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Abstract 

Boundary hitting times for one-dimensional diffusion processes have applications 
in a variety of areas of mathematics. Unfortunately, for most choices of diffusions 

and boundaries, the exact exit distribution is unknown, and an approximation 
has to be made. The primary requirements of an approximation, from a practical 
viewpoint, is that it is both accurate and easily computable. The main, currently 
used approximations are discussed, and a new method is developed for two-sided 
boundaries, where current methodology provides very few techniques. 

In order to produce new approximations, we will make use of results about 
the ordering of stochastic processes, and conditioning processes not to have hit 

a boundary. These topics are introduced in full detail, and a number of results 
are proved. The ability to order conditioned processes is exploited to provide 
exact, analytic bounds on the exit distribution. This technique also produces 
a new approximation, which, for Brownian motion exiting concave or convex 
boundaries, is shown to be a superior approximation to the standard tangent 

approximation. 
To illustrate the uses of these approximations, and general boundary hitting 

time results, we investigate a class of optimal stopping problems, motivated by 

a sequential analysis problem. Properties of the optimal stopping boundary are 
found using analytic techniques for a wide class of cost functions, and both one- 
and two-sided boundaries. A number of results are proved concerning the ex- 
pected stopping cost in cases of "near optimality". 

Numerical examples are used, throughout this thesis, to illustrate the principal 
results and exit distribution approximations. 



Chapter 1 

Introduction 

The central theme to this thesis is the distribution of boundary hitting times for 
diffusion processes. We introduce the topic of first exit distributions and review 
existing techniques for finding exact, and approximate, densities. We also develop 

a new method for approximating exit distributions from two-sided boundaries. 
We shall make use of results about stochastic ordering of processes, and these 

are presented in a major section of the thesis. They are then applied to provide 
new analytic bounds on the distribution function of first exit times, which lead 

to a new method for approximating the exit distribution. As an application of 
boundary hitting time distributions, an optimal stopping problem in sequential 
analysis is investigated. Each chapter will contain an introduction, which will 
provide the most useful background references for the particular section. 

1.1 Background 

Diffusion processes are continuous Markov processes, which have a wide variety of 
applications. They are used to model continuous processes, such as stock market 
prices, and molecular movement. They are also employed to model other random 
systems, for instance discrete random walks, or to model deterministic systems, 
which have random perturbations. Consequently, distributional properties of one- 
dimensional diffusions can be used as approximations for a wide class of stochastic 
processes. 

We shall describe a diffusion process, X, by a stochastic differential equation, 

see for example Oksendal (1985). In the stochastic differential equation 

dXt = o, (t, Xt)dBt + p(t, Xt)dt, (1.1) 

B represents standard Brownian motion, y is the drift coefficient and a is the 
diffusion coefficient. We shall always assume, unless otherwise stated, that [I and 
a satisfy the necessary smoothness and growth conditions to ensure the existence 
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of a unique strong solution (see, for example Rogers and Williams (1987), section 
V. I I). 

The conditional expectation of a function of a diffusion can often be shown 
to satisfy a partial differeintial equation. For example, the forward and backward 

equations uniquely specify the transition density of a diffusion process, under ap- 
propriate boundary and initial conditions (see Williams (1979), sections 1.4,1.9). 
The analogous forward and backward equations for a discrete time process are 
difference equations, which are not usually as analytically tractable as the corre- 
sponding partial differential equations. Consequently, approximating a random 
walk by a diffusion often allows us to obtain explicit expressions for the distribu- 
tion of the process, which might not be available without such an approximation. 
Another advantage of approximating a random walk by a diffusion, particularly 
in regard to calculating first exit times, is that a diffusion has continuous sample 
paths. When computing the first exit time for a diffusion, the value of the process 
at the exit time is known and this can be exploited. However, this value is un- 
known for discrete random walks, resulting in a problem known as "overshoot", 

or "excess over the boundary", (see Siegmund (1985, p165)). 
An important partial differential operator, associated with the diffusion, is the 

infinitesimal generator. If the diffusion, X, satisfies (1.1), then the infinitesimal 

generator, denoted by L, is given by 

ý=1 or2 

a- 
L. (t, x) -+ m(t, x) - ax2 Ox * 

The one-sided boundary hitting time, r, for a functional boundary, f (t), can 
be defined as 

inf ft: Xt f (t)}, 

t>o 

where it is usually assumed that Xo <f (0). If we further define 

o(tý X) = P[7 >t IXO 
= 

then 0 satisfies 

'co = 
ao 

I at 

where L is defined in (1.2). By selecting suitable boundary and initial conditions, 
the solution to this partial differential equation is uniquely defined. However, 

explicit solutions are rarely available for particular choices of process and bound- 

ary, and hence, approximations are important. Most work has been concentrated 
on Brownian motion, the simplest diffusion process with constant drift and dif- 

fusion coefficients. The main, widely used approximation, currently available for 

Brownian motion is the tangent approximation (Strassen (1967), see also Lerche 
(1986)). This is found by approximating the boundary locally by its tangent, and 
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using the exact exit density for the tangent, which is available. This method has 
the advantage of being easily, and rapidly, calculated in a compact mathematical 
form. The tangent approximation has also been used as a first approximation, 
with extensions and refinements provided by other methods (see for example Jen- 
nen (1985)). Other approximations are available, which require varying amounts 
of computational effort, such as a multiple integral and summation approach of 
Durbin (1992), which also has the tangent approximation as its leading term. 

Boundary hitting time distributions are especially important in Sequential 
Analysis (see for example Siegmund (1985), Woodroofe (1982)) and Stochastic 
Control Theory (see for example Krylov (1980), Oksendal (1985)). In Sequen- 
tial Analysis, plans are constructed which determine whether, or not, to continue 
observing a process, and the objective is to make some inference about an un- 
known parameter of the process. As several plans can be constructed with the 
same accuracy, comparisons can be made by considering the expected length of 
the observation period. For Markov processes, the stopping rules are often de- 
termined by comparing the process value with some, possibly time dependent, 

value. Thus, the length of the observation period has the same distribution as a 
first exit distribution across some boundary. In a subclass of stochastic control 
problems, the available control options are to stop or continue, and the objective 
is to minimise the expected stopping cost. If the costs are only dependent on the 
time and current value of the process, the distribution of the stopping time is 

sufficient to calculate the expected stopping cost. 
Other applications of boundary hitting times occur in biology, where popula- 

tion sizes are modelled by stochastic processes. Important features of the system, 
such as the distribution of the time until extinction, are found using boundary 
hitting time methods, see for example Nobile and Ricciardi (1984a, b). In chem- 
istry, the times of molecular collisions are also considered to be boundary hitting 
times for diffusion processes, see for example Balding (1988). In this paper, pro- 
cesses are run on the circumference of a circle, and so the techniques we develop, 

which will rely on the total ordering of the state-space are not applicable. 

We shall exclusively consider one-dimensional diffusion processes, which run 
on a totally ordered state space, usually R. This enables us to consider the 

ordering of processes, which will provide suitable techniques to produce some 
new boundary hitting time results. Daley (1968) introduced the idea of stochastic 

monotonicity. A process, X, is stochastically monotone if 

P[Xt 
-<, X IXO = Xl] ->ý- 

P[Xt 
-<, X IXO = X2li 

for all x and t>0, and all x, -<-, X2- We use an inequality involving probabilities 
to define stochastic ordering of processes. We say process 

X2 is stochastically 
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St 

greater than process Xl (written [X2] 
t I>- 

[Xtll) if 

p[X2 < X 
JX2 

= Xo] < 
,. z 

P[Xl < 
t0t, xI X01 = XO 

for all t, x and xO. 
We will make extensive use of processes conditioned not to have hit a bound- 

ary, when developing approximations to a first hitting time distribution. How- 
x2 

st [X1 Jr 
> t] if [X2] St 

ever, it does not follow that Itt [X'], where t 
172 

> t] >, 
_>1 t 

Tj = inf t>o It : X' >, f'(t)}, for boundary functions f'. For a simple counterexam- t 
ple, see Roberts (1991a). A natural extension to investigate, would be a stronger 
stochastic ordering of processes, which is preserved under such conditioning. 

We say a process X is strongly stochastically monotone if 

Pt(-172 i Y2) Pt(X2 i Yl) 

Pt(Xl) Y2) pt(xi, yi), 

for all t, -rl -<-, X2 and yj -<, Y2, where pt(x, y) is the transition density between x 
and y (see for example Roberts (1991a)). We define strong stochastic ordering 
between two processes using a non-decreasing likelihood ratio. We say process 
X2 is strongly stochastically greater than process X1 (written [X2] 

Sst 

[X1j) if 
t 

>- 
t 

22 PS, t(Xi Y2) PS, t(XI Yi) 

11 PS, t(X3 Y2) PS, t(XI Yi) 
(1.3) 

for all x, s<t and yj <-ý Y2 i where p', t 
(x 

, y) is the transition density for process S 
i from X% =x to Xt' = y. It should be noted that other definitions of strong S 
stochastic ordering are feasible. In cases where the transition density functions 

are unavailable, we can define strong stochastic ordering by [Xt']'9->, s'[Xl] if t 
P[X; 2 

CA2]P[Xtlj C A, ] 
->- 

P[Xt2 C A, ]P[Xt' EE A21 for all t7 

and all A, and A2 such that a, E A, and a2 G A2 implies a, < a2- We may also 
define strong stochastic ordering in weaker senses by requiring (1.3) to hold only 
for some values of s and x. Strong stochastic ordering is preserved, in some cases, 
after the processes are conditioned not to have hit a boundary. 

Strong stochastic monotonicity is a special case of total positivity (Karlin 
(1968)), which is a higher order property of transition densities. A process is 
totally positive of order n (TP, ) if the transition density pt(x, y) satisfies 

Pt(Xi Yi) 
Mn 

Pt(Xl Y2) 

Pt(127 Yl) ... pt(x., yi) 

Pt(X21Y2) - Pt(XniY2) 

Pt(XllYn) Pt(X27Yn) Pt(Xni Yn) 
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for all t, x, < X2 <'**< Xn and yj < Y2 << Yn - Strong stochastic 
monotonicity corresponds to TP2. 

One of the aims of this thesis is to develop results on the ordering of processes 
and apply them to produce new results for boundary hitting time distributions. 
We will use processes conditioned not to have hit a boundary, and will, therefore, 
be particularly interested in strong stochastic ordering, which is preserved under 
our conditioning. 

1.2 Summary of Chapters 

Hitting time distributions are difficult to obtain exactly, and so a great deal of 
attention is focussed on the calculation of approximations to them. As a technical 
tool to produce such approximations, stochastic orderings will be used, necessi- 
tating an in depth study of such concepts. New results in this area are found, 

and then ordering results are employed to find analytic bounds on the distribu- 

tion function of the hitting time, which are easily calculated - an important 

consideration when many distributions need to be found. 

Following this introductory chapter, the second chapter reviews the current 
techniques for finding exact and approximate exit distributions (see Lerche (1986) 
for a good general introduction). 

In only relatively few cases can the exact first hitting time density be found. 
For example, Brownian motion exiting a straight line has its exit density given by 

the Bachelier-Le'vy formula (Levy (1965)). Daniels (1982) introduces the method 
of images, which is one of the techniques discussed leading to exact exit densi- 

ties for Brownian motion across more complicated, implicitly defined, functional 
boundaries. Partial differential equations for first exit time distributions for more 
general processes are investigated using Laplace transformation techniques, and 
also by eigenfunction expansion methods. These methods often yield infinite 

sums, the dominant terms defining approximations. 
The main methods of approximation discussed are those which produce com- 

putationally simple distribution functions. Of these, the tangent approximation 
(Strassen (1967)) is applicable for the Brownian motion exit density across certain 

one-sided boundaries, when it can be shown to be exact asymptotically, as the 
boundary recedes to infinity. This formula is generalised for other processes by 

Durbin (1985), though derived in a different manner. For two-sided boundaries, 

we develop a new method which uses quasi- stationary distributions, first used in 

this context by Roberts (1991b), to produce an approximation for the hazard rate 

of the stopping time. This method is also applicable to a wider selection of pro- 

cesses. The chapter concludes with some numerical examples of the techniques 

introduced. 
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After this overview to the currently available methods for calculating bound- 
ary hitting distributions, we introduce, in full detail, the concepts of stochastic 
orderings for diffusion processes. The three main orderings introduced are almost 
sure ordering, stochastic ordering and strong stochastic ordering. The first two 
are well known for stochastic processes, and strong stochastic ordering is a prop- 
erty of the likelihood ratio of the two processes. Six different definitions of strong 
stochastic ordering are given, and relationships between the various orderings are 
discussed. The chapter also introduces the related topics of stochastic mono- 
tonicity (see for example Daley (1968)), strong stochastic monotonicity (see for 
example Roberts (1991a)) and total positivity (Karlin (1968)). A number of well 
known results are presented, including an almost sure ordering result for diffu- 
sions from Ikeda and Watanabe (1981), and some stochastic and strong stochastic 
ordering results obtained by comparing processes conditioned not to have hit a 
boundary (Roberts (1991a), Pollak and Siegmund (1986)). 

In the next two chapters, proofs of a number of simpler ordering results are 
given. The first of these look at likelihood ratios for normal random variables, 
which will simplify the proofs of a number of results involving processes with de- 
terministic drifts. Results indicating the conclusions which can be drawn if two 
processes are strongly stochastically ordered are then presented. These are fol- 
lowed by a number of more specific results in the cases where the drift coefficients 
are functions of time only. In these cases, we are able to explicitly calculate 
the transition densities of the processes, and can directly verify the definitions 

of strong stochastic ordering. This permits us to prove results concerning the 
ordering of process bridges and the moduli of processes. 

In order to verify that processes are strongly stochastically ordered, the prob- 
ability distributions, or transition densities, of the processes are required. How- 

ever, these are not always explicitly available, in which case other methods to 

establish strong stochastic ordering are needed. In Chapter 6, this problem is 
tackled, first by finding necessary conditions on the drift and diffusion coefficients 
for strong stochastic ordering. Sufficient conditions are then found on the drift 

coefficients, in the case where the diffusion coefficients are identically 1, to ensure 
strong stochastic ordering. These new results will allow us to verify whether pro- 
cesses are strongly stochastically ordered by looking at the stochastic differential 

equations of the processes. 

Our attention then returns to boundary hitting time distributions. Using 

results involving strong stochastic ordering of conditioned processes, and an ex- 
pression for hazard rates in terms of the density derivative (Roberts (1993)), we 
can establish a new result producing bounds on the hazard rate of the first exit 
distribution for functional boundaries. The bounds are found by comparing the 

actual boundary with other boundaries, for which the exit distribution proper- 
ties are known. In the important case of Brownian motion, explicit formulae for 
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these bounds can be given, using straight lines as the comparison boundaries. 
These bounds also suggest a new approximation technique, which, for concave 
or convex boundaries, can be shown to be a better approximation than the tan- 

gent approximation. Numerical examples illustrating these bounds and the new 
approximation are also provided. 

We finish by illustrating the uses of boundary hitting times with an optimal 
stopping problem. The optimal stopping problem discussed is motivated by a se- 
quential analysis problem investigated in Lerche (1986), in which an inference has 
to be made about an unknown parameter, based on observations of the process. 
With error costs and observation costs, a balance has to be found between observ- 
ing and getting more information about the unknown parameter, thus reducing 
the error costs, and the cost of this continuation. A solution to such problems can 
be found, at least numerically, if the exact exit density is known for all bound- 

aries. As this is not the case, properties of the optimal stopping boundary will be 
investigated by analytic techniques. Throughout this chapter, a worked example 
will be used to illustrate the ideas developed. Some numerical approaches are 
discussed involving optimisation over a class of boundaries. 

With the possibility of an optimal solution not being found, there follows a 
discussion, and a number of results, concerning c-optimality (see Krylov (1980)). 

A solution to the optimal stopping problem which has a payoff within 6 of the 

optimal payoff is termed E-optimal. A number of theorems are proved, and 

applied in a numerical example related to the optimal stopping problem discussed 

earlier in the chapter. 

1.3 Notation 

Before proceeding with the main body of the thesis, we shall give some notational 

conventions which are adopted throughout. Firstly, all processes will be denoted 

by an upper case letter, usually X, Y, Z or B. The time index will be denoted by 

a subscript, such as Xt. In order to label processes, when many are required, we 

shall use superscripts. Thus X' will denote process Z, rather than the process X 

raised to the ith power. The process B will always be assumed to be a standard 
Brownian motion. 

The distribution law of process X will be denoted by [X]. So, for example, 

we have 
[Bt I Bo = 0] -N (0, t). 

The use of o and 0 as orders will be as follows: 

(x) = o(g(X» => lim = 
xlo 

_q(x) 
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(x) = O(g(x» :: * lim = 
XIO g(x) 

for some k such that 0< IkI < oo. The same notation will be used if the limits 

are as x -* 1. Note that the definition of 0 is not the standard one. 
Weak convergence of distributions will be denoted by For example, if 

Xn, n= 11 21 
... , converges weakly to X, we shall write 

as n --+ oo. 

A process XE LP is such that 

E[IX'I] < oc, for all t. t 

For the function f (t, x), we will usually denote the partial derivatives by af 
-9x 1 

et cetera. However, for typographical reasons, especially in Chapter 6, we will 
also use 

fx (t I X) = 
af 

I ax 

and similar notation for higher order partial derivatives. 
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Chapter 2 

Exit Distributions 

2.1 Introduction 

Let X be a continuous time Markov process on R, and suppose AC R'. We 
define 

inf It : (t, Xt) V A}. 
t>O 

Then, the random variable -r is known as the first exit time from set A. We shall 
normally assume that A=I (t, x) :x<f (t) 1, where f: [0, oo) --+ RUf 00}. In 
such cases, 7- is called the boundary hitting time, and written 

7- = inf ft: Xt f (t)J. 

t>0 

It is generally assumed that (0, Xo) E A, or alternatively Xo <f (0). 
In this chapter, we shall investigate the distribution of -r, for various processes 

X and boundary functions f. We shall review the methods which produce exact 
distributions for r, and also consider the techniques which lead to approximations 
to the exact distribution. We also introduce a new approximation in the case of 
Brownian motion exiting a two-sided boundary. We shall deal exclusively with 
one-dimensional diffusion processes, and usually this will be Brownian motion. A 

good general introduction to this subject is provided by Lerche (1986). 
Boundary hitting time distributions are particularly useful in Sequential Anal- 

ysis (see for example Siegmund (1985)) and in Optimal Stopping Problems (see 
Chapter 8). In sequential analysis, it is frequently the case that discrete time 

processes are used. When seeking first exit distributions, this leads to the techni- 

cal complication that the value of X, is unknown, but greater than the boundary 

value. The difference is termed the "overshoot". To allow for this Siegmund dis- 

cusses some methods of Woodroofe (1982), which estimate the distribution of the 

overshoot using renewal theory. Using these results, and a continuous approxi- 
mation to the process, the exit distribution for the discrete time process can be 
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accurately approximated. We shall only consider continuous time processes, and 
make no allowances for the overshoot when modelling discrete time processes by 
continuous ones. 

2.2 Exact Distributions 

2.2.1 Straight Line Boundary for Brownian Motion 

We begin by considering the simplest example of a process exiting a boundary. 
Let B be a standard Brownian motion, with BO = 0, and define 

inf It : Bt > a} 
t>O 

where a is a positive constant. 
The most important result of this section is the Bachelier-Levy formula (Levy 

(1965)). 

Theorem 1 (Bachelier-Levy formula) Let p(t) denote the density of the dis- 

tribution of -r. Then, 

p(t) 
a 

t3/2 vt- 

1 X2/2 
where 0 Zs the standard normal density function, that is 

O(X) 
= ýý72e- 

We shall give a simple proof of this result. 

Proof 

One way to derive this result is by using the reflection principle (see Karlin and 
Taylor (1975, p345)), which uses the symmetry of the distribution of Brownian 

motion, and the fact that it has independent increments. Thus if Bt" = a, the 

distributions [Bt - a] and [a - Btj for t> to are identical, using the strong Markov 

property of Brownian motion. Hence, for each path such that Bt > a, it follows 

firstly that -r < t, and secondly, there is a corresponding path, such that B, -a= 

a-B, for all sE [7-, t]. This path has Bt < a, and B, =a for -r < t. Thus it 

is easily deduced that P[-r < t] = 2P[Bt >, a]. Using the well known result that 

Brownian motion is normally distributed, with zero mean and variance equivalent 

to the time elapsed, it is clear that 

P[-r 21_ ,ý(a 
)) 

vlt- 

where (P is the standard normal distribution function. 
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Differentiation of this result leads to the Bachelier-Levy formula. 

* 

Before proving a corollary to this result, we require the following result, the 
Cameron-Martin-Girsanov Theorem. This gives a simple form for the Radon- 
Nikodym derivative between two probability measures induced by stochastic dif- 

ferential equations. 

Lemma 1 (C ameron- Martin- Girsanov Theorem) Let B denote the Borel 

a-algebra on R+ and CO' the space of twice continuously differentiable functions. 

Suppose X satisfies 
dXt -- b(Xt)dt + o, (Xt)dBt, 

w%th X0 = x, bER, or > 0. Then suppose another process Y satZsfies 

dYt = a(t, w)dt + b(Yt)dt + o, (Yt)dBt, 

'th Yo = x, 
17 Z 1: 7 

Wz and where a(t, Lo) *s Bx mble, Lo --+ ft (w) = a(t, w) *s t- mble for 
T 

all t and finally E [fý (a(t, Lo))'dt] < oo for all T< oo. 
Define Z by dZt = ! (o, -'(Yt)a(t, Lo))2 dt - a-'(Yt)a(t, Lo)dBt, Zo 0, and let 

2 

Mt = ezt. Then, for all 0< tj -<-- 
t2tk <- t, and all fi G C02, 

E[Mtfi(Yt, ) ... fk(Yt, )] = E[fi(Xtl) ... 
fk(Xt, )] 

- 

For a proof of this result, see for example Liptser and Shiryayev (1977). We 

now proceed to a corollary of the Bachelier-Levy theorem. 

Corollary 1 Consider the process X satzsfymg 

dXt = dBt + lidt 

qity of the 
with Xo = 0. Define r,, = inft>oft : Xt al and p,, to be the den, 

distribution of 7-1,. 
Then, 

(t) a 
At 

t3/2 vIt- 

Proof 

We apply the Cameron-Martin-Girsanov Theorem. In this case, 

712 dZt = -ii dt - MdBt, 2 
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so that 

exp 
fY2 t/2 - pBt 

I) 

assuming Bo = 
Bt = a, so that 

However, when considering the first exit time at t, we have 

Mt = exp 
ýy 2 t/2 - pal. 

Thus, 

exp 
1 

t, 
2t 

- ji a p,, (t) = po (t) 
12 1 

where po is found using the Bachelier-Levy formula. Rearranging this expression 
provides the claimed result. 

* 

It should be noted that adding a constant drift to Brownian motion, and 
exiting a constant boundary is equivalent to exiting the boundary a- Pt by a 
standard Brownian motion. 

Written in a simpler form, we have thus shown that if 

inf It : Bt >, a+ btj, 
t>O 

then the first exit density p(t) can be expressed as 

P(t) 
aa+ bt 

t3/2 vt- 

)I 

which is the more commonly stated form of the Bachelier-Levy formula. 

Giorno, Nobile and Ricciardi (1989) extended the idea of applying the reflec- 
tion principle (see for example Karlin and Taylor (1975)) to find exact first exit 
densities for other processes. Under certain symmetry conditions on the transi- 
tion density of the process, and provided that the boundary is selected to satisfy 
another condition, they find that 

P [-r < t] = 2F(p(x, y, t)), 

where p is the process' transition density, and F is a given function. In the Brow- 

nian motion case, the Bachelier-Levy formula is attained using F(p(xo, y, t)) 
fý' p(xo, y, t)dy in the above formulation, with constant boundary a. 
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2.2.2 Eigenfunction Expansions 

Let X be an R6 diffusion, with Xo = 0. That is, X has drift and diffusion 

coefficients which satisfy 

11, (t, X) 12 + Ia (t, X) 12 K[I + JX12] 

jp(t, x) - p(t, y)l + la(t, x) - a(t, y)l Kjx - yj for some K< oo. 

Consider the two-sided stopping time 

7= inf It : Xt ý (-b, a)j, 
t>O 

where a and b are positive constants, and define 0(t, x) = P[-r >t JXo = x]. Then 
it is well known that 0 is the unique solution to the partial differential system 
(see Friedman (1975)): 

£to - 
i90 
ä-t 

(t, a) 0 (t 710) 
O(tl -b) =0 (t :ý 0) 
0(0, x) =1 (-b <x< a) 

where Lt- is the infinitesimal generator of the diffusion. (In the general case where 
X satisfies dXt = a(t, Xt)dBt + ft(t, Xt)dt, then X has the infinitesimal generator 
'Ct. =1 

2(t7 
X)-ýýL + 11(t7 X) 

a- 
.) 2 01 aX2 ax 

We now assume the process to be time homogeneous, and so we have the 

infinitesimal generator Lt. = 
L. = 

10,2 (x)-2L + y(x)-2-*-, where p and o, satisfy the 2 aX2 ax 
necessary growth conditions to ensure a unique solution to the partial differential 

equation. 
We shall seek a solution to (2.1) of the form 

O(t, x) =Z ak(t)ek(X), 
k 

where the functions Ck(X) (k = 1,2, - - -) are eigenfunctions of the infinitesimal 

generator, which satisfy the boundary conditions Ck(a) =0 and e-k(-b) =0 for 

our particular choice of a and b. The ak(t)'s are appropriately chosen weights. For 

this approach to work, we require the differential operator to have eigenfunctions 
leading to a countable number of distinct eigenvalues. Substituting this form of 
0 into the partial differential equation, we must solve 

Z 
ak (t)£e-k (X) Z 

dak 
ek(X)i 

k dt 

13 



subject to the boundary conditions. Using the eigenfunction property, this re- 
duces to 

ak(t)lýk e-k(X) 
dak 

ek(X)7 dt kk 

where Ak is the eigenvalue associated with eigenfunction ek. 
Provided that the Ck'S form an orthonormal basis with respect to some inner 

product, taking this inner product with ej on both sides yields 

Ajaj(t) 
- 

daj 

dt 

or equivalently 
Ajt 

aj cj e 

where cj is a constant. 
Since we are dealing with a one-dimensional diffusion in most cases, this ex- 

pansion is possible, and the inner product can be written as 

(f, g) -I 
f(x)g(x)p(x)dx, 

where p= 4M the derivative of the scale measure with respect to the speed mea- ds I 

sure of the process (see for example Karatzas and Shreve (1988, Chapt. 5)). In 
the most convenient cases, it is possible to find an orthonormal basis of eigen- 
functions, which also has distinct, non-clustered eigenvalues. In particular this 

means that, as all eigenvalues are negative, the dominant term asymptotically, is 
the term corresponding to the least negative eigenvalue, and we have 

- o(tl x) 
- cle, Xlt ei (x) 

1 
e(, x2-, XI)tg(t, x) 

--+ I as t --+ oo 7 

for some function g. 
The final solution is of the form 

O(t7 X) 
1: 

Cke- 
4t 

e-k(X)- 

k 

The initial condition can be used to determine the values Ck, and the boundary 

conditions are satisfied by choosing theCk sothat e-k(X) =Oat x =aandx = -b. 
Thus denoting the inner product by (-, -), we have the final expression of 

0(t, X) = 
1: (1, Ck) 6- 

Akt 
ek(X). 

k 
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Example: Brownian motion 

As an example, consider the case of Xt = Bt, and again -r is defined as 

infft : Bt ý (-b, a)l. 
t>o 

To find the eigenvalues and eigenfunctions, we solve 

1d 2C 

= Ael 
2 dX2 

subject to the constraints that e(a) = e(-b) = 0. Clearly, if 2A = _M21 we have 
the solutions 

e(x) =A sin(mx) +B cos(mx), 

to the differential equation, which we can solve for A and m by selecting B=1. 
(Any constant multiplier of an eigenfunction is also an eigenfunction - we only 
seek the functional form in x. ) Substituting the boundary conditions, we find 

A- cos(mb) 
and sin(ma + mb) 

sin(mb) 

Therefore, we select 

M 
n7r for n= 11 21. 

a+b 
Summarising this, we see the functional form of the eigenfunction is 

n7r 

en (X) 
= sin 

[a+ 
b 
(x 

with corresponding eigenvalue 

An n2 7r 
2 

2(a +b2 

Normalising the e, by using the inner product 

a 
(f, g) f(x)g(x)dx, 

b 

(as p(x) = 1), we see an orthonormal basis of the space of C' functions with 
f (a) =f (- b) = 0, is given by 

F2 
sin 

n7r (x + b)] , >O 
-a+ b 

[a 

+b1 
n=l 
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Thus, we deduce 

P[, r >t IX. 
e, ) exp 

n 
27r2 

-t sin 
[ n7r 

- (x + b)] 
n=1 2(a + b)2 

a+b 
00 4 

exp 
(2k -1 

)2 7r2 
t sin 

[(2k 
- 1)7(x 

+ b) E 
(2k - 1)7r 2(a + b)2 

a+b k=1 

Note that, in the symmetrical case a=b, this reduces to 

(_l)k+l 4 (2k_1)2 7r2 

t cos 
((2k 

- 
1)7rx 

P[, >t 
Ix" 

= '] = 
:L 

-C 8a2 (2.2) 
k=1 (2k - 1)7r 2a 

Notice that the asymptotic behaviour is closely approximated by the leading 

term, and for small boundary values a, only a few terms would be necessary to 

calculate P[-r > t] in practice, due to the fact that the probability is the sum of 
exponential terms. For a=b=1 and t>0.2, after about twenty terms of this 

sum, the summands are effectively zero, to computer accuracy of about (10)-301 

and so truncation of the infinite sum is justifiable at this number of terms. 
Notice, also, that the non-symmetrical case can be used as a basis for a one- 

sided approximation, by letting b become large. In such a case, the first exit 
time across the two-sided boundary will be a good approximation to the case of 
a single boundary at a, since the probability of the first exit being across -b is 

very small. 

Example: Ornstein-Uhlenbeck process (Symmetric Boundaries) 

Consider the Ornstein- Uhlenbeck process satisfying the stochastic differential 

equation 
a dXt = dBt - -Xtdt. 2 

Let 7- = inft>oft : IXtj >, al and 0(t, x) = P[, r >t JXo = x], which is a solution of 
the partial differential equation LO 2-0. We will also define 

at 
C' functions, f such that f (x) =0 for x= ±a}. 

Clearly for fixed t, the function 0(t, -) E S. Furthermore, we define the 

inner product a 2-X2 
Y'g) f (X)g(X)C- 2 dx, 

under which our operator L is self adjoint. 
We can then use spectral theory, (see for example Dunford and Schwartz 

(1963)) and deduce that the eigenfunctions of L form an orthogonal, spanning set 

of S, under the inner product defined above. We may now express 0 as 

O(t, x) =Z (0, ei) ei(x), 
i 
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where the ei's are eigenfunctions satisfying 

1 d'e ax de 
A 

2 dX2 2 dx 

subject to the condition that 

e(: La) = 

This system is solved by confluent hypergeometric functions, and in particular by 
parabolic cylinder functions (see Erdelyi (1953)). 

The importance of this result is in the calculation of first exit time distributions 
for Brownian motion across square root boundaries. This is because the Ornstein- 
Uhlenbeck process may be expressed as 

-at 
xt e BeQt 

i 
vfa- 

which makes it a time changed Brownian motion. A consequence of this time-scale 
change is that constant boundaries for the Ornstein- Uhlenb eck process correspond 
to square root boundaries for Brownian motion. That is 

-2 f IXtl >- a}= 
e- 2 'Be-t 

>aB at I >, aV a-eftj Ei IIB, I >, a V, 'a-vFs, s=c O't 
vla- 

e2 

This connection will be discussed further in a later section. 

2.3 Implicit Function Methods 

2.3.1 Method of Images 

Consider B to be standard Brownian motion, started from B0 = 0. For this 

process, there exist methods to find exact exit distributions across more complex 
functional boundaries. One such technique is the so-called method of images 
(see for example Lerche (1986) Chapter 1, Section 1, or Daniels (1982)). This 
idea revolves around looking at the density of the Brownian motion distribution, 

which in addition to its point mass at zero starting measure, also has a negatively 
weighted starting distribution on the positive real state space (for example a point 
mass at (0,1) in the (t, x) plane). If we define this starting measure to be F(dO) 

I 
and 1 

_x2/2t -1 
11 

-(X_0)2 /2 
h(t, x) 7==c -a 'F(dO) 

271 27rt V2-ý7rt 
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to be the density of the resulting Brownian motion under this mixed starting 
measure, then it can be shown that there exists a unique solution, xf (t), to 
the equation h(t, x) = 0, for each t. We can then define 

T= infft : Bt f(t)l 
t>0 

= inf ft: Bt f (t)}, by continuity of the process, t>O 

= inf ft: h(t, Bt) = 0}. 
t>O 

Several results can be proved about h(t, x), and its relationship to the exit 
distribution and density from f (t) (see Lerche (1986) for the proofs). It is known 
that h satisfies the following set of equations: 

Oh 102 h 
Ot 2 19X2 

(t, f (t» 0 for all t>0 

h(01 .)- 60 on (- oo, f (0» 

where 60 denotes the Dirac measure at zero. Note that these are virtually the 
same set of equations as (2.1), satisfied by 0. The only difference is the initial 

condition, where a starting measure is given as opposed to a probability. Again, 
the boundary condition is that the function is zero on the boundary. However, 
defining p(t, x) = -ýý-(P [, r > t, Bt C dx]), it is easy to verify that p also satisfies ax 
this system, and it can be deduced that 

P [, r > t, Bt E dx] = h(t, x)dx, 

using the uniqueness of the solution of such a parabolic differential system. Fol- 
lowing from this result, by conditioning, we have 

P[7- <tIBt= x] = 1- 
h(t, x) 
iZ (xý 

-, /t- ý77 ) 

where O(x) denotes the standard normal density function. This leads to the exit 
distribution P[7- < t] on integration. That is 

P+ 
a-110%4ý(f(t)-' F(dO) 

(LV17 

vt 

where ýý(x) is the standard normal distribution function. 
The final result provides a direct link between the first exit density and h(t, x). 

Specifically, 
1 ah 

P(t) 
=-- 

2 Ox 
x=f (t) 

18 



which is shown by differentiating the result that P[-r > t] = f! (O) h(t, y)dy. Thus 
once we have calculated h(t, x), we can quite rapidly work out f (t), and its exit 

0 

distribution and density. These results can easily be extended to Brownian motion 
with drift by the C ameron- Martin- Girsanov formula. 

Examples 

We can verify the Bachelier-Levy formula. If we choose the extra starting measure 
to be a point mass at 20, then we can calculate h(t, x) to be 

h(t, x) =1(x)- a-1 
1 (x 

- 20) 
.' 

, \lt- 
0 7t \lt- \lt- 

This has the property that h(t, f (t)) =0 for f (t) = 0+ "9't, which is a straight 
line. Now differentiation of h with respect to x, and 

20 

setting x f (t) produces 

p(t) 
vIt- 

which is the familiar Bachelier-Levy formula. Obviously, by varying the start- 
ing measure F, and the weighting factor a, more complex boundaries may be 

produced. 

An extension to this method is to use a starting measure F which takes values 
on the whole real line. The effect of this alteration is that h(t, x) =0 no longer 
has a unique solution, and instead, there exist two curves, f+ (t) >0 and f- (t) <0 

which satisfy this equation, and thus we can find the exit density in some two- 

sided cases. 
As an example of this, and of a more complex boundary curve, we shall give 

the example of a family of curves discussed by Daniels (1982). In this example, a 
will be taken as 12k, and F(dO) will consist of symmetrical point masses, that is 
F=&, + b-,. In such a case, the two solutions to h(t, f (t)) =0 can be given as 

cosh-' 
1e oe2/2t 

k 

the shape of which has different properties according to the values of k chosen. 
When k>1, only values of t< ti =a2 /(2 log k) produce real values for 

f (t), which in practice means that the two sided boundary is closed at t= ti, 

and so, the stopping time r <, tj. Indeed its behaviour near tj can be shown 
to be approximately But when k<1, for large t, f(t) e-. -, 7t + 0(l), 

where 7= (1/a) cosh-1 (11k), and this case has the property that k represents the 

probability of eventually hitting one side of the boundary. The final case, of k=1, 
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produces the approximate square root boundary f (t) - (t + a'/6)'/' + 0(t-'). 
In all cases, though, the first exit density can be expressed as 

P(t) _1f 
(t) 

0 
(f(t)) 

_k 
f(t) - ao (f(t) 

-ak f(t) + ao (f(t) + c, 
2t vt- 

, 
It- 2 vt- vt- 

)2 

vIt- Vlt- 

)- 

Remarks 

The description of the method of images indicates the major drawback of this 
technique. The problem is that a boundary curve cannot be selected first, and 
its exit distribution calculated, as would be the ideal situation. Instead an im- 
age distribution is selected, from which a boundary curve can be calculated, for 
which the first exit properties may be deduced. This boundary itself is derived as 
the solution of an implicit equation, and it is often the case, in practice, that an 
explicit form cannot be found. Limitations do also exist on the type of boundary 
which may be constructed. It is proved (Lerche (1986)) that f(t) must be in- 
finitely often continuously differentiable, concave and with f(t)lt monotonically 
decreasing. Though it does produce exact densities, its practical use may become 
limited. 

2.3.2 Method of Weighted Likelihood Functions 

A similar method for finding exact exit densities is the method of weighted like- 
lihood functions (see Lerche (1986)), which is carried out as follows. Define 

(t7 X) exp Ox -1 
02t F(dO) 

2) 

where F is a positive a-finite measure on the positive real numbers. We solve the 
implicit equation f (t, x) = a, to find x=f (t). This is valid for all t >- to 

7 where 
to is such that there exists a (to, xo) with f (to, xo) < oo. (We assume such a to 

exists). The solution x=f (t) is unique for t> to, and has the useful property 
that f (t 

, x) <a ýý x<f (t). Bearing in mind that f (t) is only defined for t : >' to 

we make a slight alteration to -r, and let 

7, = inf It :f (t, Bt) >, al, 
t>to 

which clearly corresponds to the first hitting time of our boundary f (t), after 
t= to. 

It can be shown that if 0<f (to, xo) <a< oo, we have 

P[to < -r < oo lBt,, = xo] = a-lf (to, xo), 
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which can be integrated to produce 

P[to <, 7- < ool + a-' 
loo 

(D 
(f (to) - oto ) 

F(dO). 
vlt 00 0 Vto 

The proof (see Lerche (1986)) of the first result relies on the fact that a probability 
measure, denoted by Q('O, xo), can be found which satisfies the property of being 
mutually continuous with P('O, -TO), the measure of Brownian motion started from 
Bto = xo. Then the ratio defined by f (to, xo)lf (t, Bt) is a Q(to-TO) -martingale, 
which allows the use of the optional stopping theorem (see for example Dellacherie 
and Meyer (1978)) to deduce 

[to <7- < ti] = a-' f (to, xo)Q(to 9xO) f to <, 7 <, tj 1. 
By bounding an exponential growth term, it can be shown that the term 

Q(tO7xO 
) Ito < 7- < ti I 

---ý 
1 as ti -4 oc), 

which completes the proof. 

The method of weighted likelihood functions has similarities to the method of 
images. In particular, a starting measure is used to deduce a boundary function 
by way of an implicit equation involving another function. It is this boundary 
for which we can derive the first exit density. In fact, Lerche (1986) has proved 
that the methods are the same up to an inversion of the time-scale, and the cor- 
responding scaling of the state space. Thus the problems for the implementation 

of this method are similar to those of the method of images, particularly that of 
obtaining explicit expressions for the boundary functions. 

2.4 Laplace Transformation Techniques 

An example of a procedure which yields some exact densities, but also has a 
use in providing approximations, is the method of Laplace transformations. The 
technique itself is relatively simple. Recall that P[7- >t JXo = x] satisfies the 

parabolic differential system (2.1). As an alternative approach to taking eigen- 
function expansions, as in section 2.2.2, taking Laplace transforms of (2.1) with 
respect to t, reduces the partial differential equation into an ordinary differential 

equation. The only drawback to the technique, is that the inversion of the Laplace 

transform, back to P[, r >t IXo = x], is frequently difficult. 

2.4.1 Example: Brownian Motion exiting a Square Root 

Boundary 

We shall illustrate this technique by finding the first exit density of Brownian 

motion across a square root boundary, which will be done using a time-scale con- 
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version to the case of an Ornstein- Uhlenbeck process hitting a constant boundarY. 
Define the stopping time r as 

inf It : Bt >, avlt-}. 
t>l 

Note that an infimum over It > 1} is taken, since the starting point Bo =0 is 

assumed, and the law of iterated logarithms (see Oksendal (1985)) indicates that 
the infimum over It > 01, of the same set, would be identically zero. The law of 
the iterated logarithm also indicates that the boundary is almost surely attained, 
that is P[, r < oo] = 1. 

We introduce a time change 

I OZ 
, (t)] - 12-dB, 

(, ) = dB, * (2.3) 

where' denotes differentiation with respect to t, and B and B* are both standard 
Brownian motions. We shall set Xt = [a'(t)]-! 2-B, (t), and note that X satisfies 
the stochastic differential equation 

dXt = dB* 
1 a" (t) Xt dt 

t2 a'(t) 

We select a function a(t) (usually a: [0, oo) ---> [0, oo), one-one, monotonically 
increasing), so that X is a particular type of diffusion. Thus, to convert to a 

standard Ornstein- Uhlenbeck process (recall that this satisfies dYt 
- 

dBt - 
! 
2Ytdt) 

11 
27 

we must solve a (t) = a'(t). This corresponds to the time change a(t) = Ct. Thus, 

e-t/2B, t is an Ornstein- Uhlenbeck process. 
Recall our definition of r. If we now define a new stopping time by 

inf t: Xt > a} 
t>o 

where X is the Ornstein- Uhlenbeck process, we can see that -r = er, holds. Note 

- I-'B, 
t B, t >, ae 

PI =- f B, >, a-, Fs, s fXt >, al-= 
le 22 

We can thus use standard distribution results to convert P[, ri <, tj into P[-r < t], 

and so the approach of considering the Ornstein- Uhlenbeck process to a constant 
boundary is valid. 

Many variations of this problem have been investigated in the literature. Two 

examples are in papers by Ricciardi and Sato (1988), and Breiman (1967). Ric- 

ciardi and Sato solve this problem to find 0(t, x) = 
! P[-ri <t JXo 

= x], with the 
at 

boundary at a, which also satisfies (2.1) with appropriate initial and boundary 

conditions. The standard formula for the Laplace transform of a derivative is 

(ýK yf*(y) -f 
(0), where * denotes Laplace transformation in x to variable 

dx 
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y. Noting 0(0, x) = 0, but 0(0, x) = 1, we see that using 0 simplifies the Laplace 
transform, as the constant term vanishes. Taking Laplace transforms of (2.1), 
(with the appropriateC), we obtain 

a2 o* 
090* 

aX2 
Jqx - 2AO* = 01 

(where 0*(A, x) = fo' C-A10(t, x)dt), which is identified to have a solution in the 
form of parabolic cylinder functions. Indeed, for Xo = xo < a, the Ricciardi and 
Sato paper gives the solution 

0*(A, xo) = exp 
1 D-2A(-XO) 

D-2A(-a) 

where D, \ is a parabolic cylinder function (see Erdelyi (1953)). The paper goes 
on to the inversion of these transforms, giving 

21x x2 2t 
_ 

j)-3/2e2texp 0 O(tý XO) 
01 (e, 

2t V27r 

[ 

2(c - 

which is true for xO <a -- 0. For other values of a, the paper also proves a more 
complicated expression for the density function. Denoting the expression for 

above by 

0*(A, xo) -f 
(2A, xo) 

f (2A, a) 

and the zeros of f (A, z), for fixed z, by Ap(z), it can be shown that 

00 

O(t, 0) = 1: A, (a)e 
Apat 

P=O 

where, 

Ap (a) =1x' 
(%72-a) n IP«n + \p)/2) 

g(-g(-g( 
ýp-) 1 

2 
n=O n! IP(Ap/2) 222 

in which g(x) is the digamma function, 

g(x) =1 
dIP (x) 

IP (x) dx 

Breiman (1967) considered the two-sided case, with a view to approximation. 
Using the usual definition of 0(t, x) = P[-ri >t JXo 

= x], he showed 

0*(S, O) 2/4 D-, (O) + D-, (O) [D-, 

(a) + D-, (-a)l 
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again with D, (x) as parabolic cylinder functions. Defining -20(a) as the largest 

pole of this expression, he showed that 

o(t, 0) = .. -1ý3(a)t + O(e- 
(20(a)+8)t) (6 

thus gaining an approximation to the asymptotic behaviour. 

Both these results can easily be transferred to the case of Brownian motion 
exiting a square root boundary, by inverting the time change (2.3). It should also 
be noted, that although an explicit formula does exist for the first exit density, and 
can be found by Laplace transform techniques, the formula is not easy to work 
with, due to its double infinite sum form. This is the major drawback to the 

use of Laplace transforms in finding exit densities - the method is complicated, 
and neat explicit forms are hard to obtain as a result of the general difficulty in 
inverting Laplace transforms. 

2.5 Exit Distribution Approximations 

The methods for producing exact exit densities all tend to produce expressions 

which are difficult to work with, in most practical cases except the straight line 

case. Additionally, the most general two, the method of images and the method 

of weighted likelihood functions, do not have much direct control over the bound- 

ary for which the exit distribution can be found. Consequently, approximations 

are extremely useful, mainly because they may be defined in such a way that 

the boundary can be chosen initially, rather than arrived at through an implicit 

equation. Furthermore, it may also be possible to produce more compact, explicit 

expressions, which might be beneficial in practical work. 

2.5.1 Tangent Approximation 

One method of approximation is the tangent approximation (Strassen (1967), see 

also Lerche (1986)). This result takes families of boundary curves I fa :aE R+17 

which are positive, increasing and continuously differentiable functions on (0, oc). 

A stopping time, -ra, is defined for each curve by 

i nf It : Bt 
t>o 

where BO = 0. Let p,, (t) denote the first exit density from the curve f"(t), and 

A,, (t) denote the intercept of the tangent, at time t, with the x-axis, that is 

I Aa(t) :: -- 
fa(t) 

- 
tfa(t)- 
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The following theorem is extracted from Lerche (1986, p60), and represents one 
form of the tangent approximation. Other forms do exist, which hold uniformly 
on sets of the form (0, h, ), where h,, --+ oo as a -* oo. 

Theorem 2 (Tangent Approximation) Let 0< tj <, oo and 0<a<1. 
Assume 

P[-ra < til --+ 0 as a --4 oo 
fa (t) 

- 

ta %s monotone mcreasing Mt for all a 

I(S) fa S<6 
for all c>0, there extsts 6>0s. t. for all a, -1 <E if fa/ (t) t 

for sit G (Olt, ). 

Then, 

Pa (t) = 
Aa(t) 

0( 
) 

(i+o(1» uniformly on (0, ti) as a -+ oo. t3/2 
N/t- 

Proof 

We shall give a brief outline to the proof. For full details, see Lerche (1986). 

The approximation is proved using the related function p(', ')(t), the exit density 
a 

given the starting point B, =x<f,, (r). This function also satisfies the equation 

fa (r) 

Pa 
(t) 

: --: 
P [, ra > r, B. E dx]Pa 

which is the key result in proving the tangent approximation, once an approxima- 
tion for p(T-27)(t) has been established. By conditioning on an intermediate time 

a 

point, and estimating the resulting integral, it may be shown that 

(r, x)(t) = 

Aa(t)(1 + 0(1)) - --r 
fa(t) 

-X 
uniformly Vx < fa(s)(rls)O Pa (t 

- r)3/2 V1t -r 

where 
t 

st(1( (f 
a 

(t))2 

) 6) 

1 
(c > 0) 

and <1 is chosen so that 

[(f,, (s))'Is] (rls)3 0 

and [(f,, (s))'Is] (rls )2,3-1 OC) 

uniformly on (0, tj] as a --+ oo. 
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This is sufficient to obtain the desired result. 

* 

The intuition behind the method is as follows. For those boundaries which 
recede to infinity in the required manner, the tangent to the curve lies above the 

curve itself. For most Brownian paths, for which B, = f(-r) is the position at 
the first exit time of the tangent, Bt is close to [f(, r)17-]t, the ray from the origin 
to the first exit point. Thus for large T-, the proportion of paths which actually 
exit the boundary curve, but not the tangent, prior to 7 is small, since in general 
the curve is not close to the ray [f (-r)IT-]t. Consequently, small time events are 
less important (which corresponds to the times when the curve, and its tangent 

are far apart), so replacement of the curve by its tangent, at each time point, is 

sensible. 

This basic result may be extended in two relatively simple ways. Firstly it can 
be shown that it is uniformly true on (0, h,, ), where h,, --+ oo as a --+ c*, under the 

new assumption that P[, r,, < h,, ] --ý 0 as a --+ oo, instead of P[, ra < ti] --+ 0, and 
that the boundaries are upper class functions at oo. (That is P[Bt > fa(t)] ---+ 0 

as t -* oo). The other trivial extension is to the case where Brownian motion has 

constant drift y, in which case we have ptL(t) given by 
a 

/I (t) 
Aa (t) fa (t) 

- Ilt 
Pa 

t3/2 vt- 

again uniformly on (0, ti) as a -+ oo. 
The extensions are proved using the invariance of the ratio between the exact 

density, and the approximation (see Lerche (1986)). The extension to uniformity 

on (0, ha) uses a time-scale transformation, 

t/ha iy x/ ýIha 

If 77a(S) = 
fa(has)lVh-a on 

(0,1), and the density of the first exit distribution over 

77a is denoted by r,, 
(s), we have 

fa(t) 
- 

tfa 
ra(t) 

77a(t) - 
t7la(t) 

Pa (t) 
t3/2 

,( 

vIt- 

)I 

t3/2 

Then the tangent approximation valid for q,, carries over to the tangent approx- 

imation for f, on (0, h,, ). The second extension can be established in a similar 

manner. 
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Further extensions were carried out by Ferebee (1983) and Jennen (1985). 
The method employed by Jennen requires the following additional properties of 
the boundary: 

a f' (S) 
a" 1<E if 

fa 

and 
1+P 

there exists p<1, K< oo s. t. 
I t3/2f 

aI 
(t) 

<K(A) for all tE (07 ha)- 

We further assume that P[Ta < hal 
--+ 0 as a --+ oo. Under these further assump- 

tions, as well as those required for the usual tangent approximation, a second 
order approximation can be calculated using 

Pa Aa(t) + 2A2(t) 
(1 + o(l)) 

a 

- (t) P [, r,, < t] (1 + o(l)) + o(R,, (t)) 
I 

t-3/20 

( 

vt- 

)) 

where R,, (t) = exp(-(f,, (t)/vý't)') for some k>0. Again this holds uniformly on 
(0, h,, ) as a -+ oc. 

This density consists of two approximation terms, one global and one local. 
The local term takes care of the approximation near to time t, and the global term 
takes into account the probability of hitting the curve, but not the tangent, at 
some earlier time. Not surprisingly, comparison of the second order approximation 
with the usual tangent approximation, in examples where the exact density is 
known from the method of images, favours this new, more complex form (see 

Lerche (1986, p68)). 

Limitations 

Consider the two-sided stopping time 

inf t Bt 
t>O 

where the boundary curves f, (t) satisfy the same conditions as before. The sim- 

plest approximation to p, (t) would be to double the estimate gained using the 

tangent approximation in the one-sided case. However, this would ignore the 

probability of a path hitting both curves prior to any time point t. So, unless the 

curves diverge rapidly, making this probability small, the tangent approximation 

cannot be simply converted to deal with the two-sided situation. 
A correction factor may be obtained, to improve the estimation. The probabil- 

ity of a double hit can be approximated by looking at the tangent approximation 
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of hitting one curve from the other, and integrating over the first hitting time 
of either curve. Subtracting this from twice the tangent approximation density 
will be an improvement, but in many cases will still be poor. Thus, a major 
deficiency with the tangent approximation is its inability to handle two-sided 
stopping boundaries. 

The method does have other problems and drawbacks. We are still limited 
to boundaries which are increasing to infinity, and have an approximation which 
is only accurate asymptotically in t, when the boundary is large. We thus can- 
not accurately deal with decreasing boundaries, nor do we have any knowledge 
about more short term probabilities. There are also one or two other technical 
deficiencies within the approximation. Firstly, the tangent approximation is not a 
probability density, except for the case of a straight line boundary, in which case 
the approximation is exact. So we are not approximating a density by a density, 
which could be a problem. Furthermore, a result of Roberts (1993) suggests that 
the exit distribution is independent of the tangent. In this paper, it is shown 
that, for Lipschitz continuous boundaries, the hazard rate of the exit distribu- 
tion is independent of the gradient of the curve. The specific result is quoted 
as Lemma 2 in section 2.6 of this thesis. Thus, in order to calculate the hazard 

rate, only the actual boundary value is required, not its derivative. Since hazard 

rates can be algebraically converted into densities, this fundamentally questions 
whether the tangent approximation has a solid base, as the tangent, and thus the 
gradient, form the main terms in the approximation. This result conflicts with 
the intuition behind the estimation, but smoothness of the boundary makes the 
tangent approximation work well, especially asymptotically. The approximation 
works best for boundaries which are approximately straight lines, as the tangent 
becomes a good approximation to the curve in these cases. 

2.5.2 Durbin's Approximation 

Another approximation technique was devised by Durbin (1985). We shall keep 

his notation throughout this subsection. He obtains a result for continuous Gaus- 

sian processes, X. Denoting the covariance function by p(s7 t), the following 

assumptions on p and boundary function a(t) are required, in order to prove a 
theorem concerning the exit density: 

e a(s) is continuous in 0 <, s<t, and left differentiable at t. 

p(sl t) is positive definite, and has continuous first order partial derivatives 

(on f (r, s) :0<r<s< t}), with the appropriate left and right partial 
derivatives only, at the boundaries. 

o The variance of Xt - X, satisfies lim, lt 
Var[Xt-X, ] 

= At, where 0< At < oo. t-S 
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Denoting the exact exit density by p(t), these conditions lead to the result that 

p(t) = b(t)f (t) 
I 

where 
b(t) = lim(t - s)-'E[I(s, X)(a(s) - X�) IXt = sit 

in which I(s, X) is the indicator function defined to equal I if the sample path 
does not cross the boundary prior to s, and equals 0 otherwise, and f (t) the 
density of Xt evaluated at the boundary, that is 

12 
(27rp(t, t))- ýT exp[-a (t)12p(t, t)]. 

The function b(t) is often intractable, and thus, the approximation technique of 
Durbin is based on approximating this function. 

The first approximation takes I(s, X) = 1, thus assuming that if the pro- 
cess hits the boundary, then it is doing so for the first time. This leads to the 

approximation pi (t) - 
bi (t)f (t), where 

bi (t) a(t) Op(s, t) 
-ai (t). 

P(t, t) as S=t 
Note that if X is standard Brownian motion, then Durbin's approximation re- 
duces to the tangent approximation. So this technique may be thought of as an 
extension to the tangent approximation. Clearly, this approximation will become 

accurate if the boundary becomes remote, in which case, I(s, X) is likely to be 1. 
A second approximation is also made, based on solving an integral equation for 

the first exit density, namely 

p(t) = pl(t) + 
in t [a(t) 

- 0, (r, t)a(r) - fl2(r, t)a(t)]f(t jr)p(r)dr, 

where 
01(r, t) p(r, r) p(r, t) P2(r, t) [ 

02(r, t) p(r, t) p(t, t) pi(t7 t) 

in which P2 (r, t) and p, (t, t) are partial derivatives of p(r, t) with respect to t and 

r evaluated at (r, t) and (t, t), and with f (t I r) the conditional density of Xt at 

a(t) given that Xr = a(r). This is derived by conditioning on an intermediate 

time, and then using the Gaussian properties of X. 
The obvious approximation to make in this situation, is to replace the p(t) in 

the integrand, by the earlier approximation pi(t). This then forms the basis of a 

numerical integration to find values of p(t). 
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In later work, Durbin (1992), Durbin concentrated on Brownian motion exiting 
a curved boundary, and produced the following formulae for the first exit density 
across the boundary a(t): 

p(t) (t) + (_l)k rk (t) 

where 

qj (t) 

rk (t) 

tj ti-2 
a(tj-, ) 10,10 

... 

10 

t3--l -a (tj-, )] 

a(ti-1) - a(ti) 
ti-i - ti 

tj tk-I 
10 tio 

... 
10 b(tk) 

k [a(ti-1) 
- a(ti) 

i=l ti-i - ti 

aI (ti-i)l 
f (ti-1 

i 
t3-2) 

... I ti I 
t)dtj-l dtj-2 

... 
dti, 

- a'(ti-1)] 
f (tk 

7 
tk-1) 

.... ti, t)dtkdtk-1 ... 
dti, 

to = tj b is as previously defined andf 
(ti-1 

i 
t3'-2 tl 

7 
t) is the joint density of 

Btj-, = a(tj-1), 
Bt, 

-2 = a(tj-2), .... Bt = a(t). 
Durbin proved that rk -* 0 as k --4 oo, and consequently the summation 

converges to the exact density. The benefit of this, is that the summation does 

not involve b(t), the function which had to be approximated in the original work. 
The 1992 paper contains results giving bounds on the error term in the concave or 
convex boundary cases, and illustrates via an example, that often only a few terms 

of the summation are required. He has thus produced a method to numerically 

obtain accurate approximations to first exit densities, requiring only a multiple 
integration package on a computer. 

2.5.3 Poisson Clumping Heuristic 

A secondary way to consider first hitting times of constant boundaries, is to 

consider the maximum of a process until a fixed time. Let us define 

infft : Xt > al. 
t>O 

Then 
J, r < tj max X, >a 

o<, s<t 

The event on the right hand side can be considered, at least for a large, to be a 

rare event, and in such cases the Poisson clumping heuristic can be employed to 
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approximate its probability. For full details of this idea, see the book by Aldous 
(1989). 

The heuristic result is that the first hitting time to boundary b is exponentially 
distributed. Specifically, 

P[-r > t] el-. 0 exp(-/\bt) for b large. 

The form Of Ab depends on the size of the approximating Poisson clump being 

used. For positive- recurrent diffusions, satisfying a stochastic differential equation 
of the form 

dXt = o, (Xt)dBt + p(Xt)dtj 

the parameter Ab can be expressed as 

Ab 

where f is the stationary density of the process. 

The result of the first exit times being exponentially distributed is a common 
one, and is connected with the quasi- stationary distributions to be discussed in 

section 2.6. The papers by Nobile, Ricciardi and Sacerdote (1985a, b) also find this 

exponential distribution result. In the 1985a paper, they looked at the Ornstein- 
Uhlenbeck process, exiting constant boundary a. In the case where the boundary 

a --* oo, they showed 

P(t) =1 expf -t/a} +o1 expf -t/al 
a 

(a 

where a is the mean hitting time for the constant boundary, height a, from a 
starting point of zero. This is found by expanding the Laplace transform of p in 

terms of moments of the first exit times, and using limiting results such as 

lim 
tk(a Ixo) 

1 
a-oo k! [ti(a 10)]k 

where tk(a Ixo) is the kth moment of the hitting time of a, when the process 
is started at Xo = xo. They also produce an expression for oz = ti(a 10), which 

enables the approximation to be, used in practical applications. In a further paper, 
Nobile, Ricciardi and Sacerdote (1985b), this result is extended for processes with 

stationary distributions, letting the constant boundary recede to the extremes of 
the process' distribution. 
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2.6 Hazard Rate Approximations 

In this section, we discuss methods for approximating the first exit distribution 

using approximations to the hazard rate of the hitting time. We review the 

methods of Roberts (1991b), which use quasi- stationary distributions to produce 
asymptotic approximations to the hazard rate, and therefore the distribution 
function, of the first exit time. We then extend some of these ideas to produce 
a new approximation technique, which is more suitable for approximating the 
distribution for smaller times, by taking the initial conditions into account. The 

method is not restricted to Brownian motion, and for some processes can produce 
an approximation for a one-sided hitting time distribution. 

The previously discussed methods have all been approximations for either the 
density or distribution function of the first hitting time. We shall concentrate on 

approximating the hazard rate, h(t), which can easily be converted to the density, 

p, using 
t 

p(t) =h (t) exp 
ý- 10 h(s)ds 

and the distribution function, P, by 

0n 
P(t) =1- exp 

f-I 
h(s)ds 

Some justification for estimating the hazard rate, and obtaining the distribution 

function from it, is given in Chapter 7, where the tangent approximation (Strassen 

(1967)) is found to be inferior to a new approximation based on estimating hazard 

rates. Another reason for concentrating on the hazard rate is its relationship with 

the distribution of the process itself. Using the notation 

lit(x)dx = P[Xt c dx 17 > t], 

Roberts (1993) proves 

Lemma 2 (Roberts (1993)) For an arbitrary Lipschitz boundary f (t), and an 

Ito diffus%on X (see section 2.2.2), 

h(t) =1 or 
2 (tý f (t» lim 

Ilt(x) 

ýIi(t) f(t) - x' 

where or is the diffuston coefficZent of X. 

Frequently, the distribution of the process, conditioned not to have hit the 

boundary, is accessible, at least approximately, and therefore we can use Lemma 

2 to produce an approximation to the hazard rate. 
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If the distribution pt is quasi- stationary, 
[Xs 17- 

> s] - 
[Xt I-r 

> tj for all s>t7 

and consequently the hazard rate in constant. Therefore, we now review the 
methods of Roberts (1991b), which use such distributions in the approximation 
of hazard rates. 

2.6.1 Quasi- Stationary Distributions 
Quasi- stationary distributions are limiting probability distributions which exist 
in completely time homogeneous systems. Later, we will show how to extend 
these methods to approximate the boundary hitting time in the inhomogeneous 

case. However, we begin by assuming that X is a time homogeneous diffusion 

process, and define 
inf It : IXt I> al, 
t>O 

where a is a constant, and let h(t) denote the hazard rate of -r. We define the 
quasi- stationary distribution 6,, as the limiting distribution 

600 

- limIxt 17 >t 
ttoo 

I. 

For a detailed discussion about the existence of such a distribution, see Jacka and 
Roberts (1987). We note that for "well-defined" diffusions on bounded domains, 

such a limit does exist. 

We now consider the possibility of Xo having a starting distribution, rather 
than a starting point. Suppose [Xo] - 6o, then 

lit(y) = P[Xt E dy IXo 
- bo,, r > t] =I P[Xt E dy 

IXo=X, 
T> t]6o(x)dx 

P[Xt c dy3 7- >t 1X0 = x] 6o(x)dx 
P[-r >t IXo 

= x] 

ji, (x 
, y) 6o (x) dx, say. 

If we denote by gI 
y) is the transition density of the process X with absorption t (X 

at the boundary ±a, then pt is the normalised version of Pa t 

It is known that 6,, can be expressed as a solution to the integral equation 

e at600 (y) = pa(X, y) db�� (x) 
fa 

t 
for all t, IyI<a, (2.4) 
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where a<0 is a left eigenvalue. If we assume [Xo] - 6, then integrating both 
sides of (2.4) with respect to y yields 

coet = P[-r > t] for all tI 

so that the hitting time has a constant hazard rate (-a). From the definition 
of 6cýo being the limiting distribution of the conditioned process, we deduce that, 
asymptotically, the first exit time has hazard rate -a, for all starting distribu- 
tions. 

Because the state space of the conditioned process is dependent on a, it follows 
that the quasi- stationary distribution is also dependent on a. We use the notation 
6aa 
00, when the boundary is at ±a, and h to denote the corresponding constant 

hazard rate. 

2.6.2 Time Inhomogeneous Approximations 

In this subsection, we assume that X is a time homogeneous diffusion process, 
and let 

, rf = inf It :I Xt If (t) 1, 
t>O 

which introduces some time inhomogeneity into the system. Because the bound- 

ary is not necessarily constant, the limiting distribution 

limIxt 
17f 

> t] 
ttoo 

does not exist, and so we cannot directly apply the idea of the previous section. 
We define the frozen boundary ft(s) by 

ft (S) f (t) s <, - t f (S) 8>t 

so that the boundary is a constant until time t. We can then use the hazard rate 
for rf, -- inf, >of s: IX, I> ft(s)l to approximate the hazard rate of -r at time t. 
This situation is one with constant boundaries and is of the form described in the 

previous section. We therefore assume that 

Ixt 1r, ýý, t] , bf (t). 00 
(2.5) 

Clearly this idea will work best if the boundary f is approximately constant. 
Using this assumption ((2.5)), the hazard rate at time t is hf('). Thus, we 

make the approximation 

0 
P [, rf > t] 0 

(exp t 
hf (')ds as t --* oo. 
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As an example of this, consider Brownian motion exiting a two-sided functional 
boundary f (t). If we define 

T-f = inf t Bt 
t>O 

the hazard rate of -rf at time t is approximated by 

hf 
7r 

2 

8f2(t) 

which leads to the asymptotic approximation 

t 7r 
2 

0n 
P[Tf > t] 0 exp -I -ds as t ---ý oo. 8f2(S) 

This result can be proved rigorously (see Roberts (1991b)), using monotonicity 
arguments which we extend in Chapters 3-6. 

This idea is extensively investigated in Roberts (1991b), where the Ornstein- 
Uhlenbeck process is used, and a time change result allows the exit distribution 
for Brownian motion across an approximately square root boundary to be inves- 
tigated. This time change was discussed in section 2.2.2. 

For time inhomogeneous processes, we can make approximations by freezzng 

the time components in the drift and diffusion coefficients, to their values at time 
t, and using the results associated with the homogeneous process with the same 
(frozen) coefficients. 

The biggest problem with this approximation is that it assumes the distribu- 

tion at time t of the conditioned process is V W. This is only a good approximation 00 
when f is asymptotically approximately constant, and t is large. The short term 
distribution of the process is dominated by the initial conditions, and it is unlikely 
that approximating this by 61(t) will be accurate. 00 

The other obvious problem is that the method is best suited for boundaries 

which are asymptotically approximately constant, although this can be extended 
to approximately square root for the Brownian motion case, as in Roberts (1991b). 

2.6.3 The Hazard Rate Approximation 

In this section, we assume that X is a time homogeneous diffusion process, and will 

consider X with different starting distributions. We will compare the behaviour 

from different starting measures in order to produce a new approximation, which 
takes into account the initial conditions. This new approximation method may 
then work well for small time approximations, as well as for large times. 
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We seek the hazard rate of 

inf It : jXt I 
t>O 

with Xo = 0. We introduce the following notation 

xt process with starting measure mi 
-ri inft>oft : IX'I >, al t 
hi hazard rate of 7-i 

vt'(x)dx P[Xt' E dx] 

p't(x)dx P[Xt' E dx I 7-i >t 

II -X) A'(t) limxt, ", (x)+, ut( 
a-x 

From Lemma 2 (adapted for the two-sided case by adding the densities at the 

positive and negative boundaries) we have 

h2(t) A 2(t) 

hi(t) Al(t)' 
(2.6) 

and as we wish to find the hazard rate of r with Xo = 0, we shall selectM2 to be 

a point mass at zero. The discussion in section 2.6.1 suggests we choose mi - 6,,, 

so that the hazard rate hi(t) is constant. We need, then, only approximate the 

right hand side of (2.6). We note 

A2(t) 2(X) + 12(_X) 

- lim I-It t (2.7) 
A' (t) x1a /11 

(X) + jil 
(-X) I 

tt 

and make the approximation 

2(X) + t12 V2(X) + V2(_X) fit t(-x) r. -4 tt (2.8) 
/lt' (x) + fl, (- x) '- vt' (x) + v' (- x) * 

Note this approximation is based on the heuristic principle that the distributions 

of the processes with different starting measures are influenced more by the initial 

conditions than the conditioning. 
Combining (2.6), (2.7) and (2.8), our approximation is 

v22 x) t 
(x) + vi (- 

h2 (t) 

r. --o 
h lim 

xia vt'(x) + vt' (-x), 
(2.9) 

where h is the constant hazard rate associated with the 6,,,, distribution. Ex- 

pressions for both unconditioned distributions, vt, can be found, providing the 
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unconditioned process transition density is known. Thus, we can find an explicit formula for h2(t), 

vt2 (a) + v'(- a) h2(t) 

-ht vtl (a) + vtl ( -a) 
(2.10) 

We note that Roberts (1993) produces an inequality in (2.10) in the case where 

inf It : Bt f (t)j, 
t>o 

and starting measures which are strongly stochastically ordered (see Chapter 3 
for details of strong stochastic ordering). He shows 

Lemma 3 (Roberts (1993, Theorem 3.5)) Suppose the measures mi andM2 
sst 

sat' % -oo, f (0)] for z 1,2. Then ZSfY M2->-Ml w*th supp(mi) C( 

h2 (t) 
<1 

2f (0) 

hi(t) V1 (f (t)) t 

2.6.4 Extensions to General Boundaries 

The existence of a quasi- stationary distribution for 

lim 
tToo 

Ixt 17 > t] 

where X is a time homogeneous diffusion process, is reliant on the boundary being 

constant. If this was not true, the state space of the conditional distribution 

would vary over time, and 6,, would not exist in general. We will require exit 
distribution approximations for general functional boundaries, and so we must 
adapt the method of section 2.6.3 to allow for this. We use the notation 6a for 

00 
the quasi- stationary distribution, and ha for the associated hazard rate, when 

infft: JXtj > al. 
t>O 

In order to calculate the hazard rate for the exit time 

7-f = inf ft: IXt If (t)} 

t>o 

at time t, we define the boundary (as in section 2.6.2) 

ft (S) f (t) s <, t 
f (S) s>t 
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so that ft is constant until time t. As such, the hazard rates of the hitting time 

of ft, associated with the 6,, distribution (constant a=f (t)) will be correct until 
time t. We use this hazard rate to approximate the hazard rate of 7f at time t. 
Therefore, the final form of the approximation for a general functional boundary 
is 

Because of the approximation of f by the frozen boundary until time t, the method 
works best for boundaries which are approximately constant. We shall refer to 
this technique as the UDHRR method. 

Example: Brownian motion 

Let 

7-, = inf It: lBtl > a}, 
t>o 

in which case, it is easy to show that 

which has a corresponding hazard rate 

Ir 
2 

8a2 

2+ 
V2 

h2 (t)= hf (t) vt (f t 
vt I (f (0) + Vtl f M) 

7r 7rx ) 

d6OO (x) -- - cos dx xE [-a, a], 4a 
( 

2a 

(2.11) 

We can find an expression for 1 
vi as an integral, 

2- 
and vi is a normal distribution. 

For a fixed boundary at ±a, we can produce the approximation 

h2(t) 
I 

7re -a2/2t 
(2.12) 

afa,, (C-(a-y)2/2t + e-(a+y)2/2t) COS (1ý1) dy 
2a 

Making the necessary approximations by freezZng the boundary prior to t, in the 

case 
, rf = inf t Bt 

t>o 
the general expression for the hazard rate of rf, given BO = 0, is 

h2(t) 
r. ýo 

7re- 
f2(t)/2t 

(2-13) 
f(t) (C_(f(t)-V)2/2t + e-(f(t)+y)2/2t) COS lry dy f (t) ff 

(t) 

( 

2f (t) 

) 

Some numerical examples using (2.13) are featured in section 2.7. 
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Example : Brownian Motion across Square Root Boundaries 

The existence of quasi- stationary distributions is not restricted to Brownian mo- 
tion. If X is an Ornstein- Uhlenbeck process and 

inf It : jXt I> al, 
t>O 

then the limiting distribution 

limIxt 17 >t 

tToo 

I 

exists, and is in the form of a confluent hypergeometric function (see Erdelyi 
(1953)). Therefore, we can use the same methodology of 2.6.3 to deduce 

h2(t) 
? %-' 

m (a) (pt (0, a) + pt (0, 
- a)) (2.14) 

(pt (x, a) + pt (x, - a) 
)ba (x)dx 00 

where pt(x, y) is the transition density of the standard Ornstein- Uhlenbeck pro- 

cess, and m(a) is the hazard rate associated with the 6a distribution. We now 00 
note that the Ornstein-Uhlenbeck process is a time changed Brownian motion: 

Xt - C-1/2 Bet. 

Therefore, 

f IXtl >, a} f le-t/2 Betl > a} =- JIB, tl >, ac t/21 =- fIB, I >, a vfs- I, 

where s= et, and so knowledge of the distribution of 

infft : IXtl > a} 
t>O 

allows us to obtain the distribution of 

Clearly, if 

inf Is: IB, I 
S>1 

7= inf ft: IXt If (t)}, 
t>O 

we can use the approximation of a frozen boundary until time t to deduce an 

approximation. For boundaries, f, which are approximately constant, the ap- 

proximation should work well. We note that if the boundary is roughly constant 

in the Ornstein-Uhlenbeck case, this translates to approximately square root in 

the time changed case, for Brownian motion. Thus, we have an approximation 

for Brownian motion exiting approximately square root boundaries, which ought 

to work well. 
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Remarks 

Note that for some processes quasi- stationary distributions exist for one-sided 
boundaries. The same method will therefore produce approximations to the one- 
sided hitting time, in this case. 

For Brownian motion, we are restricted to two-sided boundaries, and so the 

method complements the tangent approximation (Strassen (1967)) which is only 
applicable for one-sided boundaries. 

Finally we note that all future references to the UDHRR method, in numerical 

examples, refer to the case using 6,, distributions for Brownian motion, producing 
formula (2.13). We use this formula in examples, even when the boundary is 

closer to square root in shape, than constant, in which case the method based on 
the Ornstein-Uhlenbeck process, formula (2.14), and a time change should work 
better. 

2.7 Numerical Examples 

We conclude this chapter with some numerical illustrations of the accuracy of the 

tangent approximation (section 2.5.1), and the UDHRR approximation (section 

2.6.4). We shall use the abbreviation TA to denote the tangent approximation in 

the actual examples, and HRT will be used to represent the hazard rate tangent 

approximation, which will be introduced in section 7.6. We shall compare both 

exit densities and distribution functions, and in all cases the process is assumed 
to be Brownian motion. Note that more examples of the tangent approximation 

are given in Figs 7.1 - 7.6, where they are viewed in comparison with the analytic 
bounds and HRT approximation developed in Chapter 7. 

Recall that direct comparisons between the tangent approximation (Strassen 

(1967)) and the UDHRR method (section 2.6.4) cannot be made, since one as- 

sumes one-sided boundaries, the other two-sided boundaries. However, in some 

situations, if the boundaries are sufficiently remote, we may approximate the 

one-sided exit density by halving the two-sided exit density. This assumes it is 

very unlikely that the process hits both upper and lower boundaries prior to the 

particular time. 
For the UDHRR approximation, we will use formula (2.13), which works best if 

the boundary is approximately constant. We could improve these approximations 

for boundaries close to square root in shape, by using formula (2.14) associated 

with the Ornstein- Uhlenbeck process, and making the necessary time change. 

For the numerical examples we considered, simple functional forms of bound- 

aries were selected, which might be more applicable in practical situations, rather 

than the more complicated functions implicitly defined by the method of images 

(Daniels (1982)). This does cause the problem that the exact exit distributions 

40 



are unknown, and will be estimated by simulating 200000 Brownian motion paths, 
to obtain an empirical first hitting time distribution. 

To illustrate the tangent approximation, the boundary is f (t) = V"t _+4. This 
curve is increasing, with a continuous derivative and f (t)lvt- monotone decreas- 
ing, and thus the tangent approximation theoretically produces an asymptotically 
accurate density. Furthermore, the boundary is concave, and so the HRT approx- 
imation would be expected to be superior to the tangent approximation. The 

comparisons between the distribution functions and density functions are shown 
in Fig 2.1. As expected, the tangent approximation over-estimates the true den- 

sity (as the curve is concave), and the HRT method approximately halves the 

error in the distribution function for large values of t. 
The accuracy of the approximation for the density function is good for t> 20, 

where the theory suggests it should be. Note that for 2<t< 10, the simu- 
lated density is larger than the approximations - theoretically impossible. This 

suggests inaccuracy in the simulation, with insufficient Brownian paths being gen- 
erated. However, this illustrates one advantage of the tangent approximation and 
the HRT method, in that they take a few seconds and a few minutes, respectively, 
to calculate. The simulation took about 100 times as long as the HRT method to 

produce the distribution, and for large values of t, the difference in the densities 
is negligible. 

The illustration of the UDHRR method in Fig 2.2 is for the constant boundary 
f (t) = 5. In this case, the exact distribution function has been found using the 

eigenfunction expansion technique (formula (2.2) with x= 0). Notice that this is 

the case where we expect the approximation to work well, but in fact, it under- 

estimates the true value of the distribution function. This is not unexpected if 

we recall Lemma 3. 

The example in Fig 2.3 compares all the approximations, when the boundary 

curve is f (t) =2+0.05(t + 8výt_). The one-sided hitting time distribution was 

simulated, and so values obtained from the UDHRR method were halved, ignoring 

the probability of double hits. We draw three conclusions from Fig 2.3: 

1. The tangent approximation is again out-performed by the HRT method, as 

expected, because the boundary is concave. 

2. The UDHRR approximation works very well for small values of t, whereas 
the tangent approximation, and especially the HRT method, work well for 

large times. The ideal approximation might be a composite of the UDHRR 

and the HRT densities, using the UDHRR method for small times only, and 
the HRT method for intermediate and large times. 
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Fig 2.1 a- Distribution Function Comparison 
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3. The UDHRR method under-estimates the density for large time values. 
However, for large time values, the probability of double hitting ought to 
become significant, and these are counted as hits by the one-sided tangent 
approximation, but not by the UDHRR method, because of the earlier hit. 
Thus, the UDHRR method would be expected to under-estimate the dis- 
tribution function for large values of t. Note also, the boundary is closer to 
square root, than constant, and a change of time scale, and the use of the &" 
distributions for Ornstein- Uhlenbeck processes might be more appropriate. 

The best approximation produced by the UDHRR method is illustrated in Fig 
2.4 for the boundary curve f (t) =6- 3e-'I'O. Bearing in mind this boundary is 

not constant, we might expect the approximation to be worse than that of Fig 2.2, 
for f (t) -- 5. However, because the boundary is increasing, the frozen boundary, 
ft(s), used to obtain (2.13) satisfies 

ft(s) >, f (S) for all s<t. 

Therefore, the hazard rate using this boundary over-estimates the true hazard 

rate (see Theorem 15, Chapter 7). Clearly, this over-estimation must cancel with 
the natural under- estimation, exhibited in Fig 2.2, leading to a very accurate 
approximation. 

The "spikiness" of the simulated density is due to insufficient simulated paths. 
However, the simulation takes about 60 times as long as the UDHRR method 
to produce the distribution, and the difference is marginal. This time saving 
indicates why approximations are sought as an alternative to simulating. 

The example illustrated in Fig 2.5 is for the boundary f (t) =5- t/2, so that 

inf ft: jBt If (t)l <, 10. 
t>o 

This boundary is decreasing, and so the hazard rate is an under- estimation, and 

no cancellation of errors occurs, as is the case in Fig 2.4. Thus, the distribu- 

tion function is an under-estimate, though reasonably accurate considering the 

boundary is not close to constant. 

We summarise, below, the boundaries used in the examples: 

Fig 2.1 
Fig 2.2 
Fig 2.3 
Fig 2.4 
Fig 2.5 

f (t) = %/74- 
-+t 

f(t) 5- 
f (t) 2+0.0 5 (t + 8, \/t-) 

f(t) =5- t/2 
. 
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Fig 2.3a - Distribution Function Comparison 
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Fig 2.3b - Density Function Comparison 
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Fig 2.4a - Distribution Function Comparison 
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Fig 2.4b - Density Function Comparison 
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Fig 2.5a - Distribution Function Comparison 
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Chapter 3 

Introduction to Ordering and 
Conditioning 

Suppose we are given two random variables, X and Y, taking values on some 
totally ordered space, whose distributions we wish to compare. Strong (a. s. ) 

comparisons are restricted to a particular probability space, (Q,. F, P), on which 
it may be true that P[X(w) > Y(w)] = 1. This is known as almost sure ordering, 

a. s 
and written X >, Y. When reference to a probability space is ignored, we can only 
produce weak orderings, such as stochastic ordering, when P[X < x] <, P[Y < x] 
for all x. Note that this is not specific to any probability space. Strong stochastic 
ordering is defined using the densities fx and fy of random variables X and Y. 

sst We write X, >Y if 
fX W 

is non-decreasing in x. 
fY(X) 

An alternative definition, not using density functions, is also available. We also 

have X, >, Y if sst 

P[X c A21P[Y C A, ] 
->, 

P[X E Ai]P[Y C A21 

for all A,, A2 
such that a, E A, and a2 C A2 implies a, < a2 holds. The first 

definition is usually quicker to verify. 
In this chapter, we shall make formal definitions of these ordering concepts, 

when extended to Markov processes. A particular category of ordering results 

compare the process X with X 17 > t, where 7" = inft>oft : Xt V Al. We shall 

give a selection of such comparison results, together with a well known almost 

sure ordering result for diffusion processes satisfying particular forms of stochastic 
differential equations. 

A use of ordering techniques occurs in the field of sequential analysis, where 

the ordering of processes with different parameters, can be exploited when making 

some inferences about the unknown parameter, (see for example, Bather (1988)). 

Both stochastic and strong stochastic ordering may be used in such a way. 
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Stochastic ordering can also be defined by 

St 
X2 >, X1 if E[f(X2)] >, E [f (XI)] for all non-decreasing functions f 

This type of definition has been extended to produce new orderings. For example, 
we could define 

CX 
X2 >, 

- 
X1 if E[f (X2)] >E [f (Xi)] for all non-decreasing, convex functions f 

For further details, and examples, of this type of ordering, see Shaked and Shan- 
thikumar (1988) and Stoyan (1983). Levy (1992) defines stochastic orderings 
which are weaker than those with which we shall be interested. 

3.1 Definitions 

Throughout this section we assume all processes are Markov processes, possibly 
time inhomogeneous, and have densities with respect to the Lebesgue measure, 
for t>0 and xER. We shall then use the following notation: 

xi (Z = 1,2) - Processes for comparison. 

- Distribution functions of X; Pti (X) P[Xti <1 X] t 
P[X' C dy jXs 

= X] - Transition densities. Pt (X, Y) t 

pi(x, Y) P[xti E dy I Xo = x] - Transition densities. 
t 

t. G dy IXo 
= 0] - Transition densities. A (Y) =P [X' 

Unless otherwise stated, all processes X' will also be such that = XO. X01 
We shall start by formally defining almost sure ordering, although we shall be 

more concerned with weak orderings later in the thesis. 

Definition 1 (Almost Sure) Let P) be a probability space on which the 

two processes Xt' :Q --+ E, for z = 1,2, where E is totally ordered, exist. Then, 

a. s 
Xt2 p[X2 1 Xt 

t 
(w) >, Xt (w) for all t] 

The important feature about this ordering, is that it is specific to the triple 

1: 7, P). As a consequence of this, its usage may become limited in practical 

applications. 

We move on to the definitions of the weak comparisons. We start with the 

weakest of the two, with which we shall be particularly concerned - stochastic 

ordering. 
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Definition 2 (Stochastic) This is defined using the distribution functions of 
the two processes being compared. 

x2 
st [Xl] 

#> P2(X) 1(x) <p 
1t1> 

for all t, x. t 

This type of comparison is useful in many situations, but it does have its 
St [X2 I St limits. When [Xt2] > [Xt], it does not follow that t 

A] 
->, 

[Xt' I A], where A 
is a conditioning event, such as 7- > t, and 7- is an appropriate stopping time 
(see Roberts (1991a) for a counterexample). As conditioning, particularly with 
respect to a boundary hitting time, is of great interest in the work we are doing, 
this must be carefully noted. 

A natural extension to make, which is preserved under conditioning (Roberts 
(1991a)), is the following. 

Definition 3 (Strong Stochastic) The simplest definition of strong stochastic 
ordering is 

Sst [Xt2] T) [Xt] 
#ý 

V'(Xo'y) is non-decreasing in y, for some xo, for all t >, 0. 
Vt'(xo, Y) 

We shall define all other forms of strong stochastic ordering in terms of like- 
lihood ratios. However, we note that an alternative form is available, which may 
be more useful in showing that processes are not strongly stochastically ordered. 
Denoting by P' the probability measure for process X, ' given XO' = xo, we write 0 

sst(l) [X2] 
> 1] ýý p2[X2 > 1 

EE A, ] : ý;, 
p2 [Xt2 C: A, ]P'[Xt' C A21 [X [Xt 

tt0tE 
A21PO 

00 

for some xo, all t>0 and all A,, A2 
such that a, E A,, a2 C- A2 implies a, <, a2- 

The following Lemma shows the equivalence of these two definitions. 

Lemma 4 Let processes X' have transition densities pt 7 y) (with respect to the (X % 
Lebesgue measure), when XO' =x (Z = 1,2). Then, 

Pt' (x, 
y) - A y) 

is non-deereasZng zn y (3.1) 

p[X2 > p[X2 
tG A2]P[Xt' E A, ] 

: ý, tEA, 
]P[Xt" E A21 (3.2) 

for all A,, A2 
such that al E A, and a2 E A2 imphes a, < a2- 
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Proof 

Let IA, denote the indicator function of Aj, for J=1,2. Then, 

P [Xt E Aj IA, (y)p'(x, y) dy. 
t 

Expressing (3.2) in this form we obtain 
11 [IA2(Y) IA, (z)pl (x, y)pl (x, z) - 1, (y) 1, (z)pt2(x, y)pt' (x, z)] dydz >, 

which may also be written as 
11 

[JA2 (y) IA, (Z) 
_ 

IA, (Y) JA2 (Z) ] [P2 (X, Y)PI (X, Z) _ P2 (X, 
z)p'(x, y)] dydz >, 0. 

,,, ztttt 

However, under the definition of the A-'s being considered, IA, (y) IA, (z) 
=0 for 

y>z. Hence, (3.2) reduces to 

J, 
4, 

(y) J, 
4, 

(Z) [p2 (X, Y)pl (X, Z) _ P2 (X, 
z)pl (x, y)] dydz > 0. fly 

>Ztttt 
(3-3) 

If (3.1) holds, the square bracketed term in (3.3) is non-negative, and hence the 
integrand is also non-negative. So (3.2) follows. 

For the reverse implication, note that we may select Ai = (vi - 6, vi +6), V1 < V2 

and when 6<12 implies a, < a2 holds. 2 
(V2 

- V1 )the 
relation a, C- A, and a2 EA 

Letting 6 10 in such a definition, we conclude that the double integration in (3.3) 

reduces to a double summation, with the only significant values when y= V2 and 
z= vi. We deduce from this that 

Pt2 (X 
3 V2)Ptl (X 

3 V, )_ P2 (X 
1 Vl)Pl(XiV2) >- 01 

tt 

which is (3.1). 

* 

A similar result holds in the case where the processes have discrete, countable 

state spaces. It is proved by an almost identical argument. 

Lemma 5 Let processes X' (z = 1,2) have discrete, countable state spaces, and 
let Pt(x) = P[Xt' =x 

JXO' = xo], for i=1,2, in some probability space P). 

Then, 

pý (x) 
. 1 

ton-decreasing in x ý* 
Pt' (x) -' 

P[Xt2 c A21 P [Xtl C A, ] >, P [Xt2 E A, ]P[Xt' (E 
A21) 

r2 such that al E A, and a2 E A2 * 
fO all A,, A Zmphes a, < a2- 
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The second ordering of this type is applicable when the density ratio is non- 
Sst (2) 

decreasing from all starting points XO' = x. We define > by 

p2 (X 
1 y) sst(2) ýXt x2 t 1 

tl ,A 

(X, y) 
is non-decreasing in y, for all x. 

A final extension is that from X0 having a starting point, to Xo having a 
general starting distribution. This leads to the definition, 

x2 
sst(3) 

t 
Ixt, f 1L(x)p'(x, y)dx t 

fy (x)pl (x, y) dx t 

is non-decreasing in for all probability measures y. 

However, it should be noted that this definition may be too strong, as it is not 
clear if any pair of processes satisfy such a definition. In our work so far, a pair 
of processes satisfying this ordering condition, has not presented itself. 

The final three definitions all make the extension to an arbitrary starting time, 

s. These produce: 

sst(4) p2 [X2] sjxoýy) 
t 

Ixt' I 
is non-decreasing in y, for all t>s, 

PS, t(XO) Y) 
ouvL ome -Y.. 

11 ýý 
p2, t(X y) sst(5) ýXt j [Xt2] 

>S non-decreasing in y, for all x and t>s. 
11 PS 

, t(X, Y) "" 

x2 
sst(6) 

X1 
t]>, 

I, M(X)p2, t 
(X, y)dx 

M(x)p1, t(x, y)dx 3 

is non-decreasing in y, for all p and t>s. 

sst (6) 

Again > may be too strong to be useful. 
The relations between the six orderings are fairly obvious. Clearly any result 

applicable from a general starting time s is stronger than the corresponding result 
from s=0. Furthermore, taking y to be a point mass means the third definition 

is stronger than the second, and the second is an obvious generalisation of the 

first. In brief we have: 

sst(6) sst(5) sst(4) 

sst(3) sst(2) SAM 

: 
>:; 
-7 

) ( 

==)>I >, #I. >, 
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It should be noted, however, that these implications are all strictly one way. 
Before illustrating this with counterexamples, note the following example. 
Example 

Let X' be Brownian motion with drift[t2 and X1 be Brownian motion with 
drift pi, with X1 = X2 - x. Then the transition density ratio is given by 

SS 

PS t(XI Y) 
= exp 

[_ 
2, 

l> 
- 2x 

1,2 PS t(x, y) 
-S)(tLl 

+ 112)1(/12 - [11)] 1 

sst(5) 
[X21 > 

and consequently, t 
[Xt11 

'#ý/12 > [11- 

We now present the counterexamples. 
Sst (1) sst(4) 

Counterexample 1: >, :? * >, . 
Take X1 to be standard Brownian motion, and let X' satisfy 

dX2 = dBt + b(t, X2 )dt, 
tt 

where 
10 I<- t<I 

b(t, x) =-11<, t<2 
12<, t 

Note first that, if both processes are started from XO' 0 (1 = 1,2), then X' has 

SAM 
a normal distribution with non-negative mean. Thus, [Xt2] >, [Xt']. However, 

if the processes are started from Xz =0 (1 =1 2), we note 
X2 has a normal 1 1.5 

sst(4) 

N(-0.5,0.5) distribution, and hence [X2] [X1]. 
tt 

sst(2) SSt(5) 

This counterexample also shows that 
Sst(l) sst(2) 

Counterexample 2: >, -; * >, - 
Again take X1 to be standard Brownian motion, and let X2 be the modulus 

of a standard Brownian motion, 

2 
C- Y2 /2t 

y0 V-2iýt- 
40 0 O. W 

SAM have [Xt2l 
sst (1) 

Taking xO =0 in the definition of >, , we [Xtl 

Now suppose XO' =1 (Z = 1,2), then 

2(11 y) Pt 

1(11 Y) Pt 

y _1)2 
/2t + e- 

(Y+1)2 /2t 

C- 
(y-1)2/2t 

I+ C- 
2y/t 
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[X2] 
sst(2) 

Clearly this is non-increasing in y. Hence 
t 

[Xt]. This counterexample 
Sst (4) SSt(5) 

also demonstrates > --; * >. 

SS, (2) sst(3) 
Counterexample 3: >, : P* >, . 

Again let X1 be standard Brownian motion, and let X2 be Brownian motion 

with unit drift. Clearly [X2] 
sst(2) 

: 
>' 

t t 
[Xil. 

Now let X' - 1-60 + 161, where 6,, represents a point mass at a. Then 022 

1 -y2/2t y -1)2/2t P[Xt E dy] =1 
(c + 

2V2-7rt 

and 

P[Xt2 (E dy] c- 
(y-t)2/2t 

+ e_(y_l-t)2/2t 
2 V2- -7r t 

Consider yj = 0.1 and Y2 = 0.9. Then, Lksýn3 ýo Ae4otc t6e, JeAsýtý) 

1 

C-0.81/2t + C-0.01/2t 
2V27rt 

[X2] 
sst (3) 

For a counterexample to t 
[X, ], we need only show that there is some 

time t for which 
ý-I. /u 

k-< with yj = 0.1 and Y2 = 0-9- 
& 

Consider t -- 0.1. 

(0.8)2/0.2 (0.2)2/0.2 
k (e + 

(C-3.2 -0.2) +c 

k) 

whereas 

k 
(e-1/0.2 

+ 1) 

k(l + C-5) 

k. 

sst (3) 

Hence we may deduce [Xt] [Xt'j. The same example leads to the conclusion 
sst(5) sst(6) 

that >,:? * >,. 
sst(3) sst(6) 

Note that >, is not verified, due to the problems of finding processes 
X2 [X2] 

sst(3) 
[Xi 

X1 and such that t >I- fl. 
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Important Convention 
Finally, note that when we omit the bracketed number in the strong stochastic 

(5) 
inequality, for example [Xt] sst [X'], we shall assume that we are using 

sst 
This >::, t 

sst(5) 
is because > is the strongest ordering for which we have found ordered processes 
X1 and X2. In any theorems involving strong stochastic ordering, it will be this 
definition to which we refer, unless otherwise stated. 

A concept related to stochastic ordering of processes is that of stochastic 
monotonicity (SM). This is a comparison of the behaviour of a process, when 
started at different points in the state space. Let X' denote the process X such 
that XO' = x, for i= 1) 2. Then we make the definition 

X is stochastically monotone #: ý 
[X2] St 11 for all x, < X2- t> 

Ixt 

In a similar manner, strong stochastic monotonicity (SSM) can be defined for the 

same process as 

) ýý 
[Xt2 ] sst(4) 

X is strongly stochastically monotone (4 > [Xt] for all x, < X21 

or 

) ý* 
[Xt2] sst(l) 

X1 X is strongly stochastically monotone (1 
->, 

It for all x, < X2- 

sst(2) sst(5) 

Definitions involving > and >, make little sense here, as the current definitions 

take care of all starting points. If we state that X is SSM, it will be assumed to 
be SSM(4), as SSM(1) follows trivially from this. 

Strong stochastic monotonicity is a special case of total positivity (see for 

example Karlin (1968)). This is a higher order property of transition densities, 

f (x 
, y) say. If a matrix M,, is defined as 

f (Xl 
I Yl) f (X2 

i Yl) 

Mn 
f(XlIY2) f(X21Y2) 

f(Xl 
jYn) 

f(X2 4n) 

f (27n Yl) 
f (Xn Y2) 

f (Xn) Yn) 

f is said to be TP,, if IMj >0 for all x, < X2 <*-< Xn7 Y1 < Y2 < ... < Yn) 

where TPn denotes total positivity of order n. Strong stochastic monotonicity 

is equivalent to the condition that the transition kernel for the process is TP2- 

An important consequence of this, (see Karlin and McGregor (1959)), is that, for 
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a process to be strongly stochastically monotone, it has to be continuous in the 

natural topology of its state space. That is, if a process with a continuous state 
space is also strongly stochastically monotone, it must be a diffusion. However, 
if the process has a discrete state space, it must be a birth-death process, since 
transitions must be made to neighbouring states. Hence, if only strongly stochas- 
tically monotone processes are being considered, we can immediately rule out 
jump Markov processes on R, and all discontinuous processes except birth-death 

ones. 

3.2 Basic Results 

A well known result concerning almost sure ordering, for diffusion processes, is 

given, for example, in Ikeda and Watanabe (1981, p352)- 

Theorem 3 (Ikeda and Watanabe) Suppose we are given the followzng: 

A strictly increas%ng funchon p defined on [0, oo) such that p(O) =0 and 
fo'+ p(ý)-'dý = oo, - 

2. a real continuous function a(t, x) on [0, oo) xR such that Ja(t, x) - a(t, y) I <, 

p(I x-y 1) x, yER, t >, 0; 

3. two real contZnuous funchons bi(t, x) and 
b2(t, x) defined on [0, oo) xR such 

that b, (t, x) < 
b2(ti X) t 

->- 
0, xER. 

Let (Q, T7, P) be a probability space containtnga-filtration (. Ft). Suppose we 

have the followZng stochastic processes 
A 

two real (. Ft)-adapted contmuous processes X, (w) and Xt'(w); 

2. an (-Ft)-Brownian motion Bt(w) such that BO =0a. s, - 

3. two real (, Ft)-adapted well measurable processes ý, (t, w) and 
ý2(t, W)- 

Assume 
AAtt 

n o, (s, X') dB, + (s) ds, xt, - X0 
10 

0 

and 
AA 

X21 X01 < 

0 

#1 <, bi (t, Xt) for every t >, 0, 
#2 (t) b2(t7 x2) for every t >, 0. 

t 

Thený wtth probability one, 
AA 

X1 < 
, 

)(2 for all t 
tt 
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(Note: If path-wise uniqueness of solutions holds for at least one of the stochas- 
tic differential equations 

dXt = a(t, Xt)dBt + b. (t, Xt)dt 1,2), z 

then bi (t, x) < b2(t, 
X)may be replaced by b, (t, x) <, b2(ti X) for all t >, 0, xER. ) 

For a formal proof, see Ikeda and Watanabe (1981). Intuitively, when the 
processes are together, the larger drift of X2 forces the processes to have the 
desired ordering immediately after this time. Continuity ensures that process 2 
remains larger, until the next occasion when they are together, at which point, 
the same argument applies. Note that, for this to hold, the processes must have 
the same diffusion coefficient. This is because 

a. s 
X2 

ý> , 
Xtl ==> 

[Xt2l St [Xtll 

I t I> 

and so if a, (t, x) > U2(ti X), consideration of the tail probabilities, for small t, 

would contradict this statement. 

Another ordering result, which has been proved by Roberts and Jacka (1994), 

relates strong stochastic ordering of Birth and Death processes to their transition 

rates. They defined these rates in the following way: 

aj (t) = 
dP[Xt+s =I+I 

IXt j] 

dy(t + s) S=o 

Oj M 
dP[Xt+s =J-I IXt j] 

dy(t + s) S=O 
where y is a a-finite measure, absolutely continuous with respect to the Lebesgue 

measure. Then the following may be proved. 

Theorem 4 (Roberts and Jacka (1994)) Let X' and X' be Birth and Death 

processes, such that all transthon rates a, ý(t) and flj(t) are bounded, for z -- 1,2. 
Assume also that the Xt are non-explos%ve. Then 

x2 
sst 

X1 2(t) oj2 (t) <1 (t) 
, 

03 

t aj > al(t), j tI>, - 

I 

.., 3 

for all jE Z+ and tE [0, RI) 
-ýor an or6cýroxj conAo. Ae R>O, 

The theorem formalises the intuitive result that the larger process has greater 
ccup" rates, and smaller "down" rates, from each state and at all times. 

Many ordering results link conditioned and unconditioned versions of the same 

process, where the conditioning is often related to a hitting time. An example 
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of such a process is X. 17- f>T, where 7-f = inft>oft : Xt >, f(t)} for some arbi- 
trary functional boundary f. In many instances, there exists a quasi- stationary 
distribution, b.., such that 6,, = limt--.,,, [Xt I-rf > t], (see Jacka and Roberts 
(1987)). One drawback, however, is that 6,, is often not analytically tractable, 
and is expressible only as the solution of an integral equation. Properties of this 
distribution may be investigated, and comparisons made with the distribution of 
the process. One such result is the following theorem. 

Theorem 5 (Roberts (1991b)) Assume X to be a diffusion process such that 
the distribution 6... = 

iimt,. 
o 

[xt 17 
> t] 

exZsts, and denote vt = [Xt 17 
> t]. If 

St St St St 

vo > 6., then vt >, 6,, for all t>0. Similarly, vo <, 6. =: ý. vt <, 6o,, for all t>0. 

A widely investigated topic, is the comparison between the conditioned process 
X. I-rf > T, and the unconditioned process X. The earliest result of this type is 

a stochastic ordering, when the boundary f is a constant. 

Theorem 6 (Pollak and Siegmund (1986)) If X Zs a tZme homogeneous pro- 
st 

cess, and f(t) = c, a constant, then [Xt] > 
[Xt ITf 

> t]. 

This result has been strengthened for stochastically monotone processes and 

general boundaries f to 

Theorem 7 (Roberts (1991a)) If X %s stochashcally monotone, and f (t) is 
St [Xt l7f > t]. such that f (0) > Xo, then [Xt] > : -I- 

A further result produces a strong stochastic ordering, when the initial pro- 

cess X is strongly stochastically monotone, and two boundaries are used for the 

conditioning. 

Theorem 8 (Roberts (1991a)) If X is strongly stochashcally monotone, and 
the cadlag boundaries f and g are such that f (t) < g(t) for all t, then 

xt t 
sst 

xt I 
Tf ý> tl > 

These results are intuitively fairly clear. The effect of conditioning not to hit 

a boundary "pushes the diffusion down". Thus, the conditioned process will be 

"pushed down", and so the unconditioned process would be stochastically larger. 

The closer the process is to the boundary, the greater this effect. Consequently, 

the results of Roberts (1991a) also have a sound intuitive base. 
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Note that Theorem 8 can be applied to obtain the conclusion that the Bessel 

process is strongly stochastically greater than Brownian motion. For if we take 
fM= -ool g(t) =0 and our process X to be standard Brownian motion (which 
is strongly stochastically monotone), with start point X, =x>0, we have 

sst 
9> 

t] 
Ixt 17 >� 

[Xt 17f 

But, [Xt 17-f > tj = [Xt], and 
[Xt 17"g 

> t] 
., Bessel process, see for example 

Rogers and Williams (1987). Thus we deduce the stated ordering. Knowing the 
Bessel process is strongly stochastically greater than Brownian motion, is useful 
in the Chapter 6, when strong stochastic ordering is sought by looking at the 
forms of the stochastic differential equations. We now have an example which 

any theorems cannot contradict. 
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Chapter 4 

Preliminary Results in Ordering 

4.1 Introduction 

In this chapter, we shall present a selection of ordering results, which are compar- 
atively simple. We shall give these results, together with quick proofs, and they 

will then be employed, without further comment, in future chapters. 

4.2 Ordering Results 

We start by proving two results, which although not involving ordering of pro- 

cesses, are useful in checking the existence of strong stochastic ordering. 

Result 
Then 

1 Let X- N(a, vi) and Y- N(b, V2). where a, b, v, andV2 are finite. 

P[X c dx] 

P[Y c dx] 

Proof 

monotonic in x =: ý v, : -- V2- 

Let R(x) = 
P[XEdxl Then substituting in the normal densities, we have 
P[YEdx] " 

R(x) = exp 
f1 (x - 

b)2 
_1 (x - a)2 

2V2 2v, 

Differentiating this, 

x-bx-a R'(x) =1 v2 
- 

Vl 

1 

R(x) 

(Vl 
- V2)X + aV2- bv, 

R(x). 
Vl V2 

60 



Now suppose that V2> vi. Then R'(x) <0 as x --+ oo, and R(x) >0 as x -* -oo, 
contradicting the monotonicity of R. The inequalities are reversed for v, > V21 
and therefore a similar contradiction is reached. Hence we must have v, V2- 

* 

Result 2 Let X- N(a, v) and Y- N(b, v). Then the ratio 

P[X c dx] 

P[Y E dx] 

Proof 

is non-decreastng zn x #ý a 

Denote the density ratio by R(x). We then have 

1 
72ý exp -! -(x - a)'j 

R(x) 
7rv 2v 

1 ý--L(x 
== exp - 

b)2 
'12-!; v 2v 

I 

= exp 
f1 «x 

- b)' - (x - a)' 2v 

exp 
1 

(2x -a- b)(a - b) 
2v 

Thus, 
dR (a - b) 

exp 
11 

(2x -a- b)(a - b) 
dx v 2v 

so that R is non-decreasing in x if and only if a>b as claimed. 

* 

We now start to consider the ordering of processes. We begin with an obser- 
vation about diffusion processes. 

Result 3 (Roberts (1991a)) Let X be a diffusion process satisfying 

dXt = or(t, Xt)dBt + p(t, Xt)dt. 

Then X Zs strongly stochastically monotone, (see Chapter 3)- 

(4.1) 
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Proof 

Let X' be the process satisfying the stochastic differential equation (4.1), with 
the initial condition that XO' = xi, for i= 11 2. We assume that x, < X2- Consider 

a coupling arrangement, so that both processes are run on the same filtration, 

and insist that P [X1 = X2] =1 for all t> -r = inft>oft : X1 = Xt2 1. We are ttt 
required to show that 

2 
Pt (X2 

7 Y2) Ptl (X1 
i Y2) 

2 
Pt (X2) Yl) Pt1(x1IY1)I 

for all yj < Y2- We introduce the notation P[Xt' E dy] = p'(xi, y))3, a-nA adding one t 
to both sides of the above, it is equivalent to show 

or equivalently, 

P[Xt2 E dY2 U dyl] P[Xl E dY2 U dyl] 
t 

P[Xt2 c- dyl] P[Xl c dyl] t 

P[X' E dyl] 
t 

P [Xt' E dY2 U dyl 

P[Xt2 E dyl] 

P[Xt2 E dY2 U dyl] 

I 

(4.2) 

Note that both sides of (4.2) represent the probabilities of the diffusions, condi- 
tioned to be at either yj or Y2, actually being at yi. Thus, (4.2) is clearly true 
from the coupling arrangement producing almost sure ordering. 

* 

Sst 2 
We shall now produce some results which follow if [Xt ] >, [t]. In the first 

of these, we will formally prove that strong stochastic ordering is stronger than 

stochastic ordering. 

Sst St 
SUppoSe [X2] >2 ']. Then [Xt 

t Result 4 [Xt t 
1XII. 

Proof 

We shall assume that the processes are on the real line. If they actually have 

discrete state spaces, the same argument applies mutahs mutandzs. Let ft(x) 

denote the density of Xt. Suppose there exists an xo such that 

x 0 

f, (x)dx > 
Ixo f, (x)dx. 

--oo -00 

Then7 because we have probability densities, we also have 

l'>o ft(x)dx > 
Ice ft(x)dx. 

xo 0 
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Let A, = (- oo, xo) and 
A2 

= 
[XOi 

C)O)- Under these definitions, we certainly have 
al E A, and a2 E A2 implies a, < a2. But from above, 

P[Xt2 E A, ] > P[Xt' E A, ], 

and 
P[Xt' E A21 > P[Xt2 E A21- 

Combining these p[X2 E A, ]P[Xt' E A21 
> P[Xl E A, ]P[Xt2 G A21 

which contra- tt 
dicts the strong stochastic ordering hypothesis. Thus, we must have 

XO 

f, (x)dx < 
Ixo ftl(x)dx, 

Oo 
for all xo. That is our claimed result. 

* 

Sst 
Result 5 Let [t [Xt], and a and b be constants. Then (i) if a>0, we have 

Sst [aXt' + b] s, >st [aX' + b], and (ii) if a<0, we have [aXt' + b] >, [aX, 2+ b]. t 

Proof 

We shall only prove the case a>0. The other case follows by an similar method. 
By definition, 

P[Xt2 (E A2]P[Xt' E Al] >, P[Xt' E A21 P [Xt2 E A, ] 

for all sets A, and 
A2 

such that al E A, and a2 E A2 implies a, < a2. For such a 
pair of sets, define 

Bt x: 
xbE Ai 

a 

Since a is positive, b, E B, and b2 E B2 implies b, < b2, and consequently 

p[X2 (E B2]P[Xt' E B11 >, P[Xt' E B2]P[Xt2 E Bi]. 
t 

Denoting Yt' = aXt' + b, we clearly have P [Xt' E Bj P [Yt' E Aj ], for z112. 3 

Hence the result follows. 

* 
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[X2] sst sst sst Result 6 Suppose 
t >, [X'] and [X'] >, [Xt2]. Then [X'] 

_: 
[Xtl]. ttt 

Proof 

From the definition of strong stochastic ordering, the first strong stochastic 
inequality yields 

P[Xt2 E A21 

p[X2 
tE Al] 

P[Xt' (z- A21 

P[Xtl E A, ] 

and the second gives 
p[X3 

t EA21 

P[Xt' E All 

p[X2 
t EA21 

P[Xt2 E A, ]' 

where the sets A, - are defined in the standard way. Combining these inequalities 
produces the claimed result. 

* 

We conclude the collection of results about general processes with some lim- 
iting results. 

Result 7 Let XI, n and X', n be two sequences of processes, such that for each n 

sst [X2, n] > 
[Xli, n] 

tt 

and 
[Xi, n] 

=ý- [X'] as n --+ oo for Z=1,2, where [X'] has a density with respect to 
some o-finite measure. Then, 

x2 
sst 

X1 
t] 

I 

t] 

Proof 

From the definition of strong stochastic ordering, we have 

p[X2, n p[Xl, n 
, 

p[X2, n C AJ]p[Xl, n 
tE 

A21 
tCA, ] >tt EA21 

where a, C A, and a2 E A2 implies a, < a2. Using the definition of weak conver- 
gence, noting P converges on all sets, from the existence of a density of [X'], we 
see 

p[X-i, n 
tE 

Aj] -4P[Xt' E Aj] as n -4 oo, 

for iII= 11 2. Taking limits, in our above inequality, produces the desired result. 

* 
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Result 8 Let X' and X2 be two processes such that 

x2 
sst 

tI> 
Ixt'l 

and [X'] ==ý [Y'j as tIs, where [Y'] has a density with respect to some a-finite t 
measure. Then, 

Y2 
sst I 

->- 

ly, I- 

Proof 

From the definition of strong stochastic ordering, we have 

p[X2 
tE 

A2]P[Xtl G A, ] >, P[Xt2 c AI]P[Xt' (E 
A21 

i 

where a, c A, and a2 G A2 implies a, < a2 Using the definition of weak 
convergence, we see 

P[Xt'(E Aj] --+ P[Y'E AJI 
as tIs. 

for iIJ=112. Using this identity in the above inequality with tIs, produces the 

claimed result. 

* 

We now consider a result for processes with deterministic drifts. 

Result 9 Suppose X1 satisfies the stochastic differential equation 

dXt' = dBt + yz-(t)dtl 

for i= 11 2. If /12(t) > fil(t) for all t, then [Xt2] S>, st [Xt1j. 

Proof 

Suppose the processes start from X' = X' = x. Then, as the drift coefficients SS 
are deterministic, 

N 
(x 

+ pi(v)dv, t-s 1 

Applying Result 2, we complete the proof. 

for t>s. 

* 
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Note that the converse to this result is also true, see Theorem 10 in Chapter 6. 

We now produce a result about the ordering of process bridges. We define the 
process bridge X by 

xt - 
(xt IXT 

It is known that if X satisfies the stochastic differential equation 

dXt = dBt +y (t, Xt) dt, 

then X satisfies 
dXt = dBt + (t 

ý 
Xt) + Px (t 1 

Xt) 
dt 

P(t, xt) 

where P(t, x)Jj =P [XT E dy IXt = x]. See, for example, Rogers and Williams 
(1987, IV. 39-IV. 40) for more details of this result. 

Consider X to be Brownian motion with constant drift y. Then the function 

p, defined above, can be written 

p(t, x) =1 exp -1 
(y 

-x- (T - t)p) 
21 

2(T - t) ý27r(T 
- t) 

so that 
Px(t, 

p(t, T-t 

Therefore, the corresponding bridge process X satisfies 

dXt = dBt + y+ 
Xt - (T - t)y 

dt 
T-tI 

dBt +y- 
xt 

dt. 
T-t 

Hence, the bridge process is independent of the (constant) drift of the unbridged 

process. Consequently, if we seek to find conditions on the drifts of the processes, 
to ensure that the corresponding bridges are strongly stochastically ordered, we 

will need stronger conditions than the drifts being ordered. 
In the case where y is a function of t only, we can establish the following 

result. 

y-x-(T-t» 
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Result 10 Suppose X' and X' sattsfy 

dX2 = dBt+ J12(t)dt, t 

dXt' = dBt +p1 (t) dt 

for t >, s and X' = xo, (z = 1,2), where 112-/Il is a monotonze funchon of t. Then 
X2 the process bridges X1 and are strongly stochast%cally ordered. Specifically, if 

/12 - ill is non-decreas%ng, then 
sst 

X2 ], for t>s, w'th the reverse ordering ttz if P2- [11 is non-increasing. 

[Xll 

Proof 

We are required to show P[Xt2 E dx]IP[Xl E dxj is monotonic in x. However, t 
by direct computation, we can establish 

P[Xt' E dx] P[Xt' C- dx JXT' 
= y] 

P[YCtl C- dxj P[Xl E dx IXT1 
= y] t 

P[XT' C dy IXt' 
= x]P[Xt2 (2 dx]P[XT' C dy] 

P[Xl x] P [Xt' E dx] P [XT2 E dy] TC dy IXt' 

Computing these probabilities, neglecting the terms not involving x, we must 
show the monotonicity in x of 

T )2ý )2 
exp 

ý- 
71, 

(y 
-x- 

fi it2(r)dr expý- L (x-xo-fstli2(r)dr 
2(T-t) 2(t-s) 

exp 1y-x- ftTy, (r) dr) 
2 jexpý- ' (x 

- xo - ftil(r)dr) 
2 

2(T-t) 
( 

2(t-s) 

After some rearrangement, this is equivalent to the monotonicity of 

xIt 
(112(r) - pi(r))dr -xT 

(/12(r) 
- pi(r))dr. 

5 TI tt 

This is non-decreasing in -T 
if [12 - Yl is non-increasing, and non-increasing in x 

if P2 - P1 is non-decreasing, as claimed. 

* 
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Chapter 5 

Orderings involving Process 
Moduli 

5.1 Introduction 

In this chapter, we shall examine the strong stochastic orderings between two 

processes, when at least one process is a modulus process. For processes with 
deterministic drifts, we can calculate the densities explicitly, and draw conclusions 
from these. 

5.2 Results 

Note that, in general, 

P[lXtl E dx] = P[Xt c dx] + P[Xt G d(-x)], 

Sst 

and so, when investigating whether [lXtl] >, [Xt], we need only consider 

P[Xt c d(-x)] 

P[Xt G dx] 

This follows from the following lemma. 

Lemma 6 

sst 

[Ixtll >I- Ixt 
P[Xt E d(-x)] 

P[Xt c dx] is non-deereas%ng in x, 

for all t>s and all choices of startmg poznt X,, = xo. 

(5.1) 
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Proof 

By the definition of strong stochastic ordering, we require 

P[lXtl E dx] 

P[Xt E dx] 

to be non-decreasing in x for all choices of starting point, and all t >, S. Substi- 
tuting (5.1) into the numerator, this reduces to 

1 
P[X, c d(-x)] 

P[Xt E dx] 

non-decreasing in x, which reduces to the claimed result. 

Consider the process, X, satisfying the stochastic differential equation 

dXt = dBt + p(t)dt, 

such that X, = xO, and p is integrable. Then, for t>s, we know 

[Xt] -N 
(xo 

+ 
is t 

p(r)dr, t- s) - 

ý, 
(r)dr. Then we have, In the sequel, we shall denote D f'p 

P[Xt c d(-x)] exp 
U 

2(t 
, 

5) 
(-x 

- xo - D)21 

P[Xt c dx] exp 
ý- 

2(t 
, 

s) 
(x 

- xo - D)2ý 

= exp 2(t s) 
[2x][-2(xo + D)] 

2(xo + D)x 
= exp ts 

We shall use this identity in the following two results. 

Result 11 Let X satisfy (5.2). Then, 

sst(5) 
[Ixtll ý Ixt] 

- 

* 

(5.2) 

(5.3) 
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Proof 

From (5.3), we note that 

P[Xt C d(-x)] 
= exp 

2(xo + D)x 

P [Xt E dx] t-s 

Clearly, we may select xo large enough, so that this expression is not non- 
decreasing in x for all t >, s. Thus, from Lemma 6, we have our claimed result. 

sst(4) 
However, it is certainly possible to obtain > ordering between the modulus 

and original process. 

Result 12 Let X satisfy (5.2), If y(t) <, 0 for all t, 

II 
sst(4) 

ýXtl xt]>,, 

Proof 

sst(4) 
When considering ordering, we shall select xO 0. In this case, we see 

from (5.3) that 
P[X, cz d(-x)] 

= exp - 
2Dx 

P[Xt E dx] t-S 

Clearly, this is non-decreasing in x if D <, 0, which follows under the imposed 

condition on ft. 

* 

The final result of this chapter compares the modulus of a process with the 

modulus of Brownian motion. 

Result 13 Suppose X1 and X2 saftsfy 

dXt' = dBt +p (t) dt 

dXt' = dBt. 

Then, for any integrable function p. 

[IX2 1] 
sst (4) 

1] 
- t 

>- 
[I 

xt 
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Proof 

sst(4) 
When considering > ordering, we will take xo = 0. Let R(x) denote the density 
ratio, 

R(x) = 
P[lXtl E dx] 

P[lXt'l E dx] 

for x>0, where both processes start from X' = 0. We let D= f'y(r)dr. Then, 

fi )2ý )2ý 
expý-i-(t- -D +expý- 1 (x+D 

R(x) -- �) 
(X 

2 exp 
ý- 

2(t 
1 

s) 
X2ý 

2(t-s) 

1 
exp 

1 
[X 2- (x - 

D)2] + exp 
1 

[X 2- (x + D)2] 

2 2(t - s) 

1 

2(t - 
1D2 Dx Dx 

2 exp 2(t - 

[exp 

t-+ exp 

Differentiating, we see 

dR 
-1 exp 

D21D 
exp 

Dx 
- exp - 

Dx 

dx 2 2(t-s) t-s 

[ It-81 f 

t-sil 

Remembering that x>0, we note that ýýR-- >, 0 for all values of D. Therefore, we dx 

deduce that 
[IX 21 sst(4) 

tt 
I 

->- 

[Ixi 11 

* 

Sst Sst 12 
This result can also be used to show [Xt2] >, [Xt ] does not imply [IXt 1] >- [IXt H- 

Sst 
For if we use Result 13 with y(t) 

[X1] 
Sst 

[X2] 

, 
but [I X1 I] ý [IX21]. 

= -1, we have t >- ttt 
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Chapter 6 

Drift Ordering 

6.1 Introduction 

Suppose we have two diffusion processes X1 and X' satisfying the following 
stochastic differential equations: 

d1 Xt' = oj(t, 
1 Xý)dBt+pj(t, 1 Xt)dt 

dXt2 = 472(t7 Xt2)dBt+ /12 (t i 
Xt2)dt 

with X,, ' = X,, 2 = x. Throughout this chapter, we will assume, unless otherwise 
stated, that all drift coefficients, ji, and diffusion coefficients, a, satisfy: 

1,, (t, X) 12 + 1 0, (t, X) 12 K[l + JX12] (6-1) 

IL(t, y)l + lor(t, x) - or(t, y)l Kjx - yj for some K< oo. (6.2) 

We often need these processes to be strongly stochastically ordered, but check- 
ing the definitions of strong stochastic ordering (see Chapter 3) is not always 
convenient, because the distributions of the processes need not be known. Con- 

sequently, it would be advantageous if the existence of strong stochastic ordering 
could be determined directly from the stochastic differential equations. We seek 
conditions on the drift and diffusion coefficients in order that this may be done. 

6.2 Necessary Conditions for Strong Stochastic 

Ordering 
Sst 

Before finding some conditions which are necessary for [X, 2] >, [Xt], we shall es- 
tablish a lemma concerning the weak convergence of the distribution of a diffusion 

process satisfying a stochastic differential equation. 
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Lemma 7 Suppose X satisfies the stochashe differenhal equation 

dXt =u (t, Xt) dBt + IL (t, Xt) dt 
I 

with X, = x. If XEL2, and p and or are Lipschitz in t and x, then 

Xk 
--.: c - (t - S) it (8, X) 

I\ fi- --s => N(D, 
, o, '(s, x» as t1s. 

Proof 

Consider a second process, Y, which satisfies a similar stochastic differential 

equation to X, except that the coefficients are frozen to their initial values. That 
is) 

dYt = or(s, x)dBt + p(s, x)dt, 

with Y=x. Then, Y is a Brownian motion with constant drift and diffusion 

coefficients, and thus 

[Yt] - N(x + (t - s)Ii(s, x), (t _ S)or2(S, X» s. 

We now compare processes X and Y. Let 

zt = 
xt - Yt 

vIrt---s 
From the forms of the stochastic differential equations, we can express Zt as 

zt -1X, ) - or(s, x)] dB, +1 [M(r, X, ) - p(s, x)]dr. 

We would like to show that Z is small. Consider E[jZtj]. 

[o, (r, X, ) - o, (s, x)]dB, E[Iztl] <, E 7L: = t 

+EX, ) - p(S, x)]dr 
Vi - El+E2, say. 

Using the property that variances are positive, (E[X])' < E[X'], and denoting by 

k, and k2 the Lipschitz constants for o,, in t and x respectively, we have 
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E2<EX, ) - a(s x)]dB, 
)21 

t 

E (r, X, ) _ U(s I X)j2 dr 
t 

2 
S)2 

2 
X)2 <1 

tE 
[k, (r + 2kik2(r - s)IX, - xj + k2 (Xr dr 

t 
k, 2(r 

_ S)2 dr 
S 

+ 2k, k2(r - s)E[IX, - xl]dr ts 

+k2E [(X )2 ]dr. 
s 

2r-X ts., 

The first equality follows from the isometry for stochastic integrals, see Oksendal 
(1985). The next inequality is derived from the Lipschitz properties of 0' and the 
final equality uses XG L'. We now note that by selecting t-s arbitrarily small, 
the integrands and hence El can be made arbitrarily small. Specifically, 

For each f, >0 there exists a tj such that s<t< tj =* El < cl. (6.3) 

We now consider E2, denoting by k3 
and 

k4 the Lipschitz constants for y, 

E2 E 

IVI-t -s, 

I 

E jtlk3(r 
- s) + k4 lxr- 

x1dr 
ss 

tkr-X 
t-s 

is 

3(r - s) + v1t k4E[IX 1]) dr. 

The first inequality comes from taking the modulus inside the integrand, the 

second from the Lipschitz properties of y. The equality is Atained using XC 

V. Again, we are averaging the integrand between s and t, and so making the 

integrand arbitrarily small makes E2 arbitrarily small. Thus, 

For each 6-2 >0 there exists at2 such that s< t< t2 
=: ý. E2 < 62- (6.4) 

Combining (6.3) and (6.4), from Markov's inequality (see for example Ross (1984)) 

we deduce that 
P[jZtj > c] -40 as tIs, 

for any c 

74 



To complete the proof, we note that 

-x S)P(S, X) 
: -,: 

Yt - (t - S)P(S, X)-X + Z6 
I'Vi --s NA --s 

where the right hand side is the sum of a normal random variable and a random 
variable which converges to zero in probability. Standard weak convergence results 
(see Billingsley (1968)) enable us to conclude the claimed result. 

* 

[X2] sst [X11 The first of the necessary conditions for tt involves the diffusion 

coefficients. 

Theorem 9 Suppose that 

dX' (t, Xl)dBt + it, (t, Xl)dt 
ttt 

d22 X2 Xt ý 072(t) X; )dBt+ [L2(ti t )dt, 

with X' = X' = x. 
If X1jX2 EL 

2ý 
pi and ai are Lipschitz in t and xi=12 

[X2] sst [X1], 
and then Oý2(t, X) = al(t, x) for all t, x. tt 

Proof 

Assume, without loss of generality, that ori(s, i) > 0'2 (S 
7 X) for some s, x. 

* by p', t, we have Denoting the transition density of process ZS 

22 x) t PS 
, t(XI PS, (X, x+ for all t >, s, 6>0 (6.5) 

1 PS 
, 
t(X -, lit -s p"t (x, x) ix +6S 

Sst 

using the definition of [Xt2] > [Xt] (see Chapter 3). We note that 

0( 6)<0( 
S-6 

0'2 (S 
5 X) 0', (S, X) 

and so from Lemma 7, the left hand side of (6.5) is strictly less than 1, in the limit 

as tIs, whereas the right hand side is 1. This contradicts Result 8 of Chapter 4, 

and so we deduce Oý2(8, T) > o,, (s, x) for all s, x. The reverse inequality is found 

by taking 6<0, and so we conclude that 0'2 (S 
I X)= al (s, x) for all s, x. 

* 
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We shall now assume, without loss of generality, that the diffusion coefficient 
is identically 1. This condition can be satisfied by an appropriate time change. 
We now find a necessary condition for the drift coefficient. 

Theorem 10 Suppose X' and X' sattsfy the stochashc differenhal equations 

dX' = dBt + pi(t, X')dt7 tt 

with X' =x and pi satisfies (6.1) and (6.2) w%th o, 1,2). 
s 

If [Xt2] ss'[X'] 
then M2(s, x) ->, fil(s, x) for all s, x. >� t 

Proof 

Note that 
2- xi Ixi =X lim 

E[Xs+8 
ss (S 

I X), 
810 

or alternatively, 

lim 
E[X; +6 

IX., ' = x] 
IE= Iii(s) X). 

810 63 
Sst 

[X2] >t [X2] 
St 

However [X1] implies > [X1] (see Result 4, Chapter 4 and hence 
ttt 

E [x2 
8 

1X2 
= x] >, E[X' 6 

IX' = X] for all 6> 

Consequently, 

E [X2 
8 

JX2 

= x] - E[X' 6 
JX' =x lim. S+ >07 

810 

which is equivalent to 
Iý 112(Si X) >1 41 (S 

I X), 

which leads to the claimed result, since the choice of s and x was arbitrary. 

* 

We can use the same argument to prove the following theorem. 

Theorem 11 Suppose X' and X' satisfy the stochastic differenhal equations 

dX' = dBt + pi(t, X')dt7 
tt 

wZth X'= x, i= lý 2. 
3 

If [Xt2] s' [X'] then 112(. 3, X) >, fil(S, X) for all S, X- 
: >-; - t 
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6.3 Sufficient Conditions for Strong Stochastic 
Ordering 

In the case where pi(t, x) = pi(t), we have seen that the condition Y2(t) >- Pl(t) 

for all t is also sufficient (see Result 9, Chapter 4). But, in the general case, 
when the drift coefficient is state dependent, this no longer holds. Consider the 
following counterexample. 

(X) 
'> 

jj1(X)j VX [X2] Sst Counterexample : P2 t 
>, 
- 

Al I 

Consider the processes X1 and Xm for m= 27 37 
... , with X' = xO, satisfying S 

dX' = dBt t 

where 

dX' = dBt + ym(X")dt, tt 

x>0 

x< 
,Z0 

Clearly p, (x) >0 for all x. We now recall Counterexample 2 of Chapter 3, 
Sst 

that ýjBtj] ý [Bt]. For m sufficiently large, we can make the distribution of X' 

sufficiently close to that of JBI, and so the inequality in the definition of strong 

stochastic ordering will no longer hold for all choices of xO and s. This provides 

a counterexample in the present case. 
It is therefore apparent that some additional smoothness conditions need to 

be made about p(t, x). We shall seek to establish such conditions. 

Suppose we have two diffusion processes, X' and X', satisfying the stochastic 
differential equations 

dXt' = dBt 

dXt2 = dBt + , (tl X2 )dt, 
t 

(6.6) 

(6.7) 

with X1 = 
X2 = X. We shall compare likelihood ratios by considering the 

SS 
expected values of indicator functions. We will assume process 2 has its drift 

coefficient replaced by 6y(t, x), where 6>0 is assumed to be small. Thus, we 
Sst 

will start by establishing conditions on p so that [X, 2] >, [Xt'], where X1 and X2 

satisfy 

dX' = dBt 
t 

dX2 = dBt + 6p(t, Xt2)dt 
tI 

(6-8) 

with X' - XI = x. The r6le of the Cameron-Martin-Girsanov Theorem will 
SS 

enable a relatively straightforward extension from this case to the case comparing 

processes satisfying (6.6) and (6.7). 
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6.3.1 Cameron- Mart in- G irsanov Theorem 
Let Pt denote the measure, at time t, associated with process Z, defined in (6.6) 
and (6.8), for i=1,2. Then, as was described in Chapter 2, the Radon-Nikodym 
derivative can be found using the Cameron-Martin-Girsanov Theorem, under cer- 
tain conditions on the drift coefficient. Specifically, we need to impose the condi- 
tion that 

0 0 
E IT 

y'(t ý 
Xt) dt] < oo for all T>0. 

Then, for any path X, we have the Girsanov transformation 

6 

3 
G(X) = exp 

T 

y(t, Xt)dXt - 

62. IT 

- 11 
2 

2(tl Xt)dt 

6.3.2 The Conditions on p(t, x) - SEC CIUATA, 

Recall the definition of strong stochastic Ordering: 

sst 
22 

[X2 ]p T(Xi Y2) PS 
, 
T(Xi Yl) 

T ': : 
>ýz_ 

[x' 

p 
T1 

Ps T(Xi Y2) s, T(Xi Yl) 1 

(6-9) 

for all T>s and yj -<-, Y2 , where the P'S, T are the transition densities of the two 

processes. We may express the right hand side in terms of expectations: 
E2[f2(X)] 

': 

E2 [fl (X)] 

El [f2 (X)] El [fl (X)] 
(6.10) 

where E, denotes expectation with respect to the measure associated with process 
z, and fi(X) = I(XT Ekii IX,, 

= x) are indicator functions. 
We use (6.9) in (6.10), and therefore require to show 

E[f2(X)G(X)] 
E[f2(X)] 

E[fi(X)G(X)] 

E[fi(X)] 

Relabelling the right hand side and rearranging, we must prove 

E[f2(X)f, (Z)(G(X) - G(Z))] > 0, 

where all expectations are now with respect to process 1, (standard Brownian 

motion in this case). 
Denoting b(X, Z) = G(X) - G(Z), we have b(X, Z) >0 (for those paths which 

contribute to the expectation) if 

b2(Xi Z) 
-«:::::: 

6 
is 

ii(t, Xt)dXt -6 
is 

p(t, Zt)dZt - 

: 
>, oi 

for all Brownian bridges withXT Y2 i 
ZT ::::::::: yj - 

(1,2(t7 Xt) 
_ 12(tj Zt))dt 
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Theorem 12 Let Xl and X2 sat%sfy (6.6) and (6.8), w%th y(t, x) >0 such that 

T 

E 
[10 

p 
2(tj Xt' ) dt] < 00 for all T>0. 

If b2(Xi Z), > 0 for almost all Brownian brZdges wüh XT 
-*::::::: Y2 >- ZT 

-:::::: Yl, then 

x2 
sst 

tI., 
>, 

Ixt, I- 

Proof 

The proof follows from the preceding discussion. 

* 

We shall seek conditions on y such that b2(X, Z) >-- 0. Note that for 6= 07 
b2(Xi Z) = 0- We shall study the behaviour of 

b2 for small 6 by differentiating. 
Let 

S 

o9b2 
TT 

b3(Xi Z) 
p(t, Xt)dXt p(t, Zt)dZt. 

06 
8=0 

1,1, 

If we can show 
b3(X, Z) >, 0, then the required result would hold, at least for 

sufficiently small 6. We make use of the coupling (see for example Roberts (1993)) 

zt = xt 
(Y2 

- Yl)(t - S) 

T-s 

Then, 

11(t) Xt)dXt b3(Xi Z) IL 
(t7 

Xt 
t 

(Y2 
yl)) dXt 

ST-s 

Y2 Yl T5 
(Y2 

- Yl))dt + /I 
(t7 

xt -t T-s 
Is 

T-s 

Let E Y2- yl, and note that b3(X, Z) --0 for E=0. Consider 

N3 T t-S 1 IT 
ii(tj Xt)dt. (t, Xt) dXt + 

-s s (9c E=o sT 

s 
p(t, Xt), we may write By consideration of ItO's formula for f (t, Xt) = yt--' T-s 

o9b3 
= p(T, 

XT) 
-Tt-S /it (t I 

Xt) +1 [Lxx(t7 Xt)] dt. 
aE 

6=0 

Is 
T-s 

[2 
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We define the following condition: 

(Cl) For each Y2, and almost all Brownian Bridges, X, from (s, x) to (T, Y2)) 
for all sIT, x, 

p(T, Y2) -tS lit(t, Xt) +1 dt >, 0 a. s. 
Is 

-T- 
s[ -2 Pxx (t 1 

Xt)l 

Under condition (Cl), we have 

ab3 

aE 6=0 
which holds for all values Of Y2. Note that evaluating at E=0 is equivalent to 
evaluating at yj = Y2- Since the above expression is valid for all Y21 it follows that 

ab3 

aE 
and so 

b3(X, Z) > 0, or alternatively, 

0b2 
> 

d96 8=o 

We now consider the comparison between 

dXt2 = dBt + 7(tý X2 )dt + 6y(t, t Xt2)dt 

dXt' = dBt + 7(t, Xtl)dt. 

If we denote the Girsanov transformation between process X' and standard Brow- 

nian. motion by G1, 

Gl (X) = exp 
is 1T 

(t 
7 
Xt) dXt 

2 

IS 
y2(t7 Xt )dt (6.12) 

We require to prove 

E [f2(X)fl(Z)Gl(X)Gl(Z)(G(X) - G(Z»] >-' 0- 

We note the similarity between this expression and (6.11), in that we have 

our result provided 
b2 (X7 Z) 

ý>- 
0, 

where 
b2 is exactly as before. However, we can 

again establish 
Ob2 

> 0. 

a6 8=0 
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Importantly, we can choose to take 7(t, x) = ky(t, x) for any value of k, and so, 

noting the idea of the proof of Result 6 in Chapter 4, we have 

ab2 
>, 0 for all k. 

X 8=k 

Thus, if we now integrate this expression, we have b2(X, Z) >, 0 for almost all 
Brownian bridges with XT ýý Y21 ZT : -- Y1, with yj -<-, Y2- 

We have the following theorem. 

Theorem 13 If (CI) holds, X' and X' satisfy (6.6) and (6.8), where p(t, x) >0 

is such that 
T 

E2 (t, X')dt < oo for all T> 07 
[10 

t 

Sst then [X2] > 
t -ý' 

[X 
t] 

for all 6. 

Proof 

The preceding discussion cites condition (Cl) as sufficient for b2(X, Z) > 0- 

We can then apply Theorem 12. 

* 

We can produce the following generalisation: 

Theorem 14 If Xl and X' sahsfy 

dXt2 = dBt+ P2(ti X2 )dt 
t 

dXt' = dBt +p1 (t, X') dt 
t 

where pi(t, x) satisfies 

E[T 
2(tj X1 ) dt] < oc for all T>0, In 

It 1t 

't, x) - itl(t, x) sat*sfies the cond*t*ons of Theorem 13, then 
and ii(t, x) -:::::: 112( ZZZ 

x2 
sst 

tI>, 

[Xtl 
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Proof 

We may express the stochastic differential equation for X2 as 

2 dXt' = dBt +p1 (t, Xt2)dt +([12(ti xt )- pi (t, Xt2))dt 
I 

and note that the Girsanov transformation G1, defined in (6.12), exists in this 
case, and so we require to prove 

E [f2 (X)fl (Z)Gl (X)Gl (Z)(G(X) - G(Z»] >, 0. 

We can invoke Theorem 13, with 6=1 to establish this. 

* 

Condition (Cl) is strong enough to ensure processes conditioned not to hit 

the same boundary are also strongly stochastically ordered. 

Corollary 2 Under the conditions of Theorem 14, 

x2 
sst 1 

t 
17f 

> tj >, 
[Xt 17f 

Proof 

Consider the processes Xf', which are modified versions of X', with absorption 

at a moving boundary, so that 
C. 

t 

xs 

Xý= f(t) for all t 

Then, if f (t) ý Aj 
I 

fi P [Xi E Aj-1 =P [Xtf A, n -rf 

for all t. Thus, 

xf2 
Sst [Xtf 1 [Xtf 21 

Tf > t] 
sst 

t 

[Xtf 
Tf > tl 

fi We also have [Xt 17-f > t] - 
[Xt' 17-f > t]. Thus, if we can show our modified 

processes are strongly stochastically ordered, we will have also shown that our 

original processes, conditioned not to have hit the boundary, are also strongly 

stochastically ordered. 
If we use the previous definitions of Girsanov transformations G and G1, and 

indicator functions f, and f2, ((6.9), (6.10) and (6.12)), we have 

dyj ]= Ei [fj (X)] 

= Ei[fj(X)b(X)]ý 
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where b(X) = I(X, <f (s) for all s < t), and Eif denotes expectation with respect 
to process Xf'. Therefore, 

f2 Sst Ixt I 
>1 fl Ixt I follows if 

E, [G(X)f2(X)b(X)] 

El[f2(X)b(X)] 

or equivalently, 

E, [G(X)f, (X)b(X)] 

El[fi(X)b(X)] 

E [f2(X)fl(Z)b(X)b(Z)Gl(Z)G, (X)(G(X) - G(Z»] > 01 

with expectation taken with respect to standard Brownian motion. Recall con- 
dition (Cl) is sufficient to enforce G(X) - G(Z) >, 0 for the relevant paths, and 
thus 

x2 
sst 

X1 
tI Tf > t] >- 

It ITf 

* 

Corollary 3 Under the conditions of Theorem 14, 

h2(t)>, h1 (t) for all t, 

where hi %s the hazard rate of the stopp%ng time T-' = inft>oft : X' t 

Proof 

The result follows from Corollary 2, Lemma 2 of Chapter 2 and an argument 

similar to that which will be used to prove Theorem 15. 

* 

Remarks 

We shall look for specific examples where (Cl) holds. We start by considering 

deterministic drifts, where y(t, x) = ji(t) > 0. In such a case, Pxx = 0, and 

condition (Cl) reduces to checking 
T(t 

- s)pt(t)dt T-s s 

Integrating by parts, 

s 

IT 
(t 

- s)pt(t)dt (T - s)y(T) -T p(t)dt7 
s 

is 

and therefore 
I(t) p(t)dt. T-S 
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Since p(t) >, 0 for all t, I(T) >, 0 for all T, and we may apply our theorems. 
Note that this manner of verification is far quicker than looking at the ratio of 
transition densities, which were used to prove this result in Result 9. 

Thus, if we have two processes 

dX2 = dBt+ [12(t) X2 )dt 
tt 

dX' = dBt+pj(t, X1)dt, 
tt 

with T 

jil 

0 
E 2(tj Xt)dt < oo for all T< oo 

In I 

and[12(t, -r)= pi(t, x) + y(t), where p(t) >0 for all t, then 

[X21 sst [Xl]. 

t 
>, 

t 
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Chapter 7 

Hazard Rate Bounds 

7.1 Introduction 

As was discussed in the Exit Distributioris Chapter, there are only a few cases in 

which a boundary f can be selected, for which an R6 diffusion X has a known 
first exit density. As an alternative to directly approximating the distribution 
function of 

7- = inf t: Xt f (t)j, 

t>O 

we shall find analytic upper and lower bounds upon it, which can then be used as 

approximations, with the maximum error determined by the other bound. This 

can be done by comparing the hazard rate of r with the hazard rates of the first 

exit time across other boundaries, for which the exact exit distribution is known. 

In the case of Brownian motion, we shall use straight lines for comparisons, 

since the Bachelier-Levy formula- (see Lerche (1986)) furnishes us with the exact 
first exit distribution, and therefore hazard rate. We shall choose the straight 
lines for comparison so that they envelope the boundary curve f, which will then 

allow the ordering of the boundaries to be exploited. 
This idea of enclosing the boundary curve between straight lines also appears 

in Roberts (1993). He uses the method to produce inequalities for the ratio of 
first hitting time densities, for a process started at two different points. 

In the remainder of this chapter, we shall restrict attention to the subclass of 

processes which are strongly stochastically monotone, and to boundaries f which 

are Lipschitz continuous. 
We will also introduce a new approximation technique, for Brownian motion 

first exit distributions, based on approximating the hazard rate. The tangent 

approximation (Strassen (1967)) is shown to be inferior for concave and convex 

boundaries. 
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7.2 Notation 

The following notation will be taken as standard: 

inft>of t: Xt > , 
A(t)l for an arbitrary function A 

PtA(x)dx P [Xt E dx I -r, \ > t] 

rA (t) hazard rate of 7, \. 

Also for each fixed value of t>0, and variable s, we shall define the enveloping 
curves gt(s) and ht(s) such that 

gt(s) >, f(s) 
->, 

ht(s) for all s<t, 

with 
gt(t) = f(t) = ht(t), 

and gt and ht are Lipschitz. Finally we assume that X is a strongly stochastically 
monotone It6 diffusion, satisfying 

dXt =a (t, Xt) dBt + 77 (t, Xt) dt. 

7.3 Preliminary Lemmas 

We shall employ two helpful results from Roberts (1993) and Roberts (1991a). 
The first provides a characterisation of the hazard rate of a hitting time, and was 
previously quoted as Lemma 2 in Chapter 2. We quote it again here for easy 
reference. 

Lemma 2 (Roberts (1993)) 

ItO diffusZon X, 
For an arbitrary Lipschitz boundary A(t) and an 

1 

or l(t3 A(t» lim pt' (x) 
A(t) -x 

Intuitively, this result states that the hazard. rate is proportional to the deriva- 

tive of the density of the conditioned process, evaluated close to the boundary. 

The second lemma was previously quoted as Theorem 8 in Chapter 3. Again 

we quote it here for convenience. 

Theorem 8 (Roberts (1991a)) If X Zs strongly stochashcally monotone, and 
the cadlag boundaries f and g are such that f(t) < g(t) for all t, then 

sst [xt 17g 
> tl 

': 

[Xt 1 
Tf 

The intuition behind this result is that the conditioning is more severe from 

boundary f, and this "pushes down" process X more than the other conditioning 
does. As a result, the above ordering presents itself. 
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7.4 The Hazard Rate Bounds Theorem 
The two lemmas may be combined to provide a bound on the hazard rate rf (t) by 

using rgt(t) and rht(t). Note that the curves gt and ht are dependent on the value 
of t at which the hazard rates are being compared. We shall drop the subscripts 
t in the remainder, for notational convenience. 

Theorem 15 Let X be a strongly stochastically monotone Ito diffusion process, 
f be a Lipschitz continuous boundary, and g(s) and h(s) be as defined in section 
7.2. Th en 

rh 
(t) < rf 

(t) < r_, 
(t) for all t. 

Proof 

(7.1) 

Fix t > 0. First note that since f is Lipschitz, we can define curves g and h 

with the desired ordering. Therefore, applying Theorem 8, we have 

[Xt 17g 
> tls>, 

-. 
s-t[Xt 17f 

> tls, >s-t[Xt J. 
h > tl- 

We shall consider only the first of these strong stochastic inequalities, and prove 
the sQconl hazard rate inequality. The --fýrst can be proved in the same manner, 
using the second strong stochastic inequality. 

Note Lemma 2 yields 

1 

ii't(x) r_q(t) - rf (t) or, (t, g(t» lim 
2 xlg(t) g(t) -x 

-1 01 
2(tlf(t» Jim 

Ptf(x) 

xif (t) f (t) -x 

and since f (t) = g(t), this reduces to 

)[ 

iLg(x) 11 t1. 
rg(t) - rf(t) - 

lor2(t, 
f(t» liM t 

f(x) 

xif (t f (t) -x f(t) -x 

At' W 
f (t) so that Suppose that limxlf (t) T- < limxTf (t) X-f (t)) 

P't W 
lim < 1. 

xTf M lit x 

Then, since our strong stochastic inequality is equivalent to (see Definition 3, 

Chapter 3) 

pyt(x) 
P t, (x ) 

for all x< 
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we have 

. 
/4 (X) 

L for all x <, f (t). 
Pt, (X) ý' 

That is, 
9 

Pt X) < pt (x), 
which is impossible since both are densities, and must integrate to 1. 

Thus we conclude rg (t) >, rf (t). 

* 

7.5 Remarks and Corollaries 

It is often more convenient, from an intuitive perspective, to use distribution 
functions rather than hazard functions. We can also produce bounds on the dis- 
tribution function of our hitting time 7f, by exploiting the algebraic relationship 
between hazard rates and distribution functions. 

Corollary 4 Let f be a Lipschitz continuous boundary, PA denote the distrtbu- 
hon junchon for the first exit time across boundary A(t), and g(S) and h(s) be 
the curves defined in section 7.2. Then, 

Ph (t) 
-<-, 

Pf (t) 
-<, 

Pq (t) 

for all t. 

The proof notes that P, \ (t) =1- exp f- fo' r, \ (s)ds 1. Combined with Theorem 
15, this immediately provides the claimed ordering. 

Clearly, it does not make sense to seek ordering for the density functions in a 
similar way, as this would violate the density property of f p(t)dt = 1. Thus, any 
ordering could only exist on a particular set of intervals, with the reverse ordering 
holding elsewhere. 

For the Brownian motion case, we can explicitly calculate the form of the 
hazard rate across any straight line, using the Bachelier-Levy formula. Therefore, 

we select our curves gt and ht to be straight lines. We use the following definitions: 

m2 t sups 
f (t)-f (S) 

<t t-s 

mi 
t 

inf., <t 
f (t)-f (s) 

t-s 
C9 

lt. f(t) - mt 
Ch -m 

2t f (t) 
t 

gt(s) 
1 

mts + cg. 

ht(s) 2 
MtS + Ch. 
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Then we have gt(s) >f (s) > ht(s) for all s<t, with equality at time t. From 
the Bachelier-Levy formula, if A(t) =a+ bt, and 

inf It : Bt 
t>O 

we have the density of r, \ given by 

aa+ bt 
PAM 

t3/2 
0( 

vt- 

) 

and distribution function 

PA(t) a+ bt 
+ C- 

2ab,,, (bt 
- a) 

Vl"t- 

) 

vt- 

where 0 and qý denote the standard normal density and distribution function, 
respectively. Consequently, we can obtain the following corollary to Theorem 15. 

Corollary 5 If f is a Lipschitz continuous boundary, and rf denotes the hazard 

rate of the first exit time of Brownian motion across it, then 

Ch C90 
(I'll) 0( Lyt 

rf (t) A7 

M2 (I 
f(t)-2cg 

t3/2 
[ID 

e-2Ch t) 
(f(t)-2Ch 

t3/2 
[4D (Ittl) 

- -2cgmlt4jý 
( 

VT vt- 
)l 

-Irt Nrt 

)l 

where cg, Ch and m' are defined above. t 

7.6 Hazard Rate Tangent Approximation 

For the Brownian motion case, we introduce a new approximation for the first 

exit distribution. This is based on estimating the hazard rate of the first exit time 
by the hazard rate of the tangent at the same time point, which can be found 

exactly by the Bachelier-Levy formula. We shall denote this approximation by 

HRT. In the case where 
inf It : Bt f (t) 
t>O 

is the first exit time from a concave, Lipschitz boundary, the tangent to the curve 

at each time point is the same as our upper enveloping straight line. Consequently, 

the upper analytic bound and the HRT method produce identical distributions. 

If f is a convex, Lipschitz boundary, the tangent to the curve at each time point is 

the same as the lower enveloping straight line. Therefore, the lower analytic bound 

and the HRT method produce the same distributions. In either of these cases, 

we can prove that the HRT technique produces more accurate approximations, 

to the distribution function, than the tangent approximation (Strassen (1967)) 

does. 
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In the remainder of this section, we shall use the following notation: 

f (S) boundary function. 

Ut(S) tangent to f at time t. 

Ir inft>oft : Bt >-, f (t)}. 

P, P density, distribution function of -r. 
PTi PT tangent approximation to density, distribution function. 

PH , 
PH HRT approximation to density, distribution function. 

r hazard rate of -r. 
rT hazard rate of the first hitting time of ut. 

We first show that the densities produced by the HRT method and the tangent 

approximation are ordered if the boundary is either concave or concave. 

Theorem 16 If f is a concave, Lipschitz boundary, then 

PH (t) -<, PT(t) for all t. 

Proof 

Since f is concave, we have ut(s) >f (s) for all s<t. Therefore, 

P[, rut > t] >, P[T > t] =I- P(t)7 (7.2) 

and from Corollary 4 

P(t) <, PH (t). (7.3) 

Then, by definition, 

PT rT(t)P[rut > t] 

rT(t)(1 - P(t))) by (7.2), 

>, rT(t)(1 - PH(t)), by (7.3) 

= PH (t) - 

* 

For convex boundaries, we can prove the following theorem, by reversing all 

the inequalities. 

Theorem 17 If f is a convex, Lipschitz boundary, then 

PH(t) ; ýý PT(t) for all t. 
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The most important ordering results are for the distribution functions pro- 
duced by the two approximation methods, which imply that the HRT method is 
superior to the tangent approximation. 

Theorem 18 If f is a concave, Lipschitz boundary, then 

P(t) <, PH (t) <, PT(t) for all t. 

Proof 

This follows trivially from Corollary 4 and integrating the result of Theorem 
16. 

* 

Similarly, we have 

Theorem 19 If f is a convex, Lipschitz boundary, then 

P (t) 
->, 

PH (t) >-- PT (t) for all t. 

Another advantage of the HRT method over the tangent approximation, is 
that it does integrate to 1, if the process is such that r< oo a. s. This is not true 

of the tangent approximation, which always over-estimates the density for concave 
boundary curves, and so integrates to greater than 1. For convex boundaries, the 
tangent approximation always under-estimates the density and integrates to less 

than 1. 

For other shapes of boundary curves, one possible advantage of the HRT 

method over the tangent approximation, is that the density 

00 
p(t) =r (t) exp 

I-I 
r(s)ds 

takes the previous estimates into account. If the previous density estimates have 

all been over-estimates, this will be reflected in over-estimates of r. Consequently 
ft r(s)ds 

I is smaller than it ought to be, and this reduces the estimate exp 0 
to p(t). Conversely, if the previous densities have all been under-estimates, 

exp 
f-t 

r(s)dsl is liable to be larger than it should be, thus increasing the fol 

current density estimate. This feedback effect makes fluctuations between over- 

and under- estimation less drastic, and intuitively, this may lead to a better ap- 

proximation. 
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7.7 Numerical Examples 

We conclude this chapter with some numerical examples illustrating the analytic 
bounds and our new HRT method. We also compare the distributions produced 
by these methods with the tangent approximation (see section 2.5.1). We shall 
use L to denote the lower bound, U to denote the upper bound and TA represents 
the tangent approximation. 

The first two examples (Figs 7.1 and 7.2) use the same form of boundary 
function, but with different parameters. We use 

t 
log 

1a+-1 (a), 
+1-a expl-0 

2/tj 
1/2 

0(2a 
_4 

aa 

with the choices of parameters as follows: 

Fig 7.1: - 0= 20 a=0.3 a= 0.3 
. 

Fig 7.2: - 0= 10 a=0.25 a=1.05. 

Both of these curves are concave, and as a consequence of this, the upper 
analytic bound is equivalent to the HRT approximation. We also include the tan- 

gent approximation for comparison, and, as expected, the distribution it produces 
lies outside of our analytic bounds. The exact exit densities are found using the 

method of images, and the appropriate formulae are given in Lerche (1986). Note 

that the upper bound (HRT approximation) is tighter than the lower bound, be- 

cause the tangent is a closer approximation to the curve than the lower enveloping 
straight line. 

For boundaries which are neither concave or convex, the HRT method is no 
longer theoretically superior to the tangent approximation. However, we can still 

use hazard rates to compute the analytic bounds. As an example, the function 

f (t) =2+0.1 t+0.25 sin(t) was used. Fig 7.3 gives a simulated "exact" distribution 

and density function, together with the analytic bounds. We also include the HRT 

and tangent approximations, which remain within the analytic bounds. The HRT 

method is again better than the tangent approximation, which has successive 

periods of over- and under- estimation partially cancelling the errors. 
The next example is a convex boundary curve. In this case we choose a 

parabola, f (t) =3+ j1-2 -6)2 . 
Again a simulation is used to produce the "exact" 

12 
(t 

exit distribution. For purely convex curves, there exists a time, tj, such that the 

tangent's intercept with the x axis is negative, for all t >, tj. In this example, 
ti = 

V7-2, beyond which the distribution function of the tangent approximation, 

and the analytic lower bound (equivalent to the HRT approximation in this convex 
boundary example), will remain constant. In this case, (Fig 7.4), the analytic 

upper and lower bounds will diverge, and thus the accuracy of any approximation 

using either, will become poorer. To counteract this, for larger time values, we 
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Fig 7.1 a- Distribution Function Comparison 
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Fig 7.1 b- Density Function Comparison 
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Fig 7.2a - Distribution Function Comparison 
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Fig 7.3a - Distribution Function Comparison 
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might consider using other approximation methods, for these times, perhaps based 
on quasi- stationary distribution functions. 

The boundary curve f (t) =4- e-'/'O is used to produce Fig 7.5, and the results 
are predictable, in that the HRT method is superior to the tangent approximation 
in this concave boundary case. The analytic bounds are tight, mainly because 
the curve can be enveloped between straight lines of similar gradient. Note that 
the simulation is slightly inaccurate, as the density is not over-estimated by the 
tangent approximation for all values of t. This is probably due to the discrete 

nature of the approximation technique. 
The final example (Fig 7.6) is for f (t) = 6e-t/4 + 2e -4/t . 

This curve is neither 
concave, nor convex, and the most noticeable feature is that the tangent approx- 
imation does not remain within the analytic bounds, whereas the HRT method 
and lower bound are virtually indistinguishable, and very accurate. Note that the 

curve is convex for t< 24, and so the lower bound and HRT methods produce 
identical results over this period. The lower bound produces a tight bound be- 

cause the curve is well approximated by the lower enveloping straight line, except 
for small t, when few exits occur. 

Note that in all cases where the exact distribution has been simulated, we 
used 200000 sample paths to obtain the empirical distribution. 

We summarise, below, the boundaries used for the examples: 

Fig 7.1 f (t) = 10 - (t/20) I+I+ ýC-400/t 
1/2 

log 
(2 [4 

31)- 

Fig 7.2 f (t) =5- (t/10) log -L + 
25 + L5 

C-100/t 
1/2 ( 

42 

[1764 

21 

1 

Fig 7.3 f (t) =2+0. It + 0.25 sin(t) . 
Fig 7.4 f(t) = t2/ 12 -t+6. 
Fig 7.5 f (t) =4- c-t/10. 
Fig 7.6 f(t) =6 r-t/4 +2 C-4/t 

96 



Fig 7.4a - Distribution Function Comparison 
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Fig 7.5a - Distribution Function Comparison 
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Fig 7.6a, - Distribution Function Comparison 
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Chapter 8 

An Optimal Stopping Problem 

8.1 Introduction 

To conclude this work, we illustrate the ideas of the previous chapters by consid- 
ering an optimal stopping problem. The solution to thi-s problem will be inves- 
tigated using boundary hitting time techniques, and stochastic calculus. As an 
example of the use, of approximations to the first exit distribution, applications 
in numerical optimisation and KE-optimality results will be highlighted. 

In a class of optimal stopping problems, an inference has to be made about 
an unknown parameter of an observable process. However, observations have an 
associated cost, and a further cost is incurred for an inaccurate inference. Thus, 

the objective is to make the inference, whilst minimising the expected value of 
a pre-defined cost function, C. The functional dependence of C usually reflects 
the length of the observation period, and some feature of the path the process 
followed, such as the terminal value, X. 

- 
In applications, the actual minimum value of the expected cost, is less impor- 

tant than the stopping rule, r, which generates it. In many cases, the (t, x) plane 

can be split into two regions, C and S= Cc, for which the stopping rule can be 

expressed as 
,r _- 

inf ft: (t, Xt) V C1. 
t>O 

For obvious reasons, C is known as the continuation region, and S the stopping 

region. The boundary of C, aC, is called the optimal stopping boundary, because 

-r can be written as 
,r= inf ft: (t7 Xt) E aC}. 

t>0 

To solve such problems analytically, the standard technique uses Bellman's 

equations, a system of a partial differential equation and boundary conditions. 

Since the optimal boundary is unknown, these are referred to as free boundary 
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problems (see Krylov (1980)). Solving this partial differential system is usually 
difficult. Often the solution, and boundary, are guessed by heuristic arguments, 
and then proved to be correct (see B&nes, Shepp and Witsenhausen (1980) for 

examples). Another difficulty is that the condition of continuity of the solution 
across the boundary is insufficient to produce a unique solution. In such a case, 
the heuristic of smooth fit is often invoked, which says that the first derivative 

of the solution is also continuous across the boundary. Because this technique is 

non-trivial, we shall seek properties of the optimal stopping boundary by more 
direct methods in this chapter. 

Bather, Chernoff and Petkau (1989) discuss methods for finding approximate, 
and exact results about the shape of the optimal continuation region. These tech- 

niques include the use of analytic methods to find bounds on the regions. They 

also discuss the use of known solutions to the heat equation to find asymptotic 
series expansions for the optimal payoff, and then find the boundary. The final 

method discussed is the use of simple random walks as approximations, in order 
to calculate the boundary numerically. 

Throughout this chapter, we shall assume that we are given a cost function 
C(t, Xt), which is dependent only on the time and position of the process. Clearly, 

in some problems, the entire history of the process X may be relevant in deter- 

mining the cost. We will not look at such problems. 

This chapter can be split into two parts. The first part looks at a stochastic 

control problem, and the second considers c-optimal results (see Krylov (1980)). 

The specific stochastic control problem considered is that of optimally stopping 
Brownian motion, with respect to a cost function which depends only on the final 

position and the observation time. Properties of the optimal stopping boundary 

are then established by stochastic calculus techniques. As an example of this, 

throughout the exposition, we consider a worked example, motivated by a se- 

quential analysis problem. In the following subsection, we will show how this 

problem can be transformed into a stochastic control problem of the form being 

investigated. Thus results for this problem will also be given. 
In many cases, whilst the optimal solution cannot be found, it is possible to 

find a solution which produces an expected payoff within e of the optimal expected 

cost. Such a solution is termed e-optimal (see Krylov (1980)). In the final section 

of this chapter, we shall prove a number of iE-optimality results, in cases where 

the boundary is only approximated, and also when the payoff is calculated using 

an approximate exit distribution. The results with density approximations are 

illustrated by a numerical example, related to the worked example in the first 

section, making use of the UDHRR approximation developed in section 2.6.4. 
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8.1.1 A Worked Example 

Sequential analysis problems may be categorised as a particular type of optimal 
stopping problem. In these problems, a process is observed and then stopped 
according to some pre-determined rule. Frequently a choice is then made between 
the null and alternative hypotheses. Many policies (a stopping rule and a decision 

rule) exist with the same operational characteristics, and comparisons between 
them are often made by considering the expected length of the observation period. 

Consider the process 
dXt = dBt + Odt, 

that is, Brownian motion with constant drift 0, and suppose that 0 is an unknown 
parameter. Lerche (1986) discusses tests of power one to decide HO :0=0 or 
H, :0 :ý0. He selects a prior distribution for 0, F, given by 

-ybo + (I - -ý)N(O, 1/r), 

where 0< -y <1 and r>0 are constants, N(a, b) denotes a normal distribution 

with mean a and variance b, and 60 is a point mass at zero. To calculate the 

posterior distribution of 0, based on the path of the process until time t, we only 
require the final value of the path, Xt, as this is sufficient for 0. That is, the 

posterior distribution of 01 P(O JXt). P(OJXsI 0 <, s <, t). The 

objective is to find a stopping rule to minimise the Bayes risk given by 

P(, r) = 7po[, r C: ý 0c)] + (I 
- 7)c 

f 
02 Eo[-r]O(VrO)VlrdO ) 

00 

in which PA and EA denote the probability measure and expectation when the 
drift is A. We use 0 to denote the standard normal density, and cO' represents 
the cost of observation for one time unit. The decision to stop observation is 

equivalent to agreeing with the hypothesis that 0 :ý0, since if 0=0, observations 

are free and therefore it would not be sensible to stop. 

One unsatisfactory feature of this model, is that observation costs are chosen 
to be proportional to 0'. In many examples, proportionality to 101 is more natural, 
but this would lead to infinite Bayes risk, for all stopping times of tests of power 

one, if substituted into Lerche's formulation. This follows from a lemma of Darling 

and Robbins (1968), which states that if Po[, r < oo] < 1, then 

Eo[-r] >, -2 In(Po [7- < oo 

02 

Consequently, if the observation costs are c101, the Bayes risk contains the integral 

00 , 101 

j0JEo[7-]O(Vr-O)V1rr-dO > 
jc* 2 ln(Po [7- 

< oo])O(Vr-O)Vr-dO, 
oc) 

0 
-00 
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which is infinite, due to the singularity of the integrand at 0=0. 
We shall, therefore, reformulate the problem in such a way that observation 

costs of c101 per unit time are permitted. Because of the above result, we cannot 
consider this as a sequential analysis type of hypothesis testing problem, and 
instead we shall switch to a stochastic control framework. We shall continue to 

observe the process, and thus improve our estimate for 0, until cost considerations 
make this no longer viable. Rather than choosing to reject or accept Ho :0= 01 

we shall give a posterior distribution for 0. 
Instead of Lerche's mixed prior, we shall make the prior assumption that 

[0] - N(O, 1/r), which leads to the posterior distribution 

[0 IXt] -N( 
Xt 1)- (8-1) 

t+r't+r 

We will minimise the expectation of a cost function of the form 

cost = tjOl + (error costs). 

However, since 0 is unknown, we shall use the estimate Ot = E[O IXt] in its place, 

when evaluating the cost at time t, and as an error cost, we shall use a constant 

multiple of E [(0 - 
bt )2 IXt]. Both these are readily available from (8.1). Note that 

the drift and diffusion coefficient for a diffusion process satisfy 

Xt) lim 
E[Xt+h 

- 
Xt IXt] 

hIO h 

ol 
2(tjXt) 

= 
1, *M 
hIO 

E[(Xt+h 
_ 

Xt)2 IXt] 

h 

We can evaluate these expectations by conditioning on 0, to obtain 

Xt) = 
xt 

t+ 

ol 
Xt) = 1. 

These lead to the "posterior" stochastic differential equation 

dXt = dBt +' 
xt 

dt, (8.2) 
t+r 

which we will use. 
Thus, we have now formulated a problem with 0 no longer explicitly involved, 

but in which 
b is present. We shall, therefore, observe process X satisfying (8.2), 

and attempt to minimise the expected value of 

c*(t, xt) t 
xt 

+c (8.3) 
t+rt+r 
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On stopping we shall then report the posterior distribution 
ý 

10 IX-r1 
- Strictly speaking, in estimating the cost function, we should use E[101 JXtj to 

correctly model the structure. However, a si ple explicit expression for such an 
expectation is not available, as is the case for E[O IXt]l, 

which we use. Since 

If (x)dxl <I If (x)ldx, 

we under-estimate 101 in our cost function. 
We will make use of the fact that a decision to stop at IXtj =x is made on 

the basis of our future expected cost on stopping, that is 

stop at IXt 1=x <ý* C*(t, x) <, inf E [C*(1-, X, ) 1 IXt 1= x], (8.4) 
T>t 

where r represents a stopping time. Note that by continuity of C*(t, x), and the 
process X itself, the inequality in (8.4) can be replaced by an equality. Further- 

more, (8.4) can be used to split the (t, x) plane into two regions, the stop region 
and the go or continuation region, where as the names suggest, you either stop 
observing the process, or continue observing the process, respectively. 

Changing the time-scale 

Although the process is observed in the (t, x) co-ordinate system, this is not 
necessarily the most useful time scale in which to make progress. Bather (1983) 

gives the example of observations comprising of a sequence of independent normal 
random variables, with unknown mean, 0, and known variance, 0'. If a normal 
prior is placed on 0, it is well known that a N(uv) prior leads to a N(u', v') 
posterior distribution, after the observation, x, where 

uUv 
2(X - U) 

v+a 

and 
v2 

V+ or2* 

So, if the process is observed in (u, v) space, the transitions of v are deterministic. 

Thus, if the continuous analogue is used, and the stopping cost is C(u, v, ), it is 

possible to separate out a deterministic part of the cost function. That is, we can 

write C(u, v) = C, (u, v) + C2(v). In many applications, having a deterministic 

part to the cost will be advantageous. Notice that, if the variance is used as a 
"time" scale, we run the process backwards to zero, which corresponds to full 

information about 0. 
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We seek a time-scale transformation which will simplify our problem. Consider 
the standard time change result for Brownian motion, 

[a' (t)] - 12'dB, 
(t) = dBt*i 

where' denotes differentiation with respect to t; B and B* are standard Brownian 
motions. We see that putting Xt= [a'(t)] 

2 -1-B, (t) yields 

dXt = dB* -1a 
11(t) 

Xtdt. t2 a'(t) 
(8.5) 

Comparison of (8.5) with (8.2) suggests that we should equate 

1 
a"(t) 1 

2 a'(t) t+ r' 

which can be solved to yield a(t) =k- and we choose the constant k so that t+r 
a(O) = 0, which means k T, say. Substituting 

r 
Xt = (t + r)BT- 1 t+r 

into (8.3), we obtain the cost function 

tlBT- 11+C 
t+r t+ 

which, after substituting T-s= -1--, gives t+r 

C(s, B, ) =s -IB, l + c(T - s), T(T - s) 
(8.6) 

and our objective now is to optimally stop B, in order to minimise our expected 
value for C,. For convenience, we will define C(T, 0) = 0, since P[BT = 01 = 0- 

We have now simplified the problem in two ways. Firstly, we are stopping 
a Brownian motion process, the properties of which are more accessible than 
those of our previous diffusion X. Secondly, we have a cost function in which 
the deterministic part is linear in time. Note our transformation is similar to 
Bather's, except we run the process index forwards to the time horizon, T, rather 
than backwards to "time" zero. 

8.2 The Optimal Stopping Boundary 

We now introduce the optimal stopping problem that we will investigate, of which 
the worked example, previously introduced, is a specific case. The objective will 
be to optimally stop a process subject to the cost function C(t, x). 
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We make the following assumptions about the cost function C(t, x): 

I- liMtTT C(tj X) - 00 ý 
C(t, x) = oo for all t>T and x :ý 

2. C(T, 0) 0. 

3. C(t, x) C(t, -x) 

C has a continuous partial derivative in t, and a continuous second partial 
derivative in x for x :ý0. 

The process will be assumed to be Brownian motion, and we will use the notation 
Ct = C(t, Bt). The first of these conditions is used to enforce an upper bound, T, 

on the optimal stopping time, r. For suppose p= P[, r > T], then 

E[C, ] -- pE[C, 17- 
->, 

T] + (1 - p)E[C, Jr < T] 

< 00 if and only if p=0. 

Clearly the minimum expected stopping cost should be finite, as it is assumed 
the initial cost is finite. 

We define the optimal expected payoff by 

J(t, x) = inf E[C, 1 IBtl = x] 
r>t 

and so a stopping rule of the form of (8.4) may be written 

stop at JBtj =x ýý J(t, x) >., C(t, x). 

We now consider the cost function as a diffusion. By R6 differentiation, 

dCt = 
09C dBt + 

ac 
+1 

a2C 

dt. 
09X 

( 

at 2aX2 

) 

We shall denote the drift coefficient of this process by D(t, x). That is, 

OC 1 a2c 

D(t, x) :=-+- Dt 20X2 * 

(8.7) 

(8.8) 

(8-9) 

(8.10) 

We make the following assumptions about D, which will be used in the theorems 

of this section: 

(DI) D(t, 0) < 0. 
(D2) (a) D is non-decreasing in t, for all t, x, 

(b) D is non-decreasing in x, for all t, x>0. 
(M) There exists g: [0, oo) --+ RUf oo} such that D(t, g(t)) =0 for all t. 
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Worked Example 

Finally note that in our worked example, C(t, x) = 7; lxl+c(T-t), which has T(T-t) 
liMtTT C(t) X) = oo for (x =A 0) and C(t, x) = C(t, -x). It6 differentiation gives 

dCt = 
lBtl 

-c dt +t dlBtl. 
((T 

-t)2 T(T - t) 

This poses some technical problems in that we have djBtj rather than dBt. How- 
ever, noting JBI can be expressed as M+1, where M is a martingale and I is a 
local time at zero, these problems are only significant when B is close to zero. 
Such cases will be carefully considered. We will take D(t, x) - 

IxI 
- c, as if - (T t) 2 

we do have dBt. It is clear that the properties (Dl), (D2)(a), (D2)(b) and (D3) 
hold. 

8.2.1 Existence 

In practice, the stopping rule in the form of (8.8) is not convenient, since the 

calculation of J takes time, whereas any decision to stop should be made instantly, 

especially for continuous processes. For this reason, we often seek a functional 
boundary, such that the stopping rule may be expressed as 

stop at lBtl =x, ý*x >f(t). 

Alternatively, we allow rules of the form 

stop at lBtl =x, #: ýt, > f(x) (8.12) 

to be termed an optimal stopping boundary. In such cases, the stopping rule is 

quickly verified, and in fact, if the process is continuous, we need only to monitor 
it closely when (t, I Bt 1) is close to (t, f (t)) or (f (x), x) in the (t, x) plane. 

A variation in these results is possible in the two sided case. It is a common 
feature of optimal stopping problems that large values of the process correspond 
to significant effects, in which case the costs are high. These high costs encourage 

the process to be stopped quickly, when the feature is more clearly seen. However, 

it is possible that high values of the process lead to low costs, and so stopping 

rules of the form 

stop at JBtj =x, #: ýx < f(t) 

and 

may be relevant. 

stop at lBtl =x, ý*t <f(x) 
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To show the existence of an optimal stopping boundary, we merely have to 
show the existence of one of the rules (8.11) and (8.12) as optimal stopping rules. 
In the two-sided case, which we are considering, the easiest to show is (8.12), 
since this creates no technical difficulties when using the modulus of Brownian 

motion. 
We will need some properties of the function 

C+(ti X)--:::: C+(tlit2itý X) - 
C(ti X) - 

C(t 
- t2 + tli X) (t2 <l t<T, X >, 0) 

j 

to hold for all choices of tj < t2: 

(Pl) For each tj < t2 there exists 6 6(tl ) 
t2) 

such that 

a, C+(T - 6, x) 
aX2 

ac+ 
>0 for allx >, O, tý>, T-6 > t2 

at 
is Lipschitz continuous in x and non-negative for all x >,, 

For the worked example, we have 

C+(tl x) = 

t2 
- 

tl 

_ 
IXI + C(t2 - 

tl)i 

(T - t)(T -t+ t2 - tl) 

which satisfies (Pl) for 6< (t2- tl)/2. 

We have the following theorem: 

Theorem 20 If (D2)(a) and (Pl) hold, then there exists a function f- such that 
(8.12) holds. 

Proof 

We shall prove this result by comparing the cost process when starting from 

two different times, at one of which it is assumed optimal to stop. Let tj `ý t2 

and assume that it is optimal to stop at JBt, I x, and compare two processes, 
IB11 and IB 211 

which are coupled so that jBtj JBtl 
-t2+tl 

I for t2 <, t<T. Let 

Ct' =Ct 
2) 

= 
C2 

under our coupling. (t, B'), 1,2), so that C+ (t, Bt t 
Ci 

-t2+tl 

Then, by definition, 

J(t23 X) =: inf E[C, 211B 21= 

-r>t2 
t2 

inf E[C,, 2 -11 
JIB 21=: 

X] 
-r>t2 

C'rl-t2+tl + CT-t2+tl 
t2 

inf E[C,, 2 I JIB 21= 
X] + inf E[Crl 

2 
X] - 

CT-t2+tl 
t2 2+tl t2 

'r>t2 

1 

T>t2 -t 
JIB 

,> inf E[C+(, r, B 2) JIB 21= 
X] + C(tj 

I 
X). (8-13) 

-r>t2 
T t2 
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The first inequality uses inf (A + B) >, inf (A) + inf (B), and the second uses the 
assumption that 'i. t is optimal to stop at JBt, I=x. 

For e defined in (Pl), consider the function 

Ce(ti x) 
C+(tl x) t<T 
C+(T - e, x) t >, T 

which, from (Pl) satisfies C+(t, x) >, C6(t, x) for all t, x. Therefore, 
2) 2 

X] > 2) 2 
X]. mf E[C+(-r, Blr JIB 

t2 inf E[C'(, r, BT JIB 
t2 'T>t2 -r>t2 

But 
, 

dCt' =I 

[D(t, Bt) - D(t- t2+t,, Bt)]dt+a(t, Bt)dBt t<T-c 

a2C+(T-f:, Bt) 
2 aX2 dt + b(Bt)dBt 

I 

(8.14) 

(8.15) 

where a(t, x) = 
ac+ (") b(x) = aC+ (T") 

and D is defined in (8.10). From the ax I ax 
existence and Lipschitz continuity of 82c+, we deduce the solution of (8.15) is well aX2 
defined, and furthermore it is a submartingale. 
Hence, for any stopping time r, conditioning on 

BT-e = Xi 

Ex[E[C, 'IIB 21 
z= X3r >T-e, B t2 t2 T-c ý-- X]] 

>, Fzx[C(T-e, X)IIB 21= 
X] t2 

>- CE(t2 
ý X) : Z- 

and 
E [C, ' I JB' I=x, -r <T- c] 

>- C"(-t2) X)i t2 

using Doob's optional stopping theorem (see for example Dellacherie and Meyer 
(1978)), since both cases have a submartingale running until a bounded stopping 
time. Therefore, 

2 
=X] > ce(t JIB E[C, t2 21 X) 

= 
C(t2, X)-C(tl, X), 

as t2< T-f. Using (8.13) and (8.14), we conclude 
J(t2 

i X) >- C(t2 
7 X) i 

so that it is optimal to stop at jBt, I=x. 

We formally define 

inf lt : J(t, x) > C(t, x)1, 

and f is our optimal stopping boundary. This set cannot be empty, as 

It: J(t, x) > 

for all x- 
* 
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Worked Example 

We can almost apply the theorem to show the existence of an optimal stopping 
bound, since ýýD- - 

I'l >, 0. However we do have to verify that at - (T-t)3 I 

aC(t, Bt) aC(t 
- t2 + ti, Bt )) 

djBtj (8.16) 

ax 09X 
does not interfere with the submartingale behaviour of 

Ct 1. The term - 
Ct-t2+tl' 

(8.16) does not present a problem in this case, since 2-C 
ax - 

1 is increasing in (T-t)2 

t, and JBI is a submartingale. Hence we obtain our desired result. 

8.2.2 Lower Bound 

In order to prove the existence of a lower bound, we require an extra condition 

on the function g defined in (D3), and a further condition on the cost function. 

(D4) 0 <g(T- 6) < Wfor somep>O and k> 0 as 610. 

(D5) C(t, g(t)) <0 on [T- 6, T] for small 6:, for 5ome cons ýo. At 

Theorem 21 If (Dl), (D2)(a) or (b), (W), (D4) and (D5) hold, then the func- 

tZon g, defined in (M), acts as a lower bound to the optimal stopping boundary. 

Proof 

First note that (D1) and (D3) yield g(t) > 0. Secondly, as the function D(t, x) 
is non-decreasing in at least one of its variables, we deduce D(t, x) <, 0 on A, where 

IXI < g(t)1. 

We define the stopping time r to be the first exit time from this set. That is, 

inf t Bt) V Al. 
t>o 

We note the cost diffusion is a supermartingale on An it< T- El, for any 

fixed E>0. Thus, 
E[CTA(T-e)l < E[Co]. 

We wish to let f 10. 
Fix 0<6< 2T. Since our diffusion process is Brownian motion, we have 

4 

P[, r>T-b] < P[BT-8 E (-g(T - b), g(T - b))] 

f g(T-8) 1e 
-x 

2 /[2(T- Oldx 
g(T-6) 

V2-7r(T 
- b) 

< 
2g(T - 6) 

VT-- b 
4 

< 7=g(T - b). 
T T 
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We shall now consider 

Ic-rA(T-c) 
- 

Col 
= 

CTA(T-f) 
- 

CTA(T-6) + CTA(T-6) 
- 

Col 

-<- 
JCýA(T-c) 

- 
C-rA(T-8)1 

(8-17) 
+ Ic-rA(T-8) 

- 
Coll (8-18) 

for E<6. But E[lc-, 
A(T-c) 

C-. 
A(T-8)11 can be expressed as 

E[IC. 
rA(T-e) - 

C-TA(T-8)11 E[IC-rA(T-e: 
) - 

CrA(T-8)II(7' 
<, T- 6)] 

+ E[IC-rl\(T-c) 
- 

C-rA(T-6)II(r >T- 6)] 
O+E[IC-rA(T-c) 

- 
C-rA(T-8)1 17' 

>T- 6]P[-r >T- 6] 

x4 g(T - 6). 
T 

By Doob's optional stopping theorem (see for example Dellacherie and Meyer 
(1978)), (8.17) is integrable, as iE 10. So we deduce jC-rA(T-c)-COI is also integrable 

as f 10, producing 
E[C, ] < E[Co]. 

Hence we conclude that it is never optimal to stop within A. So, if f satisfying 
(8.11) exists, we have f(t) > g(t) for all t. 

* 

Worked Example 

We apply the theorem noting that g(t) = c(T - 
t)2 

ý so g(T - 6) = C62 satisfies the 

requirements of (D4), and that C(T - 6, g(T - 6)) = 2c6 - 
2C62 IT, is bounded. 

Thus we conclude, if the optimal stopping bound, f, exists, then f (t) > c(T - 
t)2. 

8.2.3 Non-increasing 

Having established the existence of the optimal stopping boundary by proving 
a rule of the form (8.12) can be found, we can deduce that this boundary is 

non-increasing if we can additionally show a rule of the form (8.11) exists. Note, 
however, that the use of JBI in the cost function prevents the use of the coupling 
IB 21 = jB1 I+k, for all t, since this would force IB 21 to be at least k, thus it 

tt 
will not behave as JBI. So we restrict the set of paths for which we apply such a 

coupling. On this restricted set of paths, we shall use the function C- in a similar 

way to that in which C+ was used for Theorem 20, where 

C-(tl X) C-(ti Xý Xl i X2) ::::::::: 
C(ti X) - 

C(4 X- X2 + Xl) for x> 

with x, < X2 < (3/2)xl. 
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We assume properties of this function: 

(P2) For each x, < X2< (3/2)xl assume there exists 6 "': -- 6(Xl 
i X2) such that 

ac- 
>Oforallt>T-e-, x>, xl at ! -,, 

OC- (T - E, x) 
ax ,>0 

for all x> xi 

C-(T - E, x) is convex in x for x> xi. 

The following theorem can now be proved. 

Theorem 22 If (Dl), (D2)(a), (D2)(b), (W), (D4), (D5), (PI) and (P2) hold, 
then there exists a non-increasing function f, which sahsfies (8.11). 

Proof 

From Theorem 21, we know that it is never optimal to stop at zero. So, 
by selecting 0<x, < X2 < (3/2)xl, the first inequality places no additional 
constraints on the problem, when we make the assumption that it is optimal to 

stop at IB,, I= xi. Define 

A: =f-r >s : IB, 'l >xl , 
for allte [s, 7]1. 

nn4 

We use the coupling IB'I = IB'I +( 
-'16 2- xi), noting the choices of x, andX2 tt 

allow this to be done without forcing jB1 I<0. Denoting by Ct' the cost function 
t 

associated with IB'I, from (8.9) we have 
t 

dCý (t, IB 21) [D(t, IB 21) 

- D(t, IB 21 
- -C 2+ xi)]dt tt t 

+ [E(t, IB 21) 

- E(t, IB 21 
- X2+ xi)]dlB 

211 
ttt 

where D is defined in (8.10) and E(t, x) = 2-C--. Note that either B' > x, or i9x t 

B2< _X1 
21 2 

t, on A, so that JBt is indistinguishable from Bt. Hence 

2) 222 
dQý = [D(t, Bt - D(tl Bt 

_ '17 2+ xl)]dt + a(t, Bt)dB,, 

where a(t, x) = E(t, x) - E(t, x- X2 + Xl)- 

Let E be as defined in (P2) and Q be the conditioning event 

f IB'I = x2,7, C A, 7- >T-g, BT-e = Xli 
s 
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then 

E[C, - IQ] E 
aC - (t, B., ) 

+ C-(T - E, B2) IQ 
[ 

JT7-, 

f 
at TI 

0+ C-(T - E, E[B2 
T 

>, C- (T 
- iE, X). 

The first inequality uses C-(t, x) non-decreasing in t, the convexity property in 
(P2) and Jensen's inequality (see for example Ross (1984)). Noting that we have 
Brownian motion conditioned not to hit a lower boundary, we apply Theorem 7 
of Chapter 3 to deduce E [B 2 Q] > X. Then, the second inequality follows from 
the non-decreasing property of C-(T - e, x) in x. 

'r 

Thus, for any rEA, 

E[C, - B'Iý: -- -r 2>T E[Cj 21 
s -, 

II Bs 21 

> C-(Si 12)1 

and 
E[C, - JIB 21 

: --:: 12 1 7' T- E] 
ý>- 

CS1 12 
3 

using Doob's optional stopping theorem (see for example Dellacherie and Meyer 
(1978)). Therefore, 

21 -(S) X2)- inf E [C, - II Bs : -- X21 >- C (8-19) 
-rEA 

Hence, 

inf E [Cr2 JIB 21 
=: X 21 inf E [Cr- + Cr' IIB 21 

= X21 

-TEA 
s 'rEA 

s 

>' inf E[Cr- JIB 21 
= X21 +inf E [Cr' IIB 21 

= X21 
'rEA 

s 
-rEA 

s 

> C-(Si X2) + C(Si Xl) = 
C(S) X2)i (8.20) 

from (8.19) and the assumption that it is optimal to stop at JBJ = xi. 
On A' 

For each path with stopping timeTE A', there is a stopping time 

t' = inftt: IB'I = xil <7-. 
t>s 

t 

Since it is optimal to stop at IB', I=x, (by Theorem 20), we have 
t 

iný E [C, 2 JIB 21 
X 21 E [Ct2, JIB 21 

::::::: X 21 

'TEA ,8 

inf E [C, 2 JIB 21 
: -- X 2] as t A. 

'rEA 
S 

C(Si X2)- (8.21) 
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Therefore, combining (8.20) and (8.21), 

J(Si 
-'1ý2) 

>- C(5) X2)- 

That is, it is optimal to stop at JBJ ý X2- We can extend this argument as 
necessary to show it is optimal to stop at JBJ X2 Jor 

all X2 > X1 - 
We require to show that there exists an x, such that it is optimal to stop at 

B, I= xi. If we define 

inf Ix : J(S, x) > C(S, x)1, 
x 

taking f (s) = oo if this set is empty, then we may set x, -- f (s) in our result. 
Combining this result with Theorem 20, which also holds under the conditions of 
this theorem, the discussion prior to the statement of this theorem allows us to 

conclude the optimal stopping bound in non-increasing. It should be noted that 
there may exist some times at which it is always optimal to continue (f (t) = 00), 
but this does not detract from the non-increasing nature of the optimal stopping 
boundary. 

* 

Worked Example 

In this case, 
C- (t 

7 X) ::::::::: t (X 
2- xl)I(T(T - t)) for x >, xi, X1 < X2 < (3/2)xl, and 

so (P2) holds. Furthermore, we can simplify the proof by exploiting the linearity 

of the cost function in JBI. We note that we can express 

c2=c: + 
(X2 

- Xl)t 
(8.22) 

I'(1, - 

and the increasing nature of the deterministic function part of (8.22) makes the 

submartingale behaviour of C, 2- Ct' clearer. 

8.2.4 Continuity 

For practical applications, continuity of f is a desirable property. We shall adopt 

the following notation: 

f (t lim f (S) 
STt 

f (t+) lim f (S). 
sit 

We begin by proving f is right continuous. 
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Theorem 23 If f %s non-%ncreasing, then f is right continuous. 

Proof 

Since f is non-increasing, f (t) >f (t+). Assume that f (t) >f (t+), define 
x= 1(f (t)+f (t+)) and consider the optimal policy from IB, I=x. Since x<f (t), 2 

it is optimal to continue from I B, I=x. We define 

inf Is: JB, If (s)}. 
S>t 

Since the sample paths of Brownian motion are continuous, we deduce -r =t 
almost surely, and thus have a contradiction. 

We conclude it is optimal to stop at jBtj = x, and have established right 
continuity. 

* 

Before looking at left continuity, we shall prove a useful lemma. 

Lemma 8 Let S= J(t, x) : Cl <X< C2}y XO = 
l(Cl + C2) and 2 

7-s = infft : (t, Bt) ý SIBo = xol- 
t>O 

Then, for any p>0 
P[Ts > t] 

tp 

Proof 

--ý as t 10 
- 

Note that Jrs <tIC (I -ri < t} U 17-2 <t 1), where 

7i = mf It : Bt = ci 
jBo 

= xoj. 
t>0 

Thus, 

p[ TS <-, tP[ 71 -<-, 
tI+P[ 7'2 -<-, t 

4 
(1 

- 41ý 

(C2 

vt- 

XO)) 

by the Bachelier-Levy formula. But, for k>0, 

lim 
1- 4) (k / v/t-) 

- 
lim 

(k/2)t-3/2 0 (k v/t-) 

tio tp tjo ptp-1 
= 

0. 

The first equality is obtained using UH6pital's rule, and the second uses the fact 

that O(x) =: CC_X2 
/2 

- As the limit is non-negative, we apply the Sandwich theorem, 

noting 0(k/v/t-) < at' for some a>0 and any v>0. 
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Since this holds for all p>0, we deduce our result. 

* 

To prove left continuity, we require additional conditions on the cost function, 
2 

and the lower bound g, defined in (D 3). Let P (t, x) +' ýý-C >01 and at 2 aX2 
let the following two properties hold for (t, x) E P: 

(D6) Let C(t, -) be convex for each t, and C be bounded for t<T and x 
bounded. 

(M) C(t, x) - C(t - e, x) > kEP, k>0, for some p>0 and E sufficiently 
small. 

We finally assume that 

(D8) g is Lipschitz in t, Ig(t) - g(s)l < k2lt 
- Sj- 

Theorem 24 Let (D6)-(D8) hold and assume f is non-increasing. Then f is 
left continuous. 

Proof 

We shall assume that f (t-) >f (t), and seek a contradiction. Let 

bi = f(t) + k26 

b2= f(t-) - 
k216 

and I 

X= -(b, + b2)) 

2 

where f is sufficiently small to ensure that b, < b2- We shall consider optimal 

policy from jBt-, j = x, and define 

A := J(t, z) : bi <z< 
b2l 

and the first exit time from this set 

, TA := inf Is : (s, B,, ) ý Al. 
S>t-f 

Note that ACP. Our optimal payoff J satisfies 

, 
P[7 J(t - E, x) > _A > t]E[C(t, IBtl) 

>� P [7-, 
4> t]C(t, E[lBtl 

= P[7'A > t]C(ti X). 

17-A> 
t, IBt-, 1 x] 

TA > ti IBt-, 1 x]) 
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In this expression, the first inequality is due to the possibility of paths not having 
their optimal stopping time at time t, which leads to an additional positive ex- 
pectation. The second follows from property (D6) and an application of Jensen's 
inequality (see for example Ross (1984)). To establish the final equality, we use 
the fact that, on A, JBI and B are indistinguishable. Furthermore, as the dis- 
tribution of Brownian motion is symmetric about its starting point and we also 
have symmetric conditioning, it follows that 

E[Bt 17-, 
4 > t, Bt-, = X] = 

Therefore, 

C(t, X)-C(t-E, X)-(1-P[7A>t])C(tX) 

keP - 
(1 

- P[7A > t])C(t, x) (8.23) 

= EP 
(k 

- 

(1 
- P[IA > tl)C(t'x) 

EP 
01 

for e sufficiently small, using (M), then (D6) and Lemma 8. (Note (8.23) also 
assumes E is sufficiently small. We therefore take E small enough to allow (8.23) 
to follow, and the final inequality to hold. ) 

Thus we have a contradiction to the optimality of continuing from JBt-, j =x 
and have established left continuity. 

* 

Worked Example 

We have previously shown that the optimal stopping boundary in our worked 

example is non-increasing, and so right continuity follows trivially from Theorem 

23. Note that the lower bound, g(t) = c(T - t)21 is such that jg(t) - g(t - E)l < 

2cTlel and for x> g(t) we have C(t, x) - C(t - E, x) > C62 IT. Thus we may apply 
Theorem 24 with k= clT, k2= 2cT and p=2. Note also that the linearity of the 

cost function in Ix1, circumvents the need of convexity and Jensen's inequality, so 

the second inequality in the proof may be replaced by equality. 

8.2.5 Upper Bound 

In most cases, the optimal stopping boundary is bounded above by a sufficiently 

large constant. However, from a practical point of view, this is not useful. In 

some cases, it is possible to do considerably better, and establish an upper bound 
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on f, such that the upper bound also decreases to zero. For the worked example, 
we shall prove the existence of such a bound, using another coupling idea, incor- 
porating the self-scaling property of Brownian motion. We shall find a function 
h such that h(t) >, f(t) for all t. However, before we obtain this result, where 
h(t) = k, \, IT-- --t (k constant), we shall give a result about the behaviour of f for 
t close to T. 

An Asymptotic Result for 

Consider starting the process from B, = 0, for some s. Then, the cost if the 
process is stopped immediately is c(T - s). We define the curve k, (t) such that 
if the process is stopped on this curve, the cost will be c(T - s). Thus, k, is the 
solution to 

tk, (t) 
+ c(T - t) = c(T - s) T(T - t) 

or 
k, (t) = cT(T - t)(1 - s1t). 

If f (t) > k, (t) for all tE (s, T), then 

E[C(7-, f(, r» 1 B, = 0] >E [C(7-, k, (-r» 1 B, = 0], 

where -r is the optimal stopping time, using the non-decreasing behaviour of C in 

x. The right hand expectation is c(T - s), by definition of k.,, and so it is optimal 
to stop at B, =0-a clear contradiction to Theorem 21. Thus, we must have 

inf tf (t) = ký, (t)} < T. 
t>s 

This result holds for all s. 
Now consider the behaviour of k, (t). We have k(t) = cT ((Tslt') - 1), so S 

that k'(T) --+ 0 as s --+ T. Thus, we deduce 
S 

lim sup 
(jo 

-f (T - e-) f 

6 

= 

Using this statement, we further deduce an asymptotic bound of f. Specifically, 

there must exist a constant r, >0 and a 61 >0 such that 

K(T - t) for t>T- 61. 

Global Upper Bound 

We intend to show f (t) < kv'rT-- t, for some constant k, and so we select the 

initial values in the coupling to reflect this. We select 
t2 

and12 such that 

t2= pt, + (1 - p)T and -C2 = XFP-171 
(0 ": ýý P 
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so that both points are on the same ý/-T-- t curve. We define B' to be the 
Brownian motion process started from IB, ', I= xi, (Z = 1,2). C(t, x) is defined 
in (8.6). We use the self-scaling properties of Brownian motion, so that both 
processes have indexes running to T, which is reached simultaneously, in the 
coupling 

IB 2 
tp+(l-p)TI =, \, FplBl 1. (8.24) 

t 
Assume it is optimal to stop at I Btl, I=x, 

- 
So, by definition, 

inf E[C(-r, Bl, ) 1 iBt' 1=x, ] 
, r>tl 71>, 

C(tl x, ). 

We now consider optimal policy from IB' I : ":: -- X2. By definition, the stopping t2 

time 7- = inf., IB 21 >f (s) I is such that J(t2, X2) E[C(7-, B 2) JIB 21 
-=::: X 21 >t2 

fS: 

S t2 

Therefore, using the coupling arrangement, we have 

[7- 1 B(ý-r-(1-p)T)lp I 
VP J(t2 

i X2) =E 

T(T -7-) 
+ c(T -7) 

IiBt. 
11 = xil 

Making the substitution s= (r - (1 - p)T)lp, so that s> tl, we obtain 

J(t2 
7 -12) =E 

ps + (1 - p)T 
Tp(T - s) 

SIB' I 
=E vfp T(T - s) 

, ý, 
fp-j Bý, ' I+ cp(T - s) Btli x 

+ c(T - s)) 

+-1-p IB'I + (p - vfp-)c(T - s) 1 IBt. 1=x, 

, vfp-(T - s) ' tl 

1 

, 
fp- - p)E[c(s - T) 1 IB' 1=x, ] 

�, fp-E[C(s, B')IIB'I=xl]+(� tl ti 

+ 
1-PE JIB' 1 

""7p 
T 

where all the expectations are multiplied by positive constants. The first expec- 

tation is at least inf, >tl E[C(o,, B, ) I jBtlý I= xi] >, C(ti, xi), since it is optimal 

to stop at JBtýj I= xi. The second expectation is at least c(t, - T), as S-T in 

non-decreasing in s. For the third expectation, we note that T1 s 
>1 T 

Iti, so that 

E1 IB' 1=x, 
] 

->-- 
E JIB' 1=x, 

] 

. ti T- ti tl 

We now use the fact that JBI is a submartingale, and hence 

Btll. X1 
ti T- ti' 
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Combining the lower bounds on the three expectations, and rearranging, we have 
J(t2)X2) >- C(t21X2)- 

That is, it is optimal to stop at jBt, I : -":: T2. This result will hold for any choice 
Of t2ý X2 such that the point lies on the correct V-T --t curve. So, to show that 
there is an upper bound of this form, we need show that f (0) is finite, that is, 
there exists an x< oo such that it is optimal to stop at JBoj = x. 

Let to = inft, >Oft : f(t) < oo}. There are three possibilities. Either to = 0, 
in which case we have nothing to prove, or to = T, which would yield infinite 
expected stopping costs as P[IBTI > 0] >0 and is, therefore, discounted, or lastly 
0< to < T. We shall assume this case. Consider the process beginning from 
I Bo I=x>f (to). Then we can find a lower bound on the probability that I Bto I 
is in the range (f (to), 2x -f (to)) in which case the process should be stopped at 
precisely this time. By the Bachelier-Levy formula, we have 

P [I Bt,, E (f (to), 2x -f (to)) Bo I= X] >, 44ýP x-f (to) 
3= Pd say. 

vIt-0 

) 

Furthermore, by a similar argument to that which was used in Theorem 24 for 
left continuity, we can establish the fact that 

E[C, 11Bol 
= x] >, 

tox 
-+ c(T - to) Pd- 

(T(T 

- to) 

For it to be optimal to stop at I Bo I=x, we require that 

E[C, 11Bol = x] > cT, 

which clearly holds if 

tox 
-+ c(T - to) Pd > cT. 

(T(T 

- to) 

Rearranging this, we see that we require 

x> 
T(T - to) 

[cT - c(T - to)Pd] 
PdtO 

cT'(T - to) 1- Pd 

+ cT(T - to). (8.25) 
Pd to 

Since we require this result to hold for all to, we need to take limits as to 10 in 

the expression. Recalling Lemma 8, (1 - Pd)lto 0 as to 10, and thus the right 

hand side of (8-25) has the finite limit cT 2 as to 0. Thus we can clearly choose 

a finite value of x such that this equation holds. Denoting such a choice by 
ýko, 
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we have established f (0) < ko, where ýCo > cT', and so, we can now obtain the 
upper bound 

X0 

fu <1 - 
VIT- 

which holds for all t >, 0, and hence f (T) = 0. 

8.2.6 One-Sided Cost Functions 
Another category of cost functions are the one-sided cost functions, Cl(t, x), such 
that liMtIT Ci(t) X) = oo, but in which symmetry in x is not a requirement. A 
similar set of results may be established about an optimal stopping boundary in 
such a case, where stopping rules of the form 

stop at Bt xx f (t) (8.26) 

stop at Bt xt f (X) (8.27) 

are sought. 
In a similar manner to the two-sided case, we shall assume that C, E C1,2 

and apply It6's formula to obtain 

dC, t = 
ac, 

dBt + D, (t, Bt) dt, 
ax 

where 1 a2C, OC, 

DI(t, x) = -- + 
2 aX 2 

at " 
We can then use properties of D, in a similar way to those of D earlier, to produce 
equivalent results. 

We also need the one-sided analogues of (Pl) and (P2). Define 

C+ (ti X) Cl(ti X) - 
Cl(t 

- 
t2 + tj, x) (t2 <, t< T) 

5 1 

and let (Plb) be the following condition: 

(Plb) For each tj < t2 there exists 6 : --: 6(tl i 
t2) 

such that 

01 C, 1 (T - E, x) 
Ox 2 

Similarly, let 

acl+ >, 0 for allx, t >T-e> t2 
at 

is Lipschitz continuous and non-negativelfor all x. 

C7(ti X) ::: -- cl(ti X) - 
cl(ti X- x2 + Xl) (x Xi), 
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and (P2b) be the condition 

(P2b) For each x, < X2 there exists 6 ::::::::: 6(Xl 
i X2) such that 

acT >! 
-, 

0 for all t>T-E, x> xi, 
at 
aC1 (T - E, x) >, 0 for all x> xi) ax 
C1 (T - e, x) is convex for x> xi. 

Theorem 25 If Dl(t, x) is non-decreasing in t and x, (Plb) and (P2b) hold, 
then there exists an optimal stopping bound f, which is non-increasing. 

Proof 

We may use the same coupling techniques as in the proofs of Theorems 20 

and 22 to establish the existence of rules of the form (8.26) and (8.27) above. 
Note that we have no problems, with the coupling, in the proof of a rule of the 
form (8.26), and need not make any further restrictions on xi andX2 other than 

X1 < X2. We may, therefore, use the obvious coupling for all paths. 

* 

Let gl(t) satisfy Dl(t, gl(t)) = 0, for all t. We have the following theorem 

about gj. 

Theorem 26 If for large N > 0, some E>0 we have 91(t) < -N for all t> T-E, 

and the value of C(t, gi (t)) is bounded for such t, then f (t) > gi (t) for all t. 

Proof 

The proof follows in virtually the same fashion as that of Theorem 21. Our 

condition involving N ensures a small probability of not exiting gi prior to T-E 

replaces the condition on the way g approaches zero in the earlier theorem. The 

cost bound performs the same task. 

Finally, the results on continuity follow in a similar manner. 

Theorem 27 If f is non-IncreasMg, then f is right continuous. 

Theorem 28 If f Zs non-ZncreasZng, gi is Lipschitz contznuous, and for x> gl(t) 

we have: C(t, x) is convex in x for each t, bounded on bounded (t, x) and 

C(t, x) - C(t - e, x) > kEP, k= k(t, x) > 0, for some p>0, e suff. small, 

then f Zs left continuous. 

The proofs of these results mirror those of Theorems 23 and 24. 
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8.2.7 Remarks 

Cost Functions with Other Processes 

As an alternative to Brownian motion, assume another diffusion is used, which 
satisfies 

dXt = or (t I 
Xt) dBt +y (t, Xt) dt. 

If a time-scale change to a Brownian motion is not possible, then we can use the 
following approach. LettingC2(t, x) be a cost function of the form previously used, 
andC2t = C2(t, Xt) be the corresponding cost diffusion process. It6's formula 
yields 

OC2 1 02C2 OC2 
dC2t dXt + -- + dt ax 

(2 
OX2 

at 
) 

o, (t, Xt) 
OC2 

dBt +1 
02C2 

+ 
OC2 

+ P(t, Xt) 
OC2 

dt. qX2 
09X 

(-2 

c ax 
Thus, we can repeat the earlier results by considering 

102 C2 
19C2 0C2 

D2(4 X) : -- -- +-+ fl(t, X) 
2 aX2 at ax 1 

2C ac 
instead of the usual D(t, x) = ý'ý, q'ý2+ and assuming properties of this function. 2 i9X2 

No Time Horizon 

In cases where limt,,,,, C(t, x) = oo, so that no time horizon naturally exists, 
there are two options worth considering. The first of these is the idea used in 
the worked example, of performing a time-scale change to produce a new, but 

related, problem which does have a time horizon. It should be noted, however, 

that properties, such as a non-increasing boundary, may not be true for both the 

original and transformed problems, although results such as existence, and lower 
bounds, will transform between frameworks. 

The other alternative approach is the modification of the proofs of the The- 

orems, by allowing T --ý oo. This will require some restatements of assumptions 

and required properties, notably the alteration of "t >T-C for some 6 (small)" 

to "t >T for some T (large)". One technique for this would be to artificially add 

a time horizon T, by altering the cost function, to C* say, and letting T --+ oo, so 
that C* -+ C. 

Numerical Approaches 

Direct attempts to numerically calculate the optimal stopping bound include the 

method explained in Bather, Chernoff and Petkau (1989). This method approx- 
imates the process by a random walk, which is run on an appropriate lattice. 
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Then, working backwards from a time horizon, when stopping is optimal, it can be determined, at each point of the lattice, whether it is optimal to stop or con- tinue, and an approximate boundary can be placed to separate the two regions. Thus, if the lattice is made fine enough, the accuracy of this boundary to optimal- ity can be made arbitrarily small. Clearly, for finer lattices, the computational 
effort becomes larger, especially as the time interval between each step becomes 
smaller, and more points are required for determining the boundary over a set 
time interval prior to the time horizon. Consequently, this method is probably 
best suited to finding the asymptotic behaviour of the boundary, close to the time 
horizon. 

One method, which can be employed to help determine the form of the opti- 
mal stopping boundary, is numerical optimisation. Although this method cannot 
guarantee to find the optimal boundary, it allows us to optimise over classes of 
boundaries. We look at boundaries of the form fk(t) = kb(t), for some fixed 
function b, and seek to optimise over the choice of k. In order to accomplish this, 
we need to calculate 

Elk [C(7k 
i 

fk(7»k» 1 XO ý-- 01 
, 

which invariably requires the use of exit distribution approximations. However, 
if it is assumed that the accuracy of the various distribution approximations is 

similar, for values of k close together, we might still be able to optimise over k. 
The choice of the function b is largely dependent on the problem in question. 
If we have a one-sided stopping boundary, we may consider classes of b so that 
fk is linear. In such a case, the Bachelier-Levy formula provides the exact exit 
density, and then our optimisation over this class of boundaries would be precise. 
Perhaps a more suitable choice of function b is that of the known lower bound to 
the optimal stopping boundary. 

In the worked example, we search for the optimal stopping boundary of the 

form fk (t) =k (T - t)2 
, recalling the lower bound to the optimal stopping boundary 

is c(T _ t)2 
. 

To produce an approximate first exit density, the tangent approxima- 
tion (Strassen (1967)) is completely unsuitable, as we have a two-sided boundary, 

which is convex decreasing in the upper half plane. Consequently, we shall use 
the UDHRR method of section 2.6.4. Using this approximation, for a variety of 

choices of c and T, the optimal choice of k was found to be as follows: 

0.5 
c 

2 3.59 2.79 2.27 1.64 
4 6.88 6.67 5.48 4.19 
8 15-95 13.36 12.00 9.78 

Analysing these results, we notice that the optimal value of k increases in T 

and c. Notice that in the case c=2, T=0.5, the optimal choice is k=1.64. That 
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is, the optimal curve of the form k(T _ t)2 lies below the known lower bound, and 
is contained within the supermartingale region of the cost diffusion. The initial 
response to this would be that the error is caused by an inaccuracy in the exit 
distribution approximation. 

We could verify this by simulation. It should be noted, however, that simu- 
lation is very computer expensive, particularly for optimisation. To obtain sim- 
ulated results, to the same accuracy, takes about fifty times as long as it takes 

using the UDHRR approximation method. This is generally not practical when 
many examples need to be considered. 

To save some time, three pairs of c and T were investigated, and a selection 
of values of k were chosen, in order that an approximate value for the optimal 
choice could be found. The same level of accuracy as before was not sought, and 
the results from simulating 200000 paths, in each case, are as follows: 

Case c=I, T=1 Expected cost 
k 

0.6 0.904245 
0.7 0.898620 

0.75 0.897035 
0.8 0.896590 

0.85 0.896655 
0.9 0.897565 
1.0 0.901430 

Case c= 2) T=2 Expected cost 
k 

1.7 2.219855 
1.75 2.217765 
1.8 2.214525 
1.85 2.214510 
1.9 2.215520 
1.95 2.216130 

Case c= 21 T=0.5 Expected cost 
k 

1.4 0.938750 

1.5 0.938190 

1.6 0.938150 

1.7 0.938670 

1.8 0.940220 

1.9 0.942255 

2.0 0.944700 
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One noticeable feature in all three cases is that the optimal choice of k, in each case, is less than the value of c, which corresponds to the theoretical lower bound 
to the optimal stopping boundary. Therefore, these optimal values of k cannot be correct and there are two possible explanations. Either insufficient simula- tions have been produced, leading to statistical errors, or a fundamental error is 
incurred when using the simulation approach. 

We consider the standard errors on the expected costs found by simulation. In 
each case, the magnitude of the standard error is approximately the same for each 
value of k, and the approximate values of the standard errors are given below: 

Case Standard Error 
c= 11 T= ±O-015 
c= 21 T=2 ±0.1 

c= 21T = 0.5 ±0.01 

In all cases, the standard errors are sufficiently large for us to be unable to con- 
clude that the optimal choice of k is definitely less than c. The sizes of the errors 
would suggest about 20 million paths need to be simulated. This is completely 
impractical. 

There are also systematic errors in the simulation approach. Consider the 
following. Let 

A(k, t) = C(t, fk (t)) 
(c 

+ 
kt 

(T - t), 
T) 

so that 
OA 

= (k - c) - 
2kt 

and 
a2 A 2t 

at T akat T 

So, for t< T/2,2-A- is more negative for smaller values of k. Consequently, 
at 

the inaccuracy due to stopping too late is accentuated for smaller k. Because 

a discrete time approximation to Brownian motion is simulated, the stopping 
times are slightly greater than they ought to be. Combining these two ideas, 
the expected stopping costs for these examples are too small, and this error is 
increased as k gets smaller. The exit distributions for the curves with k=1, T=1 

and k -- 21 T=0.5 have been found by simulation (see Fig 8.1). In these cases, 
most exits occur prior to T/2. It is reasonable to assume that this is true for all 
choices of (k, T) investigated in the cases c=1, T=I and c=2, T=0.5. This 

possibly contributes to the phenomena seen, of the optimal choice Of fk(t) being 

inside the supermartingale region of the cost diffusion. 

It should also be noted that increasing the gradient of the boundary (or equiv- 

alently reducing k, in this case), increases the probability of the Brownian motion 

path exiting the boundary between consecutive observation times, but returning 

prior to observation. In such a scenario, the exit time is not recorded until at 
least one time interval later than its actual occurrence. This effect will make the 
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Fig 8.1 a- Distribution Function (k=l T=l) 
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Fig 8.1 b- Distribution Function (k=2, T=l /2) 
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expected stopping cost smaller than it ought to be in all cases, more notably for 
smaller values of k. This will, to some degree, negate the increasing error for 
larger values of k, when exits occur after t= T/2. 

8.3 Approximations to Optimal Expected Stop- 

ping Costs 

8.3.1 Introduction 

In optimal stopping problems, the objective is to find a boundary f to minimise 

E, [C(-r, f (-r)) I Xo = xo], 

where C is the cost function and -r is the first exit time across the boundary. 
So far, we have concentrated on the practical side of these problems, finding the 

optimal stopping boundary, so that the objective is achieved. However, we often 
also need to know the value of the optimal stopping cost. 

In many problems, the minimal expected cost cannot be calculated precisely, 
since either the optimal stopping boundary or the first exit distribution are not 
known exactly, but as approximations. In these cases, it is necessary to find an 
error bound on the calculated minimal expected cost, e(c) say, where E is the error 
in the approximated term. It is desirable to have e(E) --+ 0 as e- 10. 

When the source of the error is in the exit distribution approximation, we 

place no restriction on the process for which the results hold. However, when 
the error is in the boundary itself, we require some assumptions on the drift and 
diffusion coefficients of the process. If 

dXt -- o, (t, Xt) dBt +p (t, Xt) dt 
1 

(8.28) 

we insist that there exist oz and v such that 

0<a<o, (t, x) for all t, x (8.29) 

-00 <v< JL(t, X) for all t, x. 

Property (8.29) is usually stated as the infinitesimal generator is strongly elliptic, 

see for example Friedman (1975). 

In many problems, a stopping rule can be found, such that the expected 

stopping cost is within c of the optimal stopping cost. Such a rule is said to 

be e-optimal, (see for example Krylov (1980)). Krylov proves the existence of 

such a stopping rule in a wide class of problems. We use a similar concept when 

using approximate boundaries, as this creates an approximation to the optimal 

stopping rule. When using density approximations, though, we are using the 

optimal stopping rule, but only approximating the payoff. In the two subsections 
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to follow, we shall give a few results of this type. Note that many other results 
are possible, but the forms we have chosen relate most closely to the situation 
encountered in the worked example earlier in this chapter. 

8.3.2 Boundary Approximations 

Notation 

We shall adopt the following notation: 
C(t, X) - The cost incurred when stopping at Xt =x 
f (t), g (t) - Stopping boundaries 

. 
TA - -r, \ = inft>oft: Xt > A(t)}. 
TI - SUP(t, X) ýIat ax 

C sup(t, X) 
I ac 

CA 
- supt I C(t, A(t)) I for boundary function A. 

JAV - Expected cost when stopping at boundary A(t), 

with cost V(t, x). 

The first result is in the infinite time horizon problem, when we have two 
boundaries for which we can calculate the expected payoff. No assumption is 

made that either of these boundaries is the optimal stopping boundary, and they 

could represent an upper and lower boundary to the optimal stopping boundary. 
We make the following assumptions: 

(A 1) f (t) <g (t) for all t, supt (g (t) -f (t)) <E for some E>0. 
(A2) f, g are uniformly continuous functions, with If (t) -f (t + 7)1 < k-Y, 

Ig(t) - g(t + 7)1 < k-y for all t and all 7>0. 
(M) C(t, x) is bounded and has positive, bounded first partial derivatives in 

t and x. 

We then arrive at , 

Theorem 29 If (Al)-(A3) hold and v >, 0 (v defined in (8.29)), then 

JC 
- ifc 

k+l -+ (T+ (k + 1)x )e + 0(63/2). 
g 27ra 

V/f (og + rf)727=ra 

Proof 

In addition to X satisfying (8.28), we require the three additional diffusions: 

Y satisfying dYt 

y2 y2 satisfying d 
't 

Z satisfying dZt 

vdt + a(t7 Yt)dBt 

or(tj y2 
't 

)dBt 

ozdBt, 
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where v and a are as in (8-29). Since we are going to use several diffusions, 
we shall use superscripts to distinguish the hitting times of each process. For 
example, 

Ty = inf It : Yt >, g(t)}. 9 t>O 
Consider a path for which -rfx -- t. By (Al), we must have r,, x >t We are inter- 5-1 - 
ested in those paths which satisfy -rfx -- t and r_x <t+6, for some appropriately 
selected 6. Denote by p= P[, rx <t+6 lrfx 

= t], g- = max,, E(t, t+8)g(s) and let 
h(s) =g- v(s - t). Clearly we have 

P[7"jX <t+6 IT'fX 
= t], 

since prior to t+6, g> g(s). Now note that X always has greater drift than Y, 

which yields 
P[-r, X 

<t+6 
I-rfx 

-- t] >, P[7ýy <t+6 
I-ry 

= t]. 
f 

Allowing for the constant drift difference between Y and Y', 

P[, r, 
y 

<t+6 
17-fy 

= t] = P[, rY' <t+6 
ITfy 2= 

t]. 

Note next that, 

[7_y2 > y2 y2 

h<t+6 
17y2 t] 

", 
P[Tý <t+6 

17f (8.30) 
f 

as h(s) <9 for sE (tit + 6). Finally, consider the time change 

It ol 2(SI y2) 

o-- 
-a2 -' ds, 

which provides 
or(t7 y2 

't 
)dBt = adB, 3(t), 

so that dy2 dZ 
. 

Hence, noting we are looking at exiting a constant bound- 
0-1 Wt 

ary, 
2 

_1(t) +61 
y2 

P [r z<t+6 Irfz 
-- ti P[ yp= t] 

<1 P[ y2 ITy2 
= t] 

'rj <t+f 

since t. Combining these, and using the Bachelier-Levy formula, we 

deduce that 

p >, 21 _'I' 
(k6 + 

as 9f<, k6 + 
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If we select 6=E, we have p >, 2 (1 
- 4ý (1ý10-0-1( VO) 

- 
Also for paths with 

7-g < -rf + E, we have g(-r. ) <, f (-rf )+ (k + 1), E. Using (M), we substitute this 
information into the cost function to obtain 

C(-rg, g(-rg))I(-rg <, -rf + e) C(-rf + E, f (-rf )+ (k + 1)E) 

C(, rf, f(7-f))+TE+(k+I)Tc. 

Denoting by P,, the distribution of the hitting time of A(t), we obtain 

ic c= 
9- 

Jý IIjj [PC (-rg, 
g 

(, rg)) (, r, < Tf + E) 

+ (1 
- p) C (Tg, g (Tg)) I(Tg > rf + E) -C(, rf f (, rf dPf dPg 

Iff 
p[C(-Tg, g(7-g))I(Tg <, -rf + e-) - 

C(Tf, f (, rf ))]dPf dP, 
_, 

p) 
II[C(, 

T_,, g(, T, ))I(, rg > Tf + c) - C(-rf, f (-rf ))]dPf dPg 

(T + (k + 1)T)pE + (1 
- p)(Cf + Cg) 

(T + (k + 1)-X)E + (1 
- p)(-Cf + -Cg 

- (T + (k + 

(T + (k + 1)T)E 
k+1v 

(Uf + Ug 
- 

(T + (k + 1)T)E). 
vra- 

Noting that 2(b 
(k+1 

V/e-) 
k+1 

V/E-0(0) + O(E3/2)j 
we obtain our result. vrc-e -. 

1-ce 

* 

Note that, as C>0, we may replace C,, + Cf by twice max(C(t, x)), which 

exists by assumption (M). 

We may produce a similar result for v<0. 

Theorem 30 If (Al)-(A3) hold and v<0 (v defined in (8.29)), then 

Jc 
- 

ifc I <, (vg + Cf k-v+1 
V/e- + (T + (k + 1)X)e + 0(63/2). 

g V27ra 

Proof 

The proof of this result follows in a similar manner to Theorem 29. The 

only change is in the construction of a lower bound for p, when we produce 
h(s) <9- vb, which alters (8.30) to 

ýr y2 y2 
.12t+61 

y2 

h<t+ 
I'Tf 

=I >- PtTgýv 7f 
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We continue the proof in the same manner as before, and obtain the bound 

«k 
- v)6 + e» 

. 

The remainder of the proof follows as before. 

* 

Remark 
Theorem 29 and Theorem 30 are the same if we use V2 = min(O, v) in the 

statements and proofs of the results. We shall, therefore, use this notation in the 
following theorem. 

In many cases, there exists a time horizon, T, by which time the process 
must have stopped. The result of this, in the two-sided case, is that all sensible 
stopping boundaries (not giving infinite expected stopping cost), are forced to 
have f (T) = 0. Consequently, it may be possible to have the following assumption 
to take this into account. 

(A4) f (t) < g(t), f, g non-increasing , supt(g(t) -f (t)) < E(T - t). 

We then have the following theorem. 

Theorem 31 If (M) and (A4) hold, then 

I, 
T -1/2 (Cg + O(IE3/2). j Jý <+ Of)Vc + (T + TT)E gc -c- 

ývI2- 
-7ra 

Proof 

This proof is similar to that of Theorem 29. In order to establish a lower bound 

on p, we use the same technique, of comparing the stopping times associated with 
the other diffusions, to yield 

11'2 6+ TE)) 

as the non-increasing boundaries make the maximum value of 

V26 - 
f(t), < 

eT -V26- 

We shall again use b=c. The non-increasing nature of the boundaries lead to 

the statement 
C(7g, g(7g))1(7g < -f + 6) -f, f (7f + E(T + (T- 7f 7 

C(7 

C(7f, f(, rf))+E(T+TY). 

132 



The proof proceeds as before. 

* 

Remark 
We will not look at any numerical examples of these results because of the re- 

quirement of the exact exit density across the two different functional boundaries. 
As these are unavailable in the majority of cases, we do not have any natural il- 
lustration to take from our worked example. This will not be the case for the 
density inaccuracies described in the following section. 

8.3.3 Density Inaccuracies 

We shall now look at the cases when the inaccuracy is as a result of exit distri- 
bution approximations, rather than boundary approximations. We shall assume 
that we know the optimal stopping boundary, although this is not strictly nec- 
essary. For, if the optimal stopping boundary is also an approximation, this will 
merely lead to a different error in the exit distribution approximation. No spe- 
cific properties of the boundary will be directly imposed, though properties of the 

cost function evaluated along these boundaries will be assumed. We shall use the 
following notational conventions: 

f (t) The optimal stopping boundary. 

P1, P, - Exact density, distribution function ofTf 

P2 i 
P2 - Approximate density, distribution function of -rf 

J, - Optimal expected payoff (associated with pl, Pj) 
J2 

- Approximate expected payoff (associated with P2, P2). 

We start by looking at the effect of inaccuracy of exit time densities, and shall 

make the following assumptions: 

(A5) C(t, x) is such that C(t, f (t)) is integrable. 
(A6) pi(t), P2(t) satisfy maxt 1pi(t) - P2(t)l < 6- 

We can now prove, 

Theorem 32 If (A5) and (A6) hold, then IJ, - J21 <c fo' C (t, f (t)) dt. 

133 



Proof 

By definition of the expected payoff, we clearly have, 
00 

I J1 
- 

J21 
110 

C (t f (t)) (Pl (t) 
- P2 (t)) dt 

1000 
C(t 

7f 
(0) IP1 (t) 

- P2 (t) I dt 

Oo 
< 

10 C (t, f (t)) dt 

which is the stated result. 

(8.31) 

* 

The next theorem is similar to Theorem 32, except that it assumes that the 
density ratio remains close to one. So we need, 

(A7) pi (t), P2 (t) are such that I P1 () -II<E. P2 (t) 

J 
Theorem 33 If (A5) and (A7) hold, then I- 11 <E I 

J2 

Proof 

Not surprisingly, we can virtually copy the proof of Theorem 32. We need 

only note that 
Pi IP1 (t) 

- P2 (t) I< JP2 (t) IE 

P2 

and so we just have to replace this in (8.31) to see 

IJ1 
- 

J21 < 161 

00 
C (t f (t))P2 (t) dt. 

0 0 
Hence we produce our result. 

* 

The final result involves distribution functions for the exit times across the 

optimal boundary. This requires slightly more restrictions on the cost function 

evaluated along the boundary. We now assume 

(A8) C(t7 f (0) is bounded and differentiable. 

(A9) JP1(t) - 
P2(t)l < E. 

(A10) C(t, f (t)) is monotonic. 

Theorem 34 If (A8)-(AIO) hold, then 
IJ, 

- 
J2 I< 2Cf e. 
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Proof 

Again starting from the definition of expected cost, we have 

Ji Cf (t))pi (t) dt. 
0 

This can be integrated by parts: 

1 00 
C(t, f (t))pi(t)dt 

Oo 
d [C(tif(t))Pi(t)lo 
-(C(t, f(t)))Pi(t)dt 
dt 

Coo - 
00 d 

(C (t 
7f 

(t))) Pi (t) dt 
Jo 

dt 

where C,, = limt,,,. C(t, f (t)) exists by (A8) and (A 10). 
Therefore, 

J21 
d 

(C (t f (t») (P2 (t) 
- P, (t» dt 

lo 
dt 

<ed C(t, f (t»dt 10 
dt 

ei 
COO 

- C(O, f (0» 1 
,< 2Üf e, 

which is the required result. 

* 

Remarks 
Note that assumption (A10) can be relaxed to C(t, f (t)) is piecewise mono- 

tonic. If this is the case, the integral will nee d to be broken up into the monotonic 
sections, and the result will be I J, - J21 < 2kCf e, where k is the number of regions 
into which the piecewise monotonicity splits the time-scale up. 

Finally, we remark that any combination of boundary approximation, and den- 

sity approximation can be handled in the same case, by adding the corresponding 
upper bounds on the errors. 
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Numerical Example 

Consider the stopping boundary f (t) = ±2 1_ t) 
21 

with the associated cost function 

(2 

t1XI 1 
C(t7 X) 

t) 
, +2 

(2 
- t) 

22 

The example has been chosen with the worked example of the optimal stopping 
problem, discussed earlier, in mind and f is the lower bound to the optimal 
stopping boundary. For the purpose of this illustration, we will assume that 
f is actually the optimal stopping boundary. One consequence of this choice 
of f, is that the exact exit distribution to the curve is unknown, and so the exit 
distribution has been simulated. At this point, we should note that, in practice, we 
would simulate the expected stopping cost rather than the exit distribution from 

which bounds on the expected cost are found. However, the current approach 
is taken to illustrate Theorems 32-34. The approximate exit distribution has 
been found using the UDHRR method of section 2.6.4. For one-sided stopping 
boundaries, we could use the methods of Chapter 7 to find the necessary maximum 
values of the difference between exact and approximate distribution functions, 

and so the actual exact values are not strictly needed, making the theorems more 
justifiable. 

We first check the required conditions on C for the theorems to hold. Note 

that we have a finite horizon problem, which requires alterations to some of the 

conditions and definitions to be made. Specifically, we replace 

10 00 
C(t, f (t))dt by 10 1/2 

C(t, f (t))dt, 

0 

and write 
ji = 

11/2 
C(t, f (t))pi (t)dt. 

0 
The final necessary notational change is that C,,. in the proof of Theorem 34 

should be defined as C,,,, = liMtTl/2C(t, f (t)). All properties, such as differentia- 

bility, are also assumed to hold on [0,0.5], rather than R+. 

Checking (M), (A8) and (AIO), we see that 

C(t, f (t)) = (4t + 2) 
1- 

t) =1- V21 
(2 

which is bounded, monotone and differentiable on [0,0.5]. Furthermore, we have 

1 1/2 

C (t, f (t)) dt -1 
03 

and Cf = 1. Thus, all of the conditions required for Theorems 32-34 hold, 

and we need only find the appropriate bounds on the distribution functions and 
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densities. Comparing the simulated values with the approximations, we obtain the following: 

IP1(t) 
- P2(t) I 

P2 (t) 

AM 
- 

P2(t)l 

1.842 

0.982 

0.1032. 

The final information required is that the approximate expected stopping cost is 
J2 == 0.93396. 

We start by applying Theorem 32, although we would not expect a particularly 
accurate result, as in this case iE = 1.842. Nevertheless, the theorem provides us 
with the equation 

0.933961 <1 (1.842), 
3 

which rearranges to become 

0.31996 < J, < 1.54796. 

Similarly, we would not expect Theorem 33 to produce a tight bound on J1, as 
we have F- = 0.982. We obtain 

ii 

-1<0.9827 
0.93396 

1 

or 
0.017 < . 11 < 1.851, 

which is extremely poor. Finally we apply Theorem 34, with E=0.1032. Substi- 

tuting the appropriate values into the theorem, results in the inequality 

IJ, - 0.933961 <2x1x0.1032 = 0.2064) 

which reduces to 
0.72756 < J, < 1.14036. 

Note that, since limtTo. 5 C(tj f (t)) = 0, the proof of Theorem 34 could be amended, 

and the factor 2 dropped. Thus, we could actually establish 

0.83076 < J, < 1.03716. 

Of the bounds found for J1, the final one is the tightest, and would be used in 

applications. As a check, the actual expected stopping cost was also found by 

simulation. After 200000 simulated paths, the expected stopping cost was found 

to be 
J1 = 0.9447 (standard error ± 0.01), 
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which is well inside all the bounds. 
Despite the crudity of the calculated bounds, it should be stressed that the 

theorems ,, e-re proved by worst case estimates, and in many cases, they can be 
tightened, just as Theorem 34 was in our example. The other important fact to 

note is that they can be produced extremely rapidly, especially in comparison 
to the time taken to simulate the actual value. The one drawback is the need 
of the exact distribution of the stopping time, although the methods of Chapter 
7 suggest a way to find the necessary bounds between exact and approximate 
values, without actually finding the exact value. Thus, particularly in one-sided 
cases, the theorems suggested provide fast methods to establish reasonably tight 
bounds on the expected stopping cost. 
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Chapter 9 

Concluding Remarks 

We finish this work with some general comments about the results we have estab- 
lished. The main achievements of this thesis have been made in finding results 
about the first exit distribution of diffusion processes across functional bound- 
aries. The most thorough exposition has been for the case of Brownian motion, 
because this process is the simplest, widely used diffusion. For Brownian mo- 
tion, we can compute analytic bounds on the exit distribution across one-sided 
boundaries (Corollary 4, Chapter7). We have established the necessary theory to 
extend such results to other strongly stochastically monotone processes, although 
explicit forms of the bounds are not currently available. 

Methods to find exact and approximate exit distributions have also been dis- 

cussed. For one-sided boundaries, and the Brownian motion process, we have 
developed the HRT method (section 7.6), which can be shown to be superior to 
the tangent approximation, in the case of concave and convex boundaries. For 

other types of boundaries, the numerical examples we have investigated, suggest 
it is also more accurate. Thus, in the case of one-sided boundaries, the Brownian 

motion exit distribution is best approximated by the HRT method. For two-sided 
boundaries, the previous methodology was limited, and the UDHRR method de- 

veloped, (section 2.6.4), appears to be accurate. The basic method, using only 
Brownian motion quasi- stationary distributions, is most applicable for boundaries 

which are approximately constant, though cancellation of errors makes it work 

well for slowly increasing boundaries. However, the use of time-scale changes, 

and exploitation of the same result for the Ornstein-Uhlenbeck process, enable 

us to produce a good approximation for Brownian motion exiting approximately 

square root boundaries. The UDHRR method is also ap, licable to a wide class 

of processes, for which a limiting distribution of 
[X 1r > t] is available, and may 

provide exit distribution approximations for one- or two-sided boundaries. 

A section of the thesis was devoted to results on stochastic orderings. A 

number of previously known results have been collated7 and grouped with newly 
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established results, to produce a compendium of ordering results (Chapters 3- 
5). The main new results in this section (Chapter 6) enable us to determine the 
existence of strong stochastic ordering, by comparing the forms of the stochastic 
differential equations of the diffusions. This is particularly helpful in situations 
where the distributional properties of either process cannot be found explicitly, 
and so checking the appropriate definitions is not directly possible. As an example 
of the usage of strong stochastic ordering, the application to exit distribution 
theory is illustrated in Chapter 7, where analytic bounds on the exit distribution 

are found. 

The optimal stopping problem (Chapter 8) is primarily included as an exam- 
ple of the application of boundary hitting time results. We have now established 
properties of the drift coefficient of the cost diffusion, which enable us to quickly 
conclude results about the optimal stopping boundary. The properties, of exis- 
tence, monotonicity, continuity and upper and lower bounds, are found using a 

combination of boundary hitting results, and stochastic calculus. 
More direct applications of boundary hitting time distributions are found in 

section 8.3. The error in the calculation of the optimal expected stopping cost is 

computed, when there are errors in either the optimal stopping boundary, or the 

exit distribution across it. These results also provide a natural application of the 

analytic bounds on the exact exit distribution. 
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