The
auctioneer agent only exists in the ABM. The BDI actions and percepts in
this setting are as follows:

– call-for-bids : this percept is received by all BDI agents, and signals the
start of the auction process to the BDI landholders;

– bid(params) : this is a BDI action sent by a landholder agent, and contains
a list of all bids for that agent, for that auction round

– auction-result(params) : this is a percept provided by the ABM auc-
tioneer to all BDI agents, and contains the results of the auction round,
including information about the winning bids.

We do not claim to have an accurate model of landholders; rather we have
implemented a simplified version of some of the social science findings regard-
ing motivational crowding out, and show that a landholder model which takes
account of non-monetary factors can result in significantly different outcomes
with respect even to cost effectiveness, as compared to the model that considers
only monetary incentives.

6 Discussion and Conclusion

There are several strands of work in the Agent-Based Modelling and BDI
literature that consider the problem of integrating BDI agents with an ABM.
In this section, we briefly describe the key similarities and differences between
our approach and related work from the literature, and conclude with some
directions for future work.

One strand of work has focused on extending either standard (non agent-
based) simulation formalisms or ABM platforms to support BDI agents. For
example, Mittal and Douglass [33] present a formalisation of the ACT-R archi-
tecture for cognitive agents in the Discrete Event System Specification (DEVS)
formalism [59], and Zhang and Verbraeck [60] present a formalisation of PRS
[21] agents in DEVS. The DEVS formalism is widely used in the discrete
event simulation community, allowing inter-operability with other simulation
models formalised in DEVS. The resulting models are platform (simulator)
independent, and can be readily parallelised. However the approaches in those
works [33,60] provide limited support for translating high-level ACT-R or
PRS agent programs into the DEVS formalism, and current DEVS simula-
tion platforms do not provide development or debugging support at the BDI
agent level, rendering agent development more difficult. Shendarkar et al. [47]
describe an implementation of BDI agents using the AnyLogic9 commercial

9 www.anylogic.com

22 Dhirendra Singh et al.

simulation package. AnyLogic provides extensive support for developing agent
based models, however the BDI agents in the system of Shendarkar et al. [47]
are targeted specifically at crowd simulation. Sakellariou et al. [44] present
NetLogo [56] libraries to support the development of BDI agents and FIPA-
compliant communication between agents. However while their approach is
general in allowing a wide range of scenarios to be simulated, the BDI library
described is limited to simple intention structures, and lacks the features of a
fully-fledged BDI platform.

Another strand of work involves the use of existing BDI platforms for
(agent-based) simulation. For example, Bordini and Hübner [8] describe how
the JASON BDI platform can be used for social simulation, however most
BDI platforms (e.g., Brahms [48], 2APL [13], Goal [23], JaCaMo [6]) provide
some degree of support for developing simulations, as the default assumption
underlying such platforms is that the agent’s environment is simulated. This
approach provides limited support for the non-agent parts of the simulation
compared to, agent-based simulation platforms such as Repast.

A third strand of work seeks to couple a mature agent platform with a
particular fully-fledged ABM simulation. A number of special purpose ABM
simulations have been developed that are designed to allow the integration of
BDI agents, e.g., RoboCup [28], RoboCup Rescue [29], Gamebots [27], and the
Multi-Agent Programming Contest [4]. Communication with the BDI platform
is typically based on message passing (sockets), and so neutral with respect
to the choice of BDI platform used to implement the agents. However these
simulators support a single, parameterised simulation model, e.g., robot soc-
cer in the case of RoboCup. There has also been work on combining an ABM
simulation with a particular cognitive agent platform [53,55,54]. Similar to
the previous systems [28,29,27], these simulators support a single (parame-
terised) simulation model; however in addition they are limited to a single
agent platform. For example, TacAir Soar [53] and SWARMM [55] are specific
to a particular domain (air combat) and particular agent platform (Soar and
dMARS respectively).

Finally, there is also a strand of work on extending ABM and BDI platforms
to make them compliant with the High Level Architecture (HLA) and thus
inter-operable. For example, HLA-Repast [32] is an HLA-compliant extension
of the Repast agent-based simulation platform, and HLA-Agent [31] is an HLA-
compliant implementation of the SIM AGENT [51] agent simulator. However
this work targets federated, distributed, simulations and requires additional
Run-Time Infrastructure to manage the execution of the composed simulators.

To the best of our knowledge, there has been very little work on integrating
a fully-fledged BDI platform with a fully-fledged ABM platform in a way that
leverages the features of both. The majority of the work described above starts
either from a BDI agent platform and provides basic support for implementing
a simulation, or from an ABM simulation platform and provides some support
for more complex agents. The previous work that does provide a high level
of support for both BDI and ABM is limited to simulating fully-fledged BDI
agents in a single simulation scenario, or a narrow range of scenarios.

Integrating BDI agents with Agent-Based Simulation Platforms 23

One piece of work which is very related to our infrastructure is that of van
Oijen in his PhD thesis [35] where he explores and describes his CIGA middle-
ware system that seeks to connect a game engine with a BDI system. His high
level communication is very similar to that of our generic layer, which was
also described in [38], being one of our first implementations of the BDI-ABM
connection which we have now fully generalised. CIGA is focused specifically
on games, and as such makes demands of the simulation graphics which adds
complexity that we did not attempt to deal with in our infrastructure. Our
applications have had agents which while they may be cognitively somewhat
complex, do not require the graphical realism of characters in games. For ex-
ample our evacuation simulation graphics is quite satisfactory with cars as
dots following roads. Nevertheless some of the issues mentioned by van Oijen
were also seen and addressed in our system. An example is the requirement for
durative actions, which in their case study caused issues. Our system level BDI
mechanism for managing this addresses this issue, but does need to be devel-
oped at the system level if durative actions are not natively supported. CIGA
aims to provide many more generic services than does our system. In order to
accomplish many of the things addressed by such services (such as percept pro-
cessing into more usable percepts), we rely on guiding the developer on how
to develop the necessary functions within the simulation engine/application
chosen. We do expect that for a particular domain and simulator, re-usable
libraries of percept processing functions will be developed, and we have started
to see this in our repeated use of MATSim. Overall the goals of CIGA are quite
similar to our system, though more extensive. At the same time it would seem
that our system is perhaps more complete, within its more limited scope, and
has been used for more complete applications.

Overall, the work presented here, supports integration of a wide range of
cognitive agent modelling platforms, with a similarly wide range of agent-
based simulation platforms or applications. The only requirement is that the
percepts (or environmental observations/events) of interest to each agent, and
the actions that the agent may execute in the simulation environment can be
identified. The support infrastructure we have developed along with the code
required for a number of specific systems, and several example applications is
freely available at http://tiny.cc/bdi-abm-integration.

Acknowledgements We would like to thank Kai Nagel, Sarah Bekessey, Fiona Fidler,
Ascelin Gordon, Sayed Iftekhar, Nic Geard, Carole Adam, Todd Mason, Sewwandi Perera,
Edmund Kemsley, Oscar Francis, Daniel Kidney, Thomas Wood, Andreas Suekto, Qingyu
Chen, Arie Wilsher, Sarah Hickmott, and Dave Scerri for their contribution to the various
platform integrations and applications discussed in this paper. We thank AOS for supporting
this work through the provision of their JACK agent system for research purposes.

References

1. Axelrod, R.M.: The Complexity of Cooperation: Agent-Based Models of Competition
and Collaboration. Princeton Univeristy Press (1997)

24 Dhirendra Singh et al.

2. Balke, T., Gilbert, N.: How do agents make decisions? A survey. Journal of Artificial
Societies and Social Simulation (JASSS) 17(4), 13 (2014)

3. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., Axhausen,
K.: MATSim-T: Architecture and simulation times. Multi-agent Systems for Traffic and
Transportation Engineering pp. 57–78 (2009)

4. Behrens, T.M., Dastani, M., Dix, J., Hübner, J., Köster, M., Novák, P., Schlesinger, F.:
The multi-agent programming contest. AI Magazine 33(4), 111–113 (2012)

5. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong business case for multiagent
technology. In: Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 10–15.
Hakodate, Japan (2006)

6. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6), 747–761 (2013)

7. Bordini, R.H., Hübner, J.F.: BDI Agent Programming in AgentSpeak Using Jason. In:
International Workshop on Computational Logic in Multi-Agent Systems (CLIMA), pp.
143–164. London, UK (2005)

8. Bordini, R.H., Hübner, J.F.: Agent-Based Simulation Using BDI Programming in Jason.
In: Multi-Agent Systems: Simulation and Applications, pp. 451–471. CRC Press (2009)

9. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in
AgentSpeak Using Jason. Wiley (2007). Wiley Series in Agent Technology, ISBN:
0470029005

10. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press
(1987)

11. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI agent system combining mid-
dleware and reasoning. In: Software Agent-Based Applications, Platforms and Devel-
opment Kits, pp. 143–168 (2005)

12. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents - compo-
nents for intelligent agents in Java. Tech. rep., AOS Pty. Ltd, Melbourne, Australia
(1998)

13. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

14. Dennett, D.C.: The Intentional Stance. MIT Press (1987)
15. Dignum, V., Vázquez-Salceda, J., Dignum, F.: OMNI: introducing social structure,

norms and ontologies into agent organizations. In: Programming Multiagent Sys-
tems Languages, Frameworks, Techniques and Tools workshop (PROMAS), pp. 181–198
(2004). Selected Revised and Invited Papers

16. Epstein, J.: Generative Social Science - Studies in Agent-Based Computational Model-
ing. Princeton University Press (2006)

17. Ferber, J.: Multi-Agent Systems. Addison Wesley Longman (1999)
18. GAMS Development Corporation: General algebraic modeling system (gams) website.

http://www.gams.com/ (2015). Accessed: March 20, 2015
19. Geard, N., McCaw, J.M., Dorin, A., Korb, K.B., McVernon, J.: Synthetic population

dynamics: A model of household demography. Journal of Artificial Societies and Social
Simulation 16(1), 8 (2013)

20. Geard, N., Singh, D., McVernon, J., Padgham, L.: A model of parental decision mak-
ing and behaviour about childhood vaccination. In: Epidemics 4: Fourth International
Conference on Infectious Disease Dynamics, pp. 19–22. Amsterdam, The Netherlands
(2013)

21. Georgeff, M., Ingrand, F.: Decision making in an embedded reasoning system. In:
International Joint Conference on Artificial Intelligence (IJCAI), pp. 972–978. Detroit,
MI, USA (1989)

22. Gilbert, N., Troitzsch, K.: Simulation for the social scientist. McGraw-Hill International
(2005)

23. Hindriks, K.V.: Programming rational agents in GOAL. In: Multi-Agent Programming:
Languages, Tools and Applications, pp. 119–157. Springer US (2009)

24. IEEE Standard for modeling and simulation (M&S) High Level Architecture (HLA) —
Framework and rules. IEEE (2000). (IEEE Standard No.: 1516-2000)

25. Iftekhar, M., Hailu, A., Lindner, R.: Does it pay to increase competition in combinatorial
conservation auctions? Canadian Journal of Agricultural Economics/Revue canadienne
d’agroeconomie 62(3), 411–433 (2014)

Integrating BDI agents with Agent-Based Simulation Platforms 25

26. Jarvis, D., Jarvis, J., Rnnquist, R., Jain, L.C.: Multiagent Systems and Applications
- Volume 2: Development Using the GORITE BDI Framework, Intelligent Systems
Reference Library, vol. 46. Springer (2013)

27. Kaminka, G.A., Veloso, M.M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall, A.N.,
Scholer, A., Tejada, S.: GameBots: A flexible test bed for multiagent team research.
Communications of the ACM 45(1), 43–45 (2002)

28. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: The robot world
cup initiative. In: First International Conference on Autonomous Agents (Agents’97),
pp. 340–347. Marina del Rey, CA, USA (1997)

29. Kitano, H., Tadokoro, S.: Robocup rescue: A grand challenge for multiagent and intel-
ligent systems. AI Magazine 22(1), 39–52 (2001)

30. Kuhl, F., Weatherly, R., Dahmann, J.: Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. Prentice Hall (1999)

31. Lees, M., Logan, B., Theodoropoulos, G.: Distributed simulation of agent-based systems
with HLA. ACM Transactions on Modeling and Computer Simulation 17(3), Article
11 (2007)

32. Minson, R., Theodoropoulos, G.K.: Distributing repast agent-based simulations with
hla. Concurrency and Computation: Practice and Experience 20(10), 1225–1256 (2008)

33. Mittal, S., Douglass, S.A.: Net-centric ACT-R-based cognitive architecture with DEVS
unified process. In: Symposium on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, TMS-DEVS’11, pp. 34–44. Boston, MA, USA (2011)

34. North, M.J., Howe, T.R., Collier, N.T., Vos, J.R.: Advancing Social Simulation: The
First World Congress, chap. A Declarative Model Assembly Infrastructure for Verifica-
tion and Validation, pp. 129–140. Springer Japan, Tokyo, Japan (2007)

35. van Oijen, J.: Cognitive agents in virtual worlds: A middleware design approach. Ph.D.
thesis, Utrecht University (2014)

36. Padgham, L., Horne, R., Singh, D., Moore, T.: Planning for sandbagging as a response
to flooding: A tool and case study. Australian Journal of Emergency Management
(AJEM) 29, 26–31 (2014)

37. Padgham, L., Nagel, K., Singh, D., Chen, Q.: Integrating bdi agents into a matsim
simulation. Frontiers in Artificial Intelligence and Applications 263(ECAI 2014), 681–
686 (2014)

38. Padgham, L., Scerri, D., Jayatilleke, G.B., Hickmott, S.L.: Integrating BDI reasoning
into agent based modeling and simulation. In: Winter Simulation Conference (WSC),
pp. 345–356 (2011)

39. Rao, A., Georgeff, M.: Modeling rational agents within a BDI-architecture. In: Principles
of Knowledge Representation and Reasoning (KR), pp. 473–484. Cambridge, MA, USA
(1991)

40. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language. In:
Agents Breaking Away, pp. 42–55. Springer (1996)

41. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: International Con-
ference on Multi-Agent Systems (ICMAS), pp. 312–319. San Francisco, CA, USA (1995)

42. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: 14th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’87,
pp. 25–34. New York, NY, USA (1987)

43. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2 edn. Pearson
Education (2003)

44. Sakellariou, I., Kefalas, P., Stamatopoulou, I.: Enhancing NetLogo to simulate BDI
communicating agents. In: Artificial Intelligence: Theories, Models and Applications,
Lecture Notes in Computer Science, vol. 5138, pp. 263–275. Springer Berlin Heidelberg
(2008)

45. Sardiña, S., Padgham, L.: A BDI agent programming language with failure handling,
declarative goals, and planning. Autonomous Agents and Multi-Agent Systems 23(1),
18–70 (2011)

46. Scerri, D., Hickmott, S., Bosomworth, K., Padgham, L.: Using modular simulation and
agent based modelling to explore emergency management scenarios. Australian Journal
of Emergency Management (AJEM) 27, 44–48 (2012)

26 Dhirendra Singh et al.

47. Shendarkar, A., Vasudevan, K., Lee, S., Son, Y.J.: Crowd simulation for emergency
response using BDI agent based on virtual reality. In: Winter Simulation Conference
(WSC), pp. 545–553. Monterey, CA, USA (2006)

48. Sierhuis, M., Clancey, W.J., van Hoof, R.J.J.: Brahms: A multiagent modelling and
simulation environment for work processes and practices. International Journal of Sim-
ulation and Process Modelling 3(3), 134–152 (2007)

49. Singh, D., Padgham, L.: Community evacuation planning for bushfires using agent-
based simulation (demonstration). In: Autonomous Agents and Multi-Agent Systems
(AAMAS), pp. 1903–1904. Istanbul, Turkey (2015)

50. Singh, D., Sardina, S., Padgham, L., James, G.: Integrating learning into a BDI agent for
environments with changing dynamics. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp. 2525–2530. Barcelona, Spain (2011)

51. Sloman, A., Poli, R.: SIM AGENT: A toolkit for exploring agent designs. In: Intelli-
gent Agents II: Agent Theories Architectures and Languages (ATAL-95), pp. 392–407.
Springer–Verlag (1996)

52. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7,
83–124 (1997)

53. Tambe, M., Johnson, W.L., Jones, R.M., Koss, F.V., Laird, J.E., Rosenbloom, P.S.,
Schwamb, K.: Intelligent agents for interactive simulation environments. AI Magazine
16(1), 15–39 (1995)

54. Taylor, G., Frederiksen, R., III, R.R.V., Waltz, E.: Agent-based simulation of geo-
political conflict. In: Conference on Innovative Applications of Artificial Intelligence
(IAAI), pp. 884–891. San Jose, CA, USA (2004)

55. Tidhar, G., Heinze, C., Selvestrel, M.C.: Flying together: Modelling air mission teams.
Applied Intelligence 8(3), 195–218 (1998)

56. Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity. In:
International Conference on Complex Systems (ICCS), pp. 16–21. Boston, MA, USA
(2004)

57. Tolhurst, K., Shields, B., Chong, D.: Phoenix: development and application of a bushfire
risk management tool. Australian Journal of Emergency Management (AJEM) 23(4),
47–54 (2008)

58. Winikoff, M.: JACK intelligent agents: An industrial strength platform. In: Multi-Agent
Programming: Languages, Platforms and Applications, Multiagent Systems, Artificial
Societies, and Simulated Organizations, vol. 15, pp. 175–193. Springer (2005)

59. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, 2nd edn.
Academic Press (2000)

60. Zhang, M., Verbraeck, A.: A composable PRS-based agent meta-model for multi-agent
simulation using the DEVS framework. In: Symposium on Agent Directed Simulation,
ADS’14, pp. 1:1–1:8 (2014)

