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A Modified Ant Colony Optimization Algorithm for
Network Coding Resource Minimization

Zhaoyuan Wang, Huanlai Xing, Tianrui Li, Senior Member, IEEE Yan Yang,
Rong Qu, Senior Member, IEEE and Yi Pan, Senior Member, IEEE

Abstract—The paper presents a modified ant colony optimiza-
tion approach for the network coding resource minimization
problem. It is featured with several attractive mechanisms spe-
cially devised for solving the network coding resource minimiza-
tion problem: 1) a multi-dimensional pheromone maintenance
mechanism is put forward to address the issue of pheromone
overlapping; 2) problem-specific heuristic information is em-
ployed to enhance the heuristic search (neighboring area search)
capability; 3) a tabu-table based path construction method is
devised to facilitate the construction of feasible (link-disjoint)
paths from the source to each receiver; 4) a local pheromone
updating rule is developed to guide ants to construct appro-
priate promising paths; 5) a solution reconstruction method is
presented, with the aim of avoiding prematurity and improving
the global search efficiency of proposed algorithm. Due to the way
it works, the ant colony optimization can well exploit the global
and local information of routing related problems during the
solution construction phase. The simulation results on benchmark
instances demonstrate that with the five extended mechanisms
integrated, our algorithm outperforms a number of existing
algorithms with respect to the best solutions obtained and the
computational time.

Index Terms—Ant Colony Optimization, Network Coding,
Combinatorial Optimization.

I. INTRODUCTION

RADITIONAL routing works in such a way that data
information being transmitted is stored and forwarded
at intermediate nodes in communications networks. At the
network layer, data streams are processed separately as fluids
share pipes or vehicles share highways [1]. Unfortunately,
traditional routing cannot guarantee to achieve the maximum
multicast throughput, determined by the Max-Flow Min-Cut
theorem [2]. Hence, in 2000, Ahlswede et al. proposed net-
work coding [3], an emerging communication paradigm that
always enables the theoretical maximum data rate. Network
coding has revolutionized the way of information processing
and transmission in communications network. It is a great
breakthrough in the field of information theory, computer
science and telecommunications.
The network coding resource minimization (NCRM) prob-
lem is a resource optimization problem emerged in the field of
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network coding. In the original studies, in order to achieve the
theoretical maximum throughput of multicast, it was assumed
that coding operations have to be performed at all coding-
possible nodes [4]-[7]. This means all nodes which have
the potential to perform coding would perform coding by
default. However, as pointed out in [8]-[10], only a subset
of coding-possible nodes suffices to realize network coding-
based multicast (NCM) with an expected data rate. As network
coding involves complicated mathematical operations (e.g., fi-
nite field computation), performing coding (and decoding) op-
erations will consume significant computational and buffering
resources in the corresponding nodes [11]. The less the coding
operations, the less computational and buffering costs. When
considering practical deployment, it is no doubt that carriers
expect to make full of the benefits the NCM brings while
paying minimal computational and buffering costs incurred.
Therefore, it is worthwhile to study the problem of minimizing
coding operations within NCM. Nowadays, Evolutionary Al-
gorithms (EAs) are the mainstream solutions for NCRM in the
field of computational intelligence (see Subsection III-B for
details). However, the existing EAs for the NCRM problem are
not good at integrating local information of the search space
or domain-knowledge of the problem, which could seriously
deteriorate their optimization performance.

Different from EAs, ant colony optimization algorithms
(ACOs) is a class of reactive search optimization (RSO)
methods adopting the principle of “learning while optimizing”
[12], [13]. They are constructive algorithms and simulate the
behavior of the ant colony foraging for food and finding the
most efficient routes from their nest to food sources. Since its
introduction in 1992, a number of variant ACOs have been
proposed, e.g., ant colony system (ACS) [14], MAX-MIN ant
system (MMAS) [15], and Best-Worst ant system (BWAS)
[16]. Meanwhile, ACOs have been intensively investigated
and successfully applied to a vast number of optimization
problems, e.g., vehicle routing problems [17], assignment
problems [18], and scheduling problems [19]. ACOs are
capable of exploiting the local and global information of the
underlining problems during the solution construction phase.
This characteristic is especially suitable for addressing path-
finding related optimization problems, e.g., TSP and routing
problems [14], [20]-[23]. Meanwhile, the objective of the
NCRM problem is to find a sub-network consisting of a set of
link-disjoint paths. Therefore, ACOs may be a good candidate
for solving the NCRM problem. However, to the best of our
knowledge, there has not been any research conducted about
applying ACO for NCRM problem.
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In this paper, a modified ACO is developed for tackling
the NCRM problem. Based on the framework of the basic
ACO, the proposed algorithm is devised with several attractive
features specially for enhancing the optimization performance.
These include a multi-dimensional pheromone maintenance
mechanism, the use of problem-specific heuristic information,
a tabu-table based path construction method, a pheromone
local updating rule, and a solution reconstruction method.

o Multi-dimensional pheromone maintenance mecha-
nism. In the basic ACO, a single pheromone table is
maintained. However, this always leads to a seriously de-
teriorated performance when solving the NCRM problem.
Hence, we develop the above pheromone maintenance
mechanism to effectively solve the pheromone overlap-
ping problem.

o Problem-specific heuristic information. Due to the
nature of the NCRM problem, there is no clear local
heuristic information immediately available for ACO to
solve the NCRM problem. Hence, we devise a heuristic
information scheme to provide necessary guidance to an
efficient search.

« A tabu-table based path construction method. In the
NCRM problem, a set of paths is expected to be built
from the source to each receiver, which is extremely
difficult. To deal with this issue, we propose a tabu-table
based path construction method to handle this constraint
and support better collaborative performance of ants.

« A pheromone local updating rule. As constructing link-
disjoint paths are quite difficult, the above path construc-
tion method may not be able to produce feasible solutions
in some complicated circumstances. Hence, a pheromone
local updating rule is introduced as a complement to
the path construction method above. Inappropriate path
selection is punished while promising path choices are
rewarded to increase the probability of generating link-
disjoint paths.

e A solution reconstruction method. In order to avoid
the search being stuck in local optima and diversify the
solutions, we propose a solution reconstruction method
to enhance local exploitation and alleviate the premature
convergence.

The rest of the paper is organized as follows. Section
IT introduces the basic ACO algorithm framework and the
graph decomposed method for the NCRM problem. Section
IIT describes the problem formulation and related works.
Details of the proposed algorithm is introduced in Section IV.
Simulation results are analyzed in Section V. Conclusions are
presented in Section VL.

II. BASIC CONCEPTS

In this section, we briefly review the framework of the basic
ACO and the graph decomposition method for the NCRM
problem.

A. ACO

ACO was originally created to address the Traveling Sales-
man Problem (TSP). Hence, this subsection describes the
procedure of the basic ACO for TSP as an example [14], [20].

Given a number of cities, the objective of TSP is to find
a minimal travel distance while traversing each city once.
Assume there are n cities fully connected by edge set E. The
search procedure is shown below.

1) Initialization. Randomly select m cities and place each
city with an ant. Set initial pheromone value on each
edge to a very small positive variable 7.

2) Path construction. Ant k (k=1, 2, ..., m) (in city i)
decides the next city j to visit, according to the transition
probability given in formula (1).

7(i,5)]%[n(,5)]° .
S € Y
(M
0, otherwise

p(i,j) =

Let 7(¢,7) represent the pheromone on edge(i,j) and
n(i, j) = 1/d;; be the heuristic information on edge(z, j)
reflecting local information, where d;; is the distance
from city i to j. Let W; denote an edge set that records
all edges an ant could visit. Let «, 8 denote weight
factors, which measure the relative importance between
the pheromone and the heuristic information.

3) Implement local search to optimize the solution found
by ant k (optional) [21]. If all ants have completed Step
2, go to Step 4. Otherwise, go to Step 2.

4) Update the pheromone level by formula (2)

where the parameter p € (0, 1) represents the evapora-
tion coefficient. The term A7 (4, j) is associated with the
performance of each ant.

5) If the termination condition is met, stop the procedure
and output the best solution obtained.

B. The graph decomposition method

A communication network can be modeled as a directed
graph G(V, E)) where V and E denote the set of nodes and
links, respectively. Assume each link e € E is with a unit
capacity. We refer to each non-receiver node with multiple
incoming links as a merging node which can perform coding
operation if necessary. However, it is difficult to determine
whether coding is needed at a merging node and how coding
is performed when needed. In order to clearly show all
possibilities when an information flow joins a merging node,
the graph decomposition method was proposed to decompose
a merging node into a set of auxiliary nodes connected with
auxiliary links [9], [10]. The following describes the graph
decomposition procedure.

Each merging node m is decomposed into two auxiliary
node sets, i.e., the incoming auxiliary node set In(m) and
the outgoing auxiliary node set Out(m). Let I, and O,,
be the incoming and outgoing link sets of merging node m,
respectively. Then, In(m) has |I,,| incoming auxiliary nodes
while Out(m) owns |O,,| outgoing auxiliary nodes. In In(m),
each node corresponds to a unique link in 7,,,. Likewise, each
node in Out(m) corresponds to a unique link in O,,. During
the graph decomposition, each link in I, is redirected to the
corresponding incoming auxiliary node and each link in O,
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1: for t=1to |V| do

2: if v' is a merging node then

3: for i =1 to n;, do

4: Create a new incoming auxiliary node, denoted
by vf, (i), then add to G;

5: Redirect link e;,,() to v%, (i);

6: end for

7: for j =1 to nyy, do

8: Create a new outgoing auxiliary node, denoted
by vt,.(4), then add to G;

9: Redirect link ey (j) to vt,,(5);

10: end for

11: for 1 =1 to n;, do

12: for j =1 to nyy, do

13: Create a new auxiliary link from o}, (i) to

v!,+(j) and then add to G;

14: end for

15: end for

16: Remove v’ from G;

17: end if

18: end for

Fig. 1. Pseudo code of the graph decomposition method

is redirected to the corresponding outgoing auxiliary node. In
addition, auxiliary links are inserted between incoming and
outgoing auxiliary nodes so that any incoming auxiliary node
is connected to all outgoing auxiliary nodes. Let Gp(V', E’)
be the decomposed graph of G(V, E). Fig. 1 shows the pseudo
code of the graph decomposition method, where v* € V,
|[V| is the number of nodes in V, links e;, (i) and e,y (j)
denote the i-th incoming link and the j-th outgoing link of v?,
respectively, and n;, and n,,; are the numbers of incoming
and outgoing links of v, respectively.

Fig. 2 illustrates an example of the graph decomposition
method. The original graph with a source (i.e., node 1) and
two receivers (i.e., node 8 and node 9) are shown in Fig. 2(a),
where node 4 and node 7 are merging nodes. Fig. 2(b) shows
the decomposed graph, where eight auxiliary links are inserted.
Node 4 is decomposed into two incoming auxiliary nodes,
node 4_1_1 and node 4_i_2, and two outgoing auxiliary nodes,
node 4_o_1 and node 4_o_2. Likewise, node 7 is decomposed
into four auxiliary nodes, as shown in Fig. 2(b). The decom-
posed graph unveils all possibilities that information flows may
pass through node 4 and node 7.

Note that each outgoing auxiliary node in Gp(V’, E’) has a
single outgoing link. Therefore, if more than one information
flow joins an outgoing auxiliary node, it means the coding
operation is required at that auxiliary node. In addition, the
graph decomposition method only decomposes merging nodes
which does not affect the source, receivers and data rate of the
graph.

III. PROBLEM FORMULATION AND RELATED WORKS
A. Problem formulation

As aforementioned, a communication network is represent-
ed by a directed graph G(V, E). After the graph decomposi-

\4 / 4_i_l‘+’\><'+'4_1_2

470/717‘ ‘ s *7‘47072

5 ) 6 ) (5) (6)

(7) o .

(8) {9) (8 (9)

" (a) Original Graph (b) Decomposed Graph

Fig. 2. An example of the graph decomposition method

tion, G(V, E) is transformed to graph Gp(V', E’). A single-
source network coding based multicast scenario can be defined
as a 4-tuple set (Gp, s, T, R), where the information needs to
be transmitted at data rate R from the source node s€ V' to
a set of d receivers T' = {t1,ta,...,tq}. We assume each link
has a unit capacity, so a path from s to ¢; has a unit capacity.
If R link-disjoint paths {p1(s,tx), ..., pr(S,tx)} from s to each
receiver ty € 1" are set up, the data rate R is said to be achiev-
able. The R link-disjoint path set {pi(s,tx),....,pr(S,tk)} is
denoted by Paths(s,ty), where t;, € T. If we successfully
obtained Paths(s,t1), ..., Paths(s,tq), then we obtain a
feasible solution Solution(Gp). According to the solution
Solution(Gp), a NCM subgraph can be built to support
the multicast with network coding, which is denoted by
Gnom(Solution(Gp)).
The following lists some notations used in the paper:

o s: the source node in Gp(V', E');

o T ={ty,ta,...,tq}: set of receivers, where d = |T| is the
number of receivers;

e R: data rate (an integer) at which s expects to transmit to
T;

e pi(s,tr): the i-th path from s to ¢, where t; € T and
i=1, ..., R;

o Wi(s, tx): the set of links of p;(s,tx), i.e., Wi(s, tx) =
{ele € pils, ) }:

o Paths(s,tr) = {p1(s,tk),...,pr(s,tx)}: a path set from
s to tx, where t;, € T' and any two paths in Paths(s, )
are link-disjoint;

o Solution(Gp)={Paths(s,t1), ..., Paths(s,tq4)}: a com-
plete NCM solution;

o Gnom(Solution(Gp)): a NCM subgraph that is built by
Solution(Gp);

e OA(Gp): the set of outgoing auxiliary nodes in
Gp(V',E");

e 0, a binary variable associated with each node o €
OA(Gp). 0, = 1 if at least two incoming links of
node o are occupied by Gncom (Solution(Gp)); 0, =0,
otherwise;

o ©(Gnem(Solution(Gp))): the number of coding nodes
in Gnem (Solution(Gp)).

The NCRM problem is defined as to find a solution to build
a NCM subgraph Gnewm(Solution(Gp)) with the minimum
amount of coding operations performed and the data rate R
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satisfied, as shown below:
Minimize:

»(Gnom(Solution(Gp))) =

Yoo B

YocOA(Gp)

Subject to:
R(s,tg) =R, Vit €T “4)

Wi(s, ti) N W;(s,t) = 0,

5
Vi €T, Vi,je{l,...,R}, i #j )

Objective (3) defines the optimization problem as to mini-
mize the number of coding operations. Constraint (4) defines
that the achievable rate between s and each receiver is exactly
data rate R in solution Solution(Gp), indicating there are
R paths between the source and each receiver. Constraint (5)
indicates that for arbitrary two paths from s to ¢, p;(s, t) and
p;(s,tr) (i # j), no common link exists so that each receiver
can receive information at data rate R.

An illustrative example is given in Fig. 3. Fig. 3(a) illustrates
the decomposed graph for the original multicast scenario in
Fig. 2. With data rate R=2 and two receivers, i.e., node 8 and
node 9, we use an ant colony of two ant groups (AntG; and
AntG2) to address the NCRM problem, where each group
consists of two ants. AntG is responsible for finding a path
set of two link-disjoint paths from node 1 to node 8. AntGs
is for constructing a link-disjoint path set from node 1 to
node 9. Specifically, as shown in Fig. 3(b)-(c), the two ants in
AntG find p1(1,8) =1 — 2 — 8 and p3(1,8) =1 —> 3 —
41 2—401—5—72141—"70_1— 8, respectively.
Thus W3(1,8) = {1 — 2, 2 — 8} and W5(1,8) = {1 —
3,3—>442 4i2—->401,401—741 74i1—
7_0_1, 7_o_1 — 8}. Due to W1(1,8)NW(1,8) = 0, the two
paths p1 (1, 8) and pa(1, 8) are link-disjoint. Likewise, then the
other ants in AntGy find two link-disjoint paths p;(1,9) =
1-2—-4:¢1—-401—-5—=>741—702—9and
p2(1,9) =1 — 3 — 9, respectively. Eventually, a complete
solution Solution(Gp) = {Paths(1,8), Paths(1,9)} can
be constructed, where Paths(1,8) = {p1(1,8),p2(1,8)} and
Paths(1,9) = {p1(1,9),p2(1,9)}, then the associated NCM
subgraph is built as shown in Fig. 3(d). It is noted that node
4 _o_1 is the only coding node in Gnewm(Solution(Gp)),
which means the number of the coding nodes ¢ equals to
1.

B. Related works

Due to the importance and the benefit network coding
brings, the NCRM problem has received much attention re-
cently. Fragouli et al. [24] and Langberg et al. [11] proposed
two greedy-based approaches for solving the problem. How-
ever, greedy algorithms do not perform well in escaping local
optimum, leading to a deteriorated optimization performance
when the link traversing order is not appropriate. Later on,
Kim et al. [8]-[10] proved that the NCRM problem is NP-
hard and carried out a series of research on how to efficiently
apply genetic algorithms (GAs) to tackle the problem. Sim-
ulation results demonstrate that GAs outperform the greedy

algorithms in a statistical manner. Since then, EA-based search
algorithms have become the mainstream techniques for solving
the NCRM problem in the field of computational intelligence.

We classify the existing EAs into four categories by the
individual encoding approaches adopted. EAs of the first
category are based on the binary link state (BLS) encoding. As
mentioned in Subsection II-B, for a merging node m, there are
|I;n] % |On, | auxiliary links inserted between the corresponding
incoming and outgoing auxiliary nodes. In BLS encoding,
an individual consists of a number of binary variables, with
each corresponding to the state of an auxiliary link (active or
inactive). Hence, an explicit NCM subgraph can be built by
a feasible individual. The BLS-based EAs include GAs [9],
[10], [25], quantum-inspired EAs [26], [27], population based
incremental learning [28], [29] and compact GA [30]. One of
the disadvantages of BLS is that infeasible solutions account
for the majority of the search space, which to a certain extent
deteriorates the search ability and efficiency of EAs [31], [32].

EAs of the second category are based on the block transmis-
sion state (BTS) encoding. BTS is similar to BLS. In BTS, an
individual is divided into a number of blocks, each of which
corresponds to an outgoing auxiliary node. If there are at least
two 1’s in a block, the whole block is set to all-one block. In
this way, the size of the search space is greatly decreased.
Nevertheless, using BTS may lose useful information for
guiding the search towards the global optima. GA [10] is based
on BTS encoding. In addition, Ahn et al. incorporated the self-
adaptive fitness assignment rule and entropy-based relaxation
technique into EAs with BTS to improve the efficiency and
effectiveness of the algorithms [33], [34].

As mentioned above, BLS and BTS encodings both record
the explicit link states (active or inactive). But, the third
category of the EAs utilizes the relative information of the
flows [35]. To be specific, each link is associated with a
coefficient which represents how the information is combined
according to the combination of flows from the upstream
links. Hu et al. invented this encoding approach and adapt
several GAs, e.g., the ripple-spreading GA (RSGA) [36] and
the spatial receding horizon control GA (SRHCGA) [37], for
the problem in large-scale or complex networks. Meanwhile, a
chemical reaction optimization (CRO) algorithm was studied
for addressing the problem, with the operating principle in-
spired from chemical reactions [38]. Different from optimizing
routing only, their research also work out the associated
information encoding/decoding scheme, which is an important
and realistic issue when considering the practical deployment
of NC.

The fourth stream of EAs is the path-oriented encoding
method. Each individual is comprised by a union of paths
from the source to one of the receivers. Compared with BLS
and BTS, the path-oriented encoding results into a search
space where all solutions are feasible. As there is no infeasible
solution, the search space is well connected and the problem
difficulty is reduced. Xing and Qu proposed a path-oriented
encoding EA in [32].

In addition to the NCRM problem above, more and more
research efforts have been made to the multi-objective net-
work coding based multicast routing problem (MNCMRP),
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Fig. 3. An illustrative example of the problem formulation

where coding cost, link cost, and quality-of-service indicators
are often considered as multiple objectives for simultaneous
optimization. Coding cost and link cost are often considered
as two conflicting objectives in the context of MNCMRP. A
number of multi-objective evolutionary algorithms have been
proposed to gain the trade-off between the two costs [39]—
[41]. Xing et al. formulated a novel MNCMRP, where the total
cost and maximum end-to-end delay are two objectives [31].
The fast nondominated sorting genetic algorithm II (NSGA-II)
was adapted for the problem. Moreover, Karunarathnea et al.
investigated a MNCMRP with three objectives, including the
number of coding nodes, the mean number of coding node
input links and the sharing of resources by receivers [42].

IV. NCRM-ACO

In this section, we first describe the overall procedure of
the ACO algorithm for the NCRM problem (NCRM-ACO),
followed by details of the key mechanisms and significance
of parameters in subsections.

A. Overall procedure of NCRM-ACO

Fig. 4 is the overall procedure of NCRM-ACO and Fig.
5 shows the pseudo code of function PathSetConstruction.
Fig. 6 shows the overall flow chart of the algorithm. In the
proposed NCRM-ACO, first of all, with the original network
G(V,E), the graph decomposition phase is executed so as
to obtain a decomposed graph Gp(V’, E’), based on which
ACO is implemented to build feasible solutions. The proposed
algorithm maintains a single ant colony at each generation.
Within the colony, there are d ant groups AntGy, k=1,
d, each of which contains R ants (R is the expected data
rate). Each ant group corresponding to one of d receiver, i.e.,
the k-th ant group is in charge of finding a feasible path
set Paths(s,ty) for receiver t, € T, where Paths(s,ty)
is composed of R link-disjoint paths from the source to .
Each ant in AntGj finds a single path from the source
to t; so that the above mentioned R link-disjoint paths are
constructed for receiver tx. In the algorithm, d path sets are
built one after another. If path set Paths(s,ty) is constructed
successfully (see Subsection IV-D), it is used to update the
pheromone and heuristic information of the ant colony to
guide the path construction process (see Subsection IV-E).
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With all path sets found, a complete solution Solution,(Gp)
consisting of all paths in these path sets is formed, where
z is the generation number. Then, a NCM subgraph could
be built by the solution and the number of coding nodes
©(Gnom(Solution,(Gp))) is easily calculated. After that,
a solution reconstruction method is devised to improve the
quality of Solution.(Gp) by exploring its neighboring area
in the solution space, aiming to find an improved solution
Solution?*"(Gp) (see Subsection IV-F). Finally, the global
(historical) best solution Solutiong,(Gp) obtained is used to
update the pheromone so as to guide the search towards the
optimal solution to the problem (see Subsection IV-G). The
above process is repeated generation by generation, until the
termination condition is met.

The pheromone and heuristic coefficients are two impor-
tant coefficients, necessarily supporting effective search. In
Subsections IV-B and IV-C, two problem-specific pheromone
and heuristic maintenance mechanisms are described in detail.
The remaining steps of NCRM-ACO are introduced from
Subsections IV-D to IV-G.

B. The pheromone maintenance mechanism

In this paper, pheromone is used to provide essential guid-
ance for the ant colony to gradually search towards the optimal
solution for the NCRM problem. As mentioned in Subsection
III-A, the less coding operations are required the better. Hence,
pheromone is designed to be associated with the number of
coding nodes a solution owns. This idea is similar to the
pheromone scheme in TSP and 0-1 knapsack problems [14],
[43], where pheromone is associated with the total distance
and the total number of bins, respectively.

However, there is a significant difference between the
pheromone schemes for TSP and 0-1 knapsack problems than
that for the NCRM problem. That is, for the former, a single
pheromone table is able to provide effective guidance during
the search while for the latter such a scheme does not apply,
as explained below. Compared with TSP and 0-1 knapsack
problems, NCRM problem is much more complicated. In
TSP, each link is selected once in an arbitrary solution.
Nevertheless, in the NCRM problem, each link could be idle,
occupied once or multiple times (e.g., a link may belong
to multiple path sets simultaneously). If a single pheromone
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Input: A graph G, data rate R
1: Decompose graph G to Gp;
2: Initialize pheromone values;
3: Initialize Solutiong,(Gp) = 0;
4: while Termination conditions NOT met do
5 Initialize Solution,(Gp) = 0;
6: Initialize heuristic information table;
7: for k=1to d do
8 Initialize Paths(s,t;) = 0;
9 Set Paths(s,ty) = PathSetConstruction(s, t, R);

> (Subsection II-B )
> (Subsection IV-B)

> (Subsection IV-C)

> (Subsection IV-D)

10: while size of Paths(s,t;) < R do

11 Invoke the pheromone local updating rule (punishment) to Paths(s, tx); > (Subsection IV-E)
12: Set Paths(s,ty) = PathSetConstruction(s, ¢, R); > (Subsection IV-D)
13: end while

14: Invoke the pheromone local updating rule (reward) to Paths(s, ty); > (Subsection IV-E)
15: Add Paths(s,ty) into Solution,(Gp);

16: Update the heuristic information according to Paths(s,t); > (Subsection IV-C)
17: end for

18: Apply solution reconstruction method to Solution,(Gp) and get Solution?*"(Gp); > (Subsection IV-F)

19: if o(Gnem(Solution?(Gp))) < ¢(Grnem(Solutiong,(Gp))) then

20: Invoke pheromone global updating rule by ¢(GneoMm(Solution?”(Gp))); > (Subsection IV-G)
21: Set Solutiong,(Gp) = Solution?*”(Gp);
22: end if

23: end while

Output: The global best solution Solutiong,(Gp) and ¢(Gncom(Solutiong,(Gp)))

Fig. 4. The overall procedure of NCRM-ACO

1: function PATHSETCONSTRUCTION(source, receiver, R)

2 Initialize Paths(source, receiver) = (J;

3 for [ =1to R do

4 Ant [ builds a path from source to receiver, denoted by p;(source, receiver); > (Subsection IV-D)
5: Add p;(source, receiver) into Paths(source, receiver);

6 end for

7 return Paths(source, receiver);

8: end function

Fig. 5. The pseudo-code of constructing the path set from the source to a receiver

table is adopted, this conflicting and misleading information
(pheromone overlapping problem) would not be able to pro-
vide useful guidance for the solution construction procedure.
This is because for an arbitrary link different ants may have
different options on whether or not to occupy it.

In order to efficiently guide the search, NCRM-ACO uses a
new pheromone maintenance mechanism employing multiple
pheromone tables. We associate each ant in the ant colony with
a pheromone table, leading to in total R *d pheromone tables,
where R and d is the data rate and the number of receivers,
respectively. Each table maintains the pheromone of an ant
over the decomposed graph Gp, where each auxiliary link
is associated with a pheromone value. Let 7y be the initial
pheromone value over each link. For all tables, 7y is set to
a small positive number .. = (|V’|)~1, where |V’| is the
number of nodes in Gp. Take Fig. 2(a) as an example, with
d=2 and R=2, the NCRM-ACO maintains 2x2 = 4 pheromone
tables as shown in Fig. 7. At different generations, those ants
responsible for finding the same path, e.g., p1(1, 8), share the

same pheromone table. Moreover, 7y for all links is set to
©maz = (|V'])™t = (15)7!. During the search procedure,
the pheromone values in those tables are gradually updated,
as introduced in Subsections IV-E and IV-G. The number of
pheromone tables is the product of the number of the data rate
R and the number of receivers d. Data rate R is subjected by
the max-flow from the source to a receiver. In the literature,
data rate R is usually small. To the best of our knowledge, the
largest R for experiments and simulations is set to 7 [34]. So,
the number of pheromone tables grows approximately linearly
with d.

C. The heuristic maintenance mechanism

In ACOs, the heuristic information is of vital importance
for guiding the construction of the global best solutions, e.g.,
the distance between two cities in TSP and the weight and
value of goods in the 0-1 knapsack problem [14], [43]. In those
problems, such information can be easily extracted and defined
to better explore the neighboring areas. However, the NCRM



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, OCTOBER 2014 7

Initialize pheromone tables

Start —> Tput G(ICE) & —» Graphl . & parameters for ACO &
data rate R decomposition . )
. / the iteration number /
* P
TN Initialize heuristic information table
" Number and generate a new ant colony,
which includes d ant groups and
each of which group has R ants.
k=1
e
Y .
Carry out. solution Yes Allocate target 7,
reconstruction method to Ant group k
(Accept a better solution) =1
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Fig. 6. The overall flow chat of NCRM-ACO

Ant 1 —>.8

1

Anl Group l )< . Tablex_y

—_— is the pheromone table

| A“t 2 _> 8 2 for ant y to receiver x.
Ant Colony -
Note: Each ant in the ant colon
antl _b. 9 ! is with a pheromone table. Eaci
{ Ant GFOUP 2 ) table is independently maintained

by the associated ant.

Antz —>.9 2

Fig. 7. An example of multiple pheromone tables maintained

problem aims to find a feasible routing subgraph consisting
of multiple path sets, each of which contains a number of
disjoint paths to the same receiver, where no clear heuristic
information is immediately available.

In this paper, an efficient heuristic maintenance mechanism
maintains how many times each link has been selected by
different ant groups in the same generation. Heuristic infor-
mation represents local information and can provide some
useful guidance when constructing the paths to form the NCM
subgraph. According to Subsection II-B, an outgoing auxiliary
node m € OA(Gp) will perform coding operations if the
received information comes from more than one incoming
link. How to reduce the probability of the incurrence of coding
operations is desirable. Fortunately, the number of times that
each incoming link is selected can help. This is because, at a

Update heuristic
information

certain generation, each ant aims at finding a complete path
from the source to one of the receivers and for a certain
outgoing auxiliary node, if all ants pass (select) a single
incoming link, then no coding operation is necessary at the
outgoing auxiliary node. If we use the number of times that
each incoming link is selected by ants, it is possible to reduce
the coding probability during the NCM data transmission. That
is, an incoming link associated with larger number of times is
selected by ants. In this way, for an arbitrary outgoing auxiliary
node, one of its incoming links is selected multiple times while
the rest of the links are not employed by the NCM. Hence,
the coding operation is avoided at the outgoing auxiliary node.
On the other hand, if ants are allowed to randomly select
incoming links, coding operations are more likely to happen.
To realize such an idea in the proposed ACO, we use the
number of times that each incoming link is selected as the
heuristic information, to provide necessary guidance for the
ant groups to find all feasible path sets while trying best to
involve as less coding operations as possible. Specifically, for
an arbitrary outgoing auxiliary node, we count the number of
times each incoming link is selected by all ant groups at each
generation. When implementing path construction, each ant
preferably selects those incoming links with higher heuristic
information values. Hence, in a greedy manner, the role of the
heuristic information is to provide extra guidance to reduce
the number of coding operations in the solution construction
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phase.

In the proposed mechanism, the heuristic information is
maintained in one table, called Key-Value map, where Key
and Value represent the link ID and its corresponding value,
respectively. The value stands for the number of times a link
has been selected. Initially, the value of each link is set to 1.
All path sets are constructed in a one-by-one manner. The table
is updated after each of the d path sets is constructed by adding
a value of 1 to the heuristic information value of each link
in the path set. At the beginning of each new generation, the
values of all links are reset to 1 since the heuristic information
is only used to indicate the link occupation status of the
incumbent generation.

D. Tabu-table based path construction

Different from the TSP, the NCRM problem is much more
complex. It aims to construct multiple path sets, with each
consisting of a number of link-disjoint paths from the source
to a certain receiver. Due to the problem nature, it is often
possible that an ant could not reach its destination, e.g.,
receiver tj. To overcome this problem, we propose a tabu-table
based path construction method to increase the probability that
an arbitrary ant can find a feasible and demanded path.

In the proposed method, the route of each ant starts from
the source and ends up with one of the receivers. A feasible
solution to the NCRM problem is quite difficult to construct,
since one needs to find multiple path sets, where each path
set contains multiple link-disjoint paths from the source to the
same receiver. To ease the above problem, for each ant group
AntGy, we maintain a tabu table to record which links have
been employed. Those employed links will not be visited by
other ants within AntGy. Fig. 8 illustrates a simple example
of the tabu table. When ant; in AntG; find p;(1,8) =1 —
2 — 8 as shown in Fig. 8(b), the two links 1 — 2 and 2 — 8
are added in the tabu table. Then, anty of AntG; would not
choose the two links any more. If there is only a single link
from node i, the ant will move to this link; otherwise, those
available links ¥; which are not being included in the tabu
table will have a chance to be selected. To select a link from
W;, the pseudo-random rule [14] is adopted to calculate the
probability by formula (6).

np{

where argument 7 (tx, [, (i,u)) is amount of pheromone and
7(i,u) is the amount of heuristic information on link (4,w).
In 7, receiver t; and path number [ are both associated with
the pheromone maintenance mechanism. Parameters o and
[ define the relative importance of the pheromone and the
heuristic information, respectively. ¢ is a uniformly distributed
random number in the range [0,1] and ¢o(0<gp<1) is a
threshold value. ¢ is a random value determined by the
probability of p(i, j) if ¢ is greater than go:

[ (te,l, (3,5 ))]* [0(3,9)]° ) ‘
S [ Cteoky (i) [ iy * S\
e (N

0, otherwise

arginax [T(tkv L, (4, U))]a[ﬁ(i7 u)]ﬂ if ¢ < qo
uew; (6)
¢ , otherwise

p(i,j) =

(1)

/1\ 3 (2

(2 I 5
47171/‘ +>< + 4.2 47171" +> g ) + 4.2
4_11’_‘1; ¥ d " ¥7 4f(1_2 ;4_0_}1; ¥ 2 3 *:4\_0_2

(5) {6) (5 (6)
77771*~ £ *77:72 577I71"¥‘ /"‘77172
7oL v >< *77072 To L v >< *77"72

[

" (a) Decomposed Graph "(b) Tabu table={1—2, 28}

Fig. 8. An example of the tabu table

By using formulae (6) and (7), each ant may either follow
the most favorite path already established or randomly select
a path based on the probability distribution of the pheromone
and the heuristic accumulated. It is noted that the pseudo-
random rule facilitates the diversity of the stochastic search
and hence it helps to enhance the global search ability.

E. The pheromone local updating rule

The expected data rate R, as a hard constraint, must be
satisfied during the establishment of the network coding based
multicast session. This can be achieved by constructing R link-
disjoint paths from the source to each receiver. However, even
if the tabu table scheme is employed, an infeasible path could
be resulted if an ant chooses inappropriate links. Take Fig. 9(a)
as an example. An ant in ant group Ant(; has constructed a
path p1(1,8) =1 —-2—-4i1—-401—-5—->741—
7_o_1 — 8 from source node 1 to receiver node 8 and all
links in p;(1,8) are recorded in the tabu table. The other
ant in AntG; cannot construct a second path ps(1,8) that
is link-disjoint with p;(1,8) from node 1 to node 8 in any
circumstance, as shown in Figures 9 (b) and (c). Apparently, if
this happens, we could send a new group of ants to reconstruct
a feasible path set. In NCRM-ACO, a pheromone punishing-
and-rewarding mechanism is proposed to avoid ants following
the same paths as the old group does.

In the pheromone punishing scheme, if an ant group AntGy,
fails to construct a feasible path set, e.g., Paths(s,ty), the
pheromone values on those paths which have been employed
by AntG) are decreased by a constant ATy, before the
reconstruction of Paths(s,t)) as follows.

T(tk7l7(i7j>) :T(tlwla(%j)) _ATlOC (8)

where the value ATy, is a small positive number. In the
pheromone local updating rule, A7joc = (Prmaz)”

It is noted that the pheromone values on some of the links
may decrease constantly, which can cause a stagnation search
when the difference of pheromone on links is too large. There-
fore, inspired by the idea of MAX-MIN ant system [15], in our
scheme the pheromone value on any link cannot be lower than
a threshold value (¢qz) "1, i€., whenever 7(tg, 1, (i,u)) —
ATioe < (Omaz) 1 set 7(ti, 1, (i,u) = (@maz) ', which
could effectively avoid the stagnation search.
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Fig. 9. An example of the inappropriate path selection

On the contrary, in the pheromone rewarding scheme, when
a feasible path set is constructed successfully, the associated
ant group will be rewarded by means of increasing the
pheromone values on links they employ by A7, at each time
(see formula (9)).

T(tk,l,(Z,])) :T(tkvla(laj))+ATIOC (9)

In summary, the pheromone local updating rule is composed
of the punishing and rewarding schemes to guide the construc-
tion of feasible solutions.

E. Solution reconstruction method

It is widely recognized that prematurity often happens in
ACO and could cause serious performance deterioration [15],
[44]. Hence, we develop a solution reconstruction method to
improve the quality of the solution obtained, aiming at enhanc-
ing the local exploitation ability and avoiding the premature
convergence. The solution reconstruction method consists of
three steps. First of all, for a given solution Solution(Gp),
we randomly select a coding node mcoging from it. Secondly,
we randomly select one of the incoming links, €.g., €coding.
of node Mcoging. Then, we divide all path sets Paths(s, tx),
k=1, .., d, of Solution(Gp) into two groups, i.e., unaf-
fectedPaths and affectedPaths. Assume there are h path sets
in affectedPaths, where h is a positive integer smaller than
the number of receivers d. So unaffectedPaths contains (d-
h) path sets. Paths(s,ty) is included into affectedPaths if
link ecoging € Paths(s,ty); otherwise, Paths(s,ty) belongs
to unaffectedPaths. Thirdly, we reconstruct all path sets in
affectedPaths, with unaffectedPaths unchanged. After that, all
path sets in unaffectedPaths and affectedPaths are combined to
form a new solution, aiming to reduce the coding operations
involved.

The path set reconstruction is described below. First, with
link ecoq4ing unchanged, we delete the rest of the incoming
links of node Mmcoging from Gp resulting into a new graph
G’p. Then, we send & ant groups to rebuild all path sets in
affectedPaths over G',. Note that, it is possible that graph
G’ cannot meet the data rate requirement after the deletion
of those incoming links. So, when rebuilding a path set,
e.g., Paths(s,t;), we limit the number of times attempt-
ed. If the reconstruction cannot be completed after these
attempts, NCRM-ACO gives up the reconstruction process;

otherwise, replaces Paths(s,t;) with the newly constructed
path set Pathspew(s,ty). After all path sets in affectedPaths
are rebuilt or after a certain number of times, we combine
affectedPaths with unaffectedPaths to form a new solution
Solution™" (G p). If Solution™™ (Gp) requires less coding
operations, Solution(Gp) is replaced by Solution™" (Gp).
Otherwise, Solution(G p) remains unchanged.

For example, as shown in Fig. 4(d), there is only one coding
node, i.e., node 4_o_1. Hence, the solution reconstruction
method procedure starts with node 4_o_1. According to the
procedure, we randomly choose an incoming link e of node
4 _0_1, e.g., node 4_i_1 to node 4_o_1. As link e is included
in Paths(1,9) but not in Paths(1,8), we have unaffected-
Paths={Paths(1,9)} and affectedPaths={ Paths(1,8)}. After
that, apart from link e, the rest of the incoming links of
node 4_o_1, i.e., link node 4_i_2 — node 4_o_1, is deleted
from the graph, and the reconstruction of Paths(1,8) is
triggered. Fig. 10(a) shows the new graph G/D after the
deletion of incoming links. Suppose the new ant group
successfully constructs two link-disjoint paths, p}(1,8) =
1 - 2 —- 8and p4(1,8) =1 - 3 — 42 —
402 — 6 — 741 2 — 7 01 — 8 We thus have
Pathsnew(1,8) = {p}(1,8),p5(1, 8)}, as shown in Fig. 10(b).
Then, a new solution is formed by combining Paths,ew (1, 8)
and Paths(1,9), with no coding operation required (see
Fig. 10(d)). Due to @(Gncom(Solution™™(Gp))) <
©(Gnem(Solution(Gp))), we replace the old solution with
Solution™ ™ (Gp).

G. The pheromone global updating rule

In addition to the pheromone local updating rule, NCRM-
ACO adopts a pheromone global updating rule to guide
the search towards optimal solutions. Under this rule, the
pheromone information on all links is updated by a historic
best solution Solutiong,(Gp), providing some instructive
guidance to improve the quality of the solutions built. The
pheromone value is updated by using formulae (10) and (11).

7(te, 1, (3,5)) = (1 = p) 7(tw, L, (i, 7)) + pATg,  (10)
| (pgp) L (4, 5) € Solutiong,(Gp)
ATgh = { 0, otherwise an

where parameter p € (0, 1] is a constant value, called the evap-
oration rate, mimicking the evaporation of the pheromone on
all links [21], i.e., the pheromone value on each link decreases
by p whenever the global pheromone updating is executed. @43
is the number of coding nodes in Gncwm (Solutiong,(Gp)).

V. PERFORMANCE EVALUATION

In this section, we first introduce the test instances, the
experimental environment and all metrics for performance
evaluation. We then report an experiment which helps us
to find a set of appropriate parameter values for NCRM-
ACO. Later, we validate the effectiveness of all proposed
mechanisms of NCRM-ACO. Finally, the proposed algorithm
is evaluated by comparing it against a number of state-of-
the-art algorithms already developed for solving the NCRM
problem.
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Fig. 10. An example of the solution reconstruction method

A. Test instances

We evaluate the performance of the proposed algorithm
on 35 benchmark instances which can be classified into four
categories, namely, Fixed, Random, Hybrid and Real-world
networks. Table I shows all instances and their parameters. To
encourage future scientific comparison on the NCRM problem,
these instances are available at http://www.cs.nott.ac.uk/~rxq/
benchmarks.htm. All experiments are run on a computer with
Windows 8 OS, Intel(R) Core(TM) i7-3740QM CPU 2.7 GHz
and 8 GB RAM.

« Fixed networks. These four networks have been widely
used in the literature [8]-[10], [26]-[30], [32]-[38]. They
are also referred to as n-copy networks, each of which is
built by cascading n copies of Basic network (a) (see
Fig. 11(a)). Fig. 11(c) illustrates the 3-copy network,
where node 1 is the source and nodes 16, 17, 24, 25
are receivers. It can be easily inferred that the minimum
number of the coding operations to any n-copy networks
is 0.00.

« Random networks. Networks of this type are all gen-
erated by the directed acyclic graph generation method
introduced in [45]. The 18 random networks have 20 to
500 nodes. It is noted that Rnd-11 to Rnd-18 are relatively
large networks.

o Hybrid networks. Due to that all test cases have the
global minimum of 0.00, we generated 8 hybrid networks,
where the global minimum of each instance is at least 1
and is known beforehand. This is done by combining
two basic networks together, i.e., Fig. 11(a) and Fig.
11(b), where Fig. 11(a) is coding-free while Fig. 11(b)
has an explicit coding node, i.e., node 4. In this way, a
hybrid network can be built by combining a number of
Fig. 11(a) and Fig. 11(b) networks together. The global
minimum of an instance is equal to the number of Fig.
11(b) networks. Therefore, in hybrid networks, the global
minimum is already known. The hybrid networks are
called X-hybrid(Y), where X represents the number of
networks being combined and Y indicates the global
minimum value. Similar to the 3-copy, 7-copy, 15-copy
and 31-copy networks, we create 3-hybrid, 7-hybrid, 15-
hybrid, and 31-hybrid networks, respectively. The global
minimum is from 1 to 5. Fig. 11(d) illustrates 3-hybrid(1)

ij e 9? A / \
() J

47171+ 4rl+ +472
401y 101 409
0 } _ *,‘ * _0_.
(5 ) (5) (6
7 17 : 7. 1*'3 ; *‘7_7'_2
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A L A 4 i~ W v
( 9 ] (8 ‘A/ (9)
(¢) Remained Paths(1, ‘)) (d) Snlutmn N (Gp)={Paths (1, 8) Pzttln(l 9)}

network which contains two Fig. 11(a) networks and one
Fig. 11(b) network. The global minimum is 1. Therefore,
hybrid networks could be used to simulate networks
where coding is necessarily performed and reflect the
optimization ability of the algorithm in solving this type
of the NCRM problem.

o Real-world networks. Five real-world topologies have
been adopted for the performance evaluation, namely,
Ebone-1, Ebone-2, Ebone-3, Exodus-1, and Exodus-2
[33], [34]. We also use them in our experiments.

SN / ~, / T~
\:/4\:/ \ / \ /
], A e
LN N/ s
(a) / \ (c) / \ (C)]
/1\ 10/ \11 13/ \19 / \ 17/ \18
2\‘AA/3 \ / \ / \ / \19/
¥ / \ / \ + Y N\
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7/5\8 \ / \ / 14; \22/
16/ \17 24/ \25 / \15 23/ \24
Fig. 11. A example of fixed and hybrid networks

(a) Basic network 1; (b) Basic network 2; (c) 3-copy; (d) 3-hybrid(1)

B. Performance measures

To thoroughly evaluate the performance of the proposed
algorithm, the following performance measuring metrics are
employed throughout the experiments.

e Mean and Standard Deviation (SD) of the best solutions
found from 50 runs. Mean and SD are important met-
rics to demonstrate the overall performance of a search
algorithm.

o Average Computational Time (ACT) consumed by an
algorithm over 50 runs. This metric is a direct indication
of the computational time of an algorithm.

o Student’s #-test [32], [46] to compare two algorithms (A
and B) in terms of the objective function values of the
50 best solutions obtained. In this paper, two-tailed #-test
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TABLE I
EXPERIMENTAL INSTANCES AND THEIR PARAMETERS

Original network G

Decomposed graph GD

Group Networks - - - - - Optimum
Nodes Links Receivers Rate  Average degree Nodes Links Input links for coding
3-copy 25 36 4 2 2.88 49 68 32 0
Fixed 7-copy 57 84 8 2 2.95 117 164 80 0
15-copy 121 180 16 2 2.98 253 356 176 0
31-copy 249 372 32 2 2.99 617 740 368 0
Rnd-1 20 37 5 3 3.80 54 81 43 0
Rnd-2 20 39 5 3 3.90 65 89 50 0
Rnd-3 30 60 6 3 4.00 94 146 86 0
Rnd-4 30 69 6 3 4.60 113 181 112 0
Rnd-5 40 78 9 3 3.90 124 184 106 0
Rnd-6 40 85 9 4 4.25 91 149 64 0
Rnd-7 50 101 8 3 4.04 178 246 145 0
Random Rnd-8 50 118 10 4 4.72 194 307 189 0
Rnd-9 60 150 11 5 5.00 239 385 235 0
Rnd-10 60 156 10 4 5.20 262 453 297 0
Rnd-11 100 175 10 2 3.50 245 389 214 0
Rnd-12 100 279 10 3 5.58 433 879 600 0
Rnd-13 150 337 16 2 4.49 483 851 514 0
Rnd-14 150 363 11 3 6.17 712 1519 1056 0
Rnd-15 200 527 18 2 5.27 823 1586 1059 0
Rnd-16 200 473 12 3 4.73 703 1272 799 0
Rnd-17 500 1086 33 2 434 1682 2947 1861 0
Rnd-18 500 491 24 3 5.46 2187 4413 3048 0
3-hybrid(1) 24 34 4 2 2.83 42 58 24 1
3-hybrid(2) 23 32 4 2 2.78 35 48 16 2
7-hybrid(2) 55 80 8 2 291 107 148 68 2
Hybrid 7-hybrid(3) 54 78 8 2 2.89 102 140 62 3
15-hybrid(3) 118 174 16 2 2.95 238 332 158 3
15-hybrid(4) 117 172 16 2 2.94 233 324 152 4
31-hybrid(4) 245 364 32 2 2.97 505 708 344 4
31-hybrid(5) 244 362 32 2 2.97 500 700 338 5
Ebone-1 18 23 5 2 2.44 31 39 16 0
Real 1d Ebone-2 31 45 5 3 2.90 58 80 35 0
cal wor Ebone-3 26 45 5 4 3.46 62 99 54 0
Exodus-1 24 30 5 2 2.50 37 46 16 0
Exodus-2 33 51 5 3 2.73 71 105 54 0

with 98 degrees of freedom at a 0.05 level of significance
is used. The #-test result can show statistically if the
performance of A is better than, worse than, or equivalent
to that of B.

C. Parameter settings

The performance of the proposed ACO could be seriously
deteriorated, e.g., leading to slow convergence and prematurity,
if the values of parameters, namely, the pheromone factor
«, the heuristic factor [, the pheromone evaporation rate
p and the pseudo-random coefficient g, are inappropriately
set. In order to determine an appropriate combination of
the parameter values, for each parameter, we tested 4 pos-
sible values, i.e., a € {0.6,0.7,0.8,0.9}, 5 € {2,3,4,5},
p € {0.0,0.1,0.2,0.3} and ¢o € {0.4,0.5,0.6,0.7}. This
may lead to 4* = 256 combinations if we try all possible
parameter values. However, it is not necessary to try all the
combinations, since we only want to determine an appropriate
combination, rather than the best setting. We thus use the
orthogonal experimental design (OED) to find a relatively
better combination. OED is a multi-parameter experimental
design method based on orthogonal array, where a number
of representative combinations of parameter values which are
uniformly distributed within the test range are selected from
the full parameter experiment [47]. This method is highly
efficient when designing multi-parameter experiments. It can
greatly reduce the number of required experiments while
obtaining promising results. Since its introduction in 1950s,

OED has been widely applied in many areas, such as economic
management, bioengineering, environmental engineering, etc.
[48]-[50]. The following briefly introduces the procedure of
OED.

Let L,(b%) denote the orthogonal array, where a is the
number of experiments, b is the levels of parameters, and c
is the number of parameters. The orthogonal array has two
properties, i.e., (1) in each column, the number of occurrences
of different numbers is equal and (2) in any two columns,
the arrangement of numbers is complete and balanced. Any
parameter at each level is thus compared to all different
parameters with each other. Consequently, test results can be
analyzed through range and variance analysis to determine a
better value combination of parameters. More details can be
found in [47]-[51]. In our experiment, an orthogonal array
L16(4*) is obtained from the referencing orthogonal table,
where 16 representative combinations are listed in Table II.

We carry out 50 independent runs for each parameter com-
bination and record the mean value of the best solutions. As
Fix-4 network instance is one of the most difficult instances,
we use it to run the parameter settings experiments.

Table III shows the Mean values of the 16 combinations
in Table II. It is noted that row m; to row my represent
the mean value of a certain parameter with a certain value.
For instance, the mean value of parameter o=0.6 is calculated
as (6.82+5.78+0.60+1.28)/4=3.62. So, value 3.62 is recorded
in row mj, column «. Moreover, the mean value of each
parameter is illustrated in Fig. 12. When «=0.8, =4, p=0.2,
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TABLE I
TABLE OF ORTHOGONAL ARRAY L1g(4%)

ParaCom

a B p q PaaCom o B p q
1 11 1 1 9 3 1 3 4
2 1 2 2 2 10 3 2 4 3
3 1 3 3 3 11 303 1 2
4 1 4 4 4 12 3 04 2 1
5 2 1 2 3 13 4 1 4 2
6 2 2 1 4 14 4 2 3 1
7 2 3 4 1 15 4 3 2 4
8 2 4 3 2 16 4 4 1 3

Note: number x in the columns «, 3, p, go correspond to the x-th
value in the parameter value set

TABLE III
RESULTS OF THE ORTHOGONAL EXPERIMENTAL DESIGN

ParaCom « B p q0 Mean
1 0.6 2 0.0 0.4 6.82
2 0.6 3 0.1 0.5 5.78
3 0.6 4 0.2 0.6 0.60
4 0.6 5 0.3 0.7 1.28
5 0.7 2 0.1 0.6 0.56
6 0.7 3 0.0 0.7 4.40
7 0.7 4 0.3 0.4 0.62
8 0.7 5 0.2 0.5 1.16
9 0.8 2 0.2 0.7 1.04

10 0.8 3 0.3 0.6 0.00
11 0.8 4 0.0 0.5 0.64
12 0.8 5 0.1 0.4 1.18
13 0.9 2 0.3 0.5 2.86
14 0.9 3 0.2 0.4 1.62
15 0.9 4 0.1 0.7 0.44
16 0.9 5 0.0 0.6 1.84
mi 362 282 343 256 /
mo 1.69  2.95 1.99 261 /
ms3 072 058 1.11 0.5 /
myq 1.69 1.37 1.19 1.79 /

Note: The symbol / means not applicable

and ¢9=0.6, NCRM-ACO achieves the smallest mean value.
Then, we compare the optimization performance of two com-
binations, i.e. {0.8,4,0.2,0.6} and {0.8,3,0.3,0.6} which
gains the minimum mean value in Table II. In this experiment,
performance indicators Mean and ACT are used and the results
are shown in Table IV. It is seen that each combination obtains
a mean value of 0.00, indicating both of them can achieve the
optimal solution in each single run. However, in terms of the
ACT, ACO with {0.8,4,0.2,0.6} is faster. It is hence clear
that the first combination in Table IV performs the best and
is hereafter used as the parameter settings.
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Fig. 12. Relationship between average time and parameters

TABLE IV
RESULTS OF ADDITIONAL EXPERIMENTS

ParaCom « B p qo Mean  ACT (sec.)
1 08 4 02 06 0 14.84
2 08 3 03 06 0 18.72

D. Effectiveness of the proposed mechanisms

We evaluate the effectiveness of the proposed mechanisms
by implementing two experiments on 14 selected instances,
including the four fixed networks (3-copy, 7-copy, 15-copy,
31-copy) and ten random networks (Rnd-1, ..., Rnd-10), be-
cause these instances have been widely used for performance
evaluation.

The proposed ACO is featured with five specially devised
mechanisms, including the multi-dimensional pheromone
maintenance mechanism, the problem-specific heuristic infor-
mation, the tabu-table based path construction, the pheromone
local updating rule and the solution reconstruction method (see
Section IV for details). Among them, the first two are essential
components to drive ACO run properly. In other word, they
are fundamental mechanisms that adapt ACO for the NCRM
problem. One cannot test the effectiveness of the pheromone
maintenance and the heuristic information in a separate way.
Hence, we evaluate the two mechanisms as a whole (the first
experiment) and test the others independently (the second
experiment). The algorithms for comparison are listed below.

o Expl: Verification of the first two mechanisms

— Al: the basic ACO [23]

— A2: Al with the multi-dimensional pheromone main-
tenance mechanism and the problem-specific heuris-
tic information (see Subsections IV-B and IV-C);

o Exp2: Independent verification of the rest mechanisms

— A3: A2 with the tabu-table based path construction
(see Subsection IV-D);

— Ad4: A2 with the pheromone local updating rule (see
Subsection IV-E);

— AS: A2 with the tabu-table based path construction
and the pheromone local updating rule;

— A6: A2 with the solution reconstruction method (see
Subsection IV-F);

— A7: Al with all proposed mechanisms (also called
NCRM-ACO).

As there is no clear heuristic information immediately
available, we set heuristic information factor 5 of Al to 0.
For A2 to A7, we set 3 = 4, with which the algorithm could
achieve better optimization performance, as demonstrated in
Subsection V-C.

Table V shows the experimental results of seven algorithms.
First of all, it is easily observed that basic ACO cannot build
feasible solutions at all in any instance. The reason is as
follows. As known, basic ACO utilizes a single pheromone
table to guide the searching procedure of ants, which is in
favor of addressing traditional path-finding problems such as
travelling salesman problems [14], [20]. This is because, in
the above path-finding problems, a single path is expected to
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be found between a source and a receiver. A single ant is
able to finish the task. However, as for the NCRM problem,
the task of an ant colony is to build a set of link-disjoint
paths from the source to each receiver. Hence, a set of ants
search in parallel to construct a number of link-disjoint paths.
In this case, using a single pheromone table is far from enough
to provide explicit guidance to each of the ants within the
group, since the pheromone information on each link cannot
simultaneously guide ants with different path-finding purposes.
In addition, with no explicit heuristic information assisted, no
local information can be utilized. Therefore, the basic ACO
cannot even find feasible solutions in all instances. On the
other hand, with the proposed pheromone maintenance mech-
anism and the heuristic information utilized, A2 is successfully
applied to the NCRM problem.

Then, we compare A3, ..., A6 with A2 to verify if each of
the three mechanisms has a positive impact on the performance
of A2. Due to the nature of the NCRM problem, it is extremely
difficult to find a satisfied set of link-disjoint paths. Hence,
even with the pheromone maintenance mechanism and heuris-
tic information integrated, it is still possible that an ant cannot
reach its destination. In order to enhance the ability for an
arbitrary ant to find a demanded path and diversify link-disjoint
path sets, the tabu-table based path construction is developed.
It can be seen that A3 outperforms A2 in all instances in terms
of Mean value. Meanwhile, even if the tabu-table based path
construction is used, it is still possible to result into an infea-
sible path if inappropriate links are chosen. So, we need the
pheromone local updating rule as a complement to the tabu-
table based path construction. If we compare the performance
of A4 and A2, we see that the former is better. This is because,
by using the punishing and rewarding schemes, the pheromone
local updating rule is able to avoid ants following the same
paths as the previous group does, which helps to improve
the optimization performance. Meanwhile, by comparing the
performance of A5, A4 and A3, we can verify the effectiveness
of the tabu-table based path construction and the pheromone
local updating rule. Clearly, the two mechanisms perform
better than any of them individually adopted. If looking at
the results of A6 and A2, we also observe that the former
performs better than the latter. The reason is explained below.
As aforementioned, ACO may suffer from the prematurity. The
solution reconstruction mechanism can improve the quality of
solutions, so the local exploitation is enhanced and the local
optimum can be avoided.

Finally, A7 is compared with A2, ..., A6. Obviously, A7
always obtain optimum in any of the instances. Regarding
the mean and SD, it performs no worse, but usually better
than the others. This demonstrates that equipped with all
specially-devised mechanisms, the proposed algorithm has a
significantly improved optimization performance.

According to the above comparisons, we see that each of
the proposed mechanisms contributes to the improvement of
the NCRM-ACO. To further support our findings, we compare
the seven algorithms using Student’s t-test, where results are
given in Table VI. The result of A<:B is shown as ‘+’,
‘>, or ‘~’ when algorithm A is significantly better than,
significantly worse than, or statistically equivalent to algorithm

B, respectively. According to the results, Al is beaten by A2
in all instances; A3 to A6 outperform A2 in most of the
instances; A5 performs better than A3 and A4; A7 is the best
algorithm among the seven. The results demonstrate not only
the effectiveness of each mechanism but also the performance
improvement via all the mechanisms.

E. Overall performance evaluation

We evaluate the overall performance of NCRM-ACO by
comparing it with the eleven state-of-the-art EAs, including
5 BLS-based (BLSGA [10], QEA1 [27], QEA2 [26], PBIL
[28] and cGA [30]), 2 BTS-based (BTSGA [10] and FA-
ENCA [34]), 3 relative-encoding-based (RGA [35], SRHCGA
[37] and CRO [38]), and 1 path-oriented (pEA [32]). The
algorithms for performance comparison are listed as follows.

o BLSGA: BLS encoding-based GA [10].

o QEA1: Quantum-inspired evolutionary algorithm (QEA)
[27].

e QEA2: Another QEA proposed by Ji and Xing [26].

o PBIL: Population-based incremental learning algorithm
[28].

e ¢GA: Compact genetic algorithm [30].

« BTSGA: BTS encoding-based GA [10].

o FA-ENCA: Fast and adaptive evolutionary algorithm
[34].

¢« RGA: GA proposed by Hu et al [35].

o SRHCGA: Spatial receding horizon control (SRHC)
genetic algorithm [37].

e CRO: Chemical reaction optimization algorithm [38].

o pEA: the path-oriented encoding EA [32].

¢ NCRM-ACO: the proposed algorithm.

The population size is set to 20 and the maximum number
of generations is 200 for each EA. For BLSGA, we set the
crossover probability p. = 0.8 and the mutation probability p,,
=0.006. For BTSGA, we have p. =0.8 and p,,, = 0.012. For the
rest of the algorithms, we adopt their best parameter settings
[26], [27], [29], [30], [32], [34], [35], [37], [38] . For the
fixed, random and real-world networks, the stopping criteria
is either an optimal solution is obtained or the maximum
number of generations is reached. For the hybrid networks, an
algorithm stops when either the best-so-far solution has not
been changed over 20 generations or the maximum number
of generations is reached. The results of Mean and SD are
collected in Table VII, where the value should read Mean(SD).
Tables VIII and IX illustrate the z-test results and the ACTs
of the 12 algorithms.

First of all, we compare the performance of algorithms
based on the same encoding approach. Among the five BLS-
based EAs, cGA gains the best overall performance. It is able
to obtain the minimum mean value in almost all instances.
As the optimum solution to each instance is already known,
cGA obtains the optimum solution in each run in 29 instances.
This is because cGA adopts a local search mechanism that
exploits the local information of the underlying problem to
locate promising areas and solutions. Regarding the BTS-
based algorithms, BTSGA is beaten by FA-ENCA in 21
instances while the former wins 4 instances. Compared with
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TABLE V

RESULTS OF MEAN(SD) (BEST RESULTS ARE IN BOLD)

Expl Exp2
Network
Al A2 A3 A4 AS A6 A7
3-copy / 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
7-copy / 1.62(1.50) 0.44(0.54) 0.48(0.62) 0.10(0.30) 0.86(0.72)  0(0)
15-copy / 7.52(1.90) 4.72(1.08) 5.16(1.16) 4.54(1.19) 6.10(1.13)  0(0)
31-copy / 21.84(5.67) 14.08(2.74)  15.18(2.52)  14.60(2.25)  18.90(2.62)  0(0)
Rnd-1 / 0.14(0.35) 0(0) 0.02(0.14) 0(0) 0(0) 0(0)
Rnd-2 / 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Rnd-3 / 0.28(0.43) 0(0) 0.06(0.24) 0(0) 0(0) 0(0)
Rnd-4 / 0.52(0.90) 0(0) 0.08(0.27) 0(0) 0(0) 0(0)
Rnd-5 / 1.50(1.27) 1.28(0.76) 1.38(1.31) 0.34(0.65) 0.26(1.22)  0(0)
Rnd-6 / 0.06(0.24) 0(0) 0(0) 0(0) 0(0) 0(0)
Rnd-7 / 2.06(2.12) 0.76(0.48) 0.92(0.72) 0.54(0.50) 0.36(0.97)  0(0)
Rnd-8 / 2.72(2.53) 1.66(0.79) 1.92(1.34) 0.56(1.00) 0.24(0.81)  0(0)
Rnd-9 / 5.40(4.98) 1.36(1.38) 1.84(0.76) 0.46(1.19) 3.08(2.97)  0(0)
Rnd-10 / 2.92(2.04) 1.72(0.86) 2.04(1.22) 0.68(1.07) 1.54(1.82)  0(0)
Note: The symbol / stands for that the algorithm can’t find any feasible solution
TABLE VI
t-TEST RESULTS OF THE SEVEN ALGORITHMS
Network  A2Al  A3+A2  Ad4-A2  AS&A2 A6A2 ATA2 AS5A3 AS—A4 AT<AS5  AT<A6
3_Copy + ~ ~ ~ ~ ~ ~ ~ ~ ~
7-copy + + + + + + + + + +
15-copy + + + + + + + + + +
31-copy + + + + + + ~ + + +
Rnd-1 + + + + + + ~ + ~ ~
Rnd-2 + ~ ~ ~ ~ ~ ~ ~ ~ ~
Rnd-3 + + + + + + ~ + ~ ~
Rnd-4 + + + + + + ~ + ~ ~
Rnd-5 + + + + + + + + + +
Rnd-6 + + + + + + ~ ~ ~ ~
Rnd-7 + + + + + + + + + +
Rnd-8 + + + + + + + + + +
Rnd-9 + + + + + + + + + +
TABLE VII
RESULTS OF MEAN AND SD (BEST RESULTS ARE IN BOLD)
Network BLSGA QEA1 QEA2 PBIL cGA BTSGA FA-ENCA RGA SRHCGA CRO pEA NCRM-ACO
3-copy  0.52(0.84) 0(0) 0(0) 0(0) 0(0) 000) 0(0) 0(0) 0(0) 00) 00y 0(0)
7-copy  2.36(2.22) 0.30(0.65) 0.74(1.18) 0(0) 0(0) 0.38(0.41) 0(0) 0(0) 0(0) 00) 0(0) 0(0)
15-copy 10.44(7.02) 2.82(3.31) 5.92(1.86) 1.76(2.57) 0(0) 0.08(0.22) 0.15(0.23) 0(0) 0.04(0.55) 0.10(0.41) 0(0) 0(0)
31-copy 31.66(6.48) 16.68(8.80)20.02(0.22)22.74(8.43)  0(0)  8.58(3. 42) 20. 35(3 90)0.03(0.44) 0.01(0.14) 0.26(0.59) 0(0) 0(0)
Rnd-1 0.74(1.20) 0.12(0.31) 0.10(0.31) 0(0) 0(0) 0.28(0.44 0(0) 0.01(0.14) 0.44(0.50) 0.20(0.40) 0(0) 0(0)
Rnd-2 0.26(0.64) 0(0 0(0) 0(0) 0(0) 0.02(0.22) 0(0) 0(0) 0.16(0.37) 0.06(0.47) 0(0) 0(0)
Rnd-3 0.24(0.68) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0.08(0.27) 0.18(0.48) 0(0) 0(0)
Rnd-4 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0 0(0) 0(0) 0(0) 00 0(0)
Rnd-5 1.42(0.88) 0.46(0.51) 0.38(0.41) 0(0) 0.12(0.36) 0.38(0.57) 0(0 0.50(0.50) 0.58(0.58) 0.96(0.52) 0(0 0(0)
Rnd-6 0.22(0.41) 0(0 0(0) 0(0) 00 00 0(0) 0.06(0.47) 0.46(0.81) 0.48(0.59) 0(0) 0(0)
Rnd-7 1.38(0.97) 0.72(0.57) 0.62(0.48) 0.28(0.41) 0.56(0.58)0.58(0.51) 0(0) 0.80(1.41) 0.12(0.69) 1.70(1.42) 0(0) 0(0)
Rnd-8 2.54(2.08) 0.78(0.85) 0.72(0.71) 0. 32(0 31) 0.38(0.51)0.92(0.56) 0(0) 1.40(1.56) 0.50(1.03) 2.10(1.53) 0(0) 0(0)
Rnd-9 2.76(1.25) 1.58(1.05) 1.58(0.99) 0(0) 0.12(0.41) 0.88(0.63) 0(0) 1.26(0.76) 0.72(0.72) 2.54(1.53) 0(0) 0(0)
Rnd-10  3.18(2.67) 0.48(0.68) 0.28(0.47) 0. 04(0 22) 0. 08(0 22)0 96(0 59) 0(0) 1.78(1.96) 0.52(0.76) 2.82(2.33) 0(0) 0(0)
Rnd-11 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0.12(0.33) 0(0) 0(0)
Rnd-12  0.28(0.57) 0(0) 0(0 0(0) 0(0) 0.24(0.44) 0(0 0.52(0.50) 0.14(0.35) 0.64(0.48) 0(0 0(0)
Rnd-13  25.32(25.30) 0.02(0.22) 0(0 0(0) 0(0) 0.18(0.37) 0(0 0.48(0.59) 0.16(0.73) 0.68(1.07) 0(0 0(0)
Rnd-14 25.20(25.45) 0(0) 0(0) 0(0) 0(0) 0.14(0.37) 0(0) 0.22(0.41) 0.30(1.01) 0.78(0.97) 0(0) 0(0)
Rnd-15 0.16(0.37) 0.02(0.22) 0.20(0.52) 0(0) 0(0) 0.08(0.22) 0(0) 0.36(0.72) 0.90(1.92) 0.60(0.80) 0(0) 0(0)
Rnd-16  2.34(1.35) 1.30(0.92) 1.48(0.89) 0.40(1.57) 0(0) 1.24(0.9 0(0) 1.90(1.37) 1.48(1.15) 2.54(1.98) 0(0) 0(0)
Rnd-17  1.72(1.42) 0.84(0.90) 1.01(0.47) 1.08(0.29) 0(0)  1.40(0.75) 0.20(0.40) 5.68(6. 01) 5.38(3.85) 7.14(4.15) 0(0) 0(0)
Rnd-18  8.26(2.59) 2.04(0.90) 1.18(0.37) 1.20(0.40) 0(0) 9.50(1.24) 1.30(1.08) 10.20(2.34) 7.38(1.49) 12.45(3.35)0(0) 0(0)
3-hybrid(1) 1.16(0.37) 1(0) 1(0) 1.16(0.49) 1(0) 1.04(0.22) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
3-hybrid(2) 2. 22(0 44) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 200  2(0) 2(0)
7- hybrld(Z) 3.66(1.39) 2.10(0.31) 3(2.13) 2.54(1.23) 2(0)  2.40(0.60) 2.10(0.30) 2(0) 3.20(1.79) 2.10(0.30) 2(0) 2(0)
7-hybrid(3) 4.98(2.48) 3.10(0.31) 3.60(1.85) 3.88(1.84) 3(0) 3.22(0.44) 3.34(2.24) 3(0) 3.50(1.09) 3.34(2.24) 3(0) 3(0)
15-hybrid(3) 10.70(5.44) 6.20(4. 49) 8.44(3.80) 5.76(3.85) 3.70(0.47)4.72(0.92) 4.64(1.38) 7.32(3.47) 5.46(4.82) 8.30(3.67) 3(0) 3(0)
15-hybrid(4) 11.12(4.88) 10.90(8.33) 8. 80(4 16) 7.34(4.83) 40) 5. 30(1 08) 5.64(2.58) 9.48(3.58) 5.72(4.50) 9.64(3.46) 4(0) 4(0)
31- hybr1d(4) 37.00(9.27) 31.70(13.26)28.06(8.94)37.10(10.90)  4(0) 10.90(2.64)10.20(1.56)30.80(7.95)26.80(11.93)35.80(9.18)4(0) 4(0)
31-hybrid(5) 32. 80(8 12)30.94(14.90)28.20(3.88)29.60(11.82)  5(0) 10.90(1.29)9. 80(3 23)33. 40(7 18)25.50(12.38)36.20(8. 92)5(0) 5(0)
Ebone-1 0(0) 000 0(0) 0(0) 000 0(0 0(0) 0(0) 0(0)
Ebone-2 0 0 0(0) 0(0 0(0) 0(0) 0(0 0(0 0 0 0(0) 0(0) 0 O 0(0)
Ebone-3 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Exodus-1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Exodus-2 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 00) 0(0) 0(0)
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TABLE VIII
t-TEST RESULTS FOR THE 12 ALGORITHMS

Network 3-copy 7-copy

15-copy

31copy Rnd-1 Rnd-2 Rnd-3

NCRM-ACO+BLSGA
NCRM-ACO+QEAI
NCRM-ACO+<QEA2
NCRM-ACO+<PBIL
NCRM-ACO<>cGA
NCRM-ACO+BTSGA
NCRM-ACO<FA-ENCA
NCRM-ACO<RGA
NCRM-ACO<»SRHCGA
NCRM-ACO++CRO
NCRM-ACO<>pEA
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Note: The result of comparison between algorithm A and B is shown as ‘+’, *-’, or ‘~’ when the former is significantly
better than, significantly worse than, or statistically equivalent to the latter, respectively.

BTSGA, FA-ENCA has a more stable performance, especially
in small scale networks. This is due to the self-adaptive fitness
assignment rule and the entropy-based relaxation technique
introduced in FA-ENCA. Looking at those with relative-
encoding, RGA wins 11 instances and SRHCGA wins 15
out of all instances. The performance of RGA is excellent in
small scale instances and it is deteriorated with the increasing
network scale. This is because the individuals become increas-
ingly more complicated with the growth of network size and
it is more difficult to satisfy the expected data rate in larger

instances. SRHCGA is a constructive algorithm, where GA is
integrated into the solution construction procedure. Due to the
inherent shortsighted effect, SRHCGA cannot perform well in
large scale networks.

If comparing all algorithms, NCRM-ACO and pEA gain
the best performance. They both achieve best mean and SD
values in all instances, meaning that optimal solutions are
always found. As reported in [32], pEA is one of the best
optimization algorithms for the NCRM problem. NCRM-ACO
performs no worse than pEA, which indicates our proposed
algorithm achieves a decent performance. This is mainly
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TABLE IX
RESULTS OF ACT (SEC.) (BEST RESULTS ARE IN BOLD)

Network BLSGA QEA1 QEA2 PBIL c¢GA BTSGA FA-ENCA RGA SRHCGA CRO pEA NCRM-ACO
3-copy 0.92 0.17 0.23 0.10 0.02 0.82 0.04 0.06 2.90 0.35 0.06 0.01
7-copy 7.26 6.56  10.64 1.44 0.11 8.26 2.01 1.16 6.06 1.31 0.21 0.04
15-copy 3231  59.73  66.52 51.23 1.52  150.80  78.70 24.94 63.94 6.72 1.17 0.62
31-copy 143.02 514.00 508.62 431.15 21.24 333.70 33232 28835 316.82 2832 1572 14.84
Rnd-1 2.22 1.03 0.97 0.21 0.23 2.12 0.06 0.57 3.10 0.66 0.13 0.03
Rnd-2 1.14 0.39 0.37 0.12 0.02 1.01 0.05 0.08 4.19 0.26 0.10 0.01
Rnd-3 3.01 0.44 0.49 0.13 0.05 4.05 0.11 0.63 7.45 1.30 0.21 0.01
Rnd-4 2.07 0.47 0.56 0.16 0.07 1.83 0.13 2.45 4.40 1.67 0.15 0.01
Rnd-5 10.56  10.64  7.67 5.18 2.38 17.71 2.28 5.19 12.32 8.87 0.58 0.54
Rnd-6 1.84 0.44 0.63 0.11 0.03 2.03 0.12 6.31 16.54 4.74 0.19 0.02
Rnd-7 14.60 17.12 2132 1054 3.80 31.09 2.05 5.12 26.20 2.65 1.70 0.33
Rnd-8 25.10  20.82 2526 1594 7.10 5231 5.09 18.08 79.75 4.01 0.65 0.03
Rnd-9 37.31 4736 4891 3733 886 12220  22.55 30.88 96.37 7.02 2.46 1.18
Rnd-10 39.69  31.82 5243 2239  9.19 26482 1147 41.19 95.62 12.08  0.81 0.58
Rnd-11 9.91 2.69 2.67 0.05 0.03 6.29 0.58 23.86 105.62 6.18 0.40 0.03
Rnd-12 7044 1175 1495 240 039  65.94 1.69 21.26 113.34  37.81 1.40 0.23
Rnd-13 133.72  51.78 37.85 3.57 0.55 138.62 11.06 67.10 147.81 3193  2.53 0.28
Rnd-14 284.57 3831 34.68  3.66 2.06 239.84 10.09 96.12 172.06 167.51 3.53 1.16
Rnd-15 610.61 193.65 250.50 16.49 256 468.72  31.04 22993  384.09 181.80 8.44 1.18
Rnd-16 305.03 299.60 362.34 165.63 43.70 286.69 113.24  439.76  423.75 7430 18.12 4.48
Rnd-17 543230 6224.80 6250.50 2989.70 397.20 6070.28 2859.75 3948.10 1523.86 1064.61 61.61 11.31
Rnd-18  10635.40 9529.90 9215.77 6319.60 1914.75 9553.05 9984.34 10238.23 1689.62 4032.95 83.90 51.35
3-hybrid(1) 1.88 4.20 2.65 8.57 0.06 1.38 0.22 0.15 4.79 0.77 5.23 0.05
3-hybrid(2) 1.84 3.65 242 7.98 0.08 1.39 0.21 0.11 4.86 0.83 5.52 0.05
7-hybrid(2)  3.74 1276  6.76 2099  0.27 5.39 2.58 3.10 10.11 1.53 19.07 0.30
7-hybrid(3)  4.40 1122 623 2054 0.34 4.94 2.34 3.51 9.94 1.45 17.38 0.33
15-hybrid(3) 22.02 5646 3980 79.12 346 23.62 18.14 8.52 60.89 3.18  107.60 3.76
15-hybrid(4) 23.55 42.11 40.82 8120 2.71  24.79 18.22 9.82 62.47 325 131.67 4.00
31-hybrid(4) 114.58 224.09 241.59 364.92 22.07 151.65 91.79 23.94 101.67  14.68 2082.70 51.38
31-hybrid(5) 114.78 206.78 230.61 311.80 20.55 156.44  74.83 20.62 128.92  13.92 2707.60 55.33
Ebone-1 0.011  0.009 0.013 0.010 0.005 0.013 0.022 0.072 1.072 0.049 0.020 0.007
Ebone-2 0.170  0.041 0.038 0.024 0.014 0.172 0.027 0.157 1.206 0.108  0.038 0.016
Ebone-3 0.065 0.014 0.013 0.020 0.004 0.071 0.021 0.056 0.983 0.088  0.029 0.011
Exodus-1 0.036  0.016 0.011 0.013 0.009 0.031 0.057 0.022 1.581 0.023  0.054 0.045
Exodus-2 0.738  0.114 0.138 0.015 0.006 0.209 0.028 0.437 1.347 0.361  0.041 0.010

because a number of the problem-specific mechanisms have
been integrated into the framework of ACO to enhance its
overall performance. These mechanisms include the multi-
dimensional pheromone maintenance mechanism which elim-
inates the pheromone overlapping phenomenon, the heuristic
maintenance mechanism which exploits the local information
to provide extra guidance to reduce the number of coding
operations in the solution construction process, the tabu-table
based path construction and the pheromone local updating
rule for easily and properly finding feasible paths connecting
the source and each receiver, and the solution reconstruction
method which improves the exploitation ability of ACO.
With all the above mechanisms, NCRM-ACO performs well
when tackling the NCRM problem. To further support our
analysis, we compare the 12 algorithms using Student’s #-test.
Obviously, NCRM-ACO and pEA are the two best algorithms
among all algorithms for comparison.

Then, we compare the ACTs obtained by different al-
gorithms. NCRM-ACO is one of the fastest in almost all
instances. The following explains the reasons. Different from
the existing algorithms being compared, NCRM-ACO is based
on the principle “learning while optimizing”. With all the
problem-specific mechanisms integrated, NCRM-ACO makes
use of the local and global information collected during the
search so as to guide the fast construction of optimal solutions.
Hence, less computational time is consumed. For relatively
small instances, such as Rnd-3 and Rnd-8, NCRM-ACO is 20

times faster compared to pEA, the second fastest algorithm.
For large instances, e.g., Fix-4, Rnd-17 and Rnd-18, although
constructing feasible paths may waste some time, NCRM-
ACO is still able to obtain an optimal solution within a very
limited time, i.e., the fastest one among those algorithms being
compared. As compared above, NCRM-ACO and pEA both
gain the best performance with respect to the best solutions
obtained. However, if looking at the ACT indicator, one can
easily see that NCRM-ACO is much faster than pEA in almost
all instances. When considering the practical deployment of
the NCM, the computational time is of vital importance since
the algorithm needs to respond to applications as quickly as
possible. So, if we take into account Mean, SD, the ¢-test re-
sults and ACT, NCRM-ACO has the best overall performance
and is definitely better than pEA, our previous work.

VI. CONCLUSION

This paper proposed a modified NCRM-ACO algorithm
based on ACO to tackle the NCRM problem. Different from
the existing algorithms, NCRM-ACO constructs feasible so-
lutions with the help of the local and global information
emerged during the search. The proposed algorithm has several
attractive features which contribute to its descent performance.
Instead of using a single pheromone table, multiple pheromone
tables are maintained in the pheromone maintenance mecha-
nism so that each ant is appropriately guided to complete its
path-finding task. The problem-specific heuristic information
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exposes the status of each incoming link to ant groups. Thus,
each ant is provided with useful local information for selecting
appropriate links along the path under construction. A tabu-
table based path construction mechanism and a pheromone
local updating rule are devised to achieve a higher successful
ratio for constructing feasible path sets. Moreover, a solution
reconstruction method is able to enhance the local exploration
ability of NCRM-ACO, with the purpose of improving the
solution quality. With these problem-specific mechanisms in-
tegrated, NCRM-ACO is reported to outperform seven existing
state-of-the-art algorithms in terms of the best solutions ob-
tained and the average computational time on a set of widely
tested benchmark problems.
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