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Abstract

The granular materia behaviour is determined by the local contact behaviour
between particles and the spatial arrangement of particles. Investigation of particle-
scale mechanism provides fundamental insights into global granular materia
behaviour. A multi-scale investigation has been carried out to study granular material
behaviour under general stress paths using discrete element method (DEM). The
commercial software Particle Flow Code in Three Dimensions (PFC3D) is employed
for numerical simulations and the linear contact model is used to describe local
contact behaviour. General loading paths were achieved by implementing a
boundary control programme with independent control of both the magnitudes of

three principal stresses and their principal directions.

The intermediate principal stress ratio b=(s, - s,)/(s,- s,) , where
S,,S,,S, are the maor, intermediate and minor principal stresses, and material
anisotropy both had significant effect on granular material strength. The true triaxial
simulation results indicated that the peak stress ratio was mainly contributed by the
micro-scale contact force anisotropy. A smaller stress ratio was observed at greater a
b value due to smaller degree of contact force anisotropy. Fabric anisotropy was
another contributor to the material stress state. A lower peak stress ratio was
obtained at a larger tilting maor principal stress direction a from the vertical
deposition direction since smaller fabric anisotropy degree developed at larger a .
However, the material initial anisotropy had negligible effect on the critical stress

ratio owing to the same contact force anisotropy and fabric anisotropy achieved.



In true triaxial simulations, the intermediate strain increment rate ratio b,

was generaly larger than the stress ratio b since the particle-scale tangential force

ratio b was observed to be smaller than b value. The non-coaxial deformation

observed in monotonic loading with various loading direction a can be explained
due to the non-coincidence between the principal fabric direction and the principal
stress direction. And the degree of non-coaxiality decreased against shearing as the

principal fabric direction approached loading direction gradually.

The granular material response to rotational shear showed significant
volumetric contraction and deformation non-coaxiality. The material internal
structure rotated continuously along the principal stress rotation. The principal fabric
direction did not exactly follow the rotation of principal stress direction. The fabric
reorganisation mechanism accompanied by irrecoverable plastic deformation,

leading to non-coaxial deformation behaviour.

During rotational shear, the ultimate void ratio was determined by the stress
ratio and b value but independent of initial void ratios. Under otherwise identical
conditions, the greater internal structure anisotropy was observed at the higher stress
ratio and at a greater b value, resulting in smaler ultimate void ratio (larger
volumetric contraction). The general degree of deformation non-coaxiality decreased
with increasing stress ratio and b value for rotational shear. The difference between
the major principal stress direction and the major principal fabric direction was

smaller at higher stress ratio and greater b value.



It was interesting to note that the sample could fail during rotationa shear,
resulting in significant deviatoric strain developed in the first few cycles. The sample

failed at a stress ratio h = 0.9, which was lower than the peak stress ratio
h, =1.08 obtained in monotonic loading but higher than the critical stress ratio
h, = 0.82. This indicated importance of considering stress rotation in geotechnical

design and the material strength should be chosen based on the critical stress ratio

rather than the peak value.

The multi-scale investigation of granular material explains the strength
characteristics from the micromechanica point of view. Observations on the fabric
evolution have been made under various loading conditions. This may be useful

information for the development of an advanced constitutive model.
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Chapter 1 Introduction

1.1 Research Background

In geotechnical engineering problems, e.g., earthquakes, traffic loading, sea
waves and river embankment, soil goes through complicated loading paths, where
the magnitudes of three principal stresses often vary and their directions rotate. Sand
behaviour is loading path dependent. The loading paths involved in soil testing are
generaly classified as proportional loading path and non-proportiona loading path.
The proportiona loading path is defined as that the deviatoric stress components are
kept in a constant ratio to each other during loading and the soil element does not
rotate in reference to the frame of principal stresses. Loading path does not fit the
above definition refers to non-proportional loading path. Experimental study showed
significant effect of the intermediate principal stress on soil behaviours under true
triaxial shearing (Ko and Scott, 1967, Sutherland and Mesdary, 1969, Lade and
Duncan, 1973, Ochiai and Lade, 1983). Rotational shear generates significant plastic
deformation with continuous rotation of the principal stress directions even though
the magnitudes of stress invariants are fixed (Miura et a., 1986, Sayao, 1989, Tong
et a., 2010, Yang, 2013). Significant pore pressure build-up was observed in
undrained rotational shear, even tested on dense sand (Nakata et a., 1998, Yang and

Li, 2007). And the flow deformation was generally non-coaxial, which is termed as



the principa strain increment direction does not follow the principal stress direction
(Gutierrez et a., 1991). Consideration of loading path dependence is important in
geotechnical engineering design and construction since loading paths commonly

encountered in engineering practice are non-proportional.

Granular materia is generally anisotropic. The sand response is sensitive to
loading direction since most soils are inherently anisotropic. A lower strength was
reported when the major principa stress direction inclined further from the vertical
deposition direction (Arthur and Menzies, 1972, Oda, 1972, Miura et a., 1986). And
significant non-coaxial behaviour between the major principa stress direction and
the magjor principal strain increment direction has also been observed (Miura et a.,

1986, Symeset al., 1988, Cai et a., 2013).

Though soil has been studied extensively in laboratory tests, constitutive
models describing the observed behaviour, e.g., anisotropic behaviour and non-
coaxia deformation remain challenging. Lacking of fundamental understanding in
the observed complex behaviour is identified as the bottleneck for the devel opment
of advanced constitutive models for better capturing the stress-strain responses under
both proportional and non-proportional loading paths. The current project sets out to
explore the fundamentals of granular material behaviour through multi-scale

investigation for the potential development of the constitutive models.

The global behaviour of granular materials is determined by the local contact
behaviour between particles and the spatial arrangement of particles. Study of

particle-scale mechanism provides fundamental insights into global granular material



behaviour. Moreover, it guides the direction of more applicable constitutive

modelling of granular material.

Extensive experimental study has been reported on micromechanics of
granular material (Oda, 19723, Calvetti et a., 1997, Mgmudar and Behringer, 2005,
Ando et a., 2012, Fonseca et a., 2013). The experimental micromechanics examine
the real soil behaviour and it provides the referenced database for verifying
numerical study. Limitations of laboratory experiments include difficulty in
preparing identical samples; difficulty in obtaining information on particle

interactions and extremely time consuming for data post-processing.

In pardlel, the discrete element method (DEM) has been employed of
increasing usage to conduct multi-scale investigation on granular material behaviour
(Rothenburg and Bathurst, 1989, Thornton, 2000, Li and Y u, 2009, Fu and Dafdlias;,
2011). Although DEM models granular material with idealised particle shape and of
limited particle numbers, the typical stress-strain behaviours have been found as
qualitative reproduction of observed sand responses. The advantage of the DEM
simulation is that it can easily provide the instant microscopic information of
particles, e.g., contact force vector and contact norma vector, at any stage of

shearing in a non-destructive way, which is convenient for multi-scale investigations.

In this research, DEM is employed to provide multi-scale information for a
multi-scale investigation on three-dimensional granular material behaviour subjected
to various loading paths. DEM simulations on general three-dimensiona stress

conditions with independent control of three principal stresses and principa stress



directions will be conducted and reported. The commercia software, Particle Flow
Code in Three Dimensions Version 3.1 (PFC3D) (ltasca, 1999), is used to carry out
numerical simulations, which is user friendly and has been widely applied for multi-
scale study by researchers (Li and Yu, 2009, Yimsiri and Soga, 2010, Guo and Zhao,
2013). The anisotropy of granular material is an important aspect of granular
material behaviour. The micromechanica anaysis will be followed focusing on
material anisotropy, including the evolution of contact forces and contact normal
fabric. The information on the contact force and contact normal fabric will be
interpreted in terms of their correlation to the strength-deformation characteristics of

granular materials.

1.2 Aim and objectives

The primary aim is to investigate the granular material response to general
stress paths, both proportional and non-proportional, with independent control of
three principal stresses in terms of both their magnitudes and principal directions
usng DEM. The macroscopic stress-strain behaviour will be presented and
qualitatively compared with the sand responses observed in laboratory. The micro-
scale contact force and fabric evolution will be extracted and interpreted focusing on

their correlations to the observed global behaviours.

To achieve the aim, the following objectives will be accomplished:



Objective 1: To develop a virtual experiment model for numerical simulations under
various loading paths within the commercial software PFC3D (ltasca, 1999) and

qualitative verification with existing experimental data.

Objective 2. To investigate the influence of intermediate principa stress by
conducting true triaxial simulations on the initially isotropic samples. The micro-
scale information of contact force and contact normal fabric will be analyzed to

interpret the effect of intermediate principal stress on strength characteristics.

Objective 3: To study the influence of material anisotropy by conducting true triaxial
tests on the initially anisotropic samples and by investigating the loading direction
dependent strength-deformation behaviour under three-dimensional simulations with
tilting principa stress directions. The strength anisotropy and non-coaxial behaviour
will be explained by examining the microstructural contact force tensors and contact

normal fabric tensor.

Objective 4: To study the granular material behaviour under rotational shear with
fixed magnitudes of stress invariants while continuous rotation of the major principal
stress direction. The microscopic fabric evolution will be presented for better

understanding of material deformation behaviour.

Objective 5: To discuss the effect of particle shape on granular material response by
comparing simulation results on samples with spherical particles and samples with
non-spherical particles of two identical overlapping balls under monotonic shear and

rotational shear. The micro-scale contact force anisotropy and fabric anisotropy will



be evaluated to explain the particle shape effect on strength characteristics. And the

effect of particle shape on fabric evolution will be discussed.

1.3 Thesisstructure

The thesis is divided into 9 chapters. The content of each chapter is briefly

summarised as follows;

Chapter 1 gives a brief background introduction and states the am and

objectives of this research.

Chapter 2 reviews previous study of granular material behaviour. The state
dependent dilatancy and granular material anisotropy are introduced in Section 2.1.
Section 2.2 presents the experimental study of sand behaviours under general three-
dimensional stress paths. And the recent multi-scale study on granular material using
DEM is provided in Section 2.3. The final section introduces the macro-micro
relations, to set up the connections between particle-scale observations and

continuum-scale material responses.

Chapter 3  introduces the discrete element method. The advantages and
disadvantages of DEM are briefly introduced in Section 3.1. As the commercia
software PFC3D is used, Section 3.2 gives the principles of PFC3D. In Section 3.3,
the geometrical properties of individual particle for numerical simulation are
specified and a parametric study is conducted to determine the sufficient sample size

to serve as a representative volume. The mechanical parameters for the local contact



model are specified from the parametric study as shown in Section 3.4. Finaly, a

brief summary is given in Section 3.5.

Chapter 4 elaborates on the virtual experiment set-up using PFC3D. It
includes the generation of the polyhedral shaped boundary. The numerical
implementations of genera loading paths, stress-controlled or strain-controlled, are
introduced. The accuracy of boundary controls and test control in maintaining the
guasi-static material behaviour are examined. The realisation of particular loading
paths will be exemplified. Typical simulation results are presented for validating the
applicability of the numerical experiment model. Thisis aso the objective 1 of the

proposed research.

Chapter 5 investigates the influence of intermediate principal stress by
loading initially isotropic samples with spherical particles under true triaxial test, to
achieve objective 2 through multi-scale investigations. The influence of initial void

ratios on material response will also be covered.

Chapter 6 study the influence of material anisotropy by presenting the
simulation results of the anisotropic sample with spherical particles under various
tilting angle of the major principa stress direction relative to the vertical direction.
The anisotropic samples can beinitially anisotropic due to the deposition process and

the pre-loaded sample. The results are analysed to fulfil the objective 3.

Chapter 7 presents the simulation results of samples consisting of non-
spherical particles. The effects of materia anisotropy and loading direction on

material behaviour are demonstrated to be supplement to the objective 3. And the

7



results are compared to those from sample with spherical particles to discuss the

influence of particle shape asin objective 5.

Chapter 8 shows the rotational shear results of the sample with non-
spherical particles to achieve the objective 4. And the influence of initial void ratios

on rotational shear behaviour is also presented.

Chapter 9 summarises the magor conclusions from the research and

recommendations for future study.



Chapter 2 Literaturereview

The granular material behaviour has been widely investigated during the past
afew decades and it is still an interesting subject to researchers. Thisis probably due
to the complexity of granular material behaviour. Section 2.1 introduces the state-
dependent dilatancy behaviour and the anisotropy of granular material. As the
granular material behaviour is loading path dependent and sensitive to loading
direction owing to initial anisotropy, the granular sand responses to general three-
dimensional stress paths are reviewed in Section 2.2. The macroscopic granular
material behaviour is governed by the local contact behaviour due to its discrete
nature. Hence, the micromechanical investigation provides insights into particle-
scale mechanism. The recent multi-scale investigation of granular material behaviour
using DEM s reviewed in Section 2.3. To apply the micro-scale observations in
continuum-scale, the two scales are linked by the macro-micro relations as shown in

Section 2.4. Finally, abrief summary of the literature is given in Section 2.5.



2.1 Mechanical behaviour of granular material

2.1.1 State dependent dilatancy

Dilatancy is defined as the volume change of granular substance when
subjected to shearing, mathematicaly referred to the ratio of the plastic volume
increment to the plastic deviatoric strain increment. Rowe (1962) formulated a
stress-dilatancy relationship by assuming minimum energy dissipation, suggesting
the rate of dilatancy be only a function of stress ratio. Rowe’s stress-dilatancy
formulation works satisfactorily for cohesive soils. However, experimental results
have indicated that the rate of dilatancy for granular material is not only affected by
stress ratio but also other material state variables, e.g., relative density. It is well-
known that dense sand tends to dilate and loose sand contracts even sheared at the
same stress ratio. Therefore, treating dilatancy only a function of stress ratio cannot

model granular material response over awide range of densities.

The density is used to characterise sand dense or loose by determining how
close sand density to its maximum or minimum density. If sand density is closer to
its minimum density, it is termed as dense, reversely defined as loose. However, the
contraction or dilation of sand not only depends on density, i.e, dense sand
performed contraction, similar to loose sand behaviour, when sheared at extremely
high confining pressure (Bolton, 1986). Been and Jefferies (1985) proposed a state

parameter y to decide sand dilation or contraction by the difference between the
current state void ratio e and the critical state void ratio €, under the same mean

effective stress,y = e- €., where the critical state is defined as granular material
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deformed at constant mean effective stress and deviatoric stress, sample volume
unchanged while continuous increase of deviatoric strain. Sand with negative state

parameter y would dilate to the critical state and sand with positive state parameter

would contract to the critical state.

Besides Been’s state parameter, there are many other indices proposed to

quantify the dilatancy of granular materials under the framework of the critical state

theory, e.g., the combination of e and e stated as state index | for characterising

sand dilatancy behaviour during shearing (Ishihara, 1993) and a state pressure index

|, defined as the ratio of the current state mean effective pressure over the critical

state mean effective pressure (Wang et al., 2002). In spite of different state parameter
definitions, they al choose the critical state as a reference state and a single
parameter is proposed to reflect influences of both effective confining pressure and

density on dilatancy behaviour.

It was observed both experimentally and numerically that granular material
behaved more dilative in triaxial compression test with the major principal stress
perpendicular to the bedding plane than in triaxial compression test with the major
principa stress within the bedding plane (Oda, 1972a, Arthur and Menzies, 1972, Li
and Yu, 2009, Yimsiri and Soga, 2011). In addition, experimental findings showed
that sand experienced significant volume contraction under pure rotation of principal
stress direction with constant magnitudes of stress invariants (Tong et a., 2010,
Y ang, 2013). It indicates that other interna state variables, e.g., sand anisotropy, aso
affect dilatancy besides stress ratio and state parameter. Accordingly, a general state-

dependent dilatancy function was expressed as (Li and Dafalias, 2000) :

11



d=d(h,eQ,C) (2.1)
where d is the dilatancy rate, Q and C denote internal state variables other than

void ratio e and intrinsic materia constants, respectively.

In summary, the dilatancy behaviour of granular material could be modelled
over a wide range of densities and stress levels by incorporating state parameter in
reference to the critical state. However, effects of other factors, e.g., materia
anisotropy, on the dilatancy behaviour of granular materia have not been fully

understood and considered in constitutive modelling.

2.1.2 Anisotropy of granular materials

The anisotropy of granular material has been extensively investigated in the
past a few decades. It is considered to be an important parameter affecting soil
behaviour. In considering soil anisotropy, it was first distinguished as inherent
anisotropy and induced anisotropy (Casagrande and Carrillo, 1944). The inherent
anisotropy is produced during the geological sedimentation process and the induced

anisotropy is formed by nonelastic deformation due to anisotropic external loading.

2.1.2.1 Inherent anisotropy

Arthur and Menzies (1972) developed a cubic triaxial cell for three-
dimensional true triaxial test to study the material inherent anisotropy. The samples
were prepared by pouring sand into atilting mould with various angles to the vertical
deposition direction in order to conduct true triaxial test under various principa

stress directions. It was found that the material performed anisotropic strength and

12



pre-failure stress-strain behaviour at different loading directions. This clearly

indicated that the prepared sample was inherently anisotropic.

Yamada and Ishihara (1979) examined the anisotropic deformation
characteristics of loose sand specimen prepared by depositing the sand under water,
under drained three-dimensional stress conditions. The mgor conclusion was that the
influence of inherent anisotropy on deformation behaviour was large at the small
shear stress level and disappeared at the failure shear stress level. Later, they (1981)
tested the same material of loose specimen in undrained conditions. Similar
behaviour was observed as that in drained tests. It was summarised that the
inherently anisotropic specimen showed higher strength sheared vertically than

sheared horizontally during triaxial compression.

Haruyama (1981) clarified the material inherent anisotropy in deposited
sample consisting of spherical particles by the isotropic compression test. The
specimen showed a lower compressibility in the direction of deposition than in the

direction perpendicular to the deposition direction.

Kumruzzaman and Yin (2010) investigated the anisotropic behaviour of
decomposed granite in a series of undrained tests with fixed principa stress direction
using hollow cylinder apparatus. The results showed obvious undrained strength

anisotropy due to material inherent anisotropy.

The above experimenta results clearly indicate that a sand specimen is
inherently anisotropic. The inherent anisotropy is reflected as the loading direction

dependent stress-strain behaviour. The effect of inherent anisotropy is significant at

13



small strain level while it disappears at large deformation as a result of the inherent
anisotropy destroyed at large deformation, which is related to the stress induced

anisotropy (Oda et a., 1985h, Sadrekarimi and Olson, 2011).

2.1.2.2 Induced anisotropy

When subjected to shearing, the anisotropy of soil evolves continuously. Oda
et a. (1985a) investigated stress induced anisotropy to find the contact normal
vectors tend to concentrate in the principal stress direction. It indicates the material
anisotropy changes in response to the applied anisotropic loading. The induced

anisotropy could have significant effects on response of granular soils.

Arthur et al. (1977) carried out series of tests on dense sand to examine
effects of induced anisotropy on sand behaviour. The samples were initialy
monotonically loaded to a high pre-failure stress ratio, followed by unloading to
isotropic stress state. Then, they were monotonically sheared again at various
principal stress directions. The results indicated that the stress induced anisotropy
had great influence on magnitudes of strain increment while negligible effect on
dilation angle and the non-coaxiality between principal directions of stress and strain

increment was small.

Gajo and Wood (1999) studied the effects of both drained and undrained pre-
loading history on the undrained behaviour of loose Hostun sand samples under
triaxial tests. The results showed that the pre-loading history had considerably effects

on the evolution of yielding surface and elastic anisotropy.
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These results clearly show that the previous loading history changes the
material anisotropy significantly. The induced anisotropy could have a great effect
on soil behaviour. Various loading paths induce different material anisotropy. The
induced anisotropy dominates material stress-strain behaviour. For example, soil
performs a lower strength during triaxial compression than triaxial extension, due to

different material anisotropy induced.

2.1.2.3 Fabric anisotropy of granular material

The anisotropy of granular material is mainly due to the anisotropic internal
fabric. Brewer (1964) first referred fabric to the spatial arrangement of solid particles
and the associated voids. It was pointed out that fabric should include at least three
concepts. (1) orientation distributions of elongated particles; (2) contact normal
distributions between interacting particles; (3) void distributions (Oda and Iwashita,

1999).

In laboratory study, it is difficult to characterise the contact normal
distribution of sand. Alternatively, the sand fabric may be described by the preferred
orientation of non-spherical particle long axis. Oda (1972a) prepared both natural
and reconstituted sand samples reinforced by injecting resin binder and then cut
samples into vertical and horizontal thin sections to study the statistical distributions
of sand particle orientations. The results showed that orientations of grains were not
randomly distributed in space but with preferred alignments of long axis in the
horizontal bedding plane. Consistent statistical study of particle orientation fabric

has also been reported by Yang et a. (2008). Even for spherical particles deposited

15



under gravity, they tended to stand in a stable position relative to forces acting upon
them, which produced anisotropic packing structure with more contact normal
oriented in the deposition direction. The anisotropic packing structure of granular
assembly with spherical particles was confirmed by experimental isotropic
compression tests to find a lower compressibility in the direction of deposition than

in theradial direction (Haruyama, 1981, Lade and Abelev, 2005).

2.2 Three dimensional soil behaviours

In engineering practice, the stress state of soilsis general, with three principal
stresses being not always equal to each other (s, % s, 3 s,) and the varying
principal stress directions. The relative magnitude of intermediate principal stressis
described by a non-dimensional parameter b= (s, - s,)/(s,- s,) (0Eb£1).
The influence of intermediate principal stress on soil behaviour has been widely
investigated by true triaxia test in 1970s. However, the material inherent anisotropy
was not considered at that time. Since 1980s, the influence of material anisotropy on
three-dimensional soil responses has been investigated with tilting principa stress
directions using hollow cylinder apparatus. In addition, the soil response to non-
proportional loading path, i.e., pure principal stress rotation, has also been studied by

hollow cylinder test. The complex soil behaviours are briefly reviewed in this section.

2.2.1 Effect of intermediate principal stresson soil behaviour

In the early 1960s, the triaxial compression test and plane strain test were

commonly used to investigate sand behaviour. It was reviewed by Oda et al. (1978)
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that the characteristics of shear strength and dilatancy behaviour observed in plane

strain test of sand were concluded as follows:

1 Dense sand tested under low confining pressure gave a greater friction angle
up to 10% — 20% in plane strain test than that in triaxial compression test.

2. Sand at similar densities, strain to failure was smaller in plane strain test than
intriaxial compression test.

3. Sand performed more dilative in triaxial compression than in plane strain test.

The differences of strength and dilatancy behaviour observed in plane strain
test (e.g.,b = 0.3~ 0.5) and triaxia compression (b = 0) clearly indicated that the
intermediate principal stress did have great effects on sand stress-strain behaviour.
Since the importance of influence of b value on sand behaviour was realised, a few
cubical triaxial test apparatuses were developed to conduct true triaxial test with

independent control of magnitudes of three principal stresses.

Lade and Duncan (1973) designed a cubical triaxial tester to investigate the
influence of b value on stress-strain behaviour of Monterey sand. The results showed
that, with increasing b value, both dense and loose sand became more dilative while
strain to failure decreased. The peak friction angle increased significantly to the
maximum vaue with increasing b value and then decreased dlightly with further

increasing b to 1.

Reades and Green (1976) carried out independent stress control tests on Ham
River sand samples over a wide range of densities using cubical triaxia cell. Their

results presented that the axial strain to failure decreased as b increased from 0 to 0.5
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and then increased with further increasing b values. The peak friction angle
increased rapidly from triaxial compression (b =0) to b=0.15 and remained
constant between b = 0.15 and b = 0.4, followed by gradually increase in friction
angle for b > 0.4. However, in the discussion session of this paper, Ergun (1977)
doubted about the increasing friction angle for b value greater than 0.4. It was argued
that the high shearing resistance observed in the tests at b > 0.4 was due to the
possibility of boundary interference. Ergun further indicated the platen interference
by performing tests on loose Ham River sand samples using flexible lateral platens
to show that friction angle did not increase but decreased when b > 0.4 under
otherwise identical conditions to Reades and Green’s tests. However, Ergun failed to

provide results over full range of b values varied from O to 1.

Arthur et a. (1977a) showed that the angle of shearing resistance increased to

maximum value at b = 0.5 and then decreased almost 5" at b =1 for Leighton
Buzzard sand with flexible lateral platen control. It confirmed Ergun’s results with

decreasing friction angle at large b values.

Many other researchers have reported true triaxial test data while the results
did not conclude to a common failure criterion for all types of sand (Ko and Scott,
1967, Matsuoka and Nakai, 1974, Y amada and Ishihara, 1979). Though controversy
still exists in this topic, the representative relationship between friction angle f and
b value can be generally sorted into three groups, as shown in Fig. 2.1. The results
differing from groups is probably due to other factors affecting the measured
strength under three-dimensional stress conditions, such as effect of shear band

occurrence in hardening regime related to work in Fig. 2.1(b), effect of slenderness
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ratio between height and diameter of cylinder specimen, experimental equipment

reliability et al. (Lam and Tatsuoka, 1988, Wang and Lade, 2001, Lade, 2006).
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All those results show significant effect of the intermediate principal stress
on strength characteristics of sand. The experimental findings are useful for
formulating a three-dimensional isotropic failure criterion for constitutive modelling
of soil behaviour in general three-dimensiona stress conditions. However, the effect
of inherent anisotropy, which is considered as an important parameter affecting soil

behaviour, is not considered in those groups of work.

2.2.2 Effect of cross-anisotropy on soil behaviour

The terminology cross-anisotropy referring to the gravitational deposited

sand possess an inherently transversely isotropic microstructure, exhibiting
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transversely isotropic behaviour in the horizontal bedding plane or cross-anisotropic

behaviour in the vertical deposition plane.

Yamada and Ishihara (1979) studied the anisotropic sand behaviour under

three-dimensional radia stress paths on dense and loose sand specimens, with lode

angle g varying from 0° to 180° in the octahedral plane as shown in Fig. 2.2. The
stress-strain behaviour was affected by the inherent cross-anisotropy only at small
shear stress levels while the specimen inherently anisotropic characteristics
disappeared after failure. The peak stress ratio of the dense sample showed little
difference in three sectors. The stress ratio of the loose sample, up to the same shear
strain in three sectors, decreased with increasing lode angle before failure, indicating
anisotropic yielding behaviour. Similar observations were also reported on spherical
particles assembly with initial cross-anisotropy during radial shear stress paths,
which concluded that the three-dimensional yielding criterion of anisotropic material

could not be discussed by test results only from Sector | (Haruyama, 1981).
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Fig. 2.2 Configuration of sample cross-anisotr opy
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Ochia and Lade (1983) investigated the effect of cross-anisotropy on stress-
strain behaviour of dense Cambria sand with relatively long and flat sand grains by
cubical true triaxia test. The loading was applied with the mgor principa stress
direction fixed to align three directions of material axes, respectively. It was found
that effects of initial cross-anisotropy on stress-strain behaviour were mainly
observed before failure and the friction angle did not show much difference by
rotating the principal stress direction from the vertical direction (Sector 1) to the

horizontal direction (Sector Il and Sector 111) at the same b value.

Abelev and Lade (2003a, 2003b) carried out series of true triaxial tests on

dense Santa Monica beach sand. The stress-strain behaviour showed clear effect of

inherent cross-anisotropy on friction angle, approximately 5° difference between
Sector | and Sector Ill at the same b value; and the greatest dilation angle was

observed in Sector | at the same b value.

Those results clearly show the combined effect of intermediate principal
stress and material cross-anisotropy on sand behaviour. Hence, it is difficult to
distinguish the effect of b value and material anisotropy on sand behaviour in a
laboratory test, due to the difficulty in preparing an initially isotropic sample. The
three-dimensional failure envelop is cross-anisotropic in the deviatoric stress plane.
This observation is useful for formulating cross-anisotropic yielding criteria in

constitutive modelling accounting for inherent anisotropy effect.

The cross-anisotropic behaviour also implies the loading direction dependent

sand response since al the reviewed true triaxial tests were conducted with the major

21



principal stress either perpendicular to the bedding plane or within the bedding plane.
Hence, to have a better understanding of the three-dimensional anisotropic soil
behaviour, a complete variation of principal stress direction from the vertica to

horizontal direction is preferred.

2.2.3 Effect of loading direction on anisotropic soil behaviour

The loading direction is defined by an angle a , which is the magjor principal

stress direction relative to the vertical deposition direction, as shownin Fig. 2.3.

<

Fig. 2.3 Illustration of loading direction a

The effect of a on the stress-strain behaviour was mainly observed at small
strain level. A greater shear strain to the pre-failure stage was observed at larger
inclination angle a , as shown in Fig. 2.4 (Arthur and Menzies, 1972; Miura et al.,
1986). Oda (1972) reported that sand deformation behaviour at pre-failure stage was
significantly influenced by the inherent fabric anisotropy when sheared at various
loading directions, with secant modulus decreased with increasing angle a .
Significant effect of loading direction on dilatancy behaviour was also observed on

anisotropic sand. When sheared at different loading directions, sand became more
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contractive at a greater inclination angle a (Oda et a., 1978; Symes et al., 1984;

Yoshimine et al. 1998; Sivathayalan & Vaid, 2002).
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Fig. 2.4 Stress-strain behaviour at different loading directions (after Miura et
al., 1986)

The strength of anisotropic material was loading direction dependent. By
preparing specimens in a tilting mould (Arthur and Menzies, 1972, Oda, 1972a),
their drained triaxial compression tests indicated that the strength decreased with
increasing angle a , with the lowest strength observed when the direction of major
principa stress paralel to the bedding plane. However, Oda et al. (1978) studied
strength anisotropy by the same sample preparation method under plane strain test.

The results showed that strength initially decreased with increasing angle a and

then increased with the lowest strength observed at a = 66°. Consistent results were
also obtained by Guo (2008) with samples prepared in atilting mould in direct shear

tests on both angular and spherical sand particles.
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Saada and Townsend (1981) pointed out that inclined specimens tested in
triaxial cell generated large stress non-uniformity near end platens due to non-
coincidence of the deposition direction and the specimen symmetry axis. They
recommended the better way to study anisotropy effect was to incline the principal

stress direction rather than the specimen axes.

Symes et a. (1984, 1988) studied the undrained and drained anisotropic
behaviour of medium-loose saturated sand under various principal stress directions
using hollow cylinder apparatus. The anisotropic strength decreased with increasing

angle a . However, the tests were only peformed at a =0°,a =24.5 and

a =45.

Miura et al. (1986) investigated the drained anisotropic strength behaviour of
dense sand sheared under different principal stress directions using hollow cylinder

torsiona shear device. The anisotropic strength declined at greater tilting angle and

then increased slightly, with the lowest strength achieved at a » 60°, in which the
inclination direction of shear band was nearly paralel to the bedding plane. Fig.
2.5(a) showed similar results from different tests and the test details were give in

Table2.1.

The other group of work summarised in Fig. 2.5(b) (more detailsin Table 2.1)
showed that sand strength decreased continuously with increasing inclination angle
a using hollow cylinder torsional shear test apparatus in both undrained conditions
(Yoshimine et a., 1998, Sivathayalan and Vaid, 2002) and drained conditions (Lam

and Tatsuoka, 1988, Kumruzzaman and Yin, 2010).
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Controversy arises on the minimum strength obtained at what a vaue.

Miura et a. (1986) argued that minimum strength observed at a around 60° ~ 75°
was due to the shear plane paralld to the bedding plane, where the material exhibited

the lowest shear resistance. Oda (1972) and Arthur and Menzies (1972) explained

the minimum strength achieved at a = 90° was a result of particle preferred
orientation distribution in the horizontal bedding plane, where particles dliding
mechanism occurred easily. Consequently, more evidence on this topic is helpful for

a better understanding of strength anisotropy.
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Fig. 2.5 Variation of strength anisotropy with loading direction
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Table 2.1 Testsdetail of resultsreported in Fig. 2.5

Test _ Relative Stress _
_ Material _ Drainage Authors
device density (%) | (kPa)
Al PS | Toyourasand 89 03=392 | Draned | Odaetad., 1978
A2 DS | Ottawasand 86 p=100 Drained Guo, 2008
p=98 _ Miuraet al.,
A3 | HCT | Toyourasand 82 Drained
b=0.5 1986
03=98 .
B1 | TC | Toyourasand 75 0 Drained Oda, 1972
Decomposed . p=400 _ Kumruzzaman
B2 _ Unspecified Undrained )
grantie b=0.5 and Yin, 2010
HCT
Fraser river p=200 _ Sivathayalan and
B3 21 Undrained
sand b=0.4 Vaid, 2002

Notes: PS—Plane strain, DS—Direct shear, HCT—Hollow Cylinder Test, TC—Triaxial compression

The non-coaxial behaviour of granular material was first reported by
experimental simple shear deformation (Roscoe et al., 1967). It was observed that
the direction of principal strain increment rate did not follow the change of principal
stress direction. The principal stress direction rotated gradually to approach the strain

increment direction at large shear strain.

The non-coaxiality between the principal stress direction and the principal
strain increment direction has been reported in laboratory monotonic shearing using
hollow cylinder test apparatus (Symes et al., 1988, Cai et a., 2013, Eugene J. Van
Dyck, 2012). It can be seen from Fig. 2.6, where the solid arrow refers to the strain
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increment vector and the solid line indicates the stress vector in the deviatoric plane,
that non-coaxial behaviour was generally observed with the larger angle a,, of
strain increment vector than the angle a of stress vector, except asymmetric loading

conditions with a = 0° and a = 90°. And the degree of non-coaxiality decreased

with increasing deviator stress.

-300 -200 -100 0 100 200 300 400
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Fig. 2.6 Non-coaxial deformation (after Cai et al., 2013)

2.2.4 Sand response to rotational shear

The granular material behaviour has been widely reported under proportional
loading paths. During non-proportional loading path, i.e., rotational shear, significant
plastic deformation would be observed, though the magnitudes of stress invariants

are unchanged and only the major principal stress direction rotates continuously.
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Significant volumetric contraction was observed during the drained rotational
shear, even tested on dense material (Miura et a., 1986, Sayao, 1989, Tong et a.,
2010, Yang, 2013). During undrained rotational shear, the volume change was
reflected as significant pore pressure build up (Nakata et a., 1998, Yang and Li,
2007). The rotationa shear deformation was influenced by many other factors, e.g.,
the mean normal stress, b value, stress ratio and initia void ratio. It was observed
that the higher the influential factor value, the severer the volume contraction

(Sayao, 1989, Tong et al., 2010, Yang, 2013).

The non-coaxial flow deformation characteristic has been widely reported
during rotational shear (Miura et a., 1986, Guitierrez et al., 1991). It was illustrated
in Fig. 2.7 that the principal strain increment direction generally did not coincide
with the principal stressincrement direction, which istangential to the failure surface.
In addition, the total strain increment direction showed little difference to the plastic
strain increment direction, indicating the contribution of elastic strain increment to
total strain increment being small. The degree of non-coaxiality was smaller at
rotational shear with a greater stress ratio (Yang, 2013). The influence of b value on

degree of non-coaxiality was found to be small (Tong et al., 2010).
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Fig. 2.7 Non-coaxial deformation in rotational shear (after Gutierrez et al., 1991)

2.3 Multi-scale investigation on granular material

behaviour

As reviewed in the previous sections, the three-dimensiona soil behaviour
has been widely reported in laboratory tests. The observed complex behaviour, e.g.,
anisotropic behaviour and non-coaxia deformation, brings challenges in the existing
constitutive modelling. To develop advanced constitutive models, fundamental
understanding of the observed complex behaviour is required. The granular material
behaviour is dominant by the local contact behaviour and the spatial arrangement of
particles. The study of granular material micromechanics provides fundamental

insights into the observed global behaviour.
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The experimental micromechanics (photoelsticity, stereophotogrammetry, x-
rays, computed tomography) are used for investigating micromechanics of granular
material, benefiting from the modern technology development (Drescher and Jong,
1972, Oda, 1972a, Mamudar and Behringer, 2005, Croll et al., 2013, Fonseca et dl.,
2013). It examines the real granular materia behaviour and the observed
micromechanics provide the referenced confidence for numerica simulation.
However, limitations of laboratory experiments are: difficulty in preparing the
identical and isotropic samples; difficulty in observing the microscopic response of
particle rearrangement and extremely time confusing for data post-processing. In
parallel, the numerical DEM simulation can easily provide the instant microscopic
information of particles at any stage of shearing in a non-destructive way, which is a
useful tool to investigate the properties of granular material from particle scale. The
DEM study of granular materia behaviour in mimic laboratory tests have been
implemented by many researchers in both two-dimensional and three-dimensional
simulations (Rothenburg and Bathurst, 1989, Chen et al., 1990, Bardet, 1994,
Thornton, 2000, Cui and O’Sullivan, 2006). Although the DEM models granular
assembly with idealised particle shape and limited sample size, those results have
shown that the numerical simulation can qualitatively reproduce the general stress-

strain behaviour of granular material as observed in laboratory sand testing.

Thornton (2000)Thornton (2000)Thornton (2000)Thornton (2000) Thornton
(2000)Thornton (2000) carried out numerical simulations of isotropic spherical
particles system in general three-dimensional stress conditions with constant
intermediate principal stress parameter b . It was found that DEM simulation
produced similar stress-strain behaviour to those observed in experimental true
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triaxial tests. Microscopically, the induced structural anisotropy of internal variables,
e.g., fabric anisotropy, contact force anisotropy, were reported due to the deviatoric
loading. The strength difference of dense and loose sample was due to a higher
degree of contact normal anisotropy developed in the dense sample. He also pointed
out that the developed deviatoric stress capacity was mainly due to the contribution
of developed anisotropic normal contact force while the contribution of tangential

contact force anisotropy was quite small.

The influence of loading direction on initialy anisotropic granular material
behaviour has been studied by preparing samples at different tilting angles of
material symmetry axis relative to the loading direction (Mahmood and Iwashita,
2010). The two-dimensional DEM biaxial tests results showed that the anisotropic
strength decreased with increasing angle a and the evolution of fabric anisotropy
were quite different at different loading directions. The same sample preparation
method was used to prepared the initially anisotropic samples for direct shear tests

(Fu and Dafalias, 2011). The 2D direct shear results were presented in Fig. 2.8, with

minimum strength and maximum strength observed at a = 60° and a =115". For

unknown reasons, the material response was quite different with loading direction
within the region a 1 (0°,90°) and a1 (90° ,180°). Since the initially anisotropic
sample has a cross-anisotropic fabric structure, the material behaviour was expected
to be symmetric with the bedding plane, i.e., similar behaviour when loaded at
a =60"and a =120°. No experimental direct shear results have been produced

with inclination angle a from 90° to 180° to confirm this observation yet. In

addition, the various loading direction was realised by inclination of material
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symmetry axis rather than inclination of principa stress direction, which was not

recommended by Saada and Townsend (1981).
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Fig. 2.8 Variation of peak strength with inclination angle (after Fu and Dafalias,
2011)

Li and Yu (2009) investigated the influence of loading direction on the
behaviour of anisotropic granular material by two-dimensional DEM simulations.
The strength anisotropy curves were consistent to that reviewed in Fig. 2.5(a) for the
initially anisotropic sample and to that shown in Fig. 2.5(b) for the pre-loaded
sample. For the initialy anisotropic sample, the strength anisotropy was explained

from microscopic observations that strength decreased dlightly when loading

direction a located within (O°, 30°) due to both similar degrees of contact normal

fabric anisotropy and contact force anisotropy developed. When a increased further,

30° <a £ 60°, it was observed that degree of contact normal anisotropy decreased
significantly and degree of normal contact force decreased as well, and the deviation

angle between the principal direction of contact normal and the principal direction of
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normal contact force became larger, resulting in a smaller stress ratio at larger

inclination angle. However, when a varied from 60° to 90°, the anisotropy degree
of contact normal was found to decrease further while the anisotropy degree of
normal contact force increased dlightly, resulting in slower decreasing stress ratio,
and even increasing dlightly. For the pre-loaded sample, the fabric anisotropy and
contact force anisotropy were found to decrease with increasing tilting angle a ,

leading to continuous decrease of strength.

Li and Yu (2009) also discussed the non-coaxial behaviour between the
major principal stress and major principa strain increment directions, as shown in
Fig. 2.9 and Fig. 2.10, where the solid straight line represented the fixed strain
increment direction and the line with symbols referred to the observed principal
stress direction. Microscopically, the degree of non-coaxiality was dependent on the
deviation between principal directions of contact force and contact normal, as well as
the anisotropic degrees. The anisotropy degree of contact norma was small for the
initially anisotropic sample and the principal contact force direction was close to the
loading direction, resulting in negligible degree of non-coaxiality. For the pre-loaded
sample, the degree of contact normal anisotropy was large and the degree of non-
coaxiality was observed to be significant when the loading direction deviated more
from the initial principa fabric direction. However, the degree of non-coaxiality
generally decreased as shearing continued and the principal direction of strain
increment vector coincided with the principal stress direction at large deformation

due to the principal fabric direction approaching the loading direction gradually.
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Fig. 2.9 Non-coaxial behaviour observed on theinitially anisotropic sample
(after Li and Yu, 2009)
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Fig. 2.10 Non-coaxial behaviour observed on the pre-loaded sample (after Li
and Yu, 2009)

The two-dimensional DEM simulation of granular material under rotational
shear has aso been investigated by Li and Yu (2010). The materia internal structure
was found to rotate along the stress rotation continuously, the larger the internal
structure size, the greater deformation generated. The dense and loose sample
approached the same ultimate state with the same void ratio after large number of

cycles due to the same size of internal structure reached. The effect of stress ratio on
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rotational shear response was observed as the higher the stress ratio, the greater the

deformation owing to the larger size of internal structure.

Those DEM results enhance the understanding of granular materia
micromechanics. However, most of them are two-dimensional simulations, where
the intermediate principal stressis missing. Limited DEM results have been reported
under general three-dimensional stress path to investigate anisotropic granular
material behaviour. This is probably due to the difficulty in realising the general
three-dimensiona loading paths in numerical simulation. In this study, a virtua
experiment model will be developed to realise general loading paths for multi-scale

investigation of three-dimensional granular material behaviours.

2.4 Particle-scale statistics and stress-force-fabric

relationship

With the DEM simulation, the microscopic study on granular material
becomes possible. The micro-scale information, e.g., discrete contact force vector
and contact normal vector, is of interest and it has thousands of such data in a
granular system. To investigate the macroscopic granular material behaviour and
apply the particle-scale observations to the continuum-scale constitutive
relationships, the statistical characterisation of particle-scale directional data linking
the two worlds is essential. The globa stress tensor is related to the contact forces
and branch vectors (e.g., Bagi, 1996). The stress tensor can be further expressed as a
function of the contact force tensors and fabric tensors, termed as stress-force-fabric
relationship. Hence, the micro-scale quantities of contact force and fabric are directly
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related to the global materia stress state and it can be interpreted to explain the

macroscopic strength-deformation characteristics.

In this section, specia focus is placed on the tensorial characterisation of
contact force vectors and contact normal vector distributions by second-rank tensors.
The contact density is described by the coordination number. By doing so, the
granular material microstructural anisotropy is described by the invariants of second-
rank contact force tensors and fabric tensors and their principa directions. The
formulations and symbols defined in this section will be extensively used in the

thesis, hereafter, to conduct particle-scale analysis.

2.4.1 Fabric quantification

2.4.1.1 Coordination number

A scalar parameter coordination number w is defined to describe the average
density of contacts per particle within agranular assembly as:

o 2N - N

NP

(2.2)
where N is the total number of contacts and N_' is the total number of contacts

formed between particles and boundary walls. N | isthe total number of particles.

2.4.1.2 Directional distribution of contact normal orientations

Kanatani (1984) established a mathematical theory to describe the directional
distributions of orientations. In his work, three kinds of directiona tensor have been

defined for directional distribution of orientations. In characterising the statistics of
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directional data with tensors, the fundamental quantities of these directional data are
various averages of them. The moment tensor has been defined to characterise the

average of those directional data up to second-order as:

N, = L& 2.3
iji = Na ni n; ( . )
where n‘is the k™ directional data and N is the total number of directional data.

N; issymmetric.

In microscopic investigation of three-dimensional granular material, the

discrete contact normal vector distribution can be approximated by Eq. (2.3). Up to
the second order approximation, the probability density function E(n) of contact

normal distribution can be expressed as:
E -t 1+ D 24
(n)_4p( * iirmi) (2.4)

The deviatoric tensor D; is used for characterising the contact normal fabric
distribution in this study. The relation between D; and the second-order moment
tensor N, isexpressed by integrating the probability density function E(n) over the
Euler spaceto give:

15 1
Dij = E(Nij - gdij) (2.9)

It has three principal values D,,D,,D, and three corresponding principal
directions n”, where D,,D,,D, are the maor, intermediates and minor principal

fabric values. The deviator fabric D is defined to describe the contact normal fabric
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anisotropy and the intermediate fabric ratio b. is used to describe the relative

magnitudes of three principal fabric values as:

[0 - \/e D, - D) +(D; - D) +(0, - D) 2 (26)

b, =(D,- Ds)/(Dl' D,)

2.4.2 Directional distribution of vectors

Orientations of vector can be represented by unit vectors whose magnitudes
are always 1. For micro-scale analysis, however, it may require characterising the
directiona distribution of probability density for contact force vectors and branch
vectors, which should be described by a unit vector representing its direction and a
representative value representing its magnitude. The directional distribution of
contact force has been discussed in literature (Ouadfel and Rothenburg, 2001, Li and
Yu, 2011b). The basic ideas are the same as that used for formulating directiona

distribution of orientations.

2.4.2.1 Directional distribution of contact force vectors

In three-dimensional microscopic study of granular material, the contact
force vector can be decomposed into the normal contact force component and the

tangential contact force component. The directional distribution of normal contact

force vectors f." and tangential contact force vectors f' can be approximated by the
second rank tensor K{' and K; . The K and K; are caculated from the pre-

determined directional distribution of contact normal density E(n) up to the

second-order approximation and discrete contact force vectors as:
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1 (!,\‘ f"ni nc
K'==—a ' (2.7)
. N c=1 E(nf)
14 £
Ki=—3§ —— 2.8
i NglE(nf) (2.8)

where N is the total nhumber of contacts, f" is the magnitude of norma contact

force at contact ¢ and f' isthetangential contact force vector at contact ¢ . n® is

the contact vector at contact c.

The mean normal contact force f, can then be expressed as:

1
0 4p ii ( )

Then, the deviatoric second rank tensors Gi' and G, which are used for

characterising contact forces distribution in this research, can be determined as:

&K d 0
A (2.10)
T 2gm 3
_t_
Gl =51 (2.10)
m,

where m, = K.

The symmetric and deviatoric tensor G| can be expressed as three principal
values G|, G, ,G; , which are termed as the mgjor, intermediate and minor principal
normal forces (G 2 G; 3 G;), and the principa directions. The deviator normal

contact force G is defined to describe the anisotropy of normal contact force and
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the intermediate force ratio b, is defined to reflect the relative magnitude of three

principal values as:

o - J(Gf -G) +(er-a) +(c - &)
d
2
(G; _ G;) (2.12)

(- &)

o
I

Similarly, the symmetric and deviatoric tensor Gij. can be described by its

invariants G, , b, and principal directions. The invariants G} and h are used to

describe the tangential contact force anisotropy and intermediate tangential force

ratio calculated as:

_ J(Gi -G) +(c-G) +(c- &)
2

L

(c:- ) (2.13)

(- c)

— e ——t = —
ey
]

where G|, G,, G; are the mgjor, intermediate and minor principal tangential forces

(G * G2 Gy).

2.4.2.2 Directional distribution of branch vector

The branch vector, connecting the centres of two contacting particles (e.g.,

Fig. 2.11), has a representative orientation and magnitude. For an assembly of

spherical particle system, the direction of branch vector at a contact is the same with

the contact normal direction while its magnitude depends on the particles size. The
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branch vector direction of two non-spherical particles contact entities generally

differs from the contact normal direction.

Fig. 2.11 Illustration of contact force vector f , contact normal vector n and

branch vector | in a contact

The directional characterisation of branch vector is in analogy to that of
contact force vectors, simply replacing the norma and tangential contact force
vectors in Egs. (2.7) and (2.8) by normal and tangential branch vector components,

respectively. In this study, the tensorial characterisation of branch vector is described
by B and Bf]., representing the distribution of normal and tangential components

respectively. The mean length of normal branch vector is determined as:

1
— B 2.14
0 4p i ( )

Similarly, the branch vector tensors B} and B; can be further expressed as

the deviatoric tensors C and Cf]. in analogy to Egs (2.10) and (2.11):

aB" d O
"= %5 S0 (2.15)
28y 3
t
t — Ij
G =550 (2.16)
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Similar to the definition of the fabric tensor invariants D. and contact force

tensor invariant G], the symbols C} and C, are used to describe the normal and

tangentia branch vector anisotropy.

2.4.3 Stress-force-fabric relationship

The continuum-scale stress tensor is related to contact force and branch
vector in micro-level. Different considerations are followed to re-define the stress
tensor for granular material, such as the volume average of external load acting on
boundary, volume average of contact forces acting on discrete particles, virtual work
principal. However, the stress tensors have been derived to be the same expression,
irrespective of theoretica considerations under quasi-static conditions with body
force and moments ignored, formulated in Eq. (2.17) as (Drescher and Jong, 1972,
Christoffersen et al., 1981, Bagi, 1996, Li et a., 2009b)

M
alfe (2.17)

=1

Sij =

<|k

where V is volume of assembly and M isthe total contact numbers. | is the branch

vector connecting the centres of two grains forming contact c. f j° is the contact

force at contact c.

Starting from the micromechanical stress tensor definition in Eq. (2.17), the
stress-force-fabric (SFF) relationship was first formulated by Rothenburg and
Bathurst (1989) to relate the macroscopic strength to the microscopic contact force

anisotropy and fabric anisotropy. The simplified three-dimensional SFF relationship
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has been developed from the micromechanical parameters as (Ouadfel and

Rothenburg, 2001, Li, 2006, Sitharam et al., 2009):

Wl -,}dij+g(Dij+G”T‘+Ci? +§(G5+Citj) |u
s,=oge I v (218)

; . ) >

i ¥GCy + £ DGy + o B0, (G5 - Gltq)ﬂb

where w is the coordination number, f, is the average normal contact force in the

assembly, |, is the average branch vector length. d; is the Kronecker delta. The

tensor Ci' and C; characterises the normal and tangential components of branch

vector distribution, of which anisotropy is generally negligible compared to fabric

anisotropy and contact force anisotropy.

It is clear from the expression that the stress tensor is related to the
microstructural tensors. Thus, the micro-scale observations on contact forces tensors
and fabric tensor can be used to explain the macro-scale strength characteristics. The
deviatoric stress capacity of a granular assembly is dependent on the developed
anisotropic degree of contact normal and contact forces and relative principal
directions of stress tensor and microstructura tensors. The prediction of stress ratio
using stress-force-fabric relationship showed good agreement with the measured
values under both proportional loading and non-proportional loading paths
(Rothenburg and Bathurst, 1989, Sitharam et a., 2002, Li and Yu, 2011a,

Hosseininia, 2013, Li and Yu, 2013a).
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2.5 Summary

Besides the state parameter determining the granular material dilatancy
behaviour, anisotropy is another important parameter affecting the dilatancy rate.
The granular material anisotropy is normally categorised as inherent anisotropy and
induced anisotropy. The inherent anisotropy is formed with preferred direction of
particle long axes perpendicular to the sedimentary direction. The induced
anisotropy refers to the anisotropic microstructure induced whenever granular
material subjected to anisotropic loading. The granular material anisotropy is mainly

due to the internal fabric anisotropy.

The sand response is loading path dependent. Significant impact of b value
on the strength-deformation behaviour has been observed in laboratory true triaxial
tests. However, the true triaxia test does not purely show the effect of b value on
sand behaviour but combined with material anisotropy unless the specimen is
initially isotropic. The sand specimen prepared in laboratory is generally inherently
anisotropic. In considering material anisotropy, the three-dimensional failure surface
shows to be cross-anisotropic in the deviatoric stress plane. This clearly indicates
that the anisotropic material behaviour is loading direction dependent. The sand
performs alower strength and presents more contractive behaviour when sheared at a
greater inclination a . Significant non-coaxiality has been observed before failure.
Under non-proportional rotational shear with constant stress invariants, significant
volume contraction generates, even tested on dense sample. The flow deformation is

generaly non-coaxia during rotational shear.



Although the interesting observations have been widely reported in
experimental tests, the fundamental mechanism is not well understood. Alternatively,
the micromechanical investigation provides fundamental insights into the observed
complex behaviour. The DEM has ganed increasingly usage in multi-scale
investigation of granular material behaviour, in order to overcome the limitations of
experimental micromechanics with micro-scale information easily accessed. The
DEM simulations can reproduce qualitatively consistent results to a laboratory study,
though the idealised particle shape and limited particle numbers are used in
numerical simulation. However, most of DEM results studying material anisotropy
rest on the two-dimensional simulations, where the intermediate principa stress is
missing. This is probably due to the difficulty in realising the general loading paths
in three dimensions. Hence, it is necessary to conduct the three-dimensional DEM
simulation, at least for confirmation of two-dimensional results, and the effect of

intermediate principal stress can be examined.

The micro-scale information, e.g., contact normal vectors and contact force
vectors, is discrete data with directiona distribution. To apply the particle-scale
observations in continuum scale, the statistics of directional data is characterised by
the second-rank symmetric and deviatoric tensor. The contact norma vector

distribution is described by the fabric tensor D, . The normal and tangential contact

force vectors are characterised by the tensor Gi' and Gi‘j , respectively. This
definition will be followed in hereafter of this research. Starting from the
micromechanical stress tensor definition, the stress tensor can be further described as

a function of microstructrua fabric tensor and contact force tensors. This is termed
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as the stress-force-fabric (SFF) relationship. It is clear from the SFF that the
deviatoric stress ratio capacity of granular assembly is dependent on the anisotropic
degree and principa directions of the developed microstructural fabric tensor and
contact force tensors. Accordingly, through the SFF relations, the granular materia
macroscopic strength-deformation characteristics can be explained by examining the
microscopic contact force tensors and fabric tensor in the following research, under

both proportional 1oading and non-proportional loading conditions.
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Chapter 3 Discrete element method

3.1 Introduction of DEM

The continuum mechanics investigates the phenomenal behaviour of granular
material and propose constitutive models to fit the experimental observations by
introducing additional material constants, which sometimes have no clear physical
meanings. However, a granular assembly is discontinuous with discrete particles
inter-acting each other and the local contact behaviour is quite ssimple. Alternatively,
the distinct element method investigates granular material behaviour with particle
arrangement modelled explicitly. Although DEM simulates granular assembly with
finite number of particles and idealised particle shape, it can reproduce typical stress-
strain behaviour as observed for soil and provides insight of micro-scale particle
arrangement (Rothenburg and Bathurst, 1989, Thornton, 2000, Ng, 2005, Li and Yu,

2009).

The recent distinct element method (DEM) was first developed by Cundall
(1971) for analysis of rock mass problems and later applied to granular materials by
Cundall and Strack (1979). It has been extensively used to for multi-scale

investigation of granular material behaviour. The advantages of DEM include:
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Preparing initially isotropic and anisotropic samples with different initia
fabric easily and the same numerical sample can be tested repeatedly with
influence of sample variation reduced, which is difficult to prepare exactly
the same samplein laboratory.

Particle-scale information, difficult to be obtained in a real experiment, can
be accessed conveniently at any shearing level without disturbing sample,
such asindividual particle orientation, displacement, rotation, contact normal

direction, contact forceet d.

In this research, the commercial software, Particle Flow in Three Dimensions
(PFC3D) (Itasca, 1999), isused to carry out DEM simulations, which is user-friendly
and has been widely applied for multi-scale study by researchers (Li and Yu, 2009,

Yimsiri and Soga, 2010, Guo and Zhao, 2013).

3.2 Principles of PFC3D

The particle flow model is composed of distinct particles that displace
independent of one another and interact only at contacts or interfaces between the

particles. The PFC3D particle-flow model has the following assumptions:

1 The particles are treated asrigid bodies.
2. The contact points occur over avanishingly area.
3. The rigid particles can overlap one another at contact points based on a soft-

contact approach.
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4. The magnitude of the overlap is determined by the contact force via the
force-displacement law. However, al overlaps are small compared to particle
Sizes.

5. All particles are spherical except clump logic, which allows the creation of
arbitrary shape by several overlapping particles that behaves as a rigid body

with a deformable boundary.

In PFC3D, the ball and the wall are the two basic entities. Walls allow oneto
apply velocity boundary conditions to assemblies of balls for purposes of
compaction and confinement. The balls and walls interact with one another via the
forces that arise at contacts. PFC3D is suitable for modelling the stress-strain
response of a granular material, which deformation results primarily from the sliding

and rotation of therigid particles and the interlocking at particle interfaces.

3.2.1 Calculation cycle

The calculation cycle in PFC3D starts from the application of Newton’s
second law to each particle followed by a force-displacement law at contacts as
showed in Fig. 3.1. The motion of each particle is calculated from Newton’s second
law by a set of equilibrium equations of resultant force and moment at the mass
centre of each particle. However, the equations of motion are not satisfied for each
wall since the boundary walls are treated as no mass physics, which means forces
acting on awall do not influence its motion. Therefore, velocity for each wall can be

specified by the user for the purposes of compaction and confinement.
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Law of Motion Force-Displacement Law
(applied to each particle) (applied to each contact)
» resultant force + moment » relative motion

» constitutive law

contact forces

Fig. 3.1 Calculation cyclein PFC3D (Itasca, 1999)
For ce-displacement law:

The force-displacement law relates the relative displacement between two
entities at a contact to the contact force acting on the entities. The contact force
comprises of normal and shear components with respect to the contact plane as

F=F+F (31)

The normal contact force vector is determined by

F"=K'U™ (3.2
where K" is the secant normal contact stiffness determined by the defined contact

model, n' is unit normal defining contact plane and U™ is the overlap of contact

entities.

The normal stiffness K" is a secant modulus relating total displacement and

force while the shear dtiffness k® is a tangent modulus relating incremental
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displacement and force. Thus, the shear contact force is computed in an incremental

fashion. When a contact is formed, the total shear contact forceisinitialised to zero.

Each shear force increment resulting from relative shear displacement

increment DU;° at a contact is added to the current value, which can be described as:

{OF: = - kDU;

| (3.3
1R = (F)qe + DR

The resultant force and moment acting on the contact entities are then

updated to determine motion of particles.
L aw of motion:

The law of motion determines trandational velocity and rotational velocity

for asinglerigid particle from resultant force and moment, respectively.

The trandational motion is related to resultant force to be;

Fi = n'(&i B gi) (34
where F isthe resultant force, m is the total mass of the particle, & is acceleration

and g, the body force acceleration vector.

The equation of rotational motion can be written as.

M =H (3.5)

where M, isthe resultant moment and I-gli is the angular momentum of the particle.
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The equations of motion are integrated using a centred finite difference
procedure involving a timestep of Dt . The trandationa and rotational velocity

quantities are computed a mid-intervals of t + nDt/2 , while displacement,

acceleration and force quantities are computed at the primary intervalsof t + nDt .

3.2.2 M echanical timestep deter mination

The equations of motion expressed by Egs. (3.2) and (3.3) will remain stable
only if the timestep does not exceed a critical timestep, which is related to the
minimum eigenperiod of the total system. The critical timestep is estimated at the

start of each cycle.

The simplified estimation procedure considers a one-dimensional mass-
spring system described by a point mass, m, and spring stiffness, k. The motion of
point mass is governed by the differential equation: - kx =mX. The critica

timestep for this equation is given by Bathe and Wilson (1976):
toe = I, where T =2pm/k (3.6)
Y
where T isthe period of the system.

It can be extended to a system of infinite series of point masses and springs.
The mass, m, is replaced by inertia moment, | , for rotational motion of the same
system. Thus, the critical timestep for the generalised multiple mass-spring system

can be expressed as:
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(3.7)

where k™" and k™ are the translational and rotational stiffnesses respectively.

3.2.3 Damping

Energy supplied to the particle system dissipates through frictional sliding.
However, dliding mechanism may not be active in a contact and even if active, it
may not be sufficient to achieve a steady state within a reasonable calculation time.
This research focuses on the simulation of quasi-static granular material behaviour.
Therefore, the mechanical damping is introduced to dissipate energy by damping
particle motions. There are a few damping models available in PFC3D while the

local damping is employed in this study.

The loca damping adds a damping force to the equations of motion in Egs.

(3.4) and (3.5) . The damped equations of motion can be written as:

F+F'=mA;  i=1.6

_ 1n‘8& fori =1...3 (3.8)
™l . fori=4.6

where F, M., A are the generalised force, mass and acceleration components

respectively; F°isthe damping force

F'=-x|F|sign(V); i=1..6

[ if x > 0;
. i ) (3.9)
sign(x) = -1, ifx <0;

Lo ifx=0
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The magnitude of damping force is controlled by the damping coefficient x ,

of which default value 0.7 is used in all the simulations presented in this study.

The advantages of this form of damping are:

Only accelerating motion is damped and no erroneous damping force arise at
steady state motion.

The damping coefficient is non-dimensional.

The damping is equally applied to the whole assembly independent of local

frequency.

3.2.4 Contact model

The DEM defines the local contact behaviour without any further
assumptions. In PFC3D, the constitutive model acting at a particular contact without
bonding consists of two parts. a stiffness model and a dlip failure model. The
stiffness model defines the elastic relationship between normal contact force and
relative displacement at a contact. The slip model enforces a relation between normal
and tangential contact forces so that the two contacting bodies may dlip relative to

each other.

There are two kinds of contact-stiffness model available in PFC®, a linear
model and a simplified Hertz-Mindlin model. The Hertz-Mindlin model defines
more accurate contact mechanics behaviour with curvature surface from the well-
known elastic contact mechanics theory (Johnson, 1985) while it is less

computational efficiency for DEM simulation. On the other hand, although the linear
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contact model defines asimplified linear force-displacement law, it, macroscopically,
still can reproduce the elasto-plastic behaviour as observed for sand (Thornton,
2011). Accordingly, the linear contact model has been selected for all ssmulations in

this study.

The contact stiffnesses relate the contact forces and relative displacement in
the normal and shear directions as shown in Egs. (3.2) and (3.3). For linear contact

model, the contact normal secant stiffnessis given by

N k”k®
S KE (519
And the contact shear tangent stiffnessis given by
s k2k2
SR (1D

where the superscripts A and B denote the two contacting entities. For linear contact

model, the normal secant stiffnessis equal to the normal tangent stiffness.
3.3 Numerical sample specifications
3.3.1 Particle shape specification

In PFC®, the particle shape can be spherical or arbitrary shaped non-
spherical. Spherical particle is generated by directly specifying particle centre

position and radii of individua particle.

The clump logic is used to define non-spherical clump particles. A clump can

be formed by two or more overlapping spherical particles to serve as a rigid body
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without considering internal contact force arising from these balls itself. Particles
within a clump may overlap to any extent. Particles comprising the clump possess

the same motion, in which the clump particle will not break apart.

In this study, the non-spherical clump particle is specified by two identical

overlapping balls to form a clump-shaped particle. The shape of a clump particle is

described by the ratio R, = d/(2R) (e.g., Fig. 3.2). The value of R, varies from 1

(fully overlapped) to 2 (just in contact) and various ratio values indicate different

clump geometry. In thisstudy, theratio R, is selected to be equal to 1.7.

2R

Fig. 3.2 Geometry of non-spherical particle

3.3.2 Choice of sample size

The granular material is naturally heterogeneous. To investigate three-
dimensiona behaviour of granular material with DEM, the number of particles used
in numerical ssimulations should be sufficiently large so that the granular assembly
can serve as a representative volume element. However, the number of particles
cannot be infinitely large due to the limitation of computational power. Hence, it is

required to make a comprise choice of sample size with limited number of particles,
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which can still produce typical stress-strain behaviour within an acceptable

computation time.

Four samples with different size have been generated to study the influence
of sample size on the stress-strain behaviour. The initially isotropic samples were
prepared with similar initial void ratios. The particle size was randomly distributed

with radii between 0.3mm and 0.5mm. The particle density was set to be

r = 2700kg/m® . The linear contact model was employed with normal and

tangential stiffnesstobe k =k =1" 10° N/m. The simulation details are shown in

Table 3.1 and the detail of initial sample are summarised in Table 3.2.

Table 3.1 Simulation details

Particle solid density r 2700kg,/m’
Spherical particle radius r 0.3, 0.5gmm
Normal stiffness for ball and wall k =17 10°N/m
Tangentia stiffnessfor ball and wall k, =1" 10° N/m
Friction coefficient for ball and wall m=0.5
Time-step Dt 1.02° 10°s
Damping coefficient x 0.7
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Table 3.2 Sampleswith different size

No. of particles N Initial void ratio g,

512 0.601
1462 0.591
2948 0.606
5053 0.604

The triaxial compression tests have been conducted on four samples with

constant mean normal stress p = 500kPa. The stress-strain behaviour is plotted in

Fig. 3.3. It shows that the sample with 512 particles performs the highest peak stress
ratio and most dilative, followed by the sample with 1462 particles. And the other
two samples with more particles show a smaller peak stress ratio and less dilative.
The sample with 2948 particles gives amost identical behaviour to that of sample
with 5053 particles. It indicates that the granular assembly consisting of 2948
particles can produce acceptable simulation results and the stress-strain behaviour
would not change significantly by further increasing sample size. However, it till
may be better to use as many number of particles as possible under reasonable
computationa effort. Therefore, the sample size chosen in this research contains
number of particles around 5000 or larger, which should be enough to serve as a

representative volume for investigation of granular material behaviour.
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3.4 Parametersfor contact model

As introduced in Section 3.2.4, the linear contact model presents simple
constitutive relations to model the local contact behaviour. It only requires three
inputting parameters, normal contact stiffness, tangential contact stiffness and
friction coefficient, respectively. The frictional coefficient is selected to be m= 0.5,
as it is normaly used in DEM simulation of granular materials (Li and Yu, 2009,
Thornton and Zhang, 2010, Guo and Zhao, 2013). The selection of a realistic
stiffness differs from different DEM simulations. In this section, it introduces the

selection of realistic contact stiffness for numerical simulation.

3.4.1 Estimation of contact stiffnessby Hertz theory

For a granular assembly with average particle radius R and confining

pressure p, the average contact force F is estimated as the multiplication of pand

areaprojection A as.

F = pA» 4pR. (3.12)

The mechanical parameter E refers to Young’s modulus and n is Poisson’s
ratio. The average contact displacement under contact force F is determined

according to Hertz-Mindlin contact model (Johnson., 1985):

1
_@9F? &

&16RE™

(3.13)

where E” = Lz,d isthe normal contact displacement.
2(1- n9)
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Then, the contact normal stiffness is determined as the ratio of contact force

F over normal contact displacement d :

Il Q):\H

: (3.14)

« = F - B6RE"F
d & o

S

Substituting Eq. (3.12) into Eq.(3.14), resulting in the normal stiffness only a

function of confining pressure for a specific material with known specific average

particle size R and mechanical properties (E and n ):

1

_ E*2 63
kn = 4Réa39 -+ (3.15)
e 2

The sand is chemically composed of silicon dioxide in the form of quartz,
e.g., toyoura sand (90%). The mechanical Young’s modulus of quartz is around

70GPa. In DEM simulation, the particle size of numerical sample is randomly

distributed with diameter within g0.6,1gmm . By setting E = 70GPa,v = 0.3

R = 0.0004m , the relationship between normal contact stiffness and confining

pressure according to Eq. (3.15) isshown in Fig. 3.4.
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Fig. 3.4 Relations between contact stiffness and mean normal pressure

Fig. 3.4 suggests anormal stiffnessof 1~ 10°N / m at the confining pressure
of 500kPa. The influence of k_/k_ ratio on stress-strain response was presented by
Li (2006) and no significant effect of k /k ratio on materia behaviour was

observed if only k. /k * 0. For simplicity, taking the tangentia stiffness equal to

normal stiffness k. =k, =1" 10°N / m, the initialy isotropic dense and loose
samples were prepared and isotropically consolidated to the initial confining pressure
of p =10MPa. Then, undrained triaxial compression tests have been carried out on
two samples with initial void ratio 0.49 (dense) and 0.68 (loose), respectively. The
stress ratio reaches the critical value at e, = 50% as shown in Fig. 3.5(a). It can be
seen from Fig. 3.5(b) that the confining pressure increases for both samples at large
deformation. This is similar to the pore pressure build-up in laboratory undrained

tests. At e, = 70% , the confining pressure almost approaches constant value.
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Fig. 3.5 Simulation results of undrained shear (a) stress-strain response (b)

evolution of mean normal stress

Fig. 3.5(b) indicates that the samples approach critical state with deviatoric
strain larger than 70%, where the material would experience deformation failurein a
real laboratory test and the result is not reliable at such large deformation level. On

the other hand, it means the material is far from the critical state line at the initial
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state of confining pressure p = 10MPa. Assuming the critical state line is straight
for this particular material and the void ratio would not decrease significantly with
increasing confining pressure, the initial confining pressure should be increased to

prepare asample with initial state closer to the critical state, e.g., p = 30MPa.

3.4.2 Estimation of stiffness by dimensionless parameter

The confining pressure roughly performs a linear relationship with selected
stiffness under otherwise the same condition as linear contact model employed. To
obtain similar stress-strain behaviour a different confining pressures, the
dimensionless parameter p/k , the ratio of confining pressure over the contact
stiffness, should keep constant. Therefore, to perform the same or at least similar

stress-strain~ behaviour ~a p =500kPa as that obtained  with

k, =1" 10° N/m, p, = 30MPa, the stiffnessk, at p, = 500kPa should satisfy the

conditions: %2% . It suggests a stiffness value of k =1.6" 10° N/m
approximately.

3.4.3 Numerical smulations with different stiffnessk,,

The contact stiffness estimated from Hertz contact theory and dimensionless

estimation at p = 500kPa was considered as the upper bound and lower bound of
stiffness selection, respectively. Three samples were prepared by three different

stiffnesses, k, =2” 10* N/m, k =1" 10°N/m, k =1" 10° N/m, respectively.



The samples consisted of 5500 particles approximately. The three samples were

sheared under triaxial compression at constant mean normal stress p = 500kPa.

Table 3.3 makes a comparison of effect of the selected contact stiffness on
the secant modulus and the calculation speed. The desktop computer processor is

Intel (R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz, with 4.00 GB RAM. The G,

indicates the secant shear modulus at 50% of the peak stressratio as G, = (q /eq)

50
The sample with greatest contact stiffness with k =1" 10° N/m gives the highest

secant modulus, which is considerably larger than that of sand, normally

10MPa ~ 80MPa, e.g., the secant Y oung’s modulus of toyoura sand E;, = 40MPa

(Oda, 1972a), and unacceptable calculation time while the sample with the lowest
value of normal contact stiffness performs too soft (e.g., Fig. 3.6). However, the
sample with the middle value of contact stiffness produces reasonable secant

modulus in between and acceptable calculation time.

Accordingly, the choice of stiffnessis a compromise of values determined by

Hertz contact theory and dimensionless analysis, selecting k. =k, =1" 10° N/m.

The sample with stiffness of k =k, =1" 10° N/m produces typica stress-strain

behaviour of sand in drained triaxial compression test with constant confining

pressure p = 500kPa, i.e., Fig. 3.6. Therefore, the selected stiffness for numerical

simulation is k, = k, =1" 10> N/m. When the sample with the selected stiffness is
isotropically consolidated to mean normal stress of 500kPa, the mean contact force

is around 0.3N and the ratio of contact overlap Du over particle size D is
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= = 0.375% , which is sufficiently small to consider the

Du 0.3
D 1 10°° 0.0008

contact point as avanishingly area.

Table 3.3 Comparison of selected stiffness on ssimulations

Contact _ _ Secant .
_ Void ratio Time-step Cdlculation timeto
stiffness modulus 30% (days)
Dt e = o (days
k. =k, % G,, (MPa) !
1” 10° N/m 0.6 720 3.2° 10 7s > 30
1” 10° N/m 0.61 71 1° 10°%s 4
2”10 N/m 0.63 8 2.37 10 °%s 1
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3.5 Summary

The commercial software PFC3D has been employed for multi-scale study
on granular material behaviour. The PFC3D models the movement and interaction of
particles assembly. The behaviour at contacts is modelled by a soft-contact approach,
which allows vanishing small (e.g., a point) overlapping between rigid particles. The
particles shape can be spherical or arbitrary shaped non-spherical. For simulations
presented in this research, the radius of spherical particles consisting of numerical
sample is randomly distributed between 0.3mm and 0.5mm. For the non-spherical

clump particle shape, the value of R, (long axis of two overlapping spheres over ball
diameter) is 1.7. The size of a clump particle is determined by the replaced ball of

diameter randomly distributed among g0.6, 1.0gmm.

The linear contact model is assumed to describe the local contact behaviour.

The frictional coefficient is selected to be m = 0.5. The parametric study suggests
the stiffness to be k., = k, =1” 10° N/m to produce typical stress-strain behaviour
within an acceptable calculation period. By selecting the particle density as
r = 2700kg/m* , the mechanical time-step is Dt » 1" 10°s . The damping
coefficient employs the default value x = 0.7, unless otherwise stated. The sample

size consisting of over 3000 particles seems to produce typical stress-strain
behaviour and further increase of sample size would not affect material response
significantly. Hence, the sample with more than 3000 particles is sufficient to serve

as representative volume.
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Chapter 4 Virtual experiment set-up and testing

4.1 Introduction

The stress-strain behaviour of granular materia, e.g., sand, is loading path
and loading history dependent. To conduct multi-scale investigation with DEM
simulations, it is essential to realise various loading paths in DEM. DEM simulations
are reported in literature mimicing conventional laboratory tests to reproduce both
the stress conditions and boundary conditions, e.g., triaxial test on cylindrical sample
(Cui et a., 2007), true triaxial test on cubic sample (Thornton, 2000). DEM
simulations have also been reported to prepare and simulate elementary behaviour of
granular material with circular shaped boundary (Rothenburg and Bathurst, 1992,
Hosseininia, 2012). However, limited three-dimensional DEM simulations on
granular material elementary behaviour have been demonstrated with independent

control of both principal stresses magnitudes and their principal directions.

Li et al. (2013) proposed a virtual experiment technique to realise generd
loading path with DEM, both proportional and non-proportional, and it was
successfully implemented in 2D DEM simulations for monotonic shearing and

rotational shearing (Li and Yu, 2009, Li and Yu, 2010). The numerical simulations
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presented in this research implement the same technique proposed by Li et a. (2011)
in three-dimensional spaces within the commercial software PFC3D. Materia
responses undergoing various loading paths will be simulated, including both

proportional loading and non-proportional loading.
The key features of the developed numerical model can be summarised as.

1 The rigid massless boundary walls form a polyhedral shape with obtuse angle
between every two neighbouring walls to minimise arching effect and to
enhance specimen uniformity.

2. Finite strain definition is adopted for accurate description of volumetric strain.

3. The general loading path involving principal stress rotation can be realised by
control of boundary conditions, specifying translational and rotational

motions of boundary walls.

This chapter introduces the implementation of the numerical simulation
technique within PFC3D and presents a few examples to demonstrate the capability
of the proposed numerical model in studying granular material behaviour under

genera loading paths.

4.2 Virtual experiment set-up

In this research, the rigid massless walls are used to form the boundary of a
numerical sample. A set of infinite walls are specified to form a polyhedral-shaped
boundary, in order to enhance sample uniformity. The polyhedron is defined by only

two parameters n and R, where n is the number of sides of the top regular polygon
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wall surface and R is the radius of the polyhedron inscribed sphere. And n defines
the shape of the polyhedron and R controls the size of the polyhedron. More details
about the polyhedron definition and generation within PFC3D can be found in
appendix B.2. An example of such polyhedron with n =8 is shown in Fig. 4.1.
Further increase of n value would not affect smulation results significantly but

computational effort doesincrease dramatically.

Fig. 4.1 Polyhedral boundary shapewithn =8

The stress and strain tensors of the polyhedral sample are evaluated from the
forces acting on the boundary walls and rel ative displacement of the vertices forming
the boundary walls, respectively. The sign convention is taken to be consistent with
that defined for stress and strain in soil mechanics, where the positive mean normal

stress and volumetric strain increment indicate compression of specimen.

In testing soil, the loading path is usually controlled by stress invariants or
strain invariants instead of tensoriad component forms for investigating soil

behaviour, e.g., strength and volume change behaviour. To realise general loading
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path, the boundary wall motions are determined from the strain increment in
tensoria form in each loading cycle so that it is required to transform the stress or
strain tensor to its invariants form and compared to the specified loading path to
check if boundary conditions satisfied. Therefore, it isrequired to inter-transform the
stresg/strain state in tensorial form and in invariants form. The stress and strain
tensor determination and inter-transformation between stress and strain tensor and

their invariants are introduced in detail in Appendix B.3.

In this research, the stress invariants are described as mean normal stress p,
intermediate principal stress ratio b and deviatoric stress g, which is determined

from the three principal stressess . (i =12, 3) asfollows:

]
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The stress ratio is defined as h = g/p. The strain invariants include the

volumetric strain e, , deviatoric strain e, and intermediate principal strain ratio b,,

which are expressed from three principal strains e, (i =1, 2,3) as
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It is worth noting that the volumetric strain definition in finite strain
definition is different from the summation of the three principal strains given in the
infinitesimal deformation theory. The latter induces a significant error when the
deformation is finite and large. The above strain and strain invariants definition are

used in this research hereafter.

In laboratory soil testing, the loading control can be classified to be strain
controlled; stress controlled and mixed control boundary conditions. In numerical
simulations, however, the loading is applied by specifying boundary walls motions
to achieve an accurate strain increment and it is inherently strain controlled.
Therefore, a strain controlled loading path can be realised directly by specifying
trandational and rotational velocities to achieve a target strain increment while the
stress controlled loading requires a servo-control mechanism to achieve a target
stress increment. In view that the boundary walls work as an integrated set to impose
the desired loading, the movements of boundary walls are determined synchronically
and are calculated based on the specified change in a unified way. More details can
be found in Appendix B.4.1 for strain-controlled loading conditions and in Appendix

B.4.2 for stress-controlled loading conditions.

In numerical simulations, the target boundary conditions and static
equilibrium state can not be exactly satisfied. Therefore, the numerical test control is
set to monitor the sample stress/strain conditions. This is introduced in detail in

Appendix B.4.3.
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4.3 Sample preparation method

For numerical simulations, the particle and wall properties are summarised in

detail in Table 4.1. The initidly isotropic samples are prepared with spherical
particles used, of which radius r israndomly distributed within g0.3, 0.5gmm. The
linear contact model is employed and the contact stiffness is chosen to be
k =k, =1"10°N/m. Those simulations parameter values are suitable for all

n S

simulations presented throughout the thesis unless otherwise stated.

Table4.1 Numerical smulation details

Particle solid density r 2700 kg,/m®
Spherical particle radius r €0.3,0.5gmm
Normal stiffness for ball and wall k =17 10°N/m
Tangential stiffness for ball and wall k. =1" 10° N/m
Friction coefficient for ball and wall m=0.5
Time-step Dt 1.02° 10°s
Damping coefficient x 0.7

4.3.1 Radius expansion for isotropic sample preparation

The radius expansion method is used to generate initially isotropic samples

with varying initia void ratios. The procedures of sample preparation are as follows:
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1. A set of infinite boundary walls are generated to form the closed polyhedron
boundary shape as introduced in Appendix B.2. The inputting parameters n
and R are chosen to be 8 and 0.01m, respectively.

2. The number of spherical particles is determined based on the target void ratio

e, and particle size distribution. The particles are generated within the

volume enclosed by the polyhedron boundary walls and are positioned
randomly in the specific volume with radius reduced by 1.5 times of their
normal value so that no contact forces arised between any two particles (e.g.,
Fig. 4.2(a)).

3. After dl particles are positioned, the particles radii are restored. Simulations
are carried out to achieve sample equilibrium. At this stage, the initial
pressure p, is controlled and different values of friction coefficient m, are set
for preparing samples with various initial void ratios (e.g., Fig. 4.2(b)). If the
non-spherical clump particles are used, then the individual spherical particle
is replaced by two identical overlapping balls to serve as a clump particle
(e.g., Fig. 3.2). Then, smulations are carried out to reach equilibrium (e.g.,
Fig. 4.2(c)). Otherwise, skip to step 4.

4. The friction coefficient m is then restored to 0.5 and the sample is

isotropically consolidated to the target confining pressure of 500kPa.
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(a) Ball particles with reduced radii (a) Restored ball radii (c} Ball replaced by clump

Fig. 4.2 Isotropic sample preparation by the radius expansion method

The radius expansion method of sample preparation is advantageous to the
isotropic compression method of which full sized particles are generated and the
boundary walls moves inward till the target confining pressure or target void ratio
achieved. The uniformity would not be achieved as the presence of large pores in
centra part of sample due to boundary effect for wall-moving isotropic compression
method, even worse for generating loose sample (Jiang et a., 2003). On the other
hand, the radius expansion method results in more uniform specimens with less

computational effort to reach equilibrium.

The initial confining pressure p, obtained after the particle radii restored is
mainly dependent on the friction coefficient m, and target void ratio g, during the
generation process. However, the final void ratio e, obtained after the isotropic

consolidation to a target mean normal stress is only dependent on the friction

coefficient m,. Fig. 4.3 shows the influence of m, on the obtained void retio e,
after isotropic consolidation to p = 500kPa. It can be seen that the void ratio e,

initially increases with a greater m, and then keeps steady when m, 3 0.5. Hence,
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the initially isotropic samples with three different void ratios can be prepared by

specifying different m, values(0 £ m, £ 0.5), respectively.
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Fig. 4.3 Variation of void ratio ewith m,

Three initially isotropic samples consisting of spherical particles were
prepared using this method. After the required particle radius was restored and static
equilibrium condition was achieved, during which the frictional coefficients were

kept unchanged as m, . Then, the frictional coefficient was restored to their normal
value, m= 0.5, and the samples were isotropically consolidated to the confining
pressure of 500kPa, where the void ratio g, was recorded as the initial void ratio of

the prepared sample. The number of particles within three samples was more than
ten thousand, which was sufficient to represent as a representative volume for
numerical simulation. Information on the prepared initially isotropic samples has
been given in Table 4.2. The samples are labelled by a string of characters for simple

identification throughout the thesis, where the first letter *S’ indicates that the sample
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consists of spherical particles; the second and third characters ‘RE’ represents the
Radius Expansion method for preparing initially isotropic sample; and the fourth
letters ‘D’, ‘M’, ‘L’ refer to the sample termed as dense, medium and loose,
respectively. The last two characters ‘TT’ indicate that the sample is going to be
simulated under True Triaxia loading in the following. A detailed introduction of

the entire numerical sample label in this research can be found in Appendix C.

Table 4.2 Details of prepared isotropic samples of spherical particles

Sample _ _
Voidratio, & | No. of Target
preparation| m, | & Sample |abel
(p = 500kPa) | particles | loading path

method
Radius 0.1 |0.64| 0.64 (Dense) 11090 SRED TT
Truetriaxial
Expansion | 0.3 |0.74| 0.73 (Medium) | 10446 SREM_TT
(TT)
(RE) o5 079 078
5 0. .78 (Loose) | 10151 SREL_TT

4.3.2 Gravitational deposition method

The gravitational deposition method is used to prepare initially anisotropic
sample, similar to the process of granular assembly, e.g. sand, formed naturally by

physical sedimentation under gravity force. It consists of following procedures:

1. Create a box with a height 8 times of the target specimen height, which has
the same mechanical properties with particles. Then, randomly generate

spherical particles within the box without contact force arising between any
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two particles and friction coefficient m, is specified to each particle (e.g., Fig.
4.4(a)). The number of particles generated is nearly 3 times of target sample
size. At this stage, the void ratio of box sampleiscloseto 8.

2. If non-spherica particles are used, the spherica particle is then replaced by
two identical overlapping balls to serve as a clump particle, which has the
same volume to the replaced spherical particle and the orientations of non-
spherical particles are randomly distributed (e.g., Fig. 4.4(b)). Otherwise, skip
to step 3.

3. Gravitational acceleration field g = - 100m/s? is assigned to each particle
and damping coefficient x is modified to a smaller value x = 0.2, to save
computational time. Then, carry out numerical simulation to allow particles
faling freely under gravitational force to achieve a static equilibrium state,
(e.g., Fig. 4.4(c)).

4. Delete the box boundary walls created in step 1 and generate walls to form the
polyhedral boundary shape (e.g., marked by yellow line in Fig. 4.4(d)). Then,
delete particles positioned outside of the polyhedral boundary.

5. Finaly, remove the gravitational field and restore damping coefficient to 0.7.
The inter-particle friction coefficient is then reset to representative value

m= 0.5. Then, carry out ssmulation to achieve equilibrium state, (e.g., Fig.
4.4(e)). At this stage, the sample has an initial pressure p,. The sample is

finally isotropically consolidated to target mean normal stress of 500kPa.

Due to afew particles deleted in step 4, the number of particles generated in

step 1 islarger than the target sample size. Though the gravitational field is enlarged
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to be g = - 100m/s’ to accelerate the deposition process, it does not affect the
prepared sample, e.g., initia void ratio, fabric anisotropy, significantly. The
gravitational deposition method would generate initially anisotropic sample with
more contacts oriented in the vertical deposition direction due to gravitational force.
Similar to that of the radius expansion method, the initially anisotropic samples with

various initial void ratios g can be achieved by specifying different frictional

coefficient m,, asmaller m, leadsto alower initia void ratio €, .

(b) (©)

Fig. 4.4 Sample preparation by gravitational deposition method (a) ball
generation (b) ball replaced by clump particle (c) gravitational deposition (d)
polyhedron boundary generation (€) isotr opic consolidation
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4.4 Typical ssimulation results

This section presents the detailed realisation of three particular loading paths,
which represent the strain-controlled, stress-controlled and mixed-controlled
boundary conditions, also including proportional and non-proportiona |oading.
Moreover, typical simulation results are illustrated to demonstrate the applicability
of the proposed DEM model for multi-scale investigating granular material

behaviour under general stress paths.

4.4.1 Undrained ssimple shear

In soil testing, the laboratory Cambridge-type simple shear test apparatus has
been designed for widely use in obtaining soil parameters (Roscoe et a., 1967,
Budhu and Britto, 1987). The simple shear configuration is illustrated in Fig. 4.5. It
illustrates that the volumetric strain is equal to the vertical strain. The ssmple shear
test is either drained with constant vertical normal stress or undrained with zero
vertical strain. In undrained simple shearing, only the shear strain component e,
increases continuously while all the other strain components are kept zero. It is
purely strain-controlled non-proportiona loading conditions. In each loading step,

the strain increment De,, is applied by specifying boundary walls velocities using

Egs. (30) and (31) (more details in appendix B.4.1).
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Fig. 4.5 Configuration of simple shear boundary conditions

The numerical undrained simple shear tests have been simulated under
constant volume e, = 0. The shear strain increment e,, is applied by rigid wall
rotations about its centre. Similar scheme of DEM simulation of drained simple

shear can be found in literatures (Thornton and Zhang, 2006, Langston et al., 2013).

The numerical ssimulations have been conducted on samples with various initia
K, =S, /S, conditions, K, =0.5,1.0,2.0 respectively. The sample of initia
K, = listheinitialy isotropic dense sample SRED_TT. For the other two samples
with initial K, * 1 conditions, the initially isotropic dense sample SRED_TT s
loaded at constant s ,, = 500kPa and e, =0, by increasing s , or decreasing s ,
tos,, =1000kPa or s, = 250kPa, corresponding to initial K, = 0.5 and K, = 2,

respectively. The pre-loading process is the plane strain loading path with mixed
controlled boundary conditions. The prepared three samples for undrained simple
shear are labelled as SRED_PSK05_SS, SRED PSK10 SS and SRED PSK20 SS,
with initial K, being 0.5, 1.0 and 2.0 respectively. The prepared samples for simple
shear simulations are shown in Table 4.3. More details about the sample label refer

to Appendix C.
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Table 4.3 Samples of spherical particlesfor undrained simple shear

. . . N i
Sample preparation Ko Void ratio . umer! ca Sample label
vaue simulations
0.5 g = 0.62 SRED_PSKO05_SS
Pre-shear Undrained
sample | e | 10 | e =0.64 | smpleshear | SRED_PSK10_SS
SRED _TT .
- Strain (PS) (SS)
2.0 e, = 0.65 SRED PSK20 SS

Fig. 4.6 shows the evolution of the

volumetric strain (e, ) during the

designed undrained simple shear loading. It is clear that the target loading path has

been well maintained with zero dilation against increasing shear strain. The stress

paths in simple shear are shown in Fig. 4.7, which is consistent to the laboratory

undrained simple test (Yoshimine et a., 1998). It turns out that the simulations can

reproduce the undrained behaviour of sand qualitatively.
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Fig. 4.6 Evolution of volumetric strain in undrained simple shear
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Fig. 4.7 Stress pathsin undrained simple shear with various K, conditions
The evolution of ratio of horizontal stress over vertical stressisillustrated in
Fig. 4.8. Initialy, it starts from different values, corresponding to various initia K,
conditions. Upon shearing, the value of s /s, approaches the same value, i.e,
S /S » » 0.9, at large deformation, irrespective of initial K, values.
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Fig. 4.8 Stress-strain behaviour in undrained simple shear



If one intends to compare simple shear results to other test results, i.e., plane
strain test, knowledge of the complete stress state will be required. It was found that
the post-failure ssmple shear behaviour was similar to the plane strain test under
similar stress conditions (b value and a ) (Pradhan et a., 1988, Yoshimine et al.,
1998). Fig. 4.9 demonstrates the evolution of b value during simple shear. Initially,

the b value is greater in the sample of larger K, value. It may be seen that the b
value reaches the same value at large deformation, irrespective of initial K, values,

and remains constant for further shearing. The ultimate value is around b » 0.32.
The ultimate b value was found to be 0.25 in experimental undrained simple shear,
regardless of material initial void ratio and consolidation stress ratios (Pradhan et al.,

1988, Yoshimine et a., 1998).
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Fig. 4.9 Evolution of b value during simple shear under varyingintial K,

The rotation of the maor principal stress direction during simple shear is
illustrated in Fig. 4.10. The solid straight line without symbol represents the applied

principal strain increment direction g, , which is always in the x-z plane and keeps
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an angle of 45 to the vertica z-axis. The maor principal stress direction is
represented by the angle a , which is the direction of major principal stress direction
vector projected in the x-z plane relative to the vertical z-axis direction. Initialy, for

sample with initial K, = 0.5, the mgjor principal stress direction is in the vertical
direction (a =0"). For sample with initid K, =2 , the mgjor principa stress
direction is in the horizontal direction (a = 90°). For the initialy isotropic sample
with K, =1, the major principal stress direction is not defined. Upon shearing, it
can be seen from the figure that the principal stress direction is generally coaxial
with the strain increment direction (a » g,, = 45’) when K, =1. When K, * 1,

significant degree of non-coaxiality is observed and the mgor principa stress
directions approach the strain increment direction gradually as shearing continues.
After 15% shear strain, the degree of non-coaxiality becomes quite small and the

general coaxial behaviours are observed, irrespective of initial K. It is noted that the

ultimate principa stress direction is a » 41.4°, deviating a few degrees from the

strain increment direction g,, =45’ . This is consistent to the experimental

observation of the ultimate principal stress direction a = 40° — 45° in undrained
simple shear regardless of initial stress conditions (Yoshimine et a., 1998). The
principal stress rotation has also been reported in drained |aboratory simple shear test
and DEM simulations (Roscoe et al., 1967, Thornton and Zhang, 2006, Langston et
al., 2013). However, the mechanism of the principal stress rotation is not well

explained in their numerical work.
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Fig. 4.10 Rotation of major principal stressdirection in undrained simple shear
4.4.2 Drained truetriaxial test

4.4.2.1 Simulation details

The numerical experiment model can control the individual stress invariant

independently, both magnitudes and principal directions. The drained true triaxial
loading path keeps stress invariants p,b and principal stress directions n’
unchanged while deviatoric strain e, continuously increases. It is mixed controlled

boundary, with partially stress-controlled and partialy strain-controlled. It simulates
the laboratory true triaxial test, with loading path shown in Fig. 4.11. It is worth

noting that there is no restriction of the principal stress direction being vertical only.
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Fig. 4.11 lllustration of drained truetriaxial loading path

During numerical implementation, the target stress state sitj can be

determined by transforming stress invariants p, b, g into stress tensor as introduced

in Appendix B.3.2, where q is the current deviatoric stress of the sample. The
current stress state s, can be determined from contact forces acting on boundary

walls as expressed in Eq. (20) in Appendix B.3.2. Accordingly, the stress increment

is the difference between the current stress state and the target stress state,

Then, the strain increment De; can be estimated according to Eq. (32),
shown in appendix B.4.2. The strain increment can be expressed as its invariants
De,, De,, by, and principal strain directions n>. If the boundary conditions are not
satisfied, the strain increment De; is applied till target stress boundary conditions

achieved through servo-control mechanism.
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Otherwise if the boundary conditions are satisfied, the modified deviatoric

strain increment De(;n is applied by introducing an additional deviatoric strain

increment De'™ as De; - De, + De'™ with other strain increment invariant
De,, b, and n™ unchanged. Then, a modified strain increment tensor De™ can be

De .
b, ,n> into strain

determined by transformation of the strain invariants De ,De™h

tensor De;" as introduced in appendix B.3.3. The strain increment De;" is applied to

boundary walls by specifying velocities according to Egs. (30) and (31).

4.4.2.2 Truetriaxial smulation results

The drained true triaxial simulations have been conducted on the initialy
isotropic dense sample SRED_TT and loose sample SREL_TT to demonstrate the
validity of the numerical simulation technique. The information of the initially
isotropic samples can be found in Table 4.2. The drained true triaxial simulations

controls constant mean normal stress p = 500kPa and intermediate stress ratio
b = 0.5, with fixed mgor principal stress direction in the vertical direction. Only

the deviatoric strain e, increases continuously.

Fig. 4.12 presents of the evolution of stress invariants during true triaxia
simulation. It shows that the target mean normal stress and b value have been
accurately controlled at constant values. This clearly indicates that the required

mixed-controlled true triaxial loading path is satisfied.
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Fig. 4.12 Evolution of target stressinvariantsduring truetriaxial smulation

The typical stress-strain behaviour is shown in Fig. 4.13. The numerical
simulation results show qualitatively good agreement with the laboratory
observations on sand behaviour (Verdugo and Ishihara, 1996). When tested under
otherwise the same boundary conditions, the dense sample SRED_TT performs
strain hardening and softening behaviour while the loose sample SREL_TT hardens
continuously. The dense sample SRED_TT dilates with increasing void ratio and the
loose sample SREL_TT contracts with decreasing void ratio. At large deformation,
both samples would eventually approach the same state with similar stress ratios and
void ratios. It indicates that the DEM can be employed for multi-scale investigation

of the void ratio effect on dilatancy behaviour of granular material.
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Fig. 4.13 Drained truetriaxial smulations (b=0.5) on isotropic dense and loose
samples of spherical particles (a) stress-strain (b) volume change
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4.4.3 Drained rotational shear

4.4.3.1 Smulation procedures

The stress path involving principal stress rotation can be in many different
ways. To study the granular material response under pure principal stress rotation,
however, one stress path presented in this study is to mimic the pure stress rotation
in a laboratory test using hollow cylinder apparatus. It is a purely stress-controlled
loading path. The stress path in the deviatoric planeisacircle (e.g., Fig. 4.14) dueto
constant magnitudes of stress invariants and the stress vector from the origin point

has a angle of 2a , twice the angle of the major principal stresss, to the vertical

direction. Limited DEM results employing this kind of non-proportional loading path
have been reported. The numerical drained rotational shear has been investigated in
two-dimensional conditions (Li and Yu, 2010) , which uses the same virtua
experiment method as it is followed in this research. However, the intermediate
principal stress is missing in 2D simulation and it is necessary to conduct the 3D

simulations, at least, for confirmation of 2D observations.
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Fig. 4.14 Stress pathsin X-Y stress space for rotational shear (after Nakata et
al., 1998)

The principal stress rotational shear is purely stress controlled loading path
with magnitudes of stress invariants p', h', b' constant while the major principal

stress directions rotates continuously in the x-z plane as shown in Fig. 4.15.

Meanwhile, the intermediate principal stress direction is fixed along the y-axis. The
angle a is the target major principal stress direction n; relative to the positive z-

axis direction. The target principal stresses direction vectors are expressed in a
matrix with the first row and last row corresponding to the major principa stress

direction vector and the minor principal stress direction vector:
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Then, the target stress tensor sfj can be caculated from its invariants as
introduced in appendix B.3.2. A stressincrement tensor Ds; can then be determined

as the difference of the target stress tensor and current stress tensor s determined

from Eqg. (20), D:sij = Sfj - S;;. Accordingly, a strain increment tensor De; can be
estimated by Eq. (32) in Appendix B.4.2. This strain increment is applied to the
sample by specifying translational and rotational velocities of boundary walls
according to Egs. (30) and (31), as shown in appendix B.4.1. As the applied strain
increment does not necessarily lead to the required stress increment Ds ; , the servo-
control mechanism is employed till the target boundary stress conditions satisfied.
After the boundary conditions have been satisfied, an increment of the principal
stress direction is applied by specifying a = a + Da , where the maor principal
stress direction increment is small Da=3 " 10* in one calculation cycle. By repest

doing so, the continuous principal stress direction rotation can be realised.
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Fig. 4.15 [llustration of principal stressrotation in Cartesian system
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Before conducting rotational shearing, the initial sample has to be
monotonically sheared to the target boundary stress conditions p', h',b'. This
drained pre-shearing process keeps constant p, b and fixed maor principal stress

direction in the vertical z-axis. The deviatoric strain e, increasestill the target stress

ratio h' has been reached. The initialy isotropic samples SRED TT and SREL_TT
have been pre-sheared to h = 0.5 at constant p = 500kPa, b = 0.5, to study the
effect of void ratio on material behaviour under rotational shear. The response of the
samples to the pre-shearing loading path can be found in Fig. 4.13. When pre-
sheared to h = 0.5, the sample SRED_TT dilates with slightly increasing void ratio
and the sample SREL_TT contracts with void ratio decreased. The void ratio of the
pre-sheared samples at h = 0.5 is summarised in Table 4.4. And the samples are
labelled as ‘SRED_BO05Y05 RS’ and ‘SRED_BO5Y05 RS, referring to the dense
and loose samples of spherical particles for rotational shear, respectively. The

meaning of those label characters can be found in Appendix C.

Table4.4 Samplesinformation for rotational shear

Initial sample Pre-loading Sample |abel Voidratio g,
SRED_TT True h =0.5 | SRED_BO5Y05_RS 0.64
triaxial
SREL_TT (b =0.5) h =0.5 | SREL_BO5Y05 RS 0.75

The evolution of stress invariants and principal stress direction during
rotational shear is plotted in Fig. 4.16. It can be found that the mean normal stress,
deviatoric stress and b value have been well kept at constant target values (e.g., Fig.
4.16(a)) and the principal stress direction a varies periodically with one cycle
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relating to 180° rotation of the major principal stress direction (e.g., Fig. 4.16(b)).

Consequently, it shows the desired stress paths have been well maintained during

rotational shear.
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Fig. 4.17(a) plots the variations of stress components of the sample
SRED BO5Y05 RS during pure principal stress rotation. It shows that the stress

components s, ,s,,,S,, varies periodicaly. The stress components along the
direction of y-axis keep constant with s ~=500kPa,s, =s =0 , which
demonstrates that the intermediate principal stress direction has been well
maintained in the target direction of y-axis. The stress trgjectory in the deviatoric

planeisacircle asshown in Fig. 4.17(b). Similar variations of stress components can

be found in ahollow cylinder rotational shear test (Tong et a., 2010, Y ang, 2013).

The principal directions of stress and strain increment in the deviatoric plane
areillustrated in Fig. 4.18. As the stress path is a circle, the vector connecting from
the centre to any point on the circle represents the stress vector. The principal

directions of stress vector and strain increment vector are described by the angle a

and gy, , respectively. For the second order symmetric strain increment tensor De,,
which is determined within a small increment of the principal stress direction, i.e.,
Da » 2°, the principal direction vector n_, of the strain increment tensor can be
calculated as introduced in appendix B.3.1. Then the angle g, of the principal strain

increment direction vector n, relative to the vertical z-axis can be determined as:

O, = tan Q—X; (4.4)

where n_, n, are the components of the vector n, .
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Fig. 4.18 Illustration of principal directions

4.4.3.2 Material response

Fig. 4.19 shows the strain trgectory of dense sample SRED B0O5Y05 RS
and loose sample SREL_BO5Y05 RS in rotationa shear under constant stress
invariants p = 500kPa, b = 0.5,h = 0.5. Significant deformation can be observed
on two samples, even though the magnitudes of stress invariants are kept constant.
This is qualitatively consistent to the laboratory observations on sand response to
rotational shear (Miura et a., 1986, Nakata et al., 1998, Tong et a., 2010). It is
observed that, unlike the circle of stress trgectory, the strain paths are spiral. The
size of the circular strain path becomes smaller with increasing number of cycles for
loose sample. After alarge number of cycles, the strain paths stabilise to be a circle.
The difference of strain trgjectory for dense and loose samples is that the size of the
strain path is larger for sample SREL_BO5Y05 RS in the first few cycles. Thisis
consistent with the two-dimensional DEM observations on the effect of void ratio on

size of strain trgjectory under rotational shear (Li and Yu, 2010).
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Though the intermediate stress is kept constant, both the magnitude and

principal direction, significant intermediate strain e has been generated for both
samples during rotational shear as shown in Fig. 4.20. The positive strain e

indicates contraction along the y-direction in order to maintain constant intermediate

stress. The strain e, is much larger in the loose sample than that in the dense

sample. The intermediate strain contraction is reported as positive radial strain

generated in laboratory drained hollow cylinder test (Y ang, 2013).
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Fig. 4.20 Intermediate strain response

The volume change behaviour is presented in Fig. 4.21 in terms of void ratio
variation. The increase of void ratio refers to volume dilation and decrease of void
ratio indicates volumetric contraction. It can be seen that the void ratio of dense
sample remains constant during rotational shear. For the loose sample, however, the
void ratio decreases significantly with increasing number of cycles. And most of
volume contraction is generated in the first few cycles. It is interesting to observe
that the materials approach the same ultimate state to achieve similar void ratio
under rotational shear, irrespective of initial void ratios. This confirms the 2D DEM

results of the same ultimate void ratio obtained in rotational shear (Li and Y u, 2010).
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Fig. 4.21 Evolution of void ratio during rotational shear

The degree of non-coaxiality between the major principal stress direction and

the major principal strain increment direction is plotted in Fig. 4.22. The total strain

increment &, is obtained within a small increment of stress direction with Da » 1.

The strain increment direction angle g, is determined according to Eq. (4.4). It is
clear from the figure that the degree of non-coaxiality g,, - a generally decreases

dlightly for the dense sample and it increases in the first a few number of cycles for
the loose sample. It shows that the degree of non-coaxidlity is dlightly larger in the
dense sample than in the loose sample while the gap becomes smaller with
increasing number of cycles. Thisissimilar to the 2D DEM observations (Li and Y u,
2010). The non-coaxia behaviour has also been observed on sand materials under

rotational shear (Miuraet a., 1986, Gutierrez et al., 1991).
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4.5 Summary

This chapter presents a standard numerical technique to conduct virtual
experiments on the elementary behaviour of granular materials using the discrete
element method (DEM). Various loading paths can be applied using the proposed
numerical model. In particular, the importance of accurate volume measurement and
control on the test material behaviour has been emphasized. The error in evauating
the volumetric strain by summing up the norma components of the engineering
strain could be significant, which would lead to dramatic change in pore water
pressure under undrained conditions. Hence, the adoption of finite strain definition
and evaluating volumetric strain based on the Jacobian determinant are necessary.
The Cauchy stress and the Biot strain have been used to characterise the stress and

strain state of the sample. Based on the assumption of a uniform field, their
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expressions in terms of the particle interactions with the boundary walls and the
relative displacements between the boundaries vertices have been derived and

provided as Egs. (20) and (21).

The numerical technique applies loading on a granular assembly through
boundary consisting of rigid mass-less walls. It is suggested that the boundary walls
form a polyhedra shape with the angle between two neighbouring walls being
obtuse to enhance sample uniformity. Such a loading application scheme is
inherently strain-controlled. In the simulation of the material elementary behaviour,
the boundary motions are monitored in synchronized way. Strain-controlled
boundary is achieved by directly specifying the trandational and rotational velocities
of the walls. A servo-control mechanism of stress boundary conditions is devel oped
and can be combined with strain boundary conditions to achieve mixed loading
conditions. The developed numerical technique is advantageous in applying general
loading paths and various loading conditions, including fully strain controlled, fully
stress controlled and partially strain controlled and partialy stress controlled.
Loading paths are described in terms of the changes in the invariants and the

principal directions of the stress and strain tensors.

The proposed agorithm has been implemented in three-dimensional discrete
element codes. The results of numerical ssimulations of undrained simple shear, true
triaxial simulation and rotational shear, typical loading paths in laboratory tests, have
been presented. The observation on the principal stress rotation in simple shear and
the significant volume contraction and deformation non-coaxiality during continuous

major principal stress rotation are in qualitative accordance with the laboratory

105



findings over various sand. This qualitatively supports the application of the discrete
element method (DEM) and confirms the capability of the developed numerical
technique as a useful tool to facilitate multi-scale investigations on the constitutive

theories of granular materials.
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Chapter 5 Influence of intermediate principal

stress on granular material behaviour

5.1 Introduction

In engineering practice, the magnitudes of three principal stresses are
generally non-equal (s, 3 s, ® s,). The relative magnitude of the intermediate
principal stress s, plays significant influence on strength of granular material. This
chapter simulates the behaviour of initially isotropic samples, eliminating the effects
of initial anisotropy in a real laboratory test. Spherical particles are used in this

chapter. Special focus is placed on the influence of b = (s, - s,)/(s, - s,)value

on the strength characteristics of granular material.

Based on the macro-micro relation, the stress tensor is defined on the micro-
scale contact force vectors and branch vectors, as shown in Eq. (2.17). The
distribution of contact force vector and contact normal vector at discrete contact
points can be statistically characterised by directiona tensors. In this chapter, the
microscopic information on internal structure and particle interaction are

characterised by the second-order contact normal fabric tensor D, , normal contact
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force tensor Gf and tangential contact force tensor G; , which is informative

sufficiently for micro-scale analysis without considering higher-order (e.g., fourth-
order) tensors. The microstructural tensors are calculated from the average of
discrete vectors at contacts. More details on the tensors determination can be found
in Section 2.4. Together with the stress-force-fabric relationships in Eg. (2.18), the
macroscopic strength-deformation characteristics will be explained in terms of the

mi croscopic observations.

5.2 Numerical samplesand test procedures

5.2.1 Testing materials

In numerical simulations, the samples consist of rigid spherical particles, of

which radius is randomly distributed within €0.3,0.5gmm . The solid particle

density is selected to be r = 2700kg/m* . The linear contact model is used to

describe the local contact behaviour. The particle-wall properties and parameters for
the contact model are summarised in detail in Table 4.1. The initialy isotropic
samples with three varying initial void ratios were prepared by the radius expansion
method, which was introduced in detail in Section 4.3.1. The same samples have
been used for numerical simulation as presented in Section 4.4. The initial samples

information can be found in Table 4.2.
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5.2.2 Simulation procedures

The drained true triaxial loading path keeps stress invariants p, b and
principal stress directions n; unchanged while deviatoric strain e, continuously

increases. It is mixed controlled boundary in mimicing the laboratory true triaxia
test. More numerical implementation details have been introduced in Section 4.4.2.
In this chapter, the true triaxial simulations keep constant p = 500kPa. The b value
Is constant in individual simulation. The major principal stress direction is fixed
along the vertical z-axis and the intermediate principal stress direction is fixed along

the y-axis.

The drained triaxial compression (b = 0) tests have been carried out in three
samples to investigate the influence of initial void ratios on material behaviour. The
true triaxial simulation results presented in Section 4.4.2 corresponds to b = 0.5.
The samples SRED _TT and SREL_TT are aso tested undergoing true triaxial
shearing paths (0 £ b £ 1) to investigate the effect of bvaue on granular materia
behaviour with varying b value from 0 to 1 with 0.2 intervals. The numerical

simulation planisshownin Table 5.1.

Table5.1 Truetriaxial smulations plan on initially isotropic samples

Truetriaxia Initial isotropic sample of spherical particles ( p = 500kPa)
simulations SRED_TT SREM_TT SREL_TT
O£bEL, O£bE1],
b value b=0
0.2 interva 0.2 interval
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5.3 Effect of void ratio on material response

5.3.1 Drained material behaviour

The drained triaxial compression simulations have been carried out on three
samples of various initial void ratios. The stress-strain behaviour of initially isotropic
samples is plotted in Fig. 5.1(a). The strain hardening behaviour has been observed
in the dense sample SRED_TT, with a peak stress ratio obtained and followed by
strain softening behaviour. The stress ratio increases quickly and then remains
constant for the medium sample SREM_TT. The loose sample SREL_TT exhibits
continuous strain hardening behaviour. Upon the same shearing strain, eg.,

e, = 3%, ahigher stressratio is observed in sample with smaller initial void ratio,

indicating the material performing stronger at a lower initia void ratio. At large

shear strain level with e, up to 40%, the stress ratio reaches the same values for all

the three samples and remains constant for further shearing, which is termed as

critical stressratio h, = 0.79 according to the critical state soil mechanics definition.

The corresponding volumetric strain behaviour is shown in Fig. 5.1(b). It can
be seen that the dense sample dilates with negative volumetric strain and the loose
sample contracts with positive volumetric strain while the volume change of medium
sample is close to zero. This clearly shows the effect of void ratio on granular
material dilatancy behaviour. At large shear strain, the volumetric strains continue to

be steady for all three samples as the material approaches the critical state, where the

critical void ratio €, = 0.74 is achieved as shown in Fig. 5.1(c), irrespective of
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initial void ratios. Similar observations of the void ratio on sand responses have also

been reported by Verdugo and Ishihara (1996).
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Fig. 5.1 Effectsof initial void ratio on initial isotr opic samples behaviours
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5.3.2 Micro-scale observations

5.3.2.1 Contact normal evolution

The coordination number w is defined as the average number of contacts per
particle possessing within the sample as shown in Eq. (2.2). It is related to the
macroscopic material initial void ratio, with higher w value corresponding to a
smaller initial void ratio. Fig. 5.2 shows the evolution of the coordination number
against shearing. Initialy, the sample with smaller void ratio has a greater
coordination number, referring to a particle in sample with smaller void ratio gaining
more contacts support from its neighbouring particles. It is obvious that the
coordination number decreases quickly to the constant value for the dense and
medium samples, corresponding to large dilation of samples with increasing void
ratio. It increases sightly and remains steady for the loose sample, corresponding to
the decrease of initial void ratio with volume contraction. At large deformation, all
three samples possess the same coordination number, w = 4.5. Thornton (2000) has
reported similar observations on the coordination number evolution in samples with
various void ratios, where the material reached the constant w =5.2 under
asymmetric triaxial compression. The dightly larger coordination number is
probably due to the more uniform distributed spherical particle diameter in
Thornton’s simulation and his numerical sample has a much smaller void ratio. The
decrease of coordination number is due to the larger rate of contact disruption than
the rate of contact creation (Kuhn, 2010, Kruyt, 2012). The contact disruption rate
decreases rapidly against shearing till it becomes equal to the rate of contact creation.

Accordingly, the coordination number remains steady.
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The deviatoric fabric tensor D, is used to characterise the directional

distribution of contact normal vectors and the material internal structure anisotropy

is defined as D. = /3D, D, /2. The relative magnitude of three principal fabric

values is described by b. = (D, - D,)/(D, - D,), where D,, D,, D, are the mgjor,
intermediate and minor principal fabric. Fig. 5.3(a) demonstrates the effect of initial
void ratio on fabric anisotropy evolution during shearing. Before shearing, the
deviator fabric anisotropy D_ is close to zero as expected for initially isotropic
samples. As shearing occurs, the external loading induce anisotropic internd
structure developed, with more contacts oriented in the major principal stress
direction owing to more contacts disrupted in minor stress directions (Kruyt, 2012).
Hence, the fabric tensor becomes anisotropic with the deviatoric invariant D, > 0.

The deviator fabric increases fastest in the dense sample to the peak and is then

followed by dlight decreasing. The deviator fabric increases gradualy with a
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decreasing rate in the medium and loose samples. The deviator fabric is dightly

larger in the sample of medium void ratio than that in the loose sample at small strain,

eg. e, <10%. At large strain levels, the deviator fabric is observed to be similar

among all the three samples, which may be considered as critical fabric anisotropy,

D. = 0.6. Accordingly, the critical stress ratio is achieved. Similar results can also

be found in literatures (Thornton, 2000, Kruyt, 2012). During asymmetric triaxial

compression, the internal structure is aso found to be asymmetric with isotropic

fabric distribution in the horizontal direction. This is termed as the intermediate

fabric ratio b closeto zero as shownin Fig. 5.3(b).
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Fig. 5.3 Effects of initial void ratio on fabric evolution in triaxial compression

The internal principal fabric direction is determined by the angle of the

principal fabric direction vector relative to the vertical z-axis as g. = arccos (nz) :

where n, is the component of the unit direction vector. The evolution of principal

fabric direction is shown in Fig. 5.4. It is clear that the angle g, is close to 0",
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indicating the principal fabric direction being coaxial with the major principal stress

direction in the vertical axis.
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Fig. 5.4 Evolution of principal fabric direction during triaxial compression

5.3.2.2 Contact for ces evolution

The evolution of mean normal force f,, which has been defined in Eq. (2.9),

is presented in Fig. 5.5. Before shearing, the samples are isotropic. The material

mean normal stress can be expressed as microscopic parameters as p = w f |, /3 by

simplifying the SFF relations in Eq. (2.18). As three samples have the same mean

normal stress and particle size distribution (i.e., identical 1), the initial mean normal
force f, isinversely proportional to the coordination number w. Thisis observed as
a smaller value of initial f; in samples of smaller void ratio, corresponding to the

larger coordination number (e.g., Fig. 5.2). At larger deformation, the mean normal

force reaches the same value, irrespective of initial void ratio.
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Against deviatoric loading, the contact force distribution becomes anisotropic
in the sample. The deviatoric contact forces tensors G and G; are used to

characterise the microstructural discrete normal contact force and tangentia contact

vector, respectively (more detail in Egs. (2.12) and (2.13)). The anisotropic contact
force distribution is described by the invariants Gf = ,/3G]G/ /2 and
Gy = ,/3G|G; /2 . Fig. 5.6 demonstrates the evolution of normal contact force
anisotropy Gj and tangential contact force anisotropy G;. For the dense sample
SRED_TT, the deviator contact forces anisotropy G and G, reach pesk value

rapidly as G =1.27 and G, = 0.4 a e, = 3% with strong force chains build up.

It is then followed by a quick decrease as shearing continues to its ultimate steady

value due to buckling of strong force chains, corresponding to strain softening

behaviour. For the medium sample SREM_TT, G] and G| increases to its
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maximum value as Gy = 0.93 and G, = 0.22 a e, » 4% , which, however, is
smaller than that observed in the dense sample. For the loose sample SREL_TT, the
contact force anisotropy parameters G and G, increase gradualy to the steady
value at large deformation. At large deformations, where the critical stress ratio is
obtained, the values of G] and G, are observed to be similar in three samples,
regardliess of initial void ratios. This value may be considered as critical contact

force anisotropy G] = 1.1, G, = 0.24. In addition, it is shown that the normal
contact force anisotropy Gj is nearly four times larger than that of the tangential

contact force anisotropy G| for the same sample during shearing, indicating the

normal contact force anisotropy isthe major contribution to contact force anisotropy.
Thisis confirmed by Thornton and Antony (1998), where the stress tensor was found

to be the major contribution of normal contact force.

The intermediate force ratio is defined as b, = (G;1 - GQ)/(G{‘ - GQ) and

h = (G; - G;)/(G; - G;) where G" and G' (i =1,2,3) represent the major,

intermediate and minor principal values of normal contact force and tangentia
contact force, respectively. The evolution of intermediate force ratio is plotted in Fig.

5.7. It can be seen that both b and b remains zero during shearing, which

demonstrates that the contact forces distribution isisotropic in horizontal direction.
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5.3.2.3 Observations on the strong and weak for ce chains

In deviatoric shearing, the contact force transmission via interparticle

contacts within the granular assembly is not distributed uniformly. Experimental
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photoelastic study showed that the externa load was carried by heavily stressed
chains of particles with contact forces above average contact force and the rest
particles were dlightly loaded (Drescher and Jong, 1972, Oda and Konishi, 1974,
Ma mudar and Behringer, 2005). The contact force network was partitioned into two:

the column network of strong force chains, contact force larger than average value

f/(f)>1, forms in the direction of major principal stress and the wesk force

network; and the weak force chains, contact force below average value f /(f) £1,

provides support to the strong force chains in lateral direction (Radjai et a., 1997,

Azéma and Radjai, 2012). Thornton and Antony (1998) found that the deviatoric

stress was mainly contributed by contacts with f /<f> >1 while contacts with

f/(f)£1 mainly contributed to mean normal stress and the contribution to

deviator stress was negligible.

Fig. 5.8(a) shows the evolution of strong normal contact force anisotropy and

weak normal contact force anisotropy, which is calculated from the discrete contact

force vector using Eq. (2.7) with summation only on contacts with f" / < f ”> >1 and
f”/<f“> £ 1, respectively. It can be seen that the strong force distribution G_ is
highly anisotropic while the wesk force anisotropy G, is quite small, correlating to
the significantly anisotropic fabric structure D in contacts with f" / < f ”> >1(i.e,
Fig. 5.8(b)) and negligible fabric anisotropy DY in weak contacts (e.g.
f”/<f”> £1). This indicates that the anisotropic stress is mainly carried by the

anisotropic strong force chains, supported by the nearly isotropic weak force chains.
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The sample of a smaller void ratio develops more anisotropic strong force chain
network and fabric anisotropy. At large deformation, however, it reaches the same

degree of anisotropy, irrespective of initial void ratios.
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5.3.2.4 Stress-force-fabric relationsin triaxial loading

Under triaxial compression loading, and the material microstructure is
transversely isotropic, the principal directions of microstructrual tensors are coaxial
with the external loading direction. The anisotropic tensors can be represented by

one variable characterising its anisotropy degree. For example, the fabric tensor D,

can be expressed as:
& D, /3 0 0 u
_© u
D,=2 0 -D./3 0 (5.2)
g 0 0 2D, /3§
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Hence, the stress ratio h can be expressed in the following simplified form
using the stress-force-fabric relations in Eq. (2.18):

hzé(DF+Gg+cg)+§(G;+c;) (5.2)

where C§ and C] are the normal and tangential branch vectors anisotropy due to

non-uniform particle size distribution, which is negligible and ignored in this study.

It is clear from Eq. (5.2) that the stress ratio capacity in samples with

different initial void ratios is strongly dependent on the microscopic quantities G,

G, and D, . For the sample with a smaller void ratio, it has larger G}, G; and D,

before reaching the critical values, resulting in higher stress ratio in the sample of
smaller void ratio at the same shear strain. At the large deformation level, al the
microscopic parameters approach similar critical values. Hence, the critical stress
ratio is achieved, irrespective of initial void ratios. The strain hardening or strain
softening behaviour against shearing is dominated by the formation of anisotropic

contact force chains or buckling of force chains, particularly the normal contact force.

5.4 Effect of b value on material response

The true triaxia loading path isillustrated in Fig. 5.9. Fig. 5.9(a) denotes the

triaxial compression test (b = 0) with the intermediate principal stress s, equal to
the minor principal stress s ,. Fig. 5.9(c) denotes the triaxial extension test (b = 1)

with the major principal stress s, equal to the intermediate principal stress s, .

Otherwise, it denotes the true triaxia tests (0 < b < 1) with independent control of

three principa stresses as shown in Fig. 5.9(b). The monotonic shearing keeps stress
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invariants p, b and principal stress directions n° constant while the deviatoric strain

e, increases continuously (e.g., Fig. 5.9(d)).
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5.4.1 Macro-scale material response

Fig. 5.10(a) and Fig. 5.11(a) show the stress-strain behaviour for the dense
sample SRED_TT and the loose sample SREL_TT under true triaxial simulations. It
can be seen that the dense sample reaches the peak stress ratios in simulations with
different b values, followed by strain softening to critical stress ratios. The loose

sample shows continuous strain hardening with decreasing rate to critical stress
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ratios. Up to the same deviatoric strain, a lower stressratio is observed in simulation

with greater b value for both samples.

The influence of b values on the volumetric strain responses is shown in Fig.
5.10(b) and Fig. 5.11(b). The dense sample starts to dilate at the beginning of
shearing and the loose sample tends to contract during shearing. More dilative
behaviour is observed at a greater b value, though the variation is small. At large
deformation, the increment rate of volumetric strain becomes small and the
volumetric strain approaches a steady vaue, where the critical state may be
considered to be achieved. Similar experimental investigations on effects of b value
on sand behaviour have been reported for dense samplesin the literature (Sutherland
and Mesdary, 1969, Lade and Duncan, 1973, Ochiai and Lade, 1983). However, the
sand samples prepared in a laboratory were initially anisotropic. The test results may

be affected not only by the b value but also by the material anisotropy.
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Fig. 5.10 Effects of b value on response of isotropic dense sample SRED_TT (a)

stress-strain relations (b) volume change behaviour
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The response of the intermediate strain  increment  ratio
by = (De, - De,)/(De, - De,) , where De,, De,, De, are the principal values of

total strain increment &, is shown in Fig. 5.12 with five different deviatoric strain

ij !
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levels, which represent the regions of elastic, pre-failure, failure, post-failure and
critical state, respectively. The strain increment is obtained within a small deviatoric
strain increment (e.g., 8, = 0.1% when e, £ 3%andé, = 0.5% when e, > 3%).
It is observed that b, generally keeps constant and is close to intermediate stress

ratio b values, in asymmetric loading conditions (b = 0 and b = 1) for both samples.

For simulations of the dense sample with 0 < b <1, the value of b, is larger than

the intermediate stress ratio b during shearing, where the dashed line describes the

equality of b, and b. The deviation is larger in the middle range of bvalues. And
the value of by, increases slightly at a greater shear strain e, in constant b

simulation. Similar observations have aso been reported in DEM simulations

(Thornton and Zhang, 2010).
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5.4.2 Micro-scale observations

5.4.2.1 Evolution of internal structure

Fig. 5.13 shows the evolution of coordination number w during true triaxia
tests for dense and loose samples. It can be seen that the dense sample SRED _TT
initially has a larger coordination number w = 5.8 than that of loose sample
SREL_TT with w = 4.5. As shearing occurs, the w value decreases quickly for the
dense sample owing to contact disruption while it increases dightly for the loose
sample due to contact creation during the initial 5% deviatoric strain. As shearing
continues, the coordination number does not change significantly due to the same
rate of contact disruption and contact creation. It can be seen that the influence of the

b value on the evolution of w is negligible. The ultimate coordination number is

approximately w = 4.5 for both dense and loose samples.
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Fig. 5.13 Effect of b value on coordination number evolution during true
triaxial shearing (a) dense sample SRED_TT (b) loosesample SREL _TT
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The influences of b values on the evolution of fabric anisotropy D_ are

plotted in Fig. 5.14. For initially isotropic dense sample SRED_TT, Fig. 5.14(a)
shows that a higher peak deviator fabric is achieved with greater b value, which
shows a reverse trend of the effects of b on the stress-strain behaviour as shown in
Fig. 5.10. The deviator fabric decreases gradually at post-peak shearing with
different b values. At large deformation, the values of deviator fabric are nearly
constant but differ from each other at different b values. This is consistent with the

DEM results of larger fabric anisotropy at greater b, value in the dense sample

reported by Thornton and Zhang (2010).

The influence of b values on the evolutions of deviator fabric is not
significant for the loose sample SREL_TT, as shown in Fig. 5.14(b). The deviator
fabric increases continuously with a decreasing rate to its ultimate values. At large

shear strain, e.g., e, = 40% , the values of D, do not change significantly as
shearing continues and the critical fabric anisotropy D, is considered to be obtained.
The variations of D, are quite small for various b values. However, it may be
summarised that D_ generally decreases with an increasing b value as shown in Fig.
5.15, where D, is the average value of D.in the last 5% of deviatoric strain. For
simulations with the same b value, the same D, is reached in both samples,

irrespective of initial void ratios.
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Fig. 5.15 Effect of b value on critical fabric anisotropy

Fig. 5.16 illustrates the evolution of intermediate fabric ratio b. for dense

and loose samples at different deviatoric strain levels. The dashed line describes the

linear equality between b. and b . In the triaxial compression and extension

simulations (b = 0 and b =1), the intermediate fabric ratio b. is generaly close to

the intermediate stress ratio b for both samples. In simulations with other b values

(0 <b <1), however, b islarger than b at various deviatoric strain levels for both
samples and b is nearly constant after 10% of deviatoric strain. The large deviation
of b. from b a smaller deviatoric strain e, £ 2% is probably due to the fabric

anisotropy being small, as shown in Fig. 5.14, where b. is quite sensitive.
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Fig. 5.17 gives the evolution of principal fabric direction in simulations with

various b values of dense and loose samples. The angle g, is defined as the major

principal fabric direction relative to the vertical axis. It clearly shows that the angle
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0 is close to zero during shearing for various b values, which indicates the major

principal contact fabric direction is coaxia with the applied major principal stress

direction in the vertical z-axis.
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Fig. 5.17 Evolution of principal fabric direction (a) densesample SRED _TT (b)

loosesample SREL _TT

5.4.2.2 Evolution of contact force

Fig. 5.18 shows the effects of b value on the evolution of mean normal force

f, under constant mean normal stress simulations. Against shearing, the mean

normal force f, increases to constant value at large deformation in the dense sample

and it decreases dlightly to be steady for the loose sample. At the same deviatoric

strain, it shows negligible effect of b value on f; in both samples, correlated with

little difference of coordination number (e.g., Fig. 5.13) a various b vaue

simulations.
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Fig. 5.18 Effects of b value on mean normal for ce evolution (a) dense sample
SRED_TT (b) loosesample SREL_TT

The influence of b values on the evolution of contact force anisotropy is

shown in Fig. 5.19. Higher normal contact force anisotropy Gj and tangential

contact force anisotropy G, are observed in simulation a smaller b value in both

samples, resulting in a greater stress ratio at lower b value. This is more obvious

when b £ 0.6 and the difference is small for b = 0.8 and b =1. The variation of

G, is larger than that of G, at different b values. Additionally, the normal contact
force anisotropy G is much larger that the tangentia contact force anisotropy G;,

indicating more contribution to deviator stress from G; than that from G .
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The evolution of the intermediate normal contact force ratio b, and
intermediate tangential contact force ratio b, are presented in Fig. 5.20 for the dense
sample and Fig. 5.21 for the loose sample. It can be seen that b, is generally close to

the intermediate stress ratio b for both samples. However, the tangentia force ratio

b, isfound to be smaller than the intermediate stressratio b.

The principal directions of normal and tangential contact forces are shown in
Fig. 5.22 for the dense sample and Fig. 5.23 for the loose sample. g, and g, are the
relative angles of the major principal normal contact force direction vector and the
principal tangential contact force direction vector to the positive z-axis, respectively.
It can be seen that the angles of g, and g, are close to zero in simulations of both

samples with various b values, which implies that the principal contact force

directions are coaxial with the external applied loading direction.
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5.5 Discussions

5.5.1 Failurecriterion and strain increment dir ection

In soil mechanics, the friction angle, f =sin*(s, - s,)/(s, +s,), is used
to define the mobilised shear strength (Wood, 1991). Fig. 5.24 illustrates the effect

of b value on the mobilised peak friction angle f __ of the dense sample SRED_TT

and the critical friction angle f_ of both dense and loose samples in the f - b

diagram. The symbols represent the DEM results and the solid line is the prediction
of isotropic failure criterion proposed by Lade (1977), of which model parameter is
obtained from the triaxial compression simulation (b=0). It shows that the peak
friction angle initially increases to reach the maximum at b » 0.5. Then, it

decreases as b increases further to 1. The minimum f is obtained from the

max

triaxial compression test (b =0). The difference between the maximum f__

(b » 0.5) and minimum f . (b = 0) is approximately 5°. The peak friction angle

of the dense sample can be well captured by Lade’s failure criterion. It is worth
noting that the peak friction angle obtained from triaxia compression (b = 0) is
lower than that obtained from triaxial extension (b = 1), which does not support the
failure criterion proposed by Matsuoka and Naka (1974). Their failure criterion
predicts the same peak friction angle under triaxial compression and triaxial
extension. This observation is supported by experimental results (Lade and Duncan,

1973, Arthur et a., 1977, Yamada and Ishihara, 1979). The dense and loose samples

give the same critical friction angle f _ in simulations with the same b value. With
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increasing b values, f_ initialy increases and then decreases. The minimum f _ is
obtained at triaxial extension (b =1). It is aso shown that Lade’s failure criterion
significantly overestimates the f _, which indicate that Lade’s failure criterion may

not be good to serve as ayield criteria.
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Fig. 5.24 Effects of b value on friction angle

Fig. 5.25 demonstrates the peak stress ratio (square symbols) obtained in the
sample SRED_TT in simulations at various b values on the octahedral plane. The
loose sample SREL_TT, presenting continuous strain hardening (no peak stress ratio
observed), is not included. It is clear that the DEM failure envelop shows excellent

agreement with Lade’s failure criterion. The non-equality between b and b, (i.e,

Fig. 5.12) reflects the non-coincidence of the strain increment direction and the stress

direction in the octahedral plane. The solid arrow vector in Fig. 5.25 represents the
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total strain increment direction at the peak stress ratio, where the total strain

increment &, (i.e, é, = 0.5%) is considered to be plastic as the stress increment is

negligible, resulting in a negligible elastic strain increment. The direction of the

strain increment vector is determined by the strain lode angle g, relative to the
vertical symmetry axis as qg, :tan'l(\beDe/(z- bDe)) . The dashed arrow

represents the stress vector direction in the octahedral plane, which is fixed due to
constant b simulation and points from the intersection point between the hydrostatic
axis and the octahedral plane to the failure stress point (square symbols). It is found
that the strain increment direction deviates from the stress direction except in
asymmetric loading conditions (b =0and b =1). Similar observations of non-
coincidence between strain increment direction and stress vector direction in the
octahedral plane have also been reported in laboratory tests of sand soils (Lade and

Duncan, 1973, Ochiai and Lade, 1983, Sun et al., 2008).

——Lade (1977)

o DEM

Fig. 5.25 Failure surface and strain increment vector s on octahedral plane
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5.5.2 Micromechanical interpretation

With the stress-force-fabric (SFF) relationship in Eq. (2.18), the stress tensor

can be expressed by the microstructural tensors, including fabric tensor D, , normal

contact force tensor G, tangential contact force tensor G; and branch vector tensor
C, . The assumption that negligible contributions of higher order tensors, i.e., fourth

order tensors, to stress tensor has been made. As the spherical particles are used for
numerical simulations, the branch vector tensor anisotropy is quite small and it
produces negligible contribution to the deviator stress. Accordingly, the stress state
of the sample is only dependent on the microstructural fabric tensor and contact
force tensors. Thisis confirmed by the good agreement of the stress ratio calculated
from Eq. (2.17) and that determined from the SFF relationship using Eq.(2.18), as
shown in Fig. 5.26, where the solid line refers to the stress ratio determined from
boundary forces and the hollow symbols represent the stress calculated using the
SFF relationship. The stress ratio from SFF is dightly larger than that from Eq.

(2.17) at large deformation, which is probably due to the stress non-uniformity.

As shown in Fig. 5.17, Fig. 5.22 and Fig. 5.23, the principal directions of
microstructure tensors D, G, G; are coaxia with the principal stress direction in
simulations of various b vaues. Accordingly, with the stress-force-fabric

relationships in Eq. (2.18), the stress ratio capacity is dependent on the deviatoric

anisotropy of the fabric tensor and contact force tensors. Thus, the effect of b values
on material strength is dependent on the developed anisotropy degrees D, , G], G| of

microstructural tensors. The peak stressratio h and corresponding anisotropy values
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of D., G}, G, are shown in Fig. 5.27. It clearly shows the contact force anisotropy

G; and G, at failure is larger at a smaller b value, corresponding to a larger peak
stress ratio at a lower b value. The fabric anisotropy D, , however, increases for a

greater b value. The normal contact force anisotropy is largest compared to the

fabric anisotropy and tangential force anisotropy. It indicates that the normal contact
force anisotropy Gj is dominant on the pesk stress ratio obtained at various b

values, while the contribution of fabric anisotropy to stressratio is secondary.

1
< b
9" 06/ — b=0
g — b=0.4 | pEM from Eq. (2.17)
ﬁ — b=0.6
£ 0.4 b=1
| * b=0
02! O b=0.4
' o b=0.6 | SFFfromEg.(2.18)
> b=1
%HHH‘HwHHH‘HM‘HH‘H\HHH‘H
0 10 20 30 40

Deviatoric strain, € (%)

Fig. 5.26 Comparison of stressdetermined from DEM and analytical SFF

relationsfor dense sample SRED_TT in truetriaxial smulations
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In constant b simulation, the intermediate fabric ratio by is larger than b
(e.g., Fig. 5.16), correlated with the intermediate tangential force ratio being
generally smaller than b value (e.g., Fig. 5.20). Therefore, the non-equality of
intermediate stress ratio b and intermediate principal strain increment ratio b, is
due to the non-equality of b and b. . Accordingly, the constitutive relationship

between the stress lode angle and the strain lode angle is recommended to be linked

by the intermediate fabric ratio b. , which has a clear physical meaning.

5.6 Summary

This chapter produces the DEM simulation results of samples with spherical
particles. The influences of initial void ratio and b value on the granular material
response have been examined. With the stress-force-fabric relationship, the stress
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tensor of granular materia is related to the microscopic parameters, i.e., coordination
number w , fabric tensor D, and contact force tensors GJ, G; . Thisis confirmed by

that the stress ratio calcul ated using the SFF relation shows good agreement with that

determined from the forces acting on boundary walls.

For the initially isotropic samples in true triaxial ssmulations, the principal
directions of the internal fabric tensor and contact force tensors are coaxia with the

loading direction, and the deviator stress developed in the assembly is dependent on

the micro-scale scalar quantities, w, D, GJ, G} . The material performs stiffer and

more dilative with a smaller initial void ratio due to larger values of w, D., GJ, G, .
At large deformation, the critical stress ratio is achieved as micro-scale quantities

w, D., Gj, G} reaching critical values, irrespective of initial void ratios.

The true triaxial simulation results show the stress ratio decreases with an

increasing b value for both dense and loose samples since the contact force

anisotropy GJ, G; is dominant in contribution to the deviatoric stress compared to

that of fabric anisotropy D, . The contact force anisotropy GJ, G, is greater at a

smaller bvalue, leading to a higher stress ratio achieved at a lower bvalue. It is
observed that the direction of strain increment vector is not coaxial with the direction

of stress increment vector (b, * b) when illustrated in the octahedral plane.
Microscopically, this is due to the intermediate fabric ratio b. being bigger than the

intermediate stressratio b.
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Chapter 6 Influence of loading direction on

anisotropic material behaviour

The granular materia is generdly initially anisotropic and its behaviour is
loading direction and loading history dependent. The material anisotropy may affect
the strength-deformation characteristics significantly when the principal stress axes
deviate from the material symmetric axes, known as loading direction dependent
behaviour. In this chapter, the numerical simulations have been carried out on the
initially anisotropic sample and the pre-loaded sample under various loading
directions. The anisotropic stress-strain behaviour and non-coaxia deformation will

be interpreted from the micro-scale observations.

6.1 Numerical ssmulation procedures

6.1.1 Preparation of anisotropic samples

The initially anisotropic sample was prepared by the gravitational deposition
method as introduced in Section 4.3.2. The spherica particles were randomly

generated without contact force arising in the large box. The frictional coefficient
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during the deposition process was set to be m, = 0.1 and the gravitational field was

set to be g =-100m/ s* along the vertical direction (z-axis). After al particles

were positioned and reached a state of equilibrium, the polyhedron boundary walls
were generated by setting n =8 and R =0.0068. The box boundary walls and
particles detected outside of the polyhedron boundary were deleted. Then, the
frictional coefficient was restored to the representative value m= 0.5 for both
particles and boundary walls and simulations were carried out to reach equilibrium.

At this stage, the confining pressure p, of the sample was recorded. Finaly, the
sample was isotropically consolidated to target confining pressure p = 500kPa , and

the void ratio €, was recorded as theinitial void ratio.

The pre-loaded sample was prepared by triaxial compression of the initially
anisotropic sample to the deviatoric strain e, = 10% with the major principal stress
direction fixed a the deposition direction and constant mean normal stress

p = 500kPa . Then, the sample was unloaded to the isotropic stress state. The

loading history of the pre-loaded sampleisillustrated in Fig. 6.1.

gl.ll
p = 500kPa, b = 0

o =
r

Fig. 6.1 lllustration of pre-loading hisory
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The prepared anisotropic samples are given in detail in Table 6.1. The two
samples are labelled by string of characters, with more details referred to Appendix
C. The difference in the void ratio between the initially anisotropic sample
SDEM _TT and the pre-lloaded sample SDEM _TC TT is smal. The sample
consisting of 5302 particles is sufficient to serve as a representative volume for

investigating granular material behaviour.

Table6.1 Information of anisotropic samples of spherical particles

Anisotropic sample m, Voidrétio € | No. of particles
SDEM_TT 0.1 0.72
I — 5302
SDEM_TC TT Pre-loaded by triaxial 071
compression

6.1.2 Numerical smulation procedures

The numerical tests have been conducted on the initialy anisotropic sample
and the pre-loaded sample with varying mgor principal stress directions. In

individual simulation, the confining pressure p was kept unchanged at 500kPa . The
intermediate principal stress ratio b was constant. The intermediate principa stress

direction n, was fixed to be coaxial with the coordinate axis of y-axis. The principal
stress direction n, was fixed with an angle a relative to the z axis in the x-z plane,

as shown in Fig. 6.2. The tilting angle a varies from the vertical a = 0" to the
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horizontal a = 90° with 15° intervals. Only the deviatoric strain e, increased

continuously.

/nl

9/

Fig. 6.2 lllustration of loading direction a

><“

Table 6.2 Numerical simulations plan

Constant p, varying loading direction a

. (o° 15°.30° 45°,60°,75° ,9o°)
Numerical sample

b vaue
SDEM_TT =0 b=0.4 =1
SDEM _TC TT -0 b=0.4 =1

6.2 Resultson initially anisotropic sample

6.2.1 Influence of anisotropy on material behaviour

The simulation result on the sample SDEM_TT isillustrated in Fig. 6.3. It is

shown that a slightly lower stress ratio at the small strain level, i.e, e, = 5% and
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greater initial volume contraction have been observed with increasing tilting angle
a . This clearly indicates initialy anisotropic microstructure formed during the
deposition process. At large deformation, the stress ratio is equal and the difference
of volumetric strain becomes small, showing the effect of initial anisotropy being
wiped out. Similar anisotropic stress-strain behaviours have been produced in
laboratory tests of sand at different loading directions (Oda, 1972a, Oda et a., 1978,

Lam and Tatsuoka, 1988).
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Fig. 6.3 Effect of loading direction a on initially anisotropic sample SDEM_TT
without pre-loading at b = 0.4 (a) stress-strain (b) volume change behaviour
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6.2.2 Influence of b value on stress-strain behaviour

The effect of b value on stress-strain behaviour of the sample SDEM_TT is
given in Fig. 6.4. Regardless of various loading direction a , it is shown that the
greatest stress ratio h occurs in asymmetric compression (b = 0) and the lowest
stress ratio is obtained from asymmetric extension (b =1). This is similar to the
observation of effects of b stress-strain behaviour of the initialy isotropic sample
SRED_TT, as shown in Fig. 5.10, where the stress ratio decreases with increasing b

value.

Fig. 6.5 plots the effect of b value on the stress-strain behaviour of sample
SDEM_TT. It seems that the difference of volumetric strain at various b values is
small. The dlightly more volumetric contraction is observed at a greater b value in
the small strain level, more obvioudly in simulations with a = 0°. The experimental
undrained shear results of Toyoura sand demonstrated that a higher excess pore
water pressure developed at greater b value, indicating more contractive sand
behaviour at larger b value (Yoshimine et a., 1998). However, thisis different to the
observation of effects of b values on the volume change behaviour of initialy
isotropic samples SRED _TT and SREL_TT as shown in Fig. 5.10 and Fig. 5.11,
where the material is more contractive at a lower bvalue. It clearly indicates other
factors, e.g. initial anisotropy, aso affect the volume change behaviour. At large

deformation, the variation of €, is quite small and it may be considered that the

critical state void ratio is achieved at the end of shearing.
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6.2.3 Non-coaxiality

Fig. 6.6(a) shows the evolution of g,, in simulation a b = 0, which is the
angle of the principal strain increment direction vector n™ relative to the positive z-

axis in the x-z plane determined by g, = tan™ (nXDe/nZDe) The strain increment &,

155



is calculated within a small increment of deviatoric strain dq = 0.5%. The solid

straight line represents the fixed major principal stress direction a . The hollow
symbols show the evolution of corresponding principal strain increment direction
O, - It can be seen that the degree of non-coaxiality between principal stress
direction and principa strain increment direction is quite small, indicating the
material response is generally coaxial. Slightly larger deviation up to 5’ is observed
a a =60° and the deviation is towards the bedding plane. Similar observations can
be found in simulations with b = 0.4 (Fig. 6.6(b)) and b =1 (Fig. 6.6(c)). This is
consistent with the results of 2D DEM simulations from Li et a., (2009). The non-
coaxia behaviour has also been reported in experimental results while the deviation
of principal strain increment direction is aways towards a = 45" (Miuraet a., 1986,

Gutierrez et al., 1991).
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6.2.4 Microscopic observations on initially anisotropic sample

6.2.4.1 Fabric evolution

The evolution of coordination number w is presented in Fig. 6.7 for initially
anisotropic sample SDEM_TT. The coordination number does not show much
difference at different loading directions, corresponding to similar volume change
behaviour at varying loading direction (e.g., Fig. 6.3). It decreases during the initial
10% deviatoric strain as the sample dilates with increasing void ratio. For further
shearing, the same critical value w = 4.6 is obtained independent of a , which isthe
same as that obtained for initially isotropic sample SRED_TT at various b value
simulations (e.g., Fig. 5.13). This indicates that the critical coordination number is
independent of materia initia void ratio, material anisotropy and loading paths

under constant mean normal stress simulations.

Coordination number, w

0 10 20 30 40
Deviatoric strain, € (%)

Fig. 6.7 Effect of loading direction a on coordination number for SDEM_TT
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The evolution of contact normal fabric anisotropy of the sample SDEM_TT

is shown in Fig. 6.8 in terms of D. and principal direction g. under constant

b = 0.4 smulation. The initial degree of fabric anisotropy is D. = 0.13 with the

principal fabric direction in the vertical deposition direction (g. = 0°). It clearly
shows the anisotropic structure devel oped during the deposition process. As shearing
occurs, the contact normal anisotropy increases when a £ 45’ . At a 3 60°, it
initially decreases to its minimum value and then starts to increase due to fabric
reorganisation, with the principal fabric direction rotating gradually to the loading
direction. It is observed (e.g., e, = 5%) that a slightly larger D, developed at a
smaller a value, corresponding to the small variations of anisotropic stress-strain

behaviour observed in Fig. 6.3.

In addition, the principal fabric direction evolves to the loading direction

rgpidly at a small shear strain, e.g., e, = 3% . For further shearing, the principal

fabric direction is coaxia with the loading direction. Thus, though the principal
fabric direction initialy deviates from the loading direction, the general coaxial

behaviour is obtained due to a small fabric anisotropy D, at small shear strain.
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6.2.4.2 Effect of b value on fabric evolution

The influence of the b value on the fabric evolution of sample SDEM_TT at

different loading directions is plotted in Fig. 6.9. Generaly speaking, a dlightly
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grester D, is observed at a larger b value, similar to that observed on the initially
isotropic sample SRED_TT sheared at different b values (e.g., Fig. 5.14). The
principal fabric direction presents no significant difference at various b values (Fig.

6.10).
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Fig. 6.9 Effects of b on fabric evolution of initial anisotropic ssmple SDEM_TT
at different loading directions(a) a = 0°(b) a =30° (c) a =60° (d) a =90°
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6.3 Resultson pre-loaded sample

6.3.1 Effect of anisotropy on stress-strain behaviour

The stress-strain behaviour of the pre-loaded sample SDEM_TC TT is
shown in Fig. 6.11 under various loading directions, under constant p = 500kPa and
b = 0.4 simulation. A lower stress ratio and larger initial contraction are observed

at small strain level, i.e, e, = 4% asthe loading direction rotates from the vertical

direction a = (° to the horizontal direction a = 90°. At the large shear strain level,
the stress ratio shows little difference, and variation of volumetric strain becomes
small. Compared to the stress-strain behaviour of the initialy anisotropic sample
SDEM _TT (eg., Fig. 6.3), the influence of loading direction on stress-strain
response is more significant in the pre-loaded sample. This indicates that the pre-

loading history has a significant effect on granular material behaviour.
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Fig. 6.11 Resultson pre-loaded sample SDEM_TC _TT at b = 0.4 (a) stress-

strain behaviour (b) volume change behaviour
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6.3.2 Effect of b value on stress-strain behaviour

Fig. 6.12 shows the effects of the b value on stress-strain behaviour in
simulations with fixed a . The stress ratio is larger at a lower b value (similar
observations in simulations at other a values). This is similar to effect of b value
on stress-strain behaviour of the initially isotropic sample SRED_TT, as shown in

Fig. 5.10.

The effect of b value on the volumetric strain is demonstrated in Fig. 6.13. It
shows that the sample SDEM_TC_TT performs more contractive with increasing b

value during the initial small shearing strain, i.e., up to e, = 20%, irrespective of

loading direction a . This is consistent to the observation of larger pore pressure
build-up at a greater b value in experimental undrained shear (Yoshimine et a.,

1998). However, the volumetric strain curves converge to similar values of e, at

large deformation, indicating the effect of fabric anisotropy on dilatancy behaviour
disappeared. This observation is different to the effect of b values on the volume
change behaviour of the initially isotropic samples, as shown in Fig. 5.10 and Fig.
5.11, where the sample is more contractive at alower b value. This clearly shows the
combined effects of b and material anisotropy on volumetric strain response of the

pre-loaded sample. The reason is that the pre-loaded sample performs most

contractively when a = 90° due to anisotropy, where the principal stressdirectionis
within the bedding plane, as is shown in Fig. 6.11. As b increases from O to 1, the
magnitude of intermediate principal stress increases and the intermediate principal

stress direction is paralel with the bedding plane. Thus, the effect of materia
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anisotropy on the volumetric strain behaviour is dominant than the magnitude of
intermediate stress ( b value). Compared to the initially anisotropic sample
SDEM_TT, the effect of anisotropy on the volume change behaviour is not so
significant as that of the pre-loaded sample due to a lower degree of fabric

anisotropy D. in the sample SDEM_TT, which is supported by less initia

maximum volume contraction at various loading directions in the sample SDEM_TT

(Fig. 6.3) than in the pre-loaded sample (Fig. 6.11).
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Fig. 6.12 Effect of b value on stress-strain behaviour of pre-loaded sample
SDEM _TC_TT
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6.3.3 Non-coaxiality

Fig. 6.14(a) shows the evolution of g, , which istheangle of principal strain

increment direction vector relative to the positive z-axis in the x-z plane. The strain

increment @, is calculated within asmall increment of deviatoric strain é, = 0.5%.

The solid straight line represents the major principal stress direction a , which was

fixed during loading. It can be found that g, is close to the loading direction when

a=0 and a =90° . At other a values, however, significant non-coaxiality
between the maor principal stress and the principal strain increment directions is

observed. The non-coaxiality is larger when the principal stress direction deviates

more from the vertical direction, i.e, a =60°. However, the degree of non-
coaxiality decreases as shearing continues and the material behaviour becomes
coaxial at large deformation. Similar observations have also been produced in
simulations at b = 0.4and b =1, as shown in Fig. 6.14(b) and Fig. 6.14(c). The
non-coaxial behaviour has aso been reported in experimental study on sand, e.g., Fig.
6.15 (Miuraet al., 1986, Gutierrez et al., 1991, Cai et al., 2013). However, the effect
of the b value on non-coaxiality is not presented in experimental study. The
influence of the b value on degree of non-coaxiadlity is shown in Fig. 6.16. No
significant difference of non-coaxiality degree is found in ssmulations at different b

values with fixed a .
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Fig. 6.14 Non-coaxial behaviour for the pre-loaded anisotropic sample of
SDEM_TC TT(@ b=0(W)b=0.4(c)b=1
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6.3.4 Microscopic observations on the pre-loaded sample

6.3.4.1 Fabric evolution

The evolution of coordination number w is presented in Fig. 6.17 in

simulation at b = 0.4 for the pre-loaded sample SDEM_TC_TT. The coordination
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number does not show big difference at different loading directions. A dlightly larger
w is observed at a greater tilting angle a at the initial 10% deviatoric strain,
relating to the greater initial volume contraction with decreasing void ratio. For
further shearing, the same critical w = 4.6 is obtained independent of a , which is
the same as that obtained for initially isotropic sample at various b ssmulations (e.g.,
Fig. 5.13). This indicates that the critical coordination number is independent of
materia initial void ratio, material anisotropy and loading paths under constant mean

normal stress simulations.
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Fig. 6.17 Effects of loading direction on coordination number for the pre-loaded
sample SDEM_TC _TT, b=0.4

The effect of loading direction on fabric anisotropy is shown in Fig. 6.18 at
constant b = 0.4 simulation. It can be seen from Fig. 6.18 that the initial degree of

contact normal anisotropy is D. = 0.22, which is larger than that of the initialy

anisotropic sample SDEM_TT of which D. =0.13, and the principal fabric

direction isin the vertical deposition direction (g. = 0°). It indicates the pre-loading
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history results in a more anisotropic structure in the pre-loaded sample

SDEM_TC_TT. As shearing occurs, the fabric anisotropy D. increases from the

very beginning when a £ 45°. At a 3 60°, it initially decreases to the minimum
value and then start to increase gradually. Before reaching the mobilised peak stress

retio at various loading directions, the fabric anisotropy D, is generally larger at a

smaller a and the principal fabric direction approaches to the loading direction
during the shearing. However, at large deformation, the fabric anisotropy reaches
similar values and the principal fabric direction is coaxial with loading direction at
various loading directions. This demonstrates that the initial internal structure has

been destroyed due to applied loading.
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6.3.4.2 Contact force evolution

Fig. 6.19 shows the effect of a on the mean normal force f,. It can be found
that similar value f, = 0.38N is obtained despite of loading direction. A dightly

larger mean normal force has been observed at a smaller tilting angle a due to

smaller coordination number at smaller a in constant mean normal stress simulation

(i.e, Fig. 6.17).
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Fig. 6.19 Effect of loading direction on mean normal forcefor the pre-loaded
sample SDEM_TC _TT, b=0.4

The evolution of normal contact force anisotropy at various loading
directions is shown in Fig. 6.20. The normal contact force anisotropy Gj increases

as shearing, with anisotropic force chains developed to carry external load. Before
reaching the mobilised peak stress ratio at various loading directions, A smaller
degree of normal force anisotropy is observed at larger tilting angle a , correlated to

the smaller fabric anisotropy D. . However, at large deformation, the contact force
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anisotropy G; reach similar values despite of different loading directions, indicating
the effect of initial fabric anisotropy being wiped out. The principal direction g, of

normal contact force anisotropy is found to be generally coaxial with the applied

loading direction.

In the initialy isotropic stress state, the anisotropic fabric (preferred contact

orientations in the vertical direction) results in anisotropic tangential contact force

distribution with the preferred direction in horizontal direction (g, = 90°), as shown
in Fig. 6.21. As shearing occurs, the tangential force anisotropy G, start to increase

from the very beginning when a £ 45°. Ata 3 60°, they initially decrease to the
minimum value and then start to increase quicklly to reach steady values. The
tangential force anisotropy G, shows little difference at different loading directions.
The principal direction g, of tangential force distribution rotates gradually to the

loading direction after 15% of deviatoric strain, correlated to the rotation of principal

fabric direction shown in Fig. 6.18.
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Fig. 6.20 Effect of a on normal contact for ce anisotropy for the pre-loaded
sample SDEM_TC_TT at b=0.4 (a) anisotropy degree (b) principal direction
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Fig. 6.21 Effect of a on tangential contact for ce evolution for the pre-loaded

sample SDEM_TC_TT at b=0.4 (a) anisotropy degree (b) principal direction
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6.3.4.3 Effect of b value on fabric evolution

The influence of the b value on the fabric evolution of the pre-loaded sample

at different loading directions is plotted in Fig. 6.22. At the initial stage of small
shearing, the difference of D, is not obvious at a £ 30° (see Fig. 6.22(a) and Fig.
6.22(b)). The increasing b value results in more initial decrease of D. to its
minimum value when a 3 60° . Upon further shearing, the curves fluctuate
significantly. It, however, may be seen that dlightly greater D, is observed at a

larger b value with deviatoric strain in the range of 15% — 30%.

The degree of non-coaxiality is dependent on the relative directions of
principal stress and principal fabric, and relative anisotropy degrees of fabric and
contact force (Li and Yu, 2013b). The effect of the b value on the non-coaxiality
degree is negligible, as shown in Fig. 6.16. Microscopicaly, the reason is the
evolution of fabric anisotropy and principal fabric direction presents no significant

difference at various b values (e.g., Fig. 6.22 and Fig. 6.23).
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Fig. 6.22 Effects of b on fabric evolution of pre-loaded sample SDEM_TC TT at
different loading directions(a) a = 0°(b) a = 30° (c) a = 60° (d) a = 90°
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6.4 Discussion

The non-coaxial behaviour can be explained in terms of the micro-scale
contact force and fabric evolution. The non-coaxial behaviour is due to non-

coincidence between the major principal fabric direction and the maor princiapl
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stress direction, resulting in non-coincidence between the principal tangential force
direction and the principa stress direction. The normal contact force is found to be
coaxia with loading direction (e.g., Fig. 6.20(b)) while the tangential force direction
rotates gradually to the loading direction during shearing (Fig. 6.21(b)). The degree
of non-coaxiality is dependent on the principal directions of contact normal fabric
and contact force, as well as the degree of contact normal anisotropy and contact
force anisotropy. Therefore, more deviation of the contact normal principal direction
from the principal stress direction and higher degree of contact normal fabric

anisotropy would results in more non-coaxia behaviour (Li and Y u, 2009).

Initially, the principal fabric direction is in the vertica deposition direction
(9. = 0"). Upon shearing, the principal fabric directioniscloseto 0° in similations
with a = 0", leading to coaxiality between the principa strain increment direction

and principal stress direction. In simulationswith 15" £ a £ 75°, the principal fabric
direction gradually approaches the loading direction as shearing, resulting in non-
coaxia deformation. And the principal fabric direction deviates more from the

loading direction with the increasing a . Therefore, a higher degree of non-
coaxiality is observed at greater tilting angle. When a further increases from 75° to
90", however, the deviator fabric anisotropy D is smaller with increasing a in
spite of a larger deviation between g. and a . Thus, a smaller degree of non-
coaxiaity has been observed with further increasing a . At a = 90°, the principal

fabric direction remains in the vertical direction (g. » 0°) during the initial 3% of

deviatoric strain and then it nearly follows the loading direction with g. » 90° by a

182



sudden change. Though the g, initially deviates from the loading direction a = 90°
significantly, the fabric anisotropy D, decreases to a small value. Thus, the general

coaxial behaviour is aso observed. At large deformation, the principa fabric
direction coincides with the loading direction, resulting in general coaxial behaviour

at various loading directions.

Although the non-coaxial behaviour has been explained in the 2D DEM
simulation, of which the intermediate principal stress is missing (Li and Yu, 2009).
The 3D simulation, at least, confirms their observations. In addition, the b value has
little influence on the degree of non-coaxiality since the fabric anisotropy and

principal fabric direction remain similar at different b values (e.g., Fig. 6.23).

The critical state theory has been defined as the material reaches the constant
stress ratio (critical stress ratio) and deforms continuously without volume change
(constant void ratio) (Roscoe et al., 1958). Fig. 6.24 demonstrates the critical stress
ratio for the sample SDEM_TT and the pre-loaded sample SDEM_TC_TT at various
loading directions. The symbol with red solid line represents the results of sample
SDEM_TT and the symbol with dark solid line refers to the results from pre-loaded

sample. It is clear from Fig. 6.24 that the h . shows little difference in both samples

at different loading directions with constant b . This indicates the pre-loading history
and loading direction have negligible influence on the critica stress ratio.

Microscopically, the critical stressratio is reached due to the microstructural tensors
reaching critical anisotropy D, ,G],G; and the principal directions of microstructural

tensors being coaxial with loading direction, (e.g., Fig. 6.8 and Fig. 6.18). And the

183



critical fabric anisotropy D, is independent of material anisotropy, with the same
value D. » 0.6 obtained at constant b = 0.4 simulation for samples SDEM_TT

(Fig. 6.8) and SDEM_TC_TT (Fig. 6.18).
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Fig. 6.24 Critical stressratio of initial anisotropic sample SDEM_TC_TT and
pre-loaded sample SDEM_TC TT

The uniqueness of the critical state line due to anisotropy effect is
controversial (Vaid and Chen, 1985, Yin and Chang, 2009, Dafalias and Li, 2013).
In numerical simulations, the critical constant void ratio of the pre-loaded sample has
not been achieved at 40% deviatoric strain as the volumetric strain seems to increase
against further shearing (Fig. 6.11). However, the variation of volumetric strain at

e, = 40% becomes smaller compared to that at e, = 10% . If shearing continues, it

is plausible to assume that the same critical void ratio may be achieved at various
angle a , if it exists, or at least only with a tiny difference as that observed in the

initially anisotropic sample (e.g., Fig. 6.3). Hence, the anisotropy effect on critical
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state void ratio may not be significant. However, the deformation characteristics are
strongly dependent on the loading direction before reaching critical state, where
severer volume contraction has been observed at greater tilting angle a . By
assuming the unique critical state exists, this is interpreted as when the anisotropic
sample is sheared at various loading directions, the sample is considered to have
different initial state fabric anisotropy in reference to the unique critical state fabric
anisotropy. It indicates that the granular material initial state is not only dependent
on theinitial void ratio, e.g., state parameter proposed by Been and Jefferies (1985),
but aso the initia fabric relative to the critical state fabric. The DEM results support
the anisotropic critical state theory proposed by Li and Dafalias (2012), where the
critical state is constrained by the constant stress ratio, critical void ratio and critical

fabric anisotropy, in terms of both its magnitude and principal direction.

6.5 Summary

This chapter presents the ssimulation results of the anisotropic sample with
spherical particles under various loading directions. The anisotropic microstructure
has been produced with more contacts oriented in the vertical deposition direction
under gravitational field. The pre-loading history of the initially anisotropic sample

results in a more anisotropic microstructure in terms of larger fabric anisotropy D .

When the initially anisotropic sample and the pre-loaded sample sheared at
different loading directions a , the samples perform stiffer and more dilative a a
smaller a . The anisotropic stress-strain behaviour is more obvious in the pre-loaded

sample than the initially anisotropic sample. The deviator stress ratio capacity is

185



mainly dependent on the developed fabric anisotropy D, , contact forces anisotropy
G], G, and their relative principal directions. Upon the same deviatoric strain, e.g.,
e, = 5%, the fabric anisotropy and normal contact force anisotropy are smaller at a

greater tilting angle a . Hence, the anisotropic stress-strain behaviour has been
observed before reaching mobilised stress ratios. However, both fabric anisotropy
and contact force anisotropy approach similar values after large deformation,
irrespective of loading directions. And the principal directions of the microstructural
tensors become coaxial with the external loading direction. Thus, the effect of
material anisotropy on stress-strain behaviour disappears and a similar critical stress

ratio has been achieved.

The principal strain increment direction and the principal stress direction are
generaly coaxia for the initially anisotropic sample while significant non-coaxia
behaviour is observed for the pre-loaded sample. The non-coaxia behaviour is due
to the non-coincidence between the fabric tensor principal directions and stress
tensor principal directions. The degree of non-coaxiality is dependent on the relative
directions and relative magnitudes of fabric anisotropy and contact force anisotropy.
For the initially anisotropic sample, the fabric anisotropy is small and the principal
fabric direction evolves rapidly to the loading direction, although the initial fabric
direction is not coaxia with the loading direction. Accordingly, the general coaxid
behaviour is observed. For the pre-loaded sample, the fabric anisotropy is larger and
the fabric direction rotates gradually to the loading direction. Hence, significant non-
coaxiaity is observed. After large deformation, the principal fabric direction

becomes coaxia with loading direction, leading to coaxia behaviour.

186



Chapter 7 Influence of particle shape on granular

material behaviour

7.1 Introduction

The previous chapters present the simulation results on samples of spherical
particles, where the idealised particle shape is used. The real granular materia, e.g.,
sand, generally consists of non-spherical particles. In this chapter, the numerical
simulations results are presented on samples with non-spherical clump particles and
are compared to the results on sample with spherical particles, to investigate the
effect of particle shape on granular material behaviour. The observations on material
responses under triaxial compression and simulations with tilting principal stress

directions are qualitatively compared to each other.

7.2 Sample preparation

The initially isotropic samples prepared by the radius expansion method have
been introduced in Section 4.3.1. The individual non-spherical clump particle has

been defined in Section 3.3.1. The initialy isotropic dense sample CRED_TT is
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prepared with non-spherical particles randomly positioned within the polyhedral
boundary (n=8 and R =0.0065m ). Details of prepared initial samples are
summarised in Table 7.1. The sample size, over 3000 particles, is sufficient to
produce typical stress-strain behaviour, as validated in Section 3.3.2. The mechanical
parameters used for numerical simulation are the same as that used for spherical
particles in Table 4.1. It can be seen that the sample CRED_TT of non-spherical

particles has a lower initial void ratio (g, = 0.59) than the sample SRED_TT of
spherical particles (g, = 0.64) under otherwise the same generation procedures. The

prepared samples are used for simulation results presented in Section 7.3.

Table 7.1 Samplesinformation of initially isotropic dense sample with different

particle shapes

Initial pressure
Sample m e, Voidratio §  No. of particles
p, (kPa)
CRED TT 0.1 0.59 447 0.6 5053
SRED TT 0.1 0.64 450 0.64 11090

The initially anisotropic samples of non-spherical particles were generated by
the gravitational deposition method as introduced in Section 4.3.2. The cubic box
had the three dimensions (length, width, height) of 0.0192m” 0.0192m” 0.133m,
resulting in 18876 particles generated. Two samples with different initial void ratios

have been prepared by setting the frictional coefficient m, = 0.01 and m, = 0.5

during the deposition process. After the deposition process completed and material
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equilibrium satisfied, the polyhedral boundary walls were generated by selecting
n =8, R = 0.0066 for the dense sample CDED_TT and n = 8, R = 0.0068 for the
loose sample CDEL_TT. Then, the particles outside the boundary walls were deleted
and the friction coefficient was restored to the normal value m=0.5. Finaly,
simulation was carried out to achieve static equilibrium and the samples were
isotropically consolidated to the mean normal stress of 500kPa. At this stage, the

void ratio g, isrecorded as initial void ratio. The details of the prepared samples are

summarised in Table 7.2.

Table 7.2 Initially anisotropic samples of non-spherical clump particles

Initial pressure

Anisotropic sample m Voidratio g No. of particles
p, (kPa)
CDED_TT 0.01 440 0.64 5188
CDEL_TT 0.5 416 0.77 5178

7.3 Effect of particle shape on isotropic material

behaviour

7.3.1 M acro-scale material behaviour

The triaxial compression tests (b = 0) have been conducted on the isotropic
samples with different particle shapes under constant mean normal stress

p = 500kPa and fixed principal stresses directions along coordinate axis. The
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stress-strain behaviour of two samples with different particle shape is shown in Fig.
7.1. Both samples exhibit strain hardening and strain softening behaviours. The
dilative volumetric expansion is aso observed in the two samples. Despite the
common observations, it is clear that the sample CRED_TT performs stiffer and
more dilative than the sample SRED_TT. A much higher peak stress ratio is
obtained in the sample CRED_TT. At large deformation, the sample SRED _TT is
approaching the critical state with constant volumetric strain while the sample
CRED_TT seems to dilate further as shearing continues. Macroscopicaly, this is
well understood as the granular assembly with angular particles being more shearing
resistant and dilative than that with rounded particles since the particle sliding and
rotation mechanism can occur more easily between rounded particles. In addition,
excess particle rotation could happen in DEM simulation in assembly of spherical
particles, which is unredlistic. And it is suggested that the rolling resistance should
be incorporated into DEM simulations (Iwashita and Oda, 1998, Jiang et al., 2005).

However, thistopic is not considered in this study.
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Fig. 7.1 Effects of particle shape on material response during triaxial

compression (b = 0) (a) stress-strain behaviour (b) volumetric strain

7.3.2 Micro-scale observations

7.3.2.1 Fabric evolution

The influence of particle shape on the evolution of microscopic parameters
during triaxial compression, i.e., coordination number W and contact normal

anisotropy D, is plotted in Fig. 7.2. It shows that the sample CRED_TT initially

has a larger coordination number than the sample SRED_TT with a difference of
w = 2.6. It indicates the non-spherical particles assembly are closer packed and
individual particle gains more contact support from its neighbours, corresponding to
the smaller void ratio in the sample CRED_TT. The coordination number of both
samples reduces significantly during the initially 10% of deviatoric strain due to
volumetric dilation and the difference of W between two samplesis narrowed to 1.5.

This difference remains constant for further shearing. Fig. 7.2(b) demonstrates the
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developed contact normal anisotropy D, during shearing. Initially, the fabric

anisotropy is close to zero in both samples, corresponding to the initially isotropic

internal structure. The evolution of D. against shearing is similar for both samples.

However, the fabric anisotropy D. is much larger in the sample CRED_TT than the

sample SRED_TT at the same deviatoric strain.
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7.3.2.2 Particleinteraction force

The particle shape effect on mean normal force f, evolution is shown in Fig.

7.3. At the same deviatoric strain, the mean normal force in sample of spherical
particlesis 1.3 — 1.5 times larger than that in sample of non-spherical particles. As
the mean normal stress is constant, the mean normal force is reversely proportional
to the coordination number (e.g., Fig. 7.2(a)), where coordination number in sample
of spherical particles is approximately 1.3 times less than that in sample of non-

spherical particles.

0.4
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Fig. 7.3 Particle shape effect on mean normal force

The effect of particle shape on the contact force anisotropy is plotted in Fig.

7.4. The contact force anisotropy is partitioned into normal contact force anisotropy
G; and tangential contact force anisotropy G . It can be found that the normal and

tangential contact force anisotropy increase rapidly against shearing to the peak

value, corresponding to the strain hardening process in both samples. Then, the
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contact force anisotropy decreases to the steady value owing to buckling force chains,
dominating the strain softening behaviour. However, the norma and tangential
contact force anisotropy is much larger in the sample with non-spherical particles

than the sample with spherical particles.
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Fig. 7.4 Effects of particle shape on contact for ce anisotropy

The individual contact friction mobilisation coefficient is determined by the

frictional force normalised by the normal contact force as m =|f|/f . The

evolution of its average over all contacts m, = (|f,|/f,) isshown in Fig. 7.5. It can

be seen that the frictiona mobilisation coefficient increases rapidly to the peak
against shearing, corresponding to the anisotropic contact force distribution
stabilised by frictional resistance. It is then followed by tiny decrease to steady value
for both samples. The average friction mobilisation is much larger in the sample with
non-spherical particles than that in the sample with spherical particles. Hence, the

sample with non-spherical particles exhibits a higher strength characteristic due to
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more anisotropic microstructure developed, in terms of greater fabric anisotropy and

contact force anisotropy, and larger friction mobilisation.
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Fig. 7.5 Effect of particle shape on contact friction mobilisation coefficient

7.4 Combined effect of b value and cr oss-anisotr opy
7.4.1 Numerical ssmulation procedures

The gravitational deposited samples have an initialy cross-anisotropic
internal structure with transversely isotropy in the horizontal bedding plane, i.e., the
x-y plane in Fig. 7.6. The true triaxial loading paths on initially cross-anisotropic

sample are illustrated in Fig. 7.6, in considering both the magnitude and principa

directions of principal stresses. In sector | ( O° £q £60° ), where

q =tan™ (\@b/(Z - b)) is the stress lode angle, the major principal stress direction
and intermediate principal stress direction are fixed along the z-axis (a = 0°) and
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the y-axis, respectively. In sector Il (60° £q £120°), the mgor principal stress
direction and intermediate principal stress direction are fixed along the y-axis
(a =90") and the z-axis, respectively. In sector Il (120° £ q £ 180°), the major
principa stress direction and intermediate principal stress direction are fixed aong
the x-axis (a = 90°) and the y-axis, respectively. In each sector, the intermediate
stress ratio b varies from 0 to 1 with 0.2 intervals. The numerical true triaxial tests
have been conducted on samples CDED _TT and CDEL_TT in three sectors to
investigate the cross-anisotropic behaviour of granular material. The numerical

simulations plan is shown in Table 7.3.

Table 7.3 Truetriaxial smulations plan on initially anisotr opic samples of non-
spherical particles

Sector | Sector |1 Sector 111
Anisotropic
a=0 (a =90%) a =90
samples
0 £q£60 60° £q £ 120° 120° £q £ 180°

CDED_TT | bl g0,1gwith0.2 | bl g0,1gwith0.2 | bT ¢0,1f with0.2

CDEL_TT interval interval interval
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g, =0,

Ty =G,

Fig. 7.6 lllustration of truetriaxial testsin three sectors on octahedral plane
with different combinations of relative directions of major, intermediate, minor

principal stresses, s, s,and s, to bedding plane

7.4.2 Truetriaxial testswith on initially anisotropic samples

The effects of cross-anisotropy on the stress-strain behaviours of samples
CDED_TT and CDEL_TT are demonstrated in Fig. 7.7. It shows that the dense
sample CDED_TT exhibits strain hardening with a peak stress ratio reached,
followed by strain softening behaviour. The loose sample CDEL_TT hardens
continuously. In asymmetric loading conditions (b =0,b =1), the stress-strain
behaviour are identica when triaxial compression (b = 0) conducted in Sector Il
and Sector |1l and triaxial extension (b =1) conducted in Sector | and Sector II,

which is due to the same loading path in considering material cross-anisotropy (or
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transversely isotropy in horizontal plane). Under otherwise loading conditions, it is
generaly observed that the sample sheared in Sector | exhibits the highest stress
ratio and the lowest stress ratio is obtained when sheared in Sector 111, with middle

vaues occurred in Sector Il a the same deviatoric strain, e.g., e, = 5%, for both

samples. And the samples perform most dilative in Sector I, followed by Sector |1
and Sector I, successively. Similar results are also reported on the anisotropic
deformation characteristics of sand (Y amada and Ishihara, 1979, Haruyama, 1981).
At large deformation, the effects of cross-anisotropy on the strength becomes small
and the stress ratios reach similar values for both samples, regardliess of loading
directions at constant b simulation. It indicates that the critical stress ratio is

independent of the initial void ratio and material anisotropy. The volumetric strain

approaches the steady value but does not reach the same value at e, = 40% in three

Sectors.
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The effects of cross-anisotropy on the dilatancy behaviour is interpreted as

dilation angle as shown in Fig. 7.8. The dilation angle | is caculated as

_ dé,/dé,

sinj :
T2 de, Jde,

where dé, and dé, are the total volumetric strain

increment and major principal strain increment at the peak stress ratio and it is

determined under small deviatoric strain increment De, = 0.5% (Schanz and

Vermeer, 1996, Lade and Abelev, 2003b) . It is clear from the figure that the dilation
angle increases at a greater b value in each sector. This is more significant in the

dense sample as the difference of | in the triaxial compression (b = 0) and the
triaxial extension (b = 1) is around 9 while it is about 4° in the loose sample. At
the same b value, the dilation angle is largest in Sector | and smallest in Sector l|
for the dense sample and the difference of | is up to 6°a b=0.6. Similar
observations of cross-anisotropy on dilation angle can be seen for the loose sample
except for small difference of j observed in three sectors when b £ 0.4. The
maximum difference of | in three sectors is around 1.7°at b = 0.8 for the loose

sample. Similar results of anisotropic dilatancy behaviour can be found in the

experimental study (Lade and Abelev, 2003Db).
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7.4.3 Micro-scale observations

The effect of cross-anisotropy on the contact normal fabric evolution is
shown in Fig. 7.9 in simulations at different b values. Before shearing, the contact

normal fabric anisotropy D. is not equal to zero with D. = 0.42 for the dense
sample CDED_TT and D. = 0.51 for the loose sample CDEL_TT. This clearly

shows the anisotropic microstructure formed due to the gravitational deposition

process. As shearing occurs, in sector I, it is observed that D increases to its

maximum value in the dense sample, followed by continuous decrease to its ultimate

steady value, and D. shows continuous increase with decreasing rate to its ultimate
value in the loose sample. In Sector I, D, is found to decrease initidly to its

minimum value for both samples. Then, it starts to increase to reach its ultimate
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steady value. In Sector 1, the D, initially decreases to its lowest value for both
samples and the reduction is larger than that occurred in Sector |1 at the same b value.
Then, it increases gradually to its ultimate constant value and no peak value has been
observed. The initial decrease of D. is due to the applied major principal stress
direction is not coaxia with the major principal direction of initial fabric anisotropy.
The initial fabric evolves gradually to orient itself to the principal stress direction.

The minimum value of D. is the turning point where the major principal fabric

direction becomes coaxial with the loading direction.

Generally, the samples sheared in Sector | have the highest D. at the same

deviatoric strain, resulting in a higher stress ratio achieved in Sector | than the other

Sectors even tested at the same b value. The difference of D. in three sectors
becomes smaller at large shearing strain level. At the end of shearing, the D_

reaches the similar constant value, termed as critical fabric anisotropy, in dense and
loose samples in the same sector as seen in Fig. 7.14. The critical D_ is generaly
greatest in Sector | and lowest in Sector 11l. Accordingly, the difference of critica
stress ratio achieved in three sectors (see Fig. 7.13) is small as the fabric anisotropy
reaches similar values. The small variation of the critical stress ratio in the middle
range of bvaluesisrelated to the dlightly larger critical fabric anisotropy in Sector |

than in Sector 11, as shown in Fig. 7.14.
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7.4.4 Discussion

To have a better view of the effects of initial cross-anisotropy on yielding and

strength characteristics, Fig. 7.10 shows the maximum interna friction angle f _ of

the dense sample CDED_TT obtained at peak stress ratio in three sectors and the

internal friction angle f of the loose sample CDEL_TT at different deviatoric strain

levels due to no softening behaviour for the loose sample. The curves with diamond,

square and triangle symbols represent f obtained in Sector I, Sector Il and Sector 111,

respectively. The peak strength f  of the sample CDED_TT increases initialy

from b =0 to b » 0.5. Then, it decreases dightly with the increasing b value to 1.

Similar variations of f - b relations for the loose sample CDEL_TT can be
observed, though the variation is small a e, =1% . At the same b, the friction

angle of the dense sample at peak stress ratio or the loose sample at different
shearing levelsis generaly larger in Sector | than in Sector 1, with the lowest value

obtained in Sector IlIl. The difference of the f between Sector | and Sector Il

becomes small with increasing b value while it enlarges between Sector Il and
Sector I11. Those results clearly show the significant effect of cross-anisotropy on the
anisotropic failure strength or yielding behaviour of granular material. Similar
observations have also been achieved by experimental study of cross-anisotropic
sand behaviour (Yamada and Ishihara, 1979, Haruyama, 1981, Ochia and Lade,

1983, Abelev and Lade, 2003a).
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Fig. 7.10 Effects of cross-anisotropy on peak friction angle of the sample
CDED_TT and friction angle of thesample CDEL_TT at different strain levels

The three-dimensional isotropic failure criterions have been formulated to
predict the soil strength (Matsuoka and Nakai, 1974, Lade, 1977). However, the sand
materia isinitially anisotropic and the failure strength may be different even tested
with the same magnitude of stress conditions. The peak stress ratios of the dense
sample CDED_TT obtained from true triaxiad simulations are plotted in the
octahedral plane as square hollow symbols, as shown in Fig. 7.11. The surface with
solid line represents the isotropic failure surface proposed by Lade (1977), of which
model parameter is determined from the triaxial compression simulation in Sector I.
It can be seen that the DEM results cannot be captured by the isotropic failure
criterion with significant overestimation of the peak stress ratio in Sector 111. On the

contrary, the DEM failure surface is cross-anisotropic in the octahedral plane and the

209



failure strength of the initialy anisotropic sample CDED_TT is dependent on the

applied principal stress directions.

—_—| ade (1977) |
o DEM

o
-

Fig. 7.11 Cross-anisotropic failure surface on the octahedral plane

The fabric anisotropy at peak stress ratio or particular strain level is
illustrated in Fig. 7.12. The fabric anisotropy of the dense sample CDED_TT in three
sectors is the value of D, at the peak stress ratio and the fabric anisotropy of the

loose sample CDEL_TT in three sectors is the value of D, a e, =1% ,

corresponding to the anisotropic failure or yielding, as shown in Fig. 7.10. It is clear
that the anisotropic failure strength or anisotropic yielding is dependent on the

anisotropic fabric anisotropy D, developed in three sectors.
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Fig. 7.13 shows the critical stress ratio h_, which is the average value of
stress ratio at the last 5% of deviatoric strain for both samples. It can be seen that
critical stress ratio decreases with the increasing b value. In ssmulations at the same

b, h_ approaches similar values for dense and loose samples due to initial
anisotropy effects disappeared at large deformation, irrespective of different sectors.
This is microscopically explained that the materials approach similar critica internal

structure anisotropy, as shown in Fig. 7.14.
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7.5 Effect of particle shape on anisotropic material

behaviour

The true triaxial simulation results in three sectors may clearly indicate the
loading direction dependent behaviour of anisotropic material, where the major
principa stress direction is either vertical (a =0°) or horizontal (a =90°).
Accordingly, the effect of loading direction a on anisotropic sample CDED_TT and
pre-loaded sample CDED_TC_TT is investigated in this section and the results are
qualitatively compared to those presented on samples with spherical particles in

Chapter 6.

The initially anisotropic dense sample CDED_TT and the pre-loaded sample
CDED_TC _TT are sheared at various loading directions at constant b = 0.4 and

p = 500kPa . The pre-loaded sample was prepared by pre-loading the sample
CDED_TT to the deviatoric strain e, =10% under triaxial compression loading

path with the principal stress direction in the vertical deposition direction (e.g., Fig.
5.9). Then, the sample was un-loaded to isotropic stress state with confining pressure

p = 500kPa. The prepared samples are summarised in Table 7.4. The pre-loaded

sample has aslightly larger void ratio g, .

Table 7.4 Initially anisotropic and pre-loaded samples

Anisotropic samples Voidratio § No. of particles

CDED_TT 0.64 5188

CDED _TC TT 0.65 5188
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7.5.1 Stress-strain behaviour

The stress-strain behaviours of initially anisotropic sasmple CDED_TT and
pre-loaded sample CDED_TC_TT at various loading directions a are shown in the
Appendix A (Fig. A1 and Fig. A8). It shows that the material performs stiffer before
reaching the peak stress ratio and severer initial volume contraction has been
observed with the increasing tilting angle a . In addition, a lower peak stressratio is
obtained and larger deviatoric strain is required to reach failure at a greater tilting
angle a . At large shear strain level, the stress ratio shows little difference and
variation of volumetric strain becomes small. This is qudlitatively similar to the
observation of loading direction dependent stress-strain behaviour on samples with

spherical particles as presented in Chapter 6.

7.5.2 Non-coaxiality

The non-coaxial behaviour of anisotropic samples is shown in the Appendix
A (Fig. A3 and Fig. A9), where the solid straight lines represent the major principal
stress direction of which is fixed in the x-z plane, described by the angle a . And the
principal strain increment direction is determined by the relative angle g, between
the principal strain increment direction and the vertical z-axisin x-z plane. The strain

increment &, is determined within a small increment of deviatoric strain

éq =0.5% . It can be seen that the initialy anisotropic sample CDED_TT

generaly presents coaxial-behaviour while significant non-coaxia behaviour is
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observed in the pre-loaded sample CDED_TC TT. This is qudlitatively similar to
that observed on the initially anisotropic sample SDEM_TT and pre-loaded sample
SDEM_TC_TT with spherical particles, as presented in Chapter 6. Consistent non-
coaxial behaviour has also been observed in 2D DEM simulations on initialy
anisotropic sample and pre-loaded sample with non-spherical particles by Li et al.,

(2009).

7.5.3 Micro-scale observations

The microscopic tensors evolution of anisotropic samples with non-spherical
particles is illustrated in the Appendix A. The effect of loading direction on
evolution of fabric anisotropy and contact force anisotropy is generally observed to
be qualitatively similar to that in samples with spherical particles. The detailed
description of fabric tensor and contact forces tensors evolution has been introduced
in Chapter 6 and it is not described in details in this section. Generaly, the
anisotropic stress-strain behaviour before fallure at various loading directions
corresponds to the different degrees of fabric anisotropy and contact forces
anisotropy in both sample CDED TT and pre-loaded sample CDED TC TT.
During the strain softening regime, the contact forces anisotropy is similar and the
fabric anisotropy becomes small at various loading directions, leading to similar
stress-strain behaviours observed. The generally coaxia behaviour observed in
initially anisotropic sample CDED_TT is due to the fabric anisotropy being small
and the principal fabric direction approaches the loading direction rapidly. For the

pre-loaded sample CDED_TC _TT, the principal fabric direction evolves gradually to
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the loading direction due to large fabric anisotropy before shearing, resulting in

significant non-coaxiality.

7.5.4 Discussion on strength anisotropy

The stress-force-fabric (SFF) has been validated to predict the stress ratio
accurately in Section 5.5 on samples of spherical particles and itself has no
restriction on particle shape. Fig. 7.15 shows the SFF relationship for the pre-loaded
sample CDED_TC _TT in simulation at b = 0.4. The solid lines represent the stress
ratio calculated from forces acting on boundary walls using Eq. (2.17). And the
hollow symbols corresponds to the stress ratio determined from SFF relations using
Eq. (2.18). It can be seen that stress ratio from SFF shows little difference to that
calculated from boundary walls before reaching the peak stress ratio. However, the
SFF predicts a greater stress ratio than that obtained from Eq. (2.17) during post-
peak shearing. This is probably due to significant stress non-uniformity at large
deformation. The stressis found to be larger within measurement sphere, which isan
intrinsic function within PFC3D to measure stress tensor within granular assembly,
in the central area of the sample than that determined from forces acting on rigid
boundary walls due to no sufficient frictional resistance between particle-wall
contacts. The other possible reason is the second-order approximation of interna
structure may not be sufficient and higher-order approximation, e.g., fourth-order,
may be more accurate. Nevertheless, the qualitative trend of the predicted stress ratio,
a least, is similar to that calculated from the boundary forces at various loading
directions. Thus, the microscopic information may still be used to interpret the

anisotropic strength characteristics.

216



1.4

1.2}
1,
<
S 08} A !
g a=30 | pEM from Eq. (2.17)
@ a=60
@ 0.67“‘ _900 B
o | a=
| .
0.4 a=0 .
a:300 SFF from Eq. (2.18)
0.2 a=60 .
0 a=90
0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 10 20 30 40

Deviatoric strain, € (%)

Fig. 7.15 Comparison of stressdetermined from DEM and SFF relations for

pre-loaded anisotropic sample CDED_TC_TT of non-sphercial clump particles

To visualise the effects of loading direction on the anisotropic strength
characteristics more clearly, the anisotropic strength of initially anisotropic dense
sample CDED_TT and pre-loaded sample CDED_TC_TT areillustrated in Fig. 7.16,
from simulation results at constant b = 0.4. In simulations with the same b value, it
can be seen that the peak stress ratio decreases continuously with the increasing
loading direction a for both samples. The pre-loaded sample generally gives
dlightly smaller peak stress ratio than the initially anisotropic sample at the same
loading direction, suggesting the material slightly softened by the pre-loading history.
Similar experimental results have also been reported on tests of anisotropic sand

material (Oda, 1972, Arthur and Menzies, 1972, Lam and Tatsuoka, 1988).
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The microstructural tensor anisotropy degree of the sample CDED _TT and
the pre-loaded sample CDED_TC TT at peak stressratio, corresponding to Fig. 7.16,
is plotted in Fig. 7.17. The solid red lines with hollow symbols indicate the results
from the sasmple CDED_TT and the solid dark lines with symbols refer to the results
from the pre-loaded sample CDED TC TT. The lines with triangle symbols
represent normal contact force anisotropy. The lines with square symbols are the
fabric anisotropy and those with circles refer to the tangential contact force
anisotropy. It is clear from the figure that the normal contact force anisotropy and
tangential contact force anisotropy show small variation with tilting angle a while

the fabric anisotropy D, decreases significantly as loading direction rotates from the

vertical (a =0°) to the horizontal plane (a =90°). Hence, it is clear that the
strength anisotropy is due to the effect of fabric anisotropy, with a smaller fabric

anisotropy developed at greater tilting angle a .
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At large deformation, where the critical stress ratio h is achieved in each
simulation, it is clear from Fig. 7.18 that the h . shows little difference in the initially
anisotropic sample and the pre-loaded sample at different loading directions with
constant b = 0.4. Microscopicaly, the fabric anisotropy D. and contact forces
anisotropy G; and G, approach the same value at large deformation under various

loading directions (e.g., Appendix A). The principal directions of microstructural
tensors are coaxia with the external stress direction. Hence, the same stress ratio is

reached, irrespective of loading directions.
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7.6 Discussion on particle shape effect on critical

fabric anisotr opy

Fig. 6.8 and Fig. 6.18 show the fabric evolution of the initially anisotropic
sample and pre-loaded sample with spherical particles during monotonic shearing
under different loading directions. It can be seen that at large deformation, where the
critical stress ratio is achieved, the fabric anisotropy reaches similar values,
irrespective of various loading directions. The principal fabric direction becomes
coaxia with the loading direction. Accordingly, the critical fabric anisotropy is

considered to be achieved.

Fig. A4 and Fig. A5 (e.g., Appendix A) show the fabric anisotropy evolution

and principal fabric direction evolution of the initially anisotropic sample with non-
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spherical particles. The fabric evolution of the pre-loaded sample with non-spherical
particles is presented in Fig. A10. It is clear from the figures that the critical fabric

anisotropy D, has been achieved in the particular loading direction, independent of

the initial void ratio and pre-loading history. However, the critical fabric anisotropy

D. obtained at different loading directions shows dlight difference. The principal
fabric direction approaches loading direction at large deformation but still a small

gap.

The difference of critical fabric anisotropy obtained in the sample of
spherical particles and in the sample of non-spherical particles is due to particle
shape effect. Revisiting the stress tensor definition in Eq.(2.17), the stress tensor is
dependent on the contact force vector and branch vector connecting the centres of
two particles in contact. When the critical stress ratio is achieved, the contact forces
anisotropy approach the same values, irrespective of loading direction, and the
contact force principal directions become coaxial with loading direction as shown in
Fig. 6.20 and Fig. 6.21. Thisis also observed on non-spherical particles assembly as
presented in the Appendix A. Hence, the branch vector anisotropy must approach
similar anisotropy degree at various loading directions and the principal direction of
branch vector must be coaxia with loading direction at critical stress state. In the
sample of spherical particles, the contact normal vector has the same direction as the
branch vector in two contact entities. However, the contact normal vector generally
differs from the branch vector direction in two contacting particles in the sample of
non-spherical particles (e.g., Fig. 2.11). This is the main reason for the dight

difference on the observed critical contact normal fabric anisotropy.
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7.7 Summary

This chapter presents the simulation results of samples with non-spherical
particles under various loading paths. And the results are compared to those of
samples with spherical particles to stress the particle shape effect on granular

materia behaviour.

The initially isotropic sample CRED_TT has a lower initial void ratio and
greater coordination number than the sample SRED_TT under otherwise the same
generation procedures. In triaxial compression ssimulation, the sample CRED_TT
performs stiffer, stronger and more dilative than the sample SRED_TT.
Microscopically, thisis due to alarger degree of fabric anisotropy and contact forces
anisotropy developed and higher frictional mobilisation coefficient in the sample

CRED_TT.

Under true triaxia tests in the initialy anisotropic samples CDED_TT and
CREL_TT (cross-anisotropy) at the same b value, the material performs stiffer and

more dilative when sheared in Sector | than sheared in Sector I11. The friction angle

decreases continuously as stress lode angle q increases from 0° to 180°. Thefailure
envelop on the deviatoric plane shows cross-anisotropic strength criterion, indicating
the loading direction dependent strength characteristics. The different stress-strain
behaviour in Sector Il and Sector 111, where the major principal stress directions are
the same in the horizontal direction while the intermediate principal stress directions
differ to be either in the vertical direction or in the horizontal direction, shows clear

evidence of the combined effects of b value and material anisotropy on the initially
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anisotropic granular material behaviour. Microscopically, the anisotropic strength
characteristic is due to the effect of material cross-anisotropy. Upon the same
shearing strain, the fabric anisotropy shows different evolution paths in three Sectors.
At failure, the fabric anisotropy is found to be largest in sample sheared in Sector |

while the lowest fabric anisotropy is obtained in sample sheared in Sector I11.

In simulations with tilting principal stress directions on the initialy
anisotropic sample CRED_TT and the pre-loaded sample CRED TC TT, the
loading direction dependent anisotropic stress-strain behaviour is qualitatively
similar to that observed in sample with spherical particles as shown in Chapter 6,
with significant effect of a before failure while negligible effect after failure. At the
peak stress ratio, the internal fabric anisotropy D. is lower at a greater angle a

n

while the contact forces anisotropy G, G| shows little variation at various loading

directions. This clearly indicates that the anisotropic strength, decreasing peak stress
ratio with larger angle a , is due to the lower fabric anisotropy developed at a greater

angle a .

The non-coaxiality is negligible for the sasmple CRED_TT while significant
non-coaxial behaviour is observed in the pre-loaded sample CRED_TC _TT. The
non-coaxial behaviour is due to the initial non-coincidence of materia internal
structure direction, e.g., the principal fabric direction, relative to the loading
direction. This is qualitatively similar to the non-coaxial behaviour observed in the
sample SRED_TT and the pre-loaded sample SRED_TC _TT of spherical particles as

presented in Chapter 6.
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Comparing the fabric evolution in simulations under various loading
directions in samples with spherical particles and non-spherical particles, the critical
fabric anisotropy reaches similar values at different loading directions and the
principal fabric direction becomes coaxia with loading direction in sample of
spherical particles while a dlight difference of critical fabric anisotropy is observed
on sample of non-spherical particles and few degrees deviation exists between the
principal fabric direction and the loading direction. The reason is that the contact
normal vector direction coincides with the branch vector direction in contact
between spherical particles while the direction of two vectorsis generally different in

contact between non-spherical particles.
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Chapter 8 Material behaviour to rotational shear

8.1 Introduction

The simulation results of the anisotropic sample in the previous chapter
clearly show the loading direction dependent deformation behaviour. Significant
plastic deformation may be generated when anisotropic granular material
experiences a stress path, even with constant magnitudes of stress invariants but
purely continuous rotation of principal stress directions (i.e., rotational shear). In this
chapter, the deformation characteristic of anisotropic samples of non-spherical clump
particlesis investigated under drained rotational shear. The effects of stress ratio and
b value on the rotational shear behaviour are discussed. In addition, the effect of
particle shape on material rotational shear response is aso discussed, where the
macroscopic results of sample with spherical particles has been presented in Section
4.4.3. The interna structure evolution, in terms of contact normal fabric evolution,

will be examined to explain the macroscopic material deformation response.
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8.2 Numerical ssmulation procedures

The rotational shear controls constant mean normal stress p, intermediate
principal stress ratio b and stressratio h . Only the principal stress direction rotates

continuously within the x-z plane. More numerical implementation details have been
introduced in Section 4.4.3. This specific loading path mimics the rotationa shear

involved in alaboratory hollow cylinder test.

The initially anisotropic dense sample CDED_TT, which is the one as shown
in Table 7.2, has been pre-loaded to target boundary stress conditions for rotational
shear. The control of pre-shearing loading is the drained true triaxia loading path as

introduced in Section 4.4.2, with constant mean normal stress p, fixed b value and

the major principal stress direction being vertical. The sasmple CDED_TT was pre-

sheared at constant p = 500kPa , b = 0.5 to three different stress ratio levels,
h =0.5,h =0.7,h =0.9. The other group of samples was prepared by pre-shearing
the initially anisotropic sample CDED_TT to the same stress ratio h = 0.9 at
constant p = 500kPa but various b values, b = 0,b = 0.5,b = 1 respectively. The

detailed information of the pre-sheared numerical samples for rotationa shear is
summarised in Table 8.1. It can be seen that the prepared samples have similar initial

void ratios.

After the initially anisotropic sample was pre-sheared monotonically to the
target stress state, the samples were ready for rotational shear. During rotational

shear, the mgor principal stress direction a was rotated with a small increment
3 10 in one calculation cycle only when the constant stress invariants satisfied.
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Three series of ssmulations have been conducted. One was simulated at constant

p = 500kPa, b = 0.5 and three different stressratios h to investigate the influence
of stress ratio h on the deformation characteristics of granular material under pure
principal stress rotation. The other series was simulated at constant p = 500kPa,
h =0.9 and three various b values to examine the influence of b vaue on

deformation behaviour during rotation of principal stress. The rotational shear has
also been conducted on sample CRED_BO05Y05_RS, which was prepared by radius
expansion method and was initialy isotropic. The results are compared to that
obtained from sample CDED_BO05Y 05_RS to show the effect of initia anisotropy on

interna structure evolution.

Table 8.1 Samplesinformation for rotational shear

Simulations Pre-loading Sample | abel Voidratio g
h =0.5 | CDED B05Y05 RS 0.645
Series 1 True -
triaxial h =0.7 | CDED B05Y07_RS 0.645
Constant b value (b =0.5)
h =0.9 | CDED B05Y09 RS 0.645
Series2 True b=0.0 | CDED_B0O0OY09 RS 0.644

Constant stress | triaxial
b=1.0 | CDED BIOY0Q RS |  0.646

ratio h (h =0.9)
Series3 True
Initially isotropic |  triaxjial | h = 0.5 | CRED_B0O5Y05 RS 0.6
sample
(b =0.5)
CRED TT
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8.3 Influence of stressratio on material response

The effects of stress ratio on the material response undergoing rotational
shear at constant mean normal pressure p = 500kPa,b = 0.5 have been investigated.
The intermediate principal stress was fixed in both magnitude and direction along
y-axis. The major principal stress directions rotated continuously in the x-z plane.

More detail s about the numerical implementation can be found in Section 4.4.3.

8.3.1 Stress path

The variation of stress components at h = 0.5 is exemplified in Fig. 8.1(a).
It shows that the stress components along the y-axis direction keep constant with
s,, =500kPa,s , =0,s , =0, corresponding to the target boundary conditions
with fixed intermediate principa stress magnitude and principal direction along the

y-axis. The stress components s, ,s ,,,s , vary periodically every one cycle with

180" variation of a . The stress trgjectory in the deviatoric spaceis circled, as shown
in Fig. 8.1(b). And the stress trgjectory sizeislarger in rotational shear with a higher
stress ratio. This shows that the desired stress path (i.e., Fig. 4.14) has been well

maintained in numerical simulations.
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8.3.2 Strain responseto various stressratios

The variations of six strain components against the increasing number of

cycles areillustrated in Fig. 8.2 (a) — (c). One cycle indicates a 180° variation of a .
The three figures share the same legend, as shown in Fig. 8.2(a). In the figures, the
positive value of strain along the vertical axis refers to compression and the negative
value indicates extension. It is observed that the significant plastic strains are
accumulated, regardiess of constant magnitudes of the three principa stresses. This
is inconsistent with the classic plasticity theory, which predicts no strain increment

due to constant magnitudes of the three principal stresses. The strains e, e, e,, are

larger in the first a few cycles. As the number of cycle increases, the strain

components e, ,e,,e, vary periodicaly with decreasing oscillation amplitudes.
Although the intermediate principal stress s is kept constant throughout the
simulations, the contractive strain e , generally accumulates with continuous cyclic
major principal stress rotation. It is also observed that the strain components e, e,

are nearly zero, related to zero shear stress components s ,,s , (e.g., Fig. 8.1(a)).

Other than the common observations of strain response under various stress
ratios, it is found that larger plastic strain rates are induced in simulation with a

higher stress ratio. The oscillation amplitudes of e, ,e ,, e, are larger a a greater
stress ratio. Up to 30 cycles, the accumulated contractive intermediate strain e, is
larger in simulation at a higher stressratio, observedtobe e, = 0.7% a h = 0.5,

e, =1.9% a h =0.7 and e, = 6.4% o h = 0.9. Similar observations have
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been presented on sand responses to rotational shear under various stress ratios

(Yang, 2013).
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The strain trgjectory for rotational shear under different stressratiosis plotted
in the deviatoric plane, as shown in Fig. 8.3. To have a better view on the strain
trgectory, the strain trgjectories are also plotted in Fig. 8.4 at different cycles.
Among the rotational shear simulations with various stress ratios, it is observed that
the strain trgectories in the deviatoric strain space are open in the first cycle,
indicating non-recoverable plastic strain generated. With increasing number of
cycles, however, the strain trgjectories, unlike the circle of stress trgjectory, are spiral.
The size of the strain trgjectory becomes smaller with increasing number of cycles.
After alarge number of cycles, the strain trgectories appear to be circles, which is
consistent to the observation of 2D DEM simulation (Li and Yu, 2010). Comparing
the strain trgjectories at different stressratios in Fig. 8.4, the size of the strain path is
larger at a greater stress ratio. Similar strain responses to different stress ratios are
also observed in laboratory drained rotation shear (Yang, 2013). The critical strain
trgjectory in the 45" cycle appears to be circles, which is different to the
experimental observation of elliptical shape of strain trajectory in the 50" cycle

(Yang, 2013).
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stressratios

The volumetric strain e, during stress rotation is plotted in Fig. 8.5(a). It can

be seen that significant volumetric contraction accumulates even when the sample is
classified as a dense sample, where excess volume dilation occurs in monotonic
shearing as shown in Fig. 7.7. Most of the volumetric strain accumulation occurs in
the first a few cycles and the increment rate of volumetric contraction decreases for
increasing number of cycles. The larger the stress ratio, the severer volume
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contraction is observed. Thisindicates that the material ultimate void ratio (e.g., after
45 cycles) is stress ratio dependent during rotational shear shown in Fig. 8.5(b),
despite similar initial void ratios before rotational shear (e.g., Table 8.1). It is
interesting to see that the ultimate void ratio, which is the void ratio in the 45" cycle
considered as ultimate void ratio since the volumetric strain accumulation does not
change much after 45 cycles, linear correlation between the ultimate void ratio and
the stress ratio. It is worth to pointing out that only data three stress ratios has been
reported and a wider range of data would be more convincing. The volumetric
contraction has also been reported on the drained response of sand under rotational
shear (Tong et al., 2010); it is also observed as larger pore pressure build-up at
higher stress ratio in undrained rotational shear (Nakata et al., 1998, Yang and Li,

2007).
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Fig. 8.5 Effect of stressratio on volumetric strain during rotational shear

One may also see that the volumetric strain curves are jagged with both
contraction and dilation in one cycle. Fig. 8.6 gives the better view of the volumetric
strain evolution in the 1" and 20™ cycle for rotational shear at h = 0.7. In the first
cycle, the volumetric strain shows continuous increase with increasing a . In the 20"

cycle, the volumetric strain decreases due to dilation in the first haf cycle
(0° £a £ 90°) and the minimum value of e, isachieved a a » 80° . In the second
half cycle (90° £ a £ 180°), the volumetric strain increases significantly to reach the
maximume, at the end of the cycle. The volumetric strain at the end of the cycle is

larger than that in the beginning of the cycle, resulting in total volumetric contraction
in one cycle. Similar experimental results have been also produced (Miura et d.,

1986, Y ang, 2013).
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8.3.3 Defor mation non-coaxiality

As it is difficult to distinguish the elastic strain increment and the plastic

strain increment, the total strain increment vector is used for the following analysis
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instead of the plastic strain increment due to small contribution of the elastic strain
increment to the total strain increment as suggested by Gutierrez et al. (1991). The

strain increment vector is obtained within a small stress increment of principa

direction Da » 3.

The degree of non-coaxiality, difference between the mgor principa strain

increment direction g,, and the major principal stress direction a , is plotted in Fig.

8.7 for rotational shear under various stress ratios. The two small figures are
superimposed for better view of non-coaxiality in the 1t cycle and the 10" cycle.

The angle g, represents the direction of total strain increment vector relative to the
vertical direction and determined using Eq. (4.4). It is clear from the figure that
significant degree of non-coaxidlity is observed, generally lying between 30° and

40°. At constant stress ratio e.g., h = 0.5, the degree of non-coaxiality does not
keep steady along stress rotation but varies with fluctuation. However, the average
degree of non-coaxiality remains steady as g, - a » 38 a h = 0.5 during

continuous cyclic rotation. With increasing stress ratio, the average degree of non-
coaxiality becomes smaller. Thisis consistent to the 2D DEM observations on non-
coaxial behaviour during rotational shear under various stress ratios (Li and Yu,
2010); and similar experimental observations have also been reported on sand
response to stress rotation (Gutierrez et a., 1991, Yang, 2013). A dlight differenceis

that the non-coaxiality degree increases from 10° — 20° in the first a few cycles to

30" ~ 40° after 20 cycles of stressrotation (Y ang, 2013).
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8.4 Influence of b value on material behaviour

The effects of the b value on the material response undergoing rotational
shear at constant mean normal pressure p = 500kPa and fixed stress ratioh = 0.9
have been investigated on samples CDED_B0O0Y09 RS, CDED B05Y09 RS and
CDED_B10Y09 RS, respectively. In each simulation, the intermediate principal
stress was fixed in both magnitude and direction (y-axis). The mgor and minor

principa stress directions rotated continuously in the x-z plane. The implementation

details can be found in Section 4.4.3.
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8.4.1 Stress path

The variation of stress components at various b values can be seen from Fig.
8.8. It shows that the stress components along the y-axis direction keep constant with

s, =0,s, =0and different s  values at various b values, corresponding to the

target boundary conditions with fixed magnitude of intermediate principal stress and

principal direction along the y-axis. The stress components s ,s,,s,, vary

periodically every one cycle, corresponding to 180° variation of major principal
stress direction a . The stress trgjectory in the deviatoric plane is a circle, as shown
in Fig. 8.9, irrespective of various b values due to the same stressratio h = 0.9. It
clearly indicates that the target stress paths have been well maintained in numerical

rotational shear simulations.
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8.4.2 Strain responseto various b values

The strain tragectories of rotational shear under various b vaues are
illustrated in Fig. 8.10 in the deviatoric strain space. One may notice the size of
strain trajectory becomes larger for continuous stress rotation a b =1, indicating

significant deviatoric strain e, accumulated. This is due to the selected stress ratio
h = 0.9 at b =1 being higher than the critical stress ratio h, = 0.82 as obtained in

monotonic shearing (e.g., Fig. 7.13). The constant stressratio h = 0.9 can hardly be

maintained at such a high stress ratio in the numerical simulation. The sample would
experience deformation failure after a few cycles as reported in the laboratory test

when the stress ratio for rotational shear is greater than the critical stress ratio

243



obtained in monotonic shearing (Yang, 2013). This indicates that the failure of
granular material subjected to rotational shear has a clear connection to the selected
stress ratio relative to the critical stress ratio obtained in monotonic loading. Thus, in
the following, the rotational shear results a&a b =0 and b = 0.5 are mainly

discussed to demonstrate the effects of b value on material rotational shear behaviour.

For the samples CDED_B00Y09_RS and CDED_BO05Y09 RS, it isobserved
that, unlike the same circular stress trajectory in the deviatoric stress space in Fig.
8.9, the strain trgjectories are spira with continuous rotation of stress direction. The
size of the strain trgjectories becomes smaller with the increasing number of cycles
and it stabilises to be a circle after a large number of cycles. It can be seen that the
strain trgjectories are quite similar during rotational shear at b =0 and b = 0.5.
The difference is that the size of strain trgjectory is generally larger at b = 0.5 than
that at b = 0, indicating a larger strain increment rate at a greater b value at the

same rotation of principal stress axes.

The intermediate strain e, evolution is plotted in Fig. 8.11. Significant
intermediate strain e, has been generated, athough the intermediate stress is

constant in both its magnitude and principal direction during rotational shear. For
simulations with b = 0 and b = 0.5, the intermediate strain increases continuously

with decreasing rate. With increasing b value, the intermediate strain e , changes

from negative value (extension) at b = 0 to positive value (contraction) at b =1.
This agrees well with the experimental observations on b value effect on sand

specimens to rotational shear responses (Tong et a., 2010, Yang, 2013). It shows
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that the b value has a significant effect on the intermediate strain during rotational

shear, which is missing in 2D DEM simulation. At b =1, the contractive strain e |

increases dramatically in the first four cycles, leading to deformation “failure’.

Strain component, gx: (%)

? ' b=0.0

-4 -
Strain component, (Exx-£zz)/2 (%)

(a)

Strain component, £x: (%)

3
Strain component, (Exx-£22)/2 (%)
(b)
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The effects of b values on the volumetric strain and deviatoric strain during
rotational shear are shown in Fig. 8.12. The three samples have similar initial void
ratios and stress ratios and sheared at different b values (e.g., Table 8.1). Atb =0
and b = 0.5, it can be seen that the volumetric strain and deviatoric strain vary with
oscillation. However, with the continuous rotation of principal stress direction,
significant volumetric contraction and deviatoric strain accumulate in the first few
cycles and slow down with decreasing increment rate. The magnitudes of the
accumulated volumetric strain and deviatoric strain are larger at b = 0.5 than at

b =0, indicating significant impact of b value on deformation characteristics
during shear under otherwise similar conditions. As for the rotational shear at b =1,
dilative volumetric strain accumulated in the first a few cycles while significant
deviatoric strain is generated. This may clearly indicate the sample ‘fails’ due to

large flow deformation even when the stress ratio h = 0.9 is lower than the peak

stressratio h , = 1.08 obtained from monotonic loading (e.g., Fig. 7.7).

Fig. 8.13 presents the volumetric strain evolution against deviatoric strain for
rotational shear a b=1.0,h = 0.9. It can be seen that if rotational shear continues,
the dilative volumetric strain seems to increase further with increasing deviatoric
strain. The ultimate dilative volumetric strain may have a connection to the critical
volumetric strain in monotonic shearing as shown in Fig. 7.7. In addition, this shows
that the DEM simulation for the rotational shear can continue when the sample ‘fails’
in advantage of a laboratory hollow cylinder rotational shear, where the sample fails
with large deformation non-uniformity in the first few cycles and the test can not

continue (Y ang, 2013).
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Fig. 8.13 Flow deformation for rotational shear at b=1.0,h = 0.9

8.4.3 Non-coaxiality
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The degree of non-coaxiality is described as the difference of the principal

plastic strain increment direction and principal stress direction. The total strain

increment is used instead of the plastic strain increment. The strain increment is

obtained within a small stress direction increment, i.e.,, Da » 1.5°. One cycle

corresponds to 180° change of a . Fig. 8.14 shows the degree of non-coaxiality

Op - @ during rotational shear with three different b values. Significant degree of

non-coaxiality is observed. Up to the same number of cycles, the degree of non-

coaxiality is larger at a smaller b value. Consistent observations on the effect of b

value on non-coaxiality have been reported in experimental study (Tong et a., 2010,

Y ang, 2013).
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8.5 Internal structure evolution

The granular material internal structure includes the particles interactions and
associated void distributions, known as the particle cell system and the void cell
system (Li and Li, 2009). The internal structure evolution presented in the 2D DEM

rotational shear (Li and Yu, 2010) was related to the void cell structure. In this

research, the internal structure is described by the fabric tensor D, , which

characterises the distribution of contact normal vectors between interacting particles.

8.5.1 Fabric response under various stressratios
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8.5.1.1 Fabric components evolution

The variation of fabric tensor components for rotational shear under various
stress ratios is plotted in Fig. 8.15. The three figures share the same legend in Fig.

8.15(a). It can be seen that the fabric components D, , D, are close to zero during
rotational shear, irrespective of the various stress ratios. The intermediate fabric
component D, shows a tiny increase from its original value D , = - 0.13 before
rotational shear to a steady value D, =-0.12 a h = 0.5. It increases slightly in
simulation with h = 0.7, from D, =-0.12 to D, = - 0.03. Significant change of
D,, is observed at h = 0.9 with an increment up to 0.2 from its origina value

D, =-0.08. The increase of fabric component D indicates more contacts

formed along the y-direction, corresponding to sample contraction with positive

strain component e . Hence, the contractive strain e is observed as shown in Fig.
8.2. And the magnitude of the strain e is related to the increment magnitude of

D,, - Thelarger theincrement of D, the greater the strain e , generated.

Meanwhile, the fabric components D, , D,,, D,, vary periodically, showing a

close relation to the periodical variation of stress componentsin Fig. 8.1. Thisclearly
indicates that the material internal structure follows the rotation of major principal
stress direction in x-z plane. The change of the internal fabric is related to the
particles rearrangement. Hence, deformation is generated during stress rotation,
shown as strain variations in Fig. 8.2. The oscillation amplitude of fabric

components D, , D,,, D,, islarger at higher stress ratio. This demonstrates a greater
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fabric increment rate at higher stress ratio, corresponding to the bigger strain

increment rate at higher stressratio (e.g., Fig. 8.2).
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To have a better view of the fabric evolution, the fabric components

D,.D,.,D, ae plotted in the deviatoric plane in terms of D, against
(D, - D,)/2, as shown in Fig. 8.16. It shows that fabric trgjectory is amost a

circle, smilar to the circle of the stress trgectory, with a fixed centre in the

horizontal axis (DXx - DZZ)/Z under continuous stress rotation. It indicates the

material internal fabric anisotropy D. remains nearly constant while the principal

fabric direction rotates continuously along the stress rotation. In addition, it can be
found that the centres of the fabric trgjectory locate in the negative side of horizontal
axis under various stress ratios due to effects of material initial anisotropy.
Comparing the fabric tragjectories under different stress ratios (e.g., Fig. 8.17),
however, the size of the fabric trgjectory is greater at larger stress ratio. This
indicates that the material ultimate internal structure anisotropy is stress-ratio
dependent, the larger the fabric anisotropy at bigger stress ratio. The larger internal
structure anisotropy leads to larger size of strain trajectory as observed in Fig. 8.3.
The reason is a larger deformation is required to achieve higher fabric anisotropy,
which is confirmed in monotonic shear with tilting principal stress directionsin Fig.

A8. The centres of circular fabric trgectories are amost the same at

(D, - D,)/2»-0.15 at during the rotational shear regardless of various stress

ratios.
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Fig. 8.17 Effect of stressratios on fabric trajectory at different cycles

The ultimate deviatoric strain eqR , which is the radius of the ultimate circular

strain trgjectory, is plotted against the ultimate fabric anisotropy DF, which is the
radius of the ultimate circular fabric trgectory, as shown in Fig. 8.18. It is clear that

eqR is linearly determined by Df , athough limited data obtained at three stress

256



ratios is presented. This is consistent to the 2D DEM observation of the linear

correlation between e’ and Df (Li et al., 2010).
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8.5.1.2 Principal fabric direction

Although the internal structure rotates along the maor principal stress
rotation, the major principal fabric direction may not exactly follow the direction of
major principal stress direction. The principal fabric direction is determined by the

angle g, , which is the angle between the projection of the principal fabric vector on
the x-z plane and the vertical axis. The difference of the major principal stress
direction and major principal fabric direction, a - g., is plotted in Fig. 8.19. A
positive value of a - g. indicates that material internal structure rotates along the

major principal stress rotation with a few degrees behind the principal stress
direction and the negative value, on the contrary, refers to the principal fabric
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direction be ahead of the principa stress direction. It can be seen that the value of

a-g. is not held constant to be zero but varies with oscillation, which
demonstrates that the principal fabric direction is generaly not coaxial with the
principal stress direction. To have a better view of a - g. in one cycle, the
evolution of a - g. is also plotted in Fig. 8.20 in the first cycle and the 45" cycle.
Within the first cycle of a from 0° to 180°, the principal fabric direction is behind
the rotation of the principal stress direction with increasing positive value a - g. as
a varies from 0" to 90° while it becomes to be ahead of the principa stress
direction with negative value a - g, for further increase of a to 180°. Thisleadsto

the observed non-coaxia behaviour as shown in Fig. 8.7. The variation amplitude of

a - g, islarger a a smaller stress ratio h, corresponding to the larger degree of

non-coaxiality observed at a smaller stressratio.

One may notice that the a - g. value can be as large as 90" or - 90° at
h = 0.5. This is because the principal fabric direction is always close to the

vertical direction during rotational shear. In the deviatoric plane, thisis shown as the

fabric path being aways in the negative side of the horizontal axis (e.g., Fig. 8.16(a)).
Accordingly, the a - g. value can be as large as 90° when the principal stress

direction rotates to be in the horizontal direction, where the principal fabric direction
is still close to the vertical direction. This may indicate that the low stress ratio, i.e.,

h = 0.5, would not be sufficient to disturb the material initial anisotropy, with

preferred contact orientation in the vertical direction.
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To have a better view of the fabric evolution within one cycle, the fabric

paths in the deviatoric planea h = 0.7 are plotted in Fig. 8.21 after the rotation of

principal stress direction to a =45 and a =135 during the first cycle,
respectively. The angle of the fabric vector, point from the origin to the end of the

fabric path, relative to the horizontal axis is two times of the principa fabric
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direction g. . It is clear from the figure that the angle 2g, is less than 90" at

a = 45" and greater than 270° at a = 135", corresponding to the principal fabric
direction behind the rotation of the principal stress direction and ahead of the
principal stress direction, respectively. This clearly indicates that principal fabric
direction does not follow the principal stress direction, or shown as the fabric vector
being not parallel to the stress vector in the deviatoric plane due to the non-
coincidence between the centre of fabric path circle (Fig. 8.16(b)) and the centre of

stress path circle (Fig. 8.1(b)).

In addition, the dashed arrows in the figures refer to the fabric increment

direction, which is tangential to the fabric path. It is interesting to see that the fabric
increment direction is generally parallel to the horizontal axis at either a = 45° or

a =135, where the principa stress increment direction is aso parald to the
horizontal axis. This indicates that the principal fabric increment direction is
generaly coaxia with the principal stress increment direction in the deviatoric plane.
This observation would be useful for formulating a stress rate dependent fabric

evolution law during rotational shear.
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8.5.2 Fabric response under various b values

8.5.2.1 Fabric components evolution

The variation of fabric tensor components is plotted in Fig. 8.22. It shows

that the fabric components D, , D, are close to zero during rotational shear. The
intermediate fabric component D, shows a small decrease from its origina value
D,, =-0.24 before rotational shear to a steady value D, =-0.3 a b=0. It
increases in simulation at b = 0.5, from D, =-0.08 to D, = 0.22. Significant
change of D, is observed at b = 1 with an increment up to 0.43 from its original
vaue of 0.07. The increase of fabric component D indicates more contacts

created in the y-direction, corresponding to contraction with the positive strain

component e developed. And the decrease of fabric component D, refers to

contact disruption in the y-direction, corresponding to extension with negative strain

component e . Hence, the negative strain e, is generated at b = 0 and the positive
strain e, isobserved at other b values, as shown in Fig. 8.11. And the magnitude of
thestrain e  isrelated to the increment magnitude of D . The larger the increment

of D, ,thegreater thestrain e generated.

Meanwhile, the fabric components D_,D,,, D, vary periodicaly. This

clearly indicates that the material interna structure follows the rotation of major
principal stress direction in x-z plane. The variation of the internal fabric is related to

the particles rearrangement. Hence, plastic deformation is observed during stress
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rotation. The variation amplitude of D ,D,, D, is larger a a greater b value,

indicating larger fabric increment rate at bigger b value.
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To have a better view of the fabric path evolution, the fabric components

D,.. D,,, D, are plotted in the deviatoric space, as shown in Fig. 8.23. It can be

found that the fabric trgjectory is amost a circle with a fixed centre during rotational
shear. It indicates the material internal fabric structure rotates along the stress
rotation, which inevitably relates to the fabric reorganisation, accompanied by
deformation behaviour. A more clear view of the fabric trajectory at different cycles
Isshown in Fig. 8.24. It clear shows that the fabric path has a complete circle during
one cycle rotation of principal stress direction, except for the open trgjectory in the
first cycle. The size of the fabric trgjectory circle is greater with increasing b value,
indicating the internal structure anisotropy is larger at bigger b value. Hence, alarger

Size of strain trajectory is observed with increasing b valuein Fig. 8.10.

The centres of the fabric trgectory locate in the negative side of the
horizontal axis under various b values due to effects of materia initial anisotropy,
with preferred particle orientation in the horizontal bedding plane and contacts being
more likely formed in the vertical direction. However, the centre position is around

- 0.1in gpite of various b values, where the stress ratio is the same as h = 0.9.
This may indicate that the b value has negligible effect on the centre of fabric

trajectory.
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Fig. 8.24 Effect of b value on fabric trajectory at different cycles

8.5.2.2 Principal fabric direction

The non-coincidence of principal stress direction and principal fabric
direction is illustrated in Fig. 8.25 for rotational shear at different b values. The
principal fabric direction at b =1.0 is not included as the sample is referred to

‘failure’. It can be seen that the value of a - g. is not held constant but varies with

oscillation, which demonstrates that the principal fabric direction is generaly not
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coaxial with the principal stress direction. To have a better view in one cycle, the

difference between principal stress direction and principal fabric direction is aso

shown Fig. 8.26. Within one cycle of a from 0° to 180°, the principa fabric

direction is behind the rotation of the principal stress direction with increasing
positive value a - g. asa varies from 0° to 90° while it becomes to be ahead of
the principal stress direction with negative value a - g. with further increase of a

to 180° . This leads to the observed non-coaxia behaviour as shown in Fig. 8.14. The
variation amplitude of a - g. is larger in simulation a b =0 than a b = 0.5,

corresponding to the dightly larger degree of non-coaxiality observed at a smaller b

valuein Fig. 8.14.
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Fig. 8.25 Non-coincidence between principal stressdirection and principal

fabric direction at different b values
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8.6 Internal structure evolution on initially isotropic

samples

8.6.1 Fabric response on samples of spherical particles

For samples with spherical particles (e.g., Table 4.4) subjected to rotational
shear, the internal structure response to rotational shear is described by the evolution

of fabric tensor D, , which characterises the contact normal orientation density

distribution in three-dimensional spaces. The fabric trgectory in the deviatoric plane
is plotted in Fig. 8.27. To have a better view of the fabric trgectory, the fabric
trajectories in the 1™ cycle and the 48™ cycle are plotted in Fig. 8.28. In the 1™ cycle,
the fabric trgectory shows to be open, corresponding to the open strain trajectory.
With increasing number of cycles, the fabric trgectory of the dense sample
SRED BO05Y05 RS shows to be a circle with fixed centre and the size of fabric
trgectory remans constant. The fabric trgectory of the loose sample
SREL_BO05Y05 RSis spira with centre unchanged and the size of fabric trgectory
becomes smaller to be steady after a large number of cycles, indicating an ultimate
interna structure achieved. The circular variation of fabric trgectory indicates the
internal  structure rotates continuously along stress rotation, accompanied by
deformation. Hence, the larger size of strain trgjectory in the loose sample (Fig. 4.19)
IS due to the greater internal fabric anisotropy. The strain trgjectory becomes smaller
in the loose sample with increasing number of cycles, corresponding to decreasing
size of fabric trgjectory. After larger number of cycles, the sizes of fabric trgectory

become similar for both samples (e.g., Fig. 8.28(b)), indicating the material
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possessing similar internal structure regardiess of initial void ratio. Hence, the

samples approach the same ultimate state with similar void ratios achieved as shown

inFig. 4.21.
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The intermediate fabric evolution is shown in Fig. 8.29. The fabric D,

generally increases with increasing number of cycles for both samples, regardless of

fluctuations within one cycle. The increase of fabric component D, indicates an

increasing contact orientation density aong the y-direction, corresponding to

contraction with positive strain component e in both samples. The increment of
D,, is larger in the loose sample than that in the dense sample, leading to a larger

intermediate strain e, in the loose sample (e.g., Fig. 4.20).
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Fig. 8.29 Evolution of intermediate fabric during rotational shear

Although the internal structure rotates along stress rotation shown as circular
fabric trgjectory in Fig. 8.27, the principa fabric direction is not necessarily coaxial
with the principa stress direction. The principal fabric direction is described by the

angle g. , which is the angle between the projection of principal fabric vector on the
x-z plane and the vertical z-axis. The difference of the mgor principal stress direction
and the magjor principal fabric direction, a - g, is plotted in Fig. 8.30. And the
non-coincidence of a - g. within two cycles is superimposed for more clear view.
It can be seen that the major principal fabric direction is not coaxial with maor
principal stress direction due to non-zero value of a - g. . The variation of a - g,

show periodicity. The positive value of a - g. indicates the principal fabric

direction is aways behind the rotation of the principal stress direction, resulting in

non-coaxial behaviour. The average value of a - g. is observed to be dightly

smaler in the dense sample SRED BO5Y05 RS and the loose sample
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SREL_BO05Y05 RS, resulting in similar degrees of non-coaxiaity shown in Fig.
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Fig. 8.30 Non-coincidence between principal stressdirection and principal

fabric direction

8.6.2 Fabric response on samples of non-spherical particles

The initially isotropic sample of non-spherical particles CRED_TT has been
prepared by radius expansion method as shown in Table 7.1. The sample was pre-
sheared at constant p = 500kPa, b = 0.5 to the stress ratio h = 0.5 for rotationa
shear, labelled as CRED _BO5Y05 RS in Table 8.1. The micro-scale internd
structure evolution is presented in this section and compared to that of the sample

CDED_BO05Y05_RS.

The fabric trgectory of sample CRED_BO05Y05 RS is shown in Fig. 8.31(b)
and is compared to that of sample CDED_BO0O5Y05 RS. It shows that the fabric
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trgectory for sample CRED_BO0O5Y05_RSisacircle with its centre nearly coincident

to the axis origin. However, the centre of fabric trgectory for the sample

CDED_BO05Y05_RS locates in the negative side of the axis (D, - D,)/2. This

clearly indicates of the material initial anisotropy effect on the interna structure

evolution.
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Fig. 8.31 Comparison of fabric trajectory on samples CRED_B05Y05 RS and
CDED_BO5Y05 RS

8.6.3 Discussion

The drained rotational shear responses of granular material under the same
constant stress invariants p = 500kPa, b = 0.5,h = 0.5 have been reported on
samples of spherical particles in Section 4.4.3 and on samples of non-spherical
particles in Section 8.3. The common observations, e.g., plastic deformation and
deformation non-coaxiality, have been observed, irrespective of particle shape. The
strain trgjectory is found to be stabilised as a circle after large number of cycles. The

internal fabric trgjectories are circular with its centres close the origin of axes for
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initially isotropic samples of both spherica and non-spherical particles, i.e.,
SRED BO5Y05 RS and CRED_BO05Y05 RS. It indicates the particle shape has

negligible effect on the common phenonmenal observations during rotational shear.

In micro-scale observations, one may notice that the fabric trgectory path
shows to be different due to different sample preparation procedures (i.e., Fig. 8.31).

The centre of the circular fabric trgectory locates in the negative side of the

horizontal axis (D, - D,)/2 for the sample CDED_B05Y05 RS, which was

initially prepared by deposition method. However, the fabric tragjectory seems to be
symmetric about vertical axis for the sample CRED _B05Y05 RS, which was
initially isotropic prepared by the radius expansion method. This may be explained
as the effect of initia anisotropy. The sample CDED_BO5Y05 RS had preferred
distribution of particle orientations in the horizontal bedding plane during
gravitational deposition. However, the sample CRED_BO5Y05 RS prepared by
radius expansion method had isotropic particle orientation distribution. The preferred
particles orientations in the horizontal direction leads to preferred contact normal
oriented in or close to the vertical direction, indicating more contact density in the
vertical direction than that in the horizontal direction. Hence, Fig. 8.31(a) presents a

circular fabric path with its centre deviated from the axis origin. The vaue of
(D, - D,)/2 is dways negative at whatever principal stress direction. As for the
sample CRED_BO05Y05_RS, the isotropic particle orientation distribution indicates
the equal opportunity of fabric anisotropy at different principal stress direction. Fig.

8.31(b) shows a circular fabric path symmetric abouth vertical axis, with the centre

generally being coincident with the axes origin.
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8.7 Discussion

The conventional plasticity theory faces a chalenge in modelling soil
behaviour, e.g., material response under rotational shear and non-coaxial behaviour.
As it has been investigated by DEM study in this research, the observations of
macroscopic granular material behaviour show close connection to the material
internal structure. One attempt is to formulate a micromechanica fabric-based
constitutive model, where the fabric tensor bridges the gap between micromechanics
and continuum theory (Yu, 2008). For example, the constitutive models incorporate
the initial fabric anisotropy (Dafalias et a., 2004, Lashkari and Latifi, 2008).
However, in their models, the fabric tensor parameter only describes the initial cross-
anisotropic microstructure and it does not evolve under loading. This would be
problematic, asit is clear from DEM results that the fabric anisotropy is not constant
but varies against loading, i.e., the centre position of fabric trajectory significantly
affected by the stress ratio during rotationa shear, different size of fabric trgectory
under various stress ratios or even under the same stress ratio while various b values.
Therefore, to incorporate the fabric tensor into a constitutive model, it is necessary to

define afabric evolution law, which describes how the fabric changes upon loading.

Y u (2008) presented an implicit expression of the fabric evolution law, which
describes that the fabric tensor increment is dependent on the current deviatoric
stress tensor and increment of deviatoric stress. This fabric evolution law may not
work quite well in some cases. For example, during rotation shear at b = 0.5 with

various stress ratios, the intermediate principal stress is constant with direction fixed
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aong the y-axis, but we do see the intermediate fabric component D, changes, as

shown in Fig. 8.15, which should be constant according to the fabric evolution law.
In addition, it cannot distinguish the fabric evolution path in the hardening regime or
the softening regime. Fig. 8.32 shows the relationship of fabric anisotropy against
the stress ratio during true triaxial simulations of the initially isotropic dense sample
SRED_TT as presented in Section 5.4. It can be seen that the fabric anisotropy
increases to its maximum value during the strain hardening regime. However, during
strain softening, the fabric anisotropy would decrease aong the same fabric
evolution path in hardening regime according to the fabric evolution law while the
DEM results clearly show post-peak fabric anisotropy decreases dlightly to its
critical value during strain softening.
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Fig. 8.32 Stress-fabric evolution for initial isotropic densesample SRED_TT
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8.8 Summary

The drained rotational shear has been carried out on a dense sample of non-
spherical particles under various stress ratios and various b values. Two remarkable
material responses are observed. One is that significant deformation occurred in spite
of constant magnitude of stress invariants. The other oneis that the flow deformation
is generally non-coaxial. Microscopically, the materia internal structure rotates
along the rotation of major principal stress direction. The principal fabric direction
does not follow the rotation of principal stress direction, resulting in non-coaxial
behaviour. The fabric reorganisation mechanism accompanies plastic deformation. It
isinterestingly to observe that the fabric increment direction is generally the same as

the stress increment direction in the deviatoric plane.

Under otherwise similar conditions, the size of fabric trgjectory is larger at a
greater stressratio and larger b value. The larger size of fabric trgjectory resultsin a
greater strain trgjectory in the deviatoric plane. In addition, the centre position of
fabric trajectory is closer to the origin at a higher stress ratio while the b value has a
negligible effect on centre position of fabric trgjectory. The difference between the
principal stress direction and the principal fabric direction islarger at a smaller stress
ratio and at a smaller b value. Hence, lower degrees of non-coaxiality are observed

with increasing stress ratio and b value.

Significant volumetric contraction is observed in rotational shear. Up to the
same number of cycles, the volumetric strain is larger during rotational shear under a

higher stress ratio and greater b value, leading to smaller ultimate void ratio. The
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ultimate void ratio is determined by the ultimate internal structure anisotropy, the

larger the stress ratio and b value, the greater the ultimate fabric anisotropy.

It was interesting to note that the sample could fail during rotationa shear,
resulting in significant deviatoric strain developed in the first few cycles. The sample

failed at a stress ratio h = 0.9, which was lower than the peak stress ratio
h, =1.08 obtained in monotonic loading but higher than the critical stress ratio
h, = 0.82. This indicated importance of considering stress rotation in geotechnical

design and the material strength should be chosen based on the critical stress ratio

rather than the peak value.

Significant intermediate principal strain e, has been generated during

rotational shear in spite of constant intermediate principal stress. The contractive

intermediate strain e, is larger at a higher stress ratio during rotation shear under
constant b = 0.5, corresponding to the larger increment of D at greater stressratio.
During rotational shear under various b values, the intermediate strain e, changes

from extension at b = 0.0 to contraction at b=1.0. The reason is that the
intermediate fabric decreases dightly in simulation at b = 0 while it increases at

other b values. And the larger strain e, at greater b value corresponds to bigger

increment of Dyy )

The material initial particle orientation anisotropy has a great effect on the
fabric evolution during rotational shear. The centre of the fabric trgjectory coincides

with the axis origin in the sample of isotropic particle orientation distribution
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prepared by the radius expansion method. However, it locates in the negative side of
the horizontal axis in the deviatoric plane for the sample prepared by the
gravitational deposition method, with preperred particle orientations in the horizontal

direction.
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Chapter 9 Conclusions and future work

This work investigates the quasi-static behaviour of granular material under
general three-dimensional stress paths using DEM. Comprehensive numerical
simulations have been conducted with independent control of the three principal
stresses in terms of both their magnitudes and principal directions. The material

responses and micro-scale observations are summarised in the following.

9.1 Three-dimensional virtual experiment method

A virtua experiment model has been successfully implemented into the
commercia software PFC3D for studying granular material behaviour under general
stress states. The numerical technique applies loading to a granular assembly through
boundary consisting of rigid mass-less walls. It is suggested that the boundary walls
form a polyhedra shape with the angle between two neighbouring walls being
obtuse to enhance sample uniformity. Strain-controlled boundary is achieved by
directly specifying the trandlation and rotational velocities of the walls. A servo-
control mechanism of stress boundary conditions is developed and can be combined
with strain boundary conditions to achieve mixed loading conditions. The devel oped

numerical technigue is advantageous in applying general loading paths and various
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loading conditions, including fully strain controlled, fully stress controlled and

partially strain controlled and partially stress controlled.

The redlisations of three particular loading paths are described in detail in
Section 4.4. It represents the fully strain-controlled, fully stress-controlled and
mixed-controlled loading conditions. The typical simulation results of undrained
simple shear, drained true triaxial test and drained rotational shear, the three typical
loading paths in laboratory tests, have been presented. The observation on principal
stress rotation in simple shear and the significant volume contraction and
deformation non-coaxiality during rotational shear are in qualitative accordance with
the laboratory findings over various sand. The non-coaxia behaviour is mainly due
to the non-coincidence of the principa direction of internal structure and loading
direction. This supports the application of the discrete e ement method (DEM) and
confirms the capability of the developed numerica technique as a useful tool to

facilitate multi-scal e investigations on the constitutive theories of granular materials.

0.2 Stress-force-fabric relations

The stress-force-fabric (SFF) relationship in Eq. (2.18) links the macroscopic
stress tensor to the micro-scale coordination number, contact forces tensors, fabric
tensor and branch vector tensor. The deviator stressratio is dependent on the degrees
of contact force anisotropy and fabric anisotropy while the anisotropy of branch
vector is small and the contribution to stress ratio is negligible. The stress-force-
fabric predicts the stress ratio with good accuracy to that calculated from the forces

acting on boundary walls (e.g., Fig. 5.26). Hence, it is applicable to apply the SFF
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relationship to explain the globa strength-deformation characteristics in terms of

coordination number, contact forces anisotropy and fabric anisotropy.

9.3 Effect of b value

The true triaxial simulations have been conducted on the initially isotropic

sample of spherical particles as presented in Chapter 5, in order to investigate the

magnitude of intermediate principal stress on granular material behaviour. The major

conclusions are summarised as follows:

1)

(2)

The triaxial compression simulation results on samples with three different
initial void ratios shows that the material performs stiffer and more dilative
for sample of a smaller initial void ratio. Microscopicaly, this is due to
greater anisotropy degrees of contact force tensors and fabric tensor
developed in denser sample. The strain hardening and strain soften behaviour
are dominated by the increase and decrease of contact force anisotropy,
respectively. At large deformation, the same critical stress ratios and void
ratios are achieved, irrespective of initial void ratios, due to the same internal

structural anisotropy reached.

A lower stress ratio and dlightly more dilative behaviour are observed with
increasing b value in true triaxia test on both dense and loose samples. The
stress-force-fabric  predicts the stress-strain  behaviour quite well.
Accordingly, with the stress-force-fabric relations, the effect of b value on
strength characteristics can be explained. At failure, as b value rises from 0 to

1, the contact forces anisotropy decreases while the fabric anisotropy
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increases. At the same b value, the normal contact force anisotropy is much
higher than the fabric anisotropy; with the tangential force anisotropy
smallest. Hence, the normal contact force anisotropy takes dominant

contribution to the achieved stress ratio.

The intermediate strain increment ratio b, is found to be larger than the

intermediate stress ratio b except for the asymmetric stress conditions (
b=0 and b=1). In the octahedral plane, this is shown as the non-
coincidence of stress increment direction and strain increment direction. This

is believed to be due to the larger intermediate fabric ratio b. than b value.

In laboratory true triaxial test on sand, there are three different loading paths

combinations of three principal stressesin considering the material initial anisotropy.

The true triaxial simulation results on initially anisotropic samples with non-

spherical particles have been presented in Section 7.4. It concludes as:

(1)

The samples with cross-anisotropy perform softer and more contractive with
increasing stress lode angle during true triaxial simulations. The failure
surface in the octahedra plane shows to be cross-anisotropic. In simulations
with the same b value, the friction angle obtained in Sector | is highest while
the lowest value is achieved in Sector 1ll. Thisis related to alower degree of
fabric anisotropy developed in Sector |11 than that in Sector I, with Sector 11
in between. However, the variation of critical fabric anisotropy in three
Sectors is small. Hence, the similar critica stress ratios are generally

achieved in three Sectors at constant b value.
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(2)

The different strength-deformation characteristics between Sector |1 and
Sector 111, where the mgor principa stress direction is within the bedding
plane while the intermediate principal stress direction is either perpendicular
to the bedding plane in Sector Il or within the bedding plane in Sector I11I,
shows clear evidence of the combined effect of b value and materia

anisotropy on granular material behaviour.

9.4 Effect of anisotropy

The true triaxial simulation results of initially anisotropic sample clearly

shows the loading direction dependent granular material, where the principal stress

direction is either in the vertical direction or in the horizontal direction. The

influence of tilting principal stress direction on anisotropic granular material

response has been reported in Chapter 6 on samples with spherical particles and

Chapter 7 on samples with non-spherical clump particles. The findings are listed as

follows:

(1)

Both the initialy anisotropic samples and pre-loaded samples perform softer
and more contractively during the pre-failure stage in monotonic shearing
with increasing tilting angle a . The anisotropic stress-strain behaviour is
severer in the pre-loaded sample. Microscopic investigation on the pre-loaded
sample shows that, upon the same deviatoric strain before failure, the fabric
anisotropy and contact force anisotropy is much smaller at greater tilting
angle a . During the post-peak shearing, the contact force anisotropy reaches
similar values; the difference of fabric anisotropy becomes small at different

loading directions; and their principal directions are generally coaxial with
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(2)

3)

the loading direction. Accordingly, the post-peak stress-strain behaviours are
similar with the same critical stress ratios achieved, irrespective of loading

direction a .

The strength of anisotropic samples with non-spherical particles is loading

direction dependent. In constant b simulation, with increasing angle a from
0’ to 90° , the peak stress ratio decreases continuously with minimum

strength obtained at a = 90°. This micro-scale observations show that, at
peak failure stress ratio, the principa directions of contact force and fabric
become close to loading direction; and the normal and tangential contact
forces anisotropy reach similar values at different loading directions while
the contact normal fabric anisotropy are larger at smaller a value, leading to

alower strength obtained at greater a value.

The non-coaxiality is negligible for the initial anisotropic sample while
significant non-coaxia behaviour is observed on the pre-loaded sample. The
non-coaxial behaviour is due to the initially non-coincidence of material
microstructure direction, e.g., principal fabric direction, relative to the
loading direction. And the degree of non-coaxiality is dependent on the
relative directions and relative magnitudes of fabric anisotropy and contact
force anisotropy. For the initialy anisotropic sample, the fabric anisotropy is
small and the principal fabric direction evolves rapidly to the loading
direction, although the initial fabric direction is not coaxia with the loading
direction. Accordingly, the genera coaxial behaviour is observed. For the

pre-loaded sample, the fabric anisotropy is larger and the fabric direction
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rotates gradually to the loading direction. Hence, significant non-coaxial is
observed. At large deformation, the principal fabric direction becomes

coaxial with loading direction, leading to coaxial behaviour.

9.5 Rotational shear

The granular material response to cyclic rotation of magjor principa stress
direction has been investigated in Section 4.4.3 on samples of spherical particles
with different initial void ratios and in Chapter 8 on samples of non-spherica

particles under various stress ratios and b values. The conclusions are given as.

(@h)] Significant volumetric contraction is induced due to continuous rotation of
principal stress direction. This is explained as that the materia internal
structure rotates continuously along the stress rotation in order to maintain
stability. The internal fabric reorganisation mechanism accompanies materia
irrecoverable deformation. The initial void ratio, stress ratio and b value have
significant effect on the accumulated volumetric strain. The larger the
influential factor, the severer the volume contraction. The ultimate void ratio
is dependent on the stress ratio and b value, independent of initial void ratio.
This is explained as the ultimate internal structure anisotropy is larger at a
higher stress ratio and at a greater b value, leading to smaller ultimate void
ratio. However, the ultimate internal structure anisotropy becomes similar,
irrespective of initial void ratio. Hence, the dense and loose samples approach

to the same ultimate void ratio.
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(2)

3)

The non-coaxial behaviour between the principal stress direction and the
principa strain increment direction is observed during rotational shear. This

is due to the principal fabric direction being not coaxia with the principal

stress direction. Within one cycle of a from 0° to 180° on samples with

non-spherical particles, the principal fabric direction is behind the rotation of
the principal stress direction asa varies from 0° to 90° while it becomes to

be ahead of the principal stress direction with further increase of a to 180°.
The smaller the stress ratio and the b value, the higher the degree of non-
coaxiality due to the larger deviation between the principal fabric direction
and the principa stress direction. In addition, it is interesting to observe that
the principal fabric increment direction is generally coaxia with the principal

stress increment direction in the deviatoric plane.

The material would experience deformation failure during rotational shear at

h =0.9,b =1 even when the stress ratio is lower than the peak stress ratio
h, =1.08 but larger than the critical stress ratio h_ = 0.82 obtained in

monotonic loading, where significant deviatoric strain developed in the first
few cycles. Thisis explained as the material internal structure can not sustain
such a high stress ratio and the material deforms continuously in order to
maintain the boundary stress conditions. This clearly indicates that ignorance
of principal stress rotation would lead to an unsafe geotechnical design and
the materia strength for rotational shear should be chosen as the critical
stress ratio rather than the peak stress ratio obtained from monotonic

shearing.
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(4)

(5)

(6)

During rotationa shear, the strain trgjectory in the deviatoric plane is spira
with decreasing size since the materia is hardened to be stronger with
decreasing void ratio. After large number of cycles, the strain path becomes
steady to be a circle as the ultimate anisotropic structure developed. At
ultimate state, the deformation is mainly due to the rotation of the anisotropic
structure. Under otherwise identical condition, the size of strain trgjectory is
significantly influenced by initial void ratio, stress ratio and b value. The
greater the influential factor, the larger the size of strain trgectory.
Microscopically, the fabric trgjectory size is greater at a higher stressratio, at
larger initia void ratio and at greater b value, resulting in a greater strain

trgectory in the deviatoric plane.

Significant intermediate principal strain e, has been generated during

rotational shear in spite of constant intermediate principal stress. The

contractive intermediate strain e, is larger at a higher stress ratio during

rotation shear under constant b = 0.5, corresponding to the larger increment

of D, at greater stress ratio. During rotational shear under various b values,
the intermediate strain e changes from extension at b = 0.0 to contraction

a b=1.0. The reason is that the intermediate fabric decreases dightly in
simulation at b = 0 while it increases at other b values. And the larger strain
e,, at greater b value corresponds to bigger increment of D, .

The fabric trgjectory is generaly circular during rotational shear, irrespective

of material initial anisotropy. The materia initia particle orientation

anisotropy, however, has significant effect on the centre of fabric trajectory.
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9.6 Particle shape effect

The common observations on the anisotropic stress-strain behaviour and

deformation non-coaxiality can be observed on samples with spherical or non-

spherical particles under various three-dimensional stress paths. The different

observations due to particle shape effect are summarised as:

D)

(2)

The sample with non-spherical particles performs much higher strength and
more dilative behaviour than the sample with spherical particles during
triaxial compression since the average contact friction coefficient is much
higher in non-spherical particles assembly; and fabric anisotropy and contact
force anisotropy degrees are considerably larger in sample with non-spherical
particles.

In ssimulations at various loading directions, similar anisotropic stress-strain
behaviour and deformation non-coaxiality are observed in anisotropic
samples, irrespective of particle shape. The critical fabric anisotropy reaches
the same value and the principal fabric direction becomes coaxia with
loading direction in spherical particles assembly. In non-spherical particles
assembly, however, the value of critical fabric anisotropy differs slightly at
different loading directions and the principal fabric direction approaches the
loading direction but still a gap, owing to the contact normal vector being not

parallel to the branch vector.
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9.7 Recommendations for futurework

The proposed virtual experiment technique has been shown in advantage of
applying various loading paths to study granular material behaviour. Asthe flat rigid
walls are used to form the polyhedral boundary shape, this may induce no
sufficiently frictional resistance between particle-wall contacts, compared to particle-
particle contacts. Accordingly, the sample uniformity may not be well maintained,
with a greater stress distributed within the centre area than that near boundary. And
the difference can be as large as 20%. In order to maintain sample uniformity, it is
necessary to enhance the particle-wall contacts frictional resistance. For example,
increase the frictional coefficient for only particle-wall contacts. However, this can
not be directly realised within PFC3D. Thus, it is recommended for future DEM

study to overcome the limitation.

To formulate a constitutive model incorporating the fabric tensor, one
essential task is to define the fabric evolution law. In this study, the fabric evolution
has been comprehensively investigated under various loading paths and it shows a
strong correlation between the fabric tensor and stress tensor. The fabric evolution
law should be able to predict the fabric evolution against stress for both dense and
loose materids, initially isotropic or anisotropic samples, under proportional or non-

proportiona loading paths.

The conventional plasticity theory has been formulated based on
phenomenal laboratory observations on soil behaviour. It faces challenges in

constitutive modeling of anisotropic soil behaviour, e.g., non-coaxia behaviour,
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rotational shear response. As it has been studied by DEM simulations in this
research, the effects of materia anisotropy on granular material response is strongly
dependent on the microstructure evolution. Hence, the fabric tensor based
constitutive model would be advantageous in modelling granular material and the
fabric tensor has clear physica meaning in describing the spatial arrangement of

material internal structure.
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APPENDIX A: Results of anisotropic samples

with non-spherical particles under various

loading directions

The appendix contains the simulation results of sample with non-spherical
particles under various loading directions. It is linked to the main body presentation
in Section 7.5. The macro-scale stress-strain behaviours are presented for both
initially anisotropic samples and pre-loaded sample. The evolution of micro-scale
contact forces tensors and fabric tensors are illustrated in terms of anisotropy degrees

and principal directions.
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A.l1 Resultson initially anisotropic sample

A.1.1 Stress-strain behaviour
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Fig. Al Effect of loading direction on sample CDED_TT response at b=0.4
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A.1.2 Non-coaxiality
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A.1.3 Fabric evolution
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A.1.4 Contact for ce evolution
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A.2 Resultson pre-loaded sample

A.2.1 Stress-strain behaviour
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A.2.2 Non-coaxiality
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A.2.3 Fabric evolution
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A.2.4 Contact force evolution
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APPENDIX B: Numerical experiment set-up

B.1 Polyhedral boundary shape

There are two common ways to form boundaries in DEM for applying
external loading, particle boundaries and rigid wall boundaries. The particle
boundaries can be frequently updated. Loading is applied by controlling the
positions of boundary particles or forces acting on boundary particles (Thornton,
2000; Cui et a., 2007; Wang & Tonon, 2009; Fu & Dafalias 2011) . The advantage
is that the boundary can deform flexibly while the disadvantage is the requirement of
updating boundary particles positions continuoudly. This potentially affects contact
force transmission when the network of boundary particles is being updated. More
importantly, it is difficult to realise complex loading path, e.g., non-proportional

loading.

The alternative way is to use massless rigid walls to form the boundary of a
granular assembly. The Newton’s second law is not applicable to those massless
walls. Hence, the external loading increment is applied using servo-control
mechanism. The positions of rigid wall elements are imposed, changing interacting
between particles and rigid walls. The disturbances will then propagate throughout
the whole specimen. The boundary control is inherently strain-controlled by directly
specifying velocities of the rigid walls in each loading cycle to achieve a strain
increment and the stress-controlled boundary conditions is realised through servo-

control mechanism by adjusting strain increment tensor.
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Most DEM simulations using rigid walls boundary form a shape of
rectangular shape in 2D and cubic box in 3D similar to laboratory specimen setup
(Thornton, 2000, Ng, 2005, Yimsiri and Soga, 2010, Mahmood and Iwashita, 2010).
However, sample uniformity is usually not maintained with the presence of boundary
friction due to arching effect (Li et al., 2011). With presence of boundary friction,
arching may be developed depending on the properties of boundaries. This is
believed due to the boundary geometry shape effect and the hexagonal boundary or
polyhedral boundary shape is recommended in 2D or 3D, respectively (Li et a.,

2013).

B.2 Polyhedral boundary generation

There are many ways to form a closed polyhedron. Here we propose a
protocol to define the initia set of boundary walls forming a polyhedra volume,

which has an inscribed sphere with radius R :

1 The polyhedron has two parallel surfaces, perpendicular to z coordinate axis.
Both are regular n-sided polygons. The distance between the two surfaces is
2R . The vertices of the two polygons have their z coordinate being -R and

R, respectively.

2. All planes perpendicular to the polygons and passing the symmetrical axes,
defined by aline passing the mid-point of one edge and centre of the polygon,
of the two paraléel polygons are symmetrical planes of the polyhedrons. And
the intersection planes formed by the symmetrical planes and the polyhedron

are also regular polygons.

309



The geometric characteristics of the polyhedron are summarised as follows:

Both the transverse section and longitudinal section of polyhedron are regular
n-sided polygon ( n 3 4, only even number used for symmetry).

The angle between every two neighbouring wallsis obtuse when n 2 6.

The top and bottom boundary walls are regular hexagons in the initial
undeformed configuration. The other walls are quadrangles.

The vector, pointing from the point of tangency between each boundary wall
and the inscribed sphere to the centre of sphere, is perpendicular to the
boundary wall. The coordinate of the tangent point is the average of al
vertices coordinates of the individual boundary wall.

Initially, al vertices lie in n/ 2 horizontal planes. Each plane contains n
vertices to form aregular polygon. The total number of vertex is n* / 2

Between every two neighbouring horizontal planes, it has n boundary walls.
Together with the top and bottom walls, the total number of boundary walls

equa to(n/2- )n+2

The polyhedral boundary can then be defined by only two parameters n
and R, where n defines the shape of polyhedron and R controls the size of
polyhedron. An example of such polyhedron with n = 8 is shown in Fig. B.0.1.

There are totally 26 boundary walls and 32 vertices.
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Fig. B.0.1 Example of polyhedron, n=8

B.2.1 Generation of boundary walls

To generate such a kind of polyhedron volume in PFC3D, a set of
intersecting infinite planes of walls are generated to form the closed polyhedron. The
individual wall unit normal vector n and a point X on the wall are to be specified.
The Cartesian coordinate system is defined with origin being the centre of the
polyhedron as shown in Fig. B.0.2. The plane function of each boundary wall is
expressed as.

nx+ny+nz+d =0 (1)
(nx, n,, ”z) is the components of the plane unit normal n. d is the constant of the
plane function. It is determined by substituting the point coordinate ()g Y ;) into

Eq. (1) as:.

di =- (nxxi + r]yyi + nzzi) (2)
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In the coordinate system as shown in Fig. B.0.2(a), the vector V of
magnitude R, pointing from the centre of the inscribed sphere to the tangent point x
on the boundary wall, is perpendicular to the boundary wall w. Hence, the unit
vector of V isthe unit normal vector of the boundary wall w. The orientation of the

vector V can be described by two angles g, b , where g is the angle between the

vector and the positive direction of z-axis, 0 £ g £ 180" and b is the angle between
the projection of the vector V on the x-y plane and the positive direction of the x -

axis, 0 £ g £ 360 .

To determine the value of g,b for individua wall, each boundary wall is
assigned with an id number. The top wall with the regular polygon shape is always
assigned with the id number (n/2- 1)n+1 and the bottom wall with the regular
polygon shape is aways assigned with the id number (n /2- 1) n+ 2. For the rest
walls, each one is labelled as w; , where the subscripts i, j are used to identify
different walls ( 1£i £ (n/2- 1),(1£ j £n)). The subscripts are labelled in the
sequence of : 1) the walls of which vector V have the same angle g will be
assigned with thesame i ; i increases from 1to (n/2- 1) withincreasing g ; 2) for
those n walls of which the vectors V have the same angle g, the second subscript |

islabelled from 1 to n one by one. According to these two rules, each boundary wall

can be identified by subscripts i, j , eg., plan view of the polyhedron in Fig.
B.0.2(b). the walls labelled as w; and w;,, denoting two neighbouring walls of

which unit normal vectors have the same angle g while different angle b ,
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b,,-b, = (360°/n). The walls labelled as w; and w,,; denote two neighbouring

i+l i+1j

walls of which unit normal vectors have the same angle b while different angle g,

9,.. - 9; = (360°/n).

(@) front view

(b) vertical view
Fig. B.0.2 Labélling of polyhedron wall id
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For the boundary wall W, g,b is determined to be

i 360

9=,

i 50 3)
b =22 (-1

1 n (J )

For top wall with id(n /2- 1)n +1,9=0,b =0, for bottom wall with id

i=(n/2-1n+2,9=180,b =0.

The centre of the inscribed sphere is defined to coincide with the origin O of

the defined coordinate system, the components of the vector V; or the tangent point
vector  x; of individua  wal w, can be caculaed as
(Rcosb sing, Rsinb sing, Rcosg) . The unit norma direction n, of the

boundary wall w; , with the active side pointing inward to the polyhedron, is the unit

normal of vector V;; with opposite direction

V. . . .
n. :-|—”:(- cosb sing, - sinb sing, - cosg) (4)

V|

Therefore, each infinite boundary wall can be generated by specifying unit

normal vector n; and apoint X; on the plane. Initialy, the constant d; of the plane

function for each boundary wall can be determined by Eq. (2) as:

d =R (5)
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At this stage, all the boundary walls have been generated. Fig. B. 0.3 shows
the examples of polyhedron boundary shape when n equalsto 6 and 8 respectively. If

n is sufficiently large, the shape of polyhedron boundary approaches to be a sphere.

n=6

Fig. B. 0.3 Examples of polyhedron boundary

In this research, al the numerical samples with a polyhedron boundary shape

are generated by setting n = 8 unless otherwise stated, as shownin Fig. B. 0.3.

During preparation of a numerical sample, it may be interested in the initia
void ratio of the sample. The total volume of particles can be calculated according to
the particle size and target number of particles. Then, it requires determining the
volume of the polyhedron. Therefore, the coordinates of the vertices contained by

each boundary wall need to determined.
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B.2.2 Deter mination of vertex coordinate

In three-dimensional spaces, a point is uniquely determined by the

intersection of at least three unparalleled planes with plane functions expressed in the

form of Eq. (1). Consider n ,n,,n, are the unit normals of the three planes and

d,,d,,d, are the plane functions constants, respectively. Then, the point vector X of

the intersection point can be calculated as:

X = ; (6)

In the polyhedron as shown in Fig. B.0.2, each vertex is the intersection point
of either three unparalleled plane walls or four unparalleled plane walls. Therefore,
the coordinate of individual vertex can be calculated by Eq. (6) by knowing the plane
functions of the walls sharing the vertex. The boundary walls plane functions can be
updated at any stage of deformation by updating the wall unit normal and wall centre
using intrinsic functions in PFC3D. In numerical implementation, it is necessary to

identify the wallsid sharing the vertex.

Vector p points from the origin to one vertex of the polyhedron (e.g., Fig.

B.0.4). Its orientation is described by angle g andb . g is the angle between the

vector and the positive direction of z-axis, 0 £ g £ 180 , where b is the angle
between the projection of the vector on the x-y plane and the positive direction of the

x-axis, 0 £ g £ 360 . Each vertex is labelled as v, , Where the subscripts i, j are

used to identify different vertices (1£i £n/2,1£ j £n). The subscripts are
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labelled in the sequence of : 1) the vertices of which vector p have the same angle g
will be assigned with thesame i ; i increasesfrom 1to n / 2 with increasing g ; 2)
for those n vertices of which vectors p have the same angle g, the second subscript
j islabelled from 1 to n one by one, and the vertex of which vector p has asmaller
angle b will be labelled in priority. According to those two rules, each vertex can be

identified with i, j. The vertices labelled as v; and v

ij+1

(e.g., Fig. B.0.4) denote
two vertices of which vectors p have the same angle g while different angle b ,

b,,,- b, = (360°/n). The vertices labelled as v; and v;,,; denote two vertices of

i+1j
which vectors p have the same angle b while different angle g ,

9,.. - 9, = (360°/n)

The top and bottom boundary walls contains vertices labelled as v;; and

Vinsz)j » Tespectively. For a wall labelled w;, it contains four vertices of which

labelled as v, , V.

ij?r ij+l v

i+1j

Vi (1E£0£(n/2- 1)), where the second subscript

j+1lofv,,, adyv,, ischangedto1if (j +1) = (n +1).
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Fig. B.0.4 Assignment of id to vertices

Accordingly, each vertex can be identified by its two subscripts. For the

vertex v, itis shared by at least three boundary walls with id number detected as:

ij?
:':Wl = Wo-n)

|l W = W (7)
+W3 = W

And W W W are the wall ids of the three intersecting plane walls. If the

vertex is shared by the top boundary wall and two side walls, the identification of W'

is aways expressed as W If the vertex is shared by the bottom regular

n/2-1)n+1"

polygon wall and two side walls, the identification of W is always expressed as

W Otherwise, the vertex v; is shared by selecting three side walls identified

n/2-1n+2 "

asw_,;,W,_,,w byEq. (7).

i-1j?
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For each vertex, the plane walls sharing it can be identified by the id number
of three walls as shown in Eq. (7). Then, by substituting the unit vectors of the three
plane walls and corresponding plane function constant d into Eq. (6), the coordinate

of each vertex can be determined. In the initial configuration, the unit normal vector

n, and constant d; for each specific boundary wall w; plane function has been

determined as Egs. (4) and (5), respectively. Eq. (6) can aso be used to determine
the vertex coordinate in the deformed configuration. In the deformed configuration,
the id number for individual boundary wall and vertex would not change. It still can
use Eq. (7) to identify the walls sharing the vertex. The unit normal and centre
position of each boundary wall can be obtained by intrinsic functions in PFC3D.
Thus, the constant d can be calculated by substituting the unit normal vector and the
centre position vector into the plane function of the boundary wall as formulated in
Eq. (2). Accordingly, it is straightforward to calculate the vertex coordinate in the
deformed configuration by substituting the updated walls unit normal and constant

d into Eq. (6).

B.2.3 Deter mination of polyhedron volume

It may be interested to obtain the void ratio of numerical sample in the initial
undeformed configuration and deformed configuration. In the deformed
configuration, the top and bottom walls are hexagons while not necessary regular.
The rest boundary walls are quadrangle. Thus, it is required to calculate the sample

volume for a general polyhedron. The polyhedron can be subdivided into

(n /2- 1) n+ 2 polygona pyramid by a straight line connecting each vertex with
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the origin of coordinate system. Then, the volume of polyhedron is the summation of
individual volume V, of apolygonal pyramid, which is given by the pyramid volume

formula:

_1
v, = 2 Ah ®)

where A is the area of the base surface and h is the height from the boundary wall
surface (base) to the origin (apex).
For agiven genera plane function expressed as.
nx+ny+nz+d=0 9)

The distance from a point (xo,yo,zo) to the planeis

r.IXXO + nyyO + r.IZZO + d|

h: 2 2 2
nZ+n?+n,

(10)

As the plane function of each boundary wall is expressed as Eq. (1), where

(n n nZ) are the components of the wall unit normal vector, the distance from the

x? 'y

origin to the i"" wall surface isthe absolute value of the constant d;, hence, h =|d|.

To calculate the area of the i"™ wall surface, the polygona boundary wall

surface can be subdivided into a few triangles by straight lines connecting any two

neighbouring vertices with the reference point x° on the surface. The coordinate of
the surface reference point is the average of all nodes forming the boundary wall
surface. Take boundary wall with id number 1 for example, e.g. Fig. B.0.5. It forms

guadrangle pyramid by connecting its nodes with the origin O using straight lines.
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The boundary wall surface formed by vertices with id 1-9-16-8 (see Fig. B.0.5)
serves as the base of the quadrangle pyramid as shown in Fig. B.0.5(a). The
boundary wall surface is divided into four triangles. Four vectors are illustrated,
pointing from the reference point x° of boundary wall to its four nodes. As the

coordinates of al vertices can be obtained by Eq. (6), the area A of the boundary

surface is calculated to be:
1 , , , ,
A = E(|vl V| |V, vl H v, v+, V1|) (11)

Then, the volume of the illustrated quadrangle pyramid is :—{) Ald|. similarly,

al the volume of polygonal pyramid can be determined. And the total volume V of

the polyhedron is expressed as.

(=-Dn+2

a Ald| (12)

n
2

V =

Wl

where A isthe area of the i"™ boundary wall surface and d; is the constant of the i"

boundary wall plane function.

(a) Basesurface (b) Quadrangle pyramid

Fig. B.0.5 Determination of quadrangle pyramid volume

321



Summarily, a specific polyhedron, with the entire boundary walls tangent to
an inscribed sphere, can be generated by specifying infinite walls to form a closed
polyhedron. A unit normal vector and a point on the wall determine the individual
boundary wall. Each wall and vertex is assigned with an id number, in order to
identify it for convenient programming. The void ratio of granular materia is an
important parameter. In order to obtain the void ratio in both initial undeformed and
deformed configuration, it is necessary to calculate the volume of a generd
polyhedron. The polyhedral space is subdivided into polygona pyramids, with the
boundary wall surface serve as the base of the pyramid. To determine the volume of
pyramid, it is required to calculate the area of individual boundary wall surface and
the distance between the wall surface and the origin point. Hence, the determination
of vertex position vector, intersected by at least three unparaleled planes, is

introduced.

B.3 Stress and strain evaluation

The constitutive model concerns the stress-strain relationship of granular
materials. Considering the heterogeneity nature of granular materials, the continuum
concepts, stress/strain  tensors, have been clarified and linked with the
forced/displacement of the boundaries, or from loca interactiong/relative

displacements between neighbouring particles (Li et al., 20093, Li, 2013).

The sign convention is taken to be consistent with that defined for stress and
strain in soil mechanics, as shown in Fig. B. 0.6. The positive mean normal stress

and volumetric strain increment indicate compression of specimen. For the second
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rank tensors, e.g., stress and strain tensor, the first subscript denotes the surface
normal direction and the other subscript refers to the direction of surface traction or

deformation.

X

Fig. B. 0.6 Sign of convention

B.3.1 Tensor transfor mation

A three-dimensional symmetric second order tensor A = A e A €, poSsesses
three such invariants, J,(A)=tr (A)= A, J,(A)=AA /2, J,(A)=AAA/3,
and three mutually orthogonal principal directions. Tensor A can be written

equivalently in the spectral form as A -4 An'An' with A'(i =1,2,3) being the

i=1
principal values and n' (i =1,2,3) being the corresponding principal directions.
Following the convention in soil mechanics, the subscripts 1, 2 and 3 are assigned to

the mgjor, intermediate and minor principal values, reﬁpectively( A3 A3 A3) . The
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three invariants can be written as J(A)=tr(A)=A+A+A

3,(A)=(A?+AZ+A2)/2 and I, (A) =(A*+ A’ +A%) /3.

A three-dimensional tensor can be decomposed as
A, = Ad; /3+a; =md; +a,, in which m= A, /3=J,(A)/3 denotes the hydrostatic

mean and a; = A, - md; is a deviatoric tensor. While m itself is an invariant, the

ij

deviatoric stress tensor a=a,eAe; has two non-trivid invaiants

3,(8)=3,5(A)=3,(A)- 3,(A)*/6, 3,(8)=3,5 (A)=3,(A)- 23,(A) I, (A)/3+2J,(A)*/27 .

Knowing the principal values and corresponding directions, the tensor in

&' 0 0 0
components form can be determined from the principal tensor B :g 0O A 0 :
S0 0 A
a' n' n'o
and the rotation matrix R, = gnf n2 n? . using thefollowing transformation:
g’ n’ on’g
A = RIBGR, (13)

where nji representsthe j -th component of the principal direction n'.

Considering only the principal values of a three-dimensional symmetric

second order tensor A, we can define a three-dimensional principa space using the

three principal values as the coordinate axes. The line passing through the origin and
making equal angles with the coordinates axes is referred to as the space diagonal.

The plane perpendicular to the space diagonal is called the octahedral plane, or the
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deviatoric plane. The projections of the three coordinate axes on the octahedra plane

are A", A*' and A’'asshown in Fig. B.0.7. The projection of the point (Al,AZ,AS)

on the octahedral planeis denoted as P . The hydrostatic part can be represented by a

uuu uuu

vector ON aong the space diagona and the deviatoric part by a vector NP on the

octahedral plane. The angle between the projections of NP and the projected

coordinate axes is called the Lode angle g (O° £q £ 60°). It can be calculated from

the tensor invariants as (Khan and Huang, 1995):

— V3 Iy (Ag)/z (14)
2 J,,(A)
And the three principal values can be found as (Khan and Huang, 1995):
i L(A) 2
P AL =2 + < /3 A
: 3 \/é\/ ZD( )Cosq
f o, 3(A) . 2 & 6
(AP =1L+ = |, COS o+ - (= 15
_:_ NG > (A) g5 03 (15)
P 3 (A) 2 a&p . 0o
IA =2 +——./3,. (A)cos +02
i 3t gV lw A cosggras
Denoting b = (A2 - AS) / (A1 - A3),wehave
2 _ A3 ;
b= Al A3 _ sing _ (16)
AR o0 q2
&6 3
Alternatively, the lode angleisrelated to b value as:
tang = kS (a7

(2- 1)
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Fig. B.0.7 [llustration of L ode angle

With the three principal values determined, we will then determine the three

principal directions n' (i =1,2,3) , which satisfy:

(A- A1) =0 (18)
Or more explicitly

A, A, - A A, l:l_|’_ nzl_)_’/ =0 (19)

%1 %2 %3 - A 8% nai i)

DD D>

When the three principal values are equal, A represents an isotropic tensor.

The principa direction is undefined and the three vectors (Ah- Ai,Aiz,Ais) :

(AZl,AZZ- Ai,AB) and (Agl,ASZ,AB- Ai) are all zero. When two of the three

principa values are equal, A is transversely isotropic. Only one principal direction
can be determined based on the non-equal principa value. When any two of the
three principal values are non-equal, there are three principa directions to determine.

Note whenever there is a defined principal direction, there will be at least two of the

three vectors (Ail' N’A12’A13) d (szAzz' Ai’Azs) and (AzliAzz’Aas' AI) being
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non-zero and the principa direction vector should be normal to non-zero vectors.
This property can be used to determine the principa direction which should follow
the same direction as the cross product of the two non-equal vectors and have a unit

length.

B.3.2 Stress deter mination

In this research, the stress tensor is determined from contact forces acting on

the boundary walls (Li et a., 2013):

M
— S . cgfc
STy et )

where V is the volume of the polyhedron and M is the total number of contacts

acting between particles and boundary walls. x° is the coordinate vector of contact

point cand f; isthe contact force vector at contact point c.

As functions of the invariants are till invariants, in the sequel, the mean
normal stressp=s /3= J,(¢)/3, the deviator stress ratio h =q/p = m/p,
and the intermediate principal stressratio b=(s ,-s,)/(s,- s ;) of which describes
the relative magnitudes of the three principal stresses (s, 2 s, ¥ s ), together with

the three principal directions n, are used to describe the stress state unless otherwise

specified.

For a given stress state with stress invariants p, g, b and principal direction

vectors n° , the Lode angle g of the stress tensor can be determined from b
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according to Eq. (17). Since J,(¢)=3p and ./J,, (6) =h p/+/3, we can calculate

the three principal stresses according to Eg. (15). Together with the information on
the principal directions, the stress tensor in components form can be determined

from Eq. (13).

B.3.3 Strain determination

Li et al., (2009b) proposed a strain tensor for granular materials based on the
void cell system, which is both valid for 2D and 3D analysis with any granular
assembly tessellation subdivided into polygons in two dimensions or polyhedral
elements in three dimensions. The derivation of strain expression was based on
compatibility requirement along a closed boundary. This kind of strain tensor
definition was evaluated to have good accuracy (Duran et a., 2010). Taking the
polyhedral boundary wall as a cell system, the strain tensor is evaluated from the

relative displacement of edges of the boundary wall surfaces as:

_j K © ©
€, = W]E} f}s h X, Dy, (21)

f o isthe permutation tensor, V is volume of granular assembly. h, is a vector from

the midpoint ( X™) on line segment (L™) to the mass centre (X™) on boundary

wall surface (DS), asillustrated in Fig. B.0.8. X, isavector pointing from midpoint
(X™) on line segment (L™) to the origin point (O) of coordinate system. Du, is the

relative displacement between two nei ghbouring nodes of the line segment.
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Fig. B.0.8 Diagram of vector definition

The relative displacement of the line segment can be determined by the
relative change of position vectors of the nodes. The determination of the vertex
position vector has been introduced in Section B.2.2. With the positions of all
vertices in the deformed configuration updated, the strain tensor can be calculated
from the relative displacement of line segments of each boundary wall surface using
Eqg. (21). To be consistent with the sign convention defined in Fig. B. 0.6, it isworth
noting that the summation over individual wall surface follows the sequence of

which pointing inward the sample by right hand rule.

A three-dimensional symmetric second order strain tensor, it possesses three

independent invariants J, (g), J,(¢) and J,(¢) . However, it is to be emphasized that
the volumetric strain definition in finite strain definition is different from J,(g) , the

summation of the principa strains given in the infinitesimal deformation theory. The
latter induces a significant error when the deformation is finite and large. Instead, the

volumetric strain e, should be expressed in terms of these invariants as;
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e, =1- det(d,, - e,)=e* +e’ +e’- e'e®- e%e’- e'e’ +e'e’%’

22
= 3,(8) + 3,(8) + Jo(e) - %Jl(sf- Jl(s)Jz(s)+%J1(a>3 #2

where e'(I 212,3)) are the principa strains given in the spectra form

3 .
¢=4ae'n An., with the subscripts 1, 2 and 3 assigned to the mgjor, intermediate
1=1

and minor principal strains, respectively. The measurement and control of the
specimen volume based on Eq. (22) reflects the true volume change, which is echoed
by the common practice of volume measurement/control for saturated specimens in
the laboratory, where the volume change is quantified by the pore fluid flowing in or

out of the specimen instead of deduced from the normal strain values.

Quantifying shear deformation is not that straightforward. To assess shear

deformation, we adopt two invariants: the deviatoric strain e, and the intermediate

strain ratio b, defined as:

e, =2, (g)/3= 2\/ ng(s) - (15\11(8)2‘:J 3 23

b, :(ez- e3)/(e1- e3)
The three invariants e, , e, and b, and the three principal directions n;, nZ and n;

are used to define a state of deformation.

When the invariants e,, €,, b, of the strain tensor are specified, the Lode

angle of the strain tensor can be determined from Eq. (16), and J,, (¢) can be
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determined from Eq. (23) as  4/Jyp (a)=x/§eq/2 . Denoting

a:% J,0 (A) cosq, b:%JJZD (A) cos?%p- qg, C=%\/J2D (A) COSE%O*‘QE

[}

, we have from Eq. (15) that:

and a+b+c=0 ab+bc+ca=-J,,(g) abc=Jy (g).

When the strain is isotropic, /J,, (¢) =0 , and Jl(s):3(1- 1- ev) :

Otherwise, J,(g) can be found by solving the cubic Eq. (22). Denoting x =1- —‘]1;8) ,
the cubic Eq. (22) isrewritten as:
=(1- 1-
y=(1-&)(1- &)(1- &) 25
=(x- a)(x- b)(x- c)=1-¢,

The polynomia function y=0 has three real roots as x=a,b,c . Its

fl /1
derivative y'=0 leadsto X== éJZD , between which X=- éJZD corresponds to

302
él . U 1

a postive loca maxima 'y, yhigh_283 ZDH -J,, and  X= §J2D

312
el u

&7y

corresponds to anegative local minimum vy, ,,, Y., =-2a - Jgp -

In numerical study of granular material elementary behaviour, the values of

e, and e, are of limited magnitudes. In most conditions, we have 1- e, >y, -

Hence, there is only one real root to the cubic Eq. (25), whichis
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2 3 2 3

Jg /Q_+z+#_g_ QP )
2 Va4 27 2 Va4 27

where Q:(sm- |2)/9 and P:(9|m- 27n - 2|3)/54. And I,m,n are the

constants of the standard cubic equation as shown below:

X +IxX*+mx+n=0 (27)

and | =- (a+b+c), m=(ab+bc+ac), n=-abc.

Hence, the first invariant J, (€) can be found as:

. Q. @, Q [@, PP
Ji(e) =3(1- x) = 3§1 \/ 2 a5 \/ >\ 275 (28)

Once J,(¢) is determined, the three principal strains can be determined from

Eq. (24). Together with the information on the principal directions n., the strain

tensor in components form can be determined from Eq. (13).

B.4 Implementation of general loading path

B.4.1 Strain-controlled boundary conditions

A strain controlled loading path controls the boundary deformation to atarget
strain state expressed in invariants form, €, €;, b, nf . Alternatively, the target

strain state can aso be expressed in tensoria form efj by Eqg. (13). The strain

increment De; is the difference of the current strain tensor e, determined from Eq.
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(21) and the target strain tensor, Deij = eitj - €,. In a gtrain field De,,, fixing the
position of specimen origin O, the position vector X of a material point in the

deformed configuration can be determined according to the position vector X. inthe

undeformed configuration as:
X =dik(djk - Dejk)xj (29)
The geometry of boundary walls can be described by their centres and normal

directions, which are denoted as X" ,N" in the undeformed configuration and x"“,n"

in the deformed configuration. The centre X" and unit normal vector N" of each
boundary wall can be updated by intrinsic functions within PFC3D in the
undeformed configuration. Therefore, substituting the wall centre vector X" into Eq.
(29), the new wall centre position vector x" can be determined after a strain

increment De; . To find the boundary wall normal direction n* after deformation, it
is essential to use two in-plane vectors t;" and t}) to determine n" in the deformed

bt

configuration as n" = ———=
I e

: Ht{”’ t;“” represents the Euclidean normal of vector

t)'” t2. Asthe plane wall function is known by updating the X" ,N*" , the position

vector X' of the vertex forming the polyhedron can be determined using Eq. (6).
Accordingly, the individual position vector x’ of the vertex after a strain increment

De, can be calculated from Eq. (29). Then, it is possible to use the two in-plane

vectors t;" and t,; to determine the wall unit norma vectors in the deformed

configuration.
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Once the boundary walls position vectors and unit normal vectors are known

in both undeformed configuration and deformed configuration (after strain increment

De, ), the translational velocities v" can be specified to achieve a strain increment
De; during atimestep Dt :
ViW = DXIW/Dt = diKDeJK X}N/Dt (30)

and rotational velocities w," is determined as

w % (N n )i (31)
where Dq isthe angle between the two unit vectorsand sinDg = ||NW ’ nW”.

B.4.2 Stress-controlled boundary conditions

The stress controlled loading is described by maintaining a target stress state

in terms of stress invariants p', g, b, n . The expression of target stress in
invariants form can be inter-transformed into stress tensor sitj by applying Eq. (13).
The stress increment tensor Ds ; is calculated as the difference of the current stress

tensor s, determined from Eq. (20) at any stage of loading and the target stress

tensor S

i Ds. :Sitj - S, . The stress increment has to be applied using the

j
following servo-control mechanism. Based on the stress increment, the

corresponding strain increment is estimated by Hook’s Law to be:
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e ()

De :.:.Ds.j +Ds, (32)
, , .
f 2@+n)E (I J)

where E and n are the nominal Y oung’s modulus and Poisson’s ratio. The nominal

Young’s modulus E isestimated as:

R
g=D5 - kR (33)
e vy

K, is the spring normal stiffness for linear contact model. R is the radius of the

inscribed sphere of initial polyhedron, r is the average particle radius and V is a

relaxation factor. And the bulk modulus K and shear modulus G of specimen are

estimated in terms of Y oung’s modulus and Poisson’s rétio:

E
K =
2(1-n) )
G = E
- 2(1+n)

After the estimated strain increment is determined from Eq. (32), the
boundary walls velocities are specified according to Egs. (30) and (31) to achieve the
estimated strain increment accurately. As the material is not perfectly elastic, the
applied strain increment estimated by Hook’s Law does not necessarily result in the

desired stress increment Ds ;. After each calculation cycle, the stress increment

Ds, =s; - s, isupdated based on the new stress state s ;, and used to determine

ij ij ij
a new strain increment applied to the specimen boundaries. By repeating doing so,
the specimen stress gradually approaches the target stress state. When the difference

between the current stress state and the target stress state is smaller than the preset
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tolerance, the boundary stress condition is considered to be satisfied. By default,

n =0.5and V = 0.8 areused herein the following simulations.
B.4.3 Numerical test control

Monitoring boundary conditions

In numerical simulations, the boundary conditions cannot be exactly satisfied.
Tolerances are set to monitor boundary conditions and the boundary conditions are
considered to meet requirements if the differences between current boundary

conditions and target boundary conditions are smaller than pre-set tolerance values.

For stress-controlled boundary, the boundary condition is considered to be

satisfied if the stress invariants and principal directions follow Eqg. (35):

\:|p ) pt| < Prol :htol xmax(p, p|b)

{h-nY <n,
i _ (35)
I bs - bst < bs tol ! If h > htoI

i - -

1|1- nls xﬂlst < n:atol ' ifh > htoI

in which p',h*,b" and n! represent the target mean normal stress, stress ratio,
intermediate principa stress parameter and the unit direction vectors representing the
i" principal stress direction. p,,h,,b, ad n, ae the corresponding
tolerances, p,, is the lower bound of the specimen mean normal stress. When the
mean normal stressis lower than p, , the specimen is considered to be stress free and

can flow as a liquid. Note that the repeated superscripts here do not indicate

summation. n‘s X n‘; denotes the dot product of the i™ current and target principal
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stress direction vectors. When the stress ratio h is smaller than the tolerance h,

indicating the isotropic stress state, the intermediate principal stress parameter and
the principal directions are undefined. The associated boundary conditions control is

rel eased.

For strain-controlled boundary, the boundary condition is considered to be

satisfied if the strain invariants and principa directions meet the following equation:

t

ev - ev| < evtol
t

eq - eq| < eqm,

b - bi|<h

etol !

(36)

ife, >e,,

i it
1- n, xn,

<n

etol !

|feq >e

—— ] ——— — —

gtol
where e;,e;, b and n! represent the target volumetric strain, deviatoric strain,

intermediate principal strain ratio and the unit vectors representing the i principal

strain directions; e . ,e_ .., b. . and n

vtol * ~qtol * “etol etol

are the corresponding tolerances. Again,
the repeated superscripts here do not indicate summation. nl xn! denotes the dot

product of the i"™ current and target principal strain direction vectors. Similarly,
whenthe specimen strain state is isotropic, the control of the intermediate principal

strain ratio and the principal directions become unnecessary.

In al numerical simulations of this research, it sets p, = 5kPa,h,, =1" 10"
by = htol/max (h N )' Now =hy , € = ptoI/K 1 € = Pua /G ,

=b

etol *

b

etol

=€y / max(eq,eqwl) and n K and G are bulk modulus and shear

etol
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modulus as determined by Eq. (34). The accuracy of the boundary conditions are

hence monitored solely by the valuesof p, and h, .

Equilibrium monitoring

DEM simulations are inherently dynamic. However, what of interest is the
guasi-static deformation behaviour and the equilibrium condition is considered to be
satisfied if the ratio between the maximum unbalance force and average contact

forceis smaller than a pre-defined tolerance:

funb/ fav £ ftol (37)

In al numerical simulations presented in this research, f,_ isset to be 0.001.

tol
Loadings are applied only if the sample equilibrium monitoring is satisfied.
Otherwise, boundary walls are fixed with calculation cycles continued till force

equilibrium achieved.

Choice of loading rate

To model stress-strain behaviour under quasi-static conditions, the loading
increment is kept small to minimise dynamic effects. And it is associated with the

tolerance of boundary conditions:

t
ev_ ev

1Dp=sgn(p' - pminp' - pl.I p,)  1De, =sgne; - e)minde - el €,,)

I'oh =sgn(n' - hyminch' - h|,1h,)
|
iDh, =sgn(b - b)min(k - b

|
§Dng = sgn(n. - n.)min(

. _ . o
J[Deq = sgn(e, - eq)mm(|eq

| el o) (o
b)) Db =sgn(t - b)min(

bé - be ’I betol)

’ I netol)

|
n. - n.[,1n.) §Dn, =sgn(n - n,))min(n; - n,
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where | is a loading factor, which controls magnitude of loading rates by setting
different values. The principa direction increment expressed in the equation is in

vector form for convenience. However, in numerical implementation, principal

direction increment is the angular increment Dq = sin‘l(ni ’ nF).

The numerical computational time under different loading path is dominated

by equilibrium control tolerance f,, , boundary condition tolerance p,,, h,, and the

tol

loading factor | . However, a higher value of loading factor results in a greater
magnitude of loading increment and possible larger unbal ance force, which requires
the system to run more caculation cycles to achieve equilibrium before further
loading applied. Therefore, a significant high value of | would not help to improve

the computation efficiency.
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APPENDIX C: Table of numerical samples

used for ssmulations

The samples used for numerical ssmulations in this research are summarised
in the following two tables. Table C.1 includes all the numerical samples of spherical
particles and Table C.2 shows all the numerical samples of non-spherical particles.
The first column indicates the sample preparation method. The radius expansion
method is used to prepare initially isotropic sample and the initially anisotropic
sample is prepared by gravitationa deposition method. Otherwise, the sample is
prepared by pre-loading the initially isotropic sample or initialy anisotropic sample,
which results in inevitably anisotropic sample due to loading induced anisotropy.
The ‘PS’ indicates the Plane Strain pre-shearing loading path, where more details
can be found in Section 4.4.1 (Page 82). The ‘TT’ refers to drained True Triaxid

loading at constant p = 500kPa. And ‘TC’ is the drained Triaxial Compression pre-
shearing loading path with fixed p = 500kPa. More details about the triaxial loading

path can be found in Section 4.4.2 (Page 87).

The numerica samples are labelled for easy cross-link through the thesis.
The first four characters before the first underline indicate the sample preparation
information. The first character ‘S’ refers to the particle shape as spherical and ‘C’
denotes to Clump, which is non-spherica particle shape of two identical overlapping
balls (i.e., Fig. 3.2). The second and third characters indicate the sample preparation

method. ‘RE’ means the Radius Expansion method for generating initially isotropic
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sample and ‘DE’ refers to gravitationa Deposition method for preparing initially
anisotropic. The fourth character ssmply indicate the sample relative density, where

‘D’, ‘M’ and ‘L’ refer to the sample be ‘Dense’,”Medium’ and ‘Loose’, respectively.

The characters between two underlines, where it exists, indicate the pre-
loaded history. ‘PSK05’, ‘PSK1’ and ‘PSK2’ show the radius expansion prepared
dense sample of spherical particlesis pre-sheared by plane strain loading to different
initial K, conditions, K, =0.5, K, =1 and K, = 2, respectively. The strings
‘BO5Y05’, ‘BO5Y07’ and ‘BO5Y09’ expresses the sample is pre-sheared by true
triaxial loading at constant b = 0.5 to the target stress ratio h = 0.5, h = 0.7,

h = 0.9respectively. The strings ‘BO0Y09” and ‘B10Y 09’ denote the sample is
pre-sheared by true triaxial loading to the target stress ratio h = 0.9 at constant
b=0.0and b =1.0, respectively. And the string ‘TC’ indicates the sample being
pre-sheared by triaxial compression to the deviatoric strain of e, =10% and then

unloaded to the isotropic stress state. More details about the pre-shearing process

have been introduced in the corresponding chapters.

The last two characters demonstrate that the prepared sample is going to be
sheared at particular loading path for numerical simulation. For example, ‘TT’ shows
the sample will be simulated by drained true triaxial loading path; ‘SS’ refers to
undrained simple shear; ‘RS’ denotes drained rotational shear and ‘TC’ indicates
drained triaxial compression. More details about loading path have been introduced

inindividual sections, where the results are presented.
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By doing so, al the numerical samples used for numerica simulation are

labelled and whenever the string of characters appears in the thesis refers to the

definition in those two tables. For example, ‘SRED _TT’ denotes the initialy

isotropic dense sample of spherical particles prepared by radius expansion method,

which is used for drained true triaxial ssimulations. And ‘CDED_BO05Y09_RS’ isthe

deposited dense sample of clump particles and is followed by true triaxial pre-

shearing at constant b = 0.5 to stressratio h = 0.9. Then, it is used for rotational

shear simulation.

Table C.1 Sample of spherical particlesused for numerical smulations

Samples of spherical particles

Numerical Related
I [ lel Voi ' . .
Sample preparation Sample label oid ratio smulations results
SRED TT g = 0.64
i axi Section 4.4.2
Radius expansion SREM _TT g = 0.73 Tr_ue tnqmal
simulation Chapter 5
SREL_TT g = 0.78
SRED_PSKO05 SS | g =0.62
expansion (PS) simple shear
SRED PSK20 SS | g =0.65
) SRED B0O5Y05 RS | g = 0.64 _
Radius Pre-shear Rotational .
eXDANSON (TT) <hear Section 4.4.3
P SREL_B05Y05 RS | § =0.75
Grawt@_onal SDEM_TT e =0.72 Section
deposition Truetriaxial, Chapter 6
varying a
Deposition Prc(a_urscl:w;aar SDEM _TC TT g =0.71 Section 6.3
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Table C.2 Sample of non-spherical particlesused for numerical smulations

Samples of non-spherical particles

) . Numerical Related
Samp|e preparan on Sample Labd Void ratio simulations results
) : Triaxia )
Redius expansion CRED_TC & =059 | comoression Section 7.3
_ CDED_TT & =064 . Section 7.4
Gravitational Truetriaxid i
deposition b=0.4 Section 7.5
® CDEL TT o Appendix A1
— g =0.77 ai @0’9008
15 interval
Denosition Pre-shear _ Section 7.5
ep (TC) CDED TC TT e, = 0.65 Appendix A2
CDED_B05Y05 RS e, = 0.645
Pre-shear
(TT) CDED_B05Y07_RS e, = 0.645
b=0.5 Rotational
Deposition CDED_BO5Y09_RS | ¢ =0.645 chear Chapter 8
(TT)
h =09 CDED_B10Y09 RS e, = 0.646
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