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Abstract

Boundary hitting times for one-dimensional diffusion processes have applications
in a variety of areas of mathematics. Unfortunately, for most choices of diffusions
and boundaries, the exact exit distribution is unknown, and an approximation
has to be made. The primary requirements of an approximation, from a practical
viewpoint, 1s that 1t 1s both accurate and easily computable. The main, currently
used approximations are discussed, and a new method is developed for two-sided
boundaries, where current methodology provides very few techniques.

In order to produce new approximations, we will make use of results about
the ordering of stochastic processes, and conditioning processes not to have hit
a boundary. These topics are introduced 1n full detail, and a number of results
are proved. The ability to order conditioned processes 1s exploited to provide
exact, analytic bounds on the exit distribution. This technique also produces
a new approximation, which, for Brownian motion exiting concave or convex
boundaries, is shown to be a superior approximation to the standard tangent
approximation.

To illustrate the uses of these approximations, and general boundary hitting
time results, we investigate a class of optimal stopping problems, motivated by
a sequential analysis problem. Properties of the optimal stopping boundary are
found using analytic techniques for a wide class ot cost functions, and both one-
and two-sided boundaries. A number of results are proved concerning the ex-
pected stopping cost in cases of “near optimality”.

Numerical examples are used, throughout this thesis, to 1llustrate the principal
results and exit distribution approximations.



Chapter 1

Introduction

The central theme to this thesis is the distribution of boundary hitting times for
difftusion processes. We introduce the topic of first exit distributions and review
existing techniques for finding exact, and approximate, densities. We also develop
a new method for approximating exit distributions from two-sided boundaries.
We shall make use of results about stochastic ordering of processes, and these
are presented in a major section of the thesis. They are then applied to provide
new analytic bounds on the distribution function of first exit times, which lead
to a new method for approximating the exit distribution. As an application of

boundary hitting time distributions, an optimal stopping problem i1n sequential
analysis 1s investigated. Each chapter will contain an introduction, which will

provide the most useful background references for the particular section.

1.1 Background

Diftfusion processes are continuous Markov processes, which have a wide variety of
applications. They are used to model continuous processes, such as stock market
prices, and molecular movement. They are also employed to model other random
systems, for instance discrete random walks, or to model deterministic systems,

which have random perturbations. Consequently, distributional properties of one-
dimensional diffusions can be used as approximations for a wide class ot stochastic

pProcesses.
We shall describe a diffusion process, X, by a stochastic difterential equation,

see for example Oksendal (1985). In the stochastic differential equation
dXt — O'(t, Xt)dBt -+ /.L(t, Xt)dt, (11)

B represents standard Brownian motion, p 1s the drift coefficient and o 1s the

diffusion coefficient. We shall always assume, unless otherwise stated, that y and
o satisfy the necessary smoothness and growth conditions to ensure the existence



of a unique strong solution (see, for example Rogers and Williams (1987), section
V.11).

The conditional expectation of a function of a diffusion can often be shown
to satisty a partial differential equation. For example, the forward and backward
equations uniquely specify the transition density of a diffusion process, under ap-
propriate boundary and initial conditions (see Williams (1979), sections 1.4, 1.9).
The analogous forward and backward equations for a discrete time process are
difference equations, which are not usually as analytically tractable as the corre-
sponding partial differential equations. Consequently, approximating a random
walk by a diffusion often allows us to obtain explicit expressions for the distribu-
tion of the process, which might not be available without such an approximation.
Another advantage of approximating a random walk by a diffusion, particularly
in regard to calculating first exit times, 1s that a diffusion has continuous sample
paths. When computing the first exit time for a diffusion, the value of the process
at the exit time 1s known and this can be exploited. However, this value is un-
known for discrete random walks, resulting in a problem known as “overshoot”,
or “excess over the boundary”, (see Siegmund (1985, p165)).

An important partial differential operator, associated with the diffusion, is the
infinitesimal generator. If the diffusion, X, satisfies (1.1), then the infinitesimal
generator, denoted by L, 1s given by

1 0°

-+ ult, 7)o (1.2)

Oz?

The one-sided boundary hitting time, 7, for a functional boundary, f(¢), can

be defined as
r=1inf{t . X; > f(1)},

t>0

where it is usually assumed that X, < f(0). If we further define
$(t,z) = P[r > t|Xo = 1],

then ¢ satisfies
£o=22.
ot

where L is defined in (1.2). By selecting suitable boundary and initial conditions,
the solution to this partial differential equation 1s uniquely defined. However,
explicit solutions are rarely available for particular choices of process and bound-
ary, and hence, approximations are important. Most work has been concentrated
on Brownian motion, the simplest diffusion process with constant drift and dif-
fusion coefficients. The main, widely used approximation, currently available for
Brownian motion is the tangent approximation (Strassen (1967), see also Lerche

(1986)). This is found by approximating the boundary locally by 1ts tangent, and



using the exact exit density for the tangent, which is available. This method has
the advantage of being easily, and rapidly, calculated in a compact mathematical
form. The tangent approximation has also been used as a first approximation,
with extensions and refinements provided by other methods (see for example Jen-
nen (1985)). Other approximations are available, which require varying amounts
of computational effort, such as a multiple integral and summation approach of
Durbin (1992), which also has the tangent approximation as its leading term.
Boundary hitting time distributions are especially important in Sequential

Analysis (see for example Siegmund (1985), Woodroofe (1982)) and Stochastic
Control Theory (see for example Krylov (1980), Oksendal (1985)). In Sequen-

tial Analysis, plans are constructed which determine whether, or not, to continue
observing a process, and the objective 1s to make some inference about an un-
known parameter of the process. As several plans can be constructed with the
same accuracy, comparisons can be made by considering the expected length of
the observation period. For Markov processes, the stopping rules are often de-
termined by comparing the process value with some, possibly time dependent,
value. Thus, the length ot the observation period has the same distribution as a
first exit distribution across some boundary. In a subclass of stochastic control
problems, the available control options are to stop or continue, and the objective
1s to minimise the expected stopping cost. If the costs are only dependent on the
time and current value of the process, the distribution of the stopping time 1s
sutficient to calculate the expected stopping cost.

Other applications of boundary hitting times occur in biology, where popula-
tion sizes are modelled by stochastic processes. Important features of the system,
such as the distribution of the time until extinction, are found using boundary
hitting time methods, see for example Nobile and Ricciardi (1984a,b). In chem-
1stry, the times of molecular collisions are also considered to be boundary hitting
times for diffusion processes, see for example Balding (1988). In this paper, pro-
cesses are run on the circumference of a circle, and so the techniques we develop,
which will rely on the total ordering of the state-space are not applicable.

We shall exclusively consider one-dimensional diffusion processes, which run
on a totally ordered state space, usually R. This enables us to consider the
ordering of processes, which will provide suitable techniques to produce some
new boundary hitting time results. Daley (1968) introduced the idea of stochastic

monotonicity. A process, X, 1s stochastically monotone it
P(X: < z|Xo=21] 2 P[X; < 2| X0 = 2],

for all z and ¢t > 0, and all z; < z,. We use an inequality involving probabilities
to define stochastic ordering of processes. We say process X* is stochastically



greater than process X! (written [X 2] [X ') if
PIX? < z|X?=x0) SPX}! <z|X! =z,

for all ¢, x and zy.

We will make extensive use of processes conditioned not to have hit a bound-
ary, when developing approximations to a first hitting time distribution. How-

st st
ever, 1t does not follow that [th |7'2 > t] > [Xlél |T1 > t} if [ X7] > [X]], where
7, = infyso{t : X! > f*(t)}, for boundary functions f*. For a simple counterexam-
ple, see Roberts (1991a). A natural extension to investigate, would be a stronger

stochastic ordering of processes, which is preserved under such conditioning.
We say a process X 1s strongly stochastically monotone if

Pt(«’l?z yz) Pt(3723 yl)
Pt(fvl yz) Pt(331 yl)

for all ¢, x; < z2 and y; < y,, where py(z,y) 1s the transition density between z
and y (see for example Roberts (1991a)). We define strong stochastic ordering
between two processes using a non-decreasing likelihood ratio. We sa,y process

X* is strongly stochastically greater than process X! (written [X 2] [X ') if

D, t($ ?/2) pit(ic yl)
Ps t(x y2) Ps t(x yl)

(1.3)

for all z, s < t and y; < vy, where p";,t(a:, y) 1s the transition density for process

1 from X! = z to X! = y. It should be noted that other definitions of strong
stochastic ordering are feasible. In cases where the transition density functions

are unavailable, we can define strong stochastic ordering by (X 2] [ 1 if
P[X} € A))P[X] € A > P[X? € A||P[X} € A,]  for all ¢,

and all A; and A, such that a; € A; and a;, € A, implies a; < a,. We may also
define strong stochastic ordering in weaker senses by requiring (1.3) to hold only
for some values of s and . Strong stochastic ordering 1s preserved, in some cases,
after the processes are conditioned not to have hit a boundary.

Strong stochastic monotonicity i1s a special case of total positivity (Karlin
(1968)), which 1s a higher order property of transition densities. A process 1s
totally positive of order n (T P,) if the transition density p;(z,y) satisfies

pi(z1,v1) pi(z2,v1) - pe(Tn,y1)
M, = Pt(wTayz) pt(x?a?ﬂ) pt(:c’rj:ay2) > 0.
pt(xlayn) pt(x%yn) S pt(xnayn)



for all t, zy < 2 < - < z, and y; < y; < -+ < y,. Strong stochastic
monotonicity corresponds to T Ps.

One of the aims of this thesis is to develop results on the ordering of processes
and apply them to produce new results for boundary hitting time distributions.
We will use processes conditioned not to have hit a boundary, and will, therefore,
be particularly interested in strong stochastic ordering, which is preserved under
our conditioning.

1.2 Summary of Chapters

Hitting time distributions are difficult to obtain exactly, and so a great deal of
attention 1s focussed on the calculation ot approximations to them. As a technical
tool to produce such approximations, stochastic orderings will be used, necessi-
tating an 1n depth study of such concepts. New results in this area are found,
and then ordering results are employed to find analytic bounds on the distribu-
tion function of the hitting time, which are easily calculated — an important
consideration when many distributions need to be found.

Following this introductory chapter, the second chapter reviews the current
techniques for finding exact and approximate exit distributions (see Lerche (1986)
for a good general introduction).

In only relatively few cases can the exact first hitting time density be found.
For example, Brownian motion exiting a straight line has its exit density given by
the Bachelier-Lévy formula (Lévy (1965)). Daniels (1982) introduces the method
of images, which 1s one of the techniques discussed leading to exact exit densi-
ties for Brownian motion across more complicated, implicitly defined, functional
boundaries. Partial differential equations for first exit time distributions for more
general processes are investigated using Laplace transtormation techniques, and
also by eigenfunction expansion methods. These methods often yield infinite
sums, the dominant terms dehning approximations.

The main methods of approximation discussed are those which produce com-
putationally simple distribution functions. Of these, the tangent approximation
(Strassen (1967)) is applicable for the Brownian motion exit density across certain
one-sided boundaries, when it can be shown to be exact asymptotically, as the
boundary recedes to infinity. This formula is generalised for other processes by
Durbin (1985), though derived in a different manner. For two-sided boundaries,
we develop a new method which uses quasi-stationary distributions, first used 1n
this context by Roberts (1991b), to produce an approximation for the hazard rate
of the stopping time. This method is also applicable to a wider selection of pro-
cesses. The chapter concludes with some numerical examples of the techniques

introduced.



Atter this overview to the currently available methods for calculating bound-
ary hitting distributions, we introduce, in full detail, the concepts of stochastic
orderings for diffusion processes. The three main orderings introduced are almost
sure ordering, stochastic ordering and strong stochastic ordering. The first two
are well known for stochastic processes, and strong stochastic ordering is a prop-
erty ot the likelihood ratio of the two processes. Six different definitions of strong
stochastic ordering are given, and relationships between the various orderings are
discussed. The chapter also introduces the related topics of stochastic mono-

tonicity (see for example Daley (1968)), strong stochastic monotonicity (see for

example Roberts (1991a)) and total positivity (Karlin (1968)). A number of well
known results are presented, including an almost sure ordering result for diffu-

sions from Ikeda and Watanabe (1981), and some stochastic and strong stochastic
ordering results obtained by comparing processes conditioned not to have hit a
boundary (Roberts (1991a), Pollak and Siegmund (1986)).

In the next two chapters, proofs of a number of simpler ordering results are
given. The first of these look at likelihood ratios for normal random variables,
which will simplify the proofs of a number of results involving processes with de-
terministic drifts. Results indicating the conclusions which can be drawn if two
processes are strongly stochastically ordered are then presented. These are fol-
lowed by a number of more specific results in the cases where the drift coefficients
are tunctions of time only. In these cases, we are able to explicitly calculate
the transition densities of the processes, and can directly verify the definitions
of strong stochastic ordering. This permits us to prove results concerning the

ordering of process bridges and the moduli of processes.
In order to verify that processes are strongly stochastically ordered, the prob-

ability distributions, or transition densities, of the processes are required. How-
ever, these are not always explicitly available, in which case other methods to
establish strong stochastic ordering are needed. In Chapter 6, this problem is
tackled, first by finding necessary conditions on the drift and diffusion coefficients
for strong stochastic ordering. Sufficient conditions are then found on the drift
coefhicients, 1n the case where the diffusion coethcients are 1dentically 1, to ensure
strong stochastic ordering. These new results will allow us to verify whether pro-
cesses are strongly stochastically ordered by looking at the stochastic differential

equations of the processes.

Our attention then returns to boundary hitting time distributions. Using
results involving strong stochastic ordering of conditioned processes, and an ex-
pression for hazard rates in terms of the density derivative (Roberts (1993)), we
can establish a new result producing bounds on the hazard rate of the first exit
distribution for functional boundaries. The bounds are found by comparing the
actual boundary with other boundaries, for which the exit distribution proper-
ties are known. In the important case of Brownian motion, explicit formulae for



these bounds can be given, using straight lines as the comparison boundaries.
These bounds also suggest a new approximation technique, which, for concave
or convex boundaries, can be shown to be a better approximation than the tan-

gent approximation. Numerical examples 1llustrating these bounds and the new
approximation are also provided.

We finish by illustrating the uses of boundary hitting times with an optimal
stopping problem. The optimal stopping problem discussed 1s motivated by a se-
quential analysis problem investigated in Lerche (1986), in which an inference has
to be made about an unknown parameter, based on observations of the process.
With error costs and observation costs, a balance has to be found between observ-
ing and getting more information about the unknown parameter, thus reducing
the error costs, and the cost of this continuation. A solution to such problems can
be found, at least numerically, if the exact exit density i1s known for all bound-
aries. As this is not the case, properties of the optimal stopping boundary will be
investigated by analytic techniques. Throughout this chapter, a worked example
will be used to illustrate the i1deas developed. Some numerical approaches are
discussed involving optimisation over a class of boundaries.

With the possibility of an optimal solution not being found, there follows a
discussion, and a number of results, concerning e—optimality (see Krylov (1980)).
A solution to the optimal stopping problem which has a payoft within € of the
optimal payoff is termed e—optimal. A number of theorems are proved, and
applied in a numerical example related to the optimal stopping problem discussed
earlier in the chapter.

1.3 Notation

Before proceeding with the main body of the thesis, we shall give some notational
conventions which are adopted throughout. Firstly, all processes will be denoted
by an upper case letter, usually X, Y, Z or B. The time index will be denoted by
a subscript, such as X;. In order to label processes, when many are required, we
shall use superscripts. Thus X' will denote process 7, rather than the process A
raised to the 7th power. The process B will always be assumed to be a standard

Brownian motion.
The distribution law of process X will be denoted by [X]. So, for example,

we have

B:|Bo = 0| ~ N(0,).

The use of o and O as orders will be as follows:

f(z) =o(g9(x)) = Em f(z) _

lo g(z) >




— T 1m f(z) —
f(:l?) T O(g( )) = 1:1:10 g(:r:)

for some k such that 0 < |k| < 0co. The same notation will be used if the limits
are as £ — [. Note that the definition of O is not the standard one.

Weak convergence of distributions will be denoted by =>. For example, if
X", n=1,2,..., converges weakly to X, we shall write

k,

X" = [X] as n — 0o
A process X € LP i1s such that

E[| X}|] < oo, for all .

For the function f(t,z), we will usually denote the partial derivatives by g—i,

et cetera. However, for typographical reasons, especially in Chapter 6, we will

0
f:v(ta 33) — 'é':J:'a

and similar notation for higher order partial derivatives.

also use



Chapter 2

Exit Distributions

2.1 Introduction

Let X be a continuous time Markov process on R, and suppose A C R2. We

define
T =1nf{t: (¢,X;) ¢ A}.

t>0

Then, the random variable 7 is known as the first exit time from set A. We shall

normally assume that A = {(¢,z) : z < f(¢)}, where f : [0,00) = RU {o0}. In
such cases, 7 1s called the boundary hitting time, and written

r=inf{t : X; > f(t)}.

t>0

It 1s generally assumed that (0, Xo) € A, or alternatively X, < f(0).
In this chapter, we shall investigate the distribution of 7, for various processes

X and boundary functions f. We shall review the methods which produce exact
distributions for 7, and also consider the techniques which lead to approximations
to the exact distribution. We also introduce a new approximation in the case of
Brownian motion exiting a two-sided boundary. We shall deal exclusively with
one-dimensional diffusion processes, and usually this will be Brownian motion. A

good general introduction to this subject 1s provided by Lerche (1986).
Boundary hitting time distributions are particularly useful in Sequential Anal-
ysis (see for example Siegmund (1985)) and in Optimal Stopping Problems (see
Chapter 8). In sequential analysis, it 1s frequently the case that discrete time
processes are used. When seeking first exit distributions, this leads to the techni-
cal complication that the value of X, 1s unknown, but greater than the boundary
value. The difterence 1s termed the “overshoot”. To allow for this Siegmund dis-
cusses some methods of Woodroofe (1982), which estimate the distribution of the
overshoot using renewal theory. Using these results, and a continuous approxi-
mation to the process, the exit distribution for the discrete time process can be



accurately approximated. We shall only consider continuous time processes, and

make no allowances for the overshoot when modelling discrete time processes by
continuous ones.

2.2 Exact Distributions

2.2.1 Straight Line Boundary for Brownian Motion

We begin by considering the simplest example of a process exiting a boundary.
Let B be a standard Brownian motion, with By = 0, and define

= ; P
T %Eg{t Bt (1}

where a 1s a positive constant.
The most important result of this section is the Bachelier-Lévy formula (Lévy

(1965)).

Theorem 1 (Bachelier-Lévy formula) Let p(t) denote the density of the dus-

tribution of 7. Then,
N @ a
1 —a:2/2_

where ¢ 1s the standard normal density function, that 1s ¢(x) = —e

We shall give a simple proot of this result.

Proof

One way to derive this result is by using the reflection principle (see Karlin and
Taylor (1975, p345)), which uses the symmetry of the distribution of Browman
motion, and the fact that it has independent increments. Thus if B;, = a, the
distributions [B; — a] and [a — B;] for t > t, are identical, using the strong Markov
property of Brownian motion. Hence, for each path such that B; > a, 1t tollows

firstly that 7 < ¢, and secondly, there is a corresponding path, such that B; —a =
a — B, for all s € [1,t]. This path has B; < a, and B, = a for 7 < t. Thus 1t
is easily deduced that P[r < t] = 2P[B; > a]. Using the well known result that
Brownian motion is normally distributed, with zero mean and variance equivalent

to the time elapsed, 1t 1s clear that

P[Tgt]zz(l—cb(%))

where ® is the standard normal distribution function.

10



Difterentiation of this result leads to the Bachelier-Lévy formula.

*

Before proving a corollary to this result, we require the following result, the
Cameron-Martin-Girsanov Theorem. This gives a simple form for the Radon-

Nikodym derivative between two probability measures induced by stochastic dif-
ferential equations.

Lemma 1 (Cameron-Martin-Girsanov Theorem) Let B denote the Borel
o-algebra on R and C§ the space of twice continuously differentiable functions.
Suppose X satisfies

dXt — b(Xt)dt + O'(Xt)dBt,
with Xo =z, bER, 0 > 0. Then suppose another process Y satisfies

dY; = a(t,w)dt + b(Y:)dt + o(Y:)d B,

with Yo = z, and where a(t,w) is B X F-mble, w — fi(w) = a(t,w) 15 F;-mble for
all t and finally E[f; (a(t,w))?dt] < oo for all T < oo.

Define Z by dZ, = (o' (Y2)a(t,w))*dt — o' (Yi)a(t,w)dB:, Zo =0, and let
M, = eZt. Then, for all0<t; <ty <--- <t < t, and dll f; € C§,

E[Mtfl(yh) S fk(Ytk)] — E[fl(th) C fk(th)] .

For a proof of this result, see for example Liptser and Shiryayev (1977). We
now proceed to a corollary of the Bachelier-Lévy theorem.

Corollary 1 Consider the process X satisfying

with Xo = 0. Define 7, = infiso{t : Xy > a} and p, to be the density of the
distribution of 1.

Then,

a a — [t
p#(t) — t_:3/3¢ ( \/EM ) .
Proof

We apply the Cameron-Martin-Girsanov Theorem. In this case,

1
dZt — -é-/,l,th — /.LdBt,

11



so that
My = exp {H2t/2 — ﬂBt} ;

assuming By = 0. However, when considering the first exit time at ¢, we have
B; = a, so that

M; = exp {pzt/Q — pa} .
Thus,

exp {-;—uzt = ua} Pu(t) = po(t),

where po 1s found using the Bachelier-Lévy formula. Rearranging this expression
provides the claimed result.

*

It should be noted that adding a constant drift to Brownian motion, and
exiting a constant boundary is equivalent to exiting the boundary a — ut by a
standard Brownian motion.

Written 1n a simpler form, we have thus shown that if

T = inf{t : Bt 2 a+bt},

t>0

then the first exit density p(¢) can be expressed as

p(t) = t—;-gqb (a:;;t) ,

which 1s the more commonly stated form of the Bachelier-Lévy formula.

Giorno, Nobile and Ricciardi (1989) extended the idea of applying the reflec-
tion principle (see for example Karlin and Taylor (1975)) to find exact first exit
densities for other processes. Under certain symmetry conditions on the transi-
tion density of the process, and provided that the boundary is selected to satisty

another condition, they find that
Plr <t] =2F(p(z,y,t)),

where p 1s the process’ transition density, and F' is a given function. In the Brow-
nian motion case, the Bachelier-Lévy formula is attained using F(p(zo,y,t)) =
[° p(xo,y,t)dy in the above formulation, with constant boundary a.

12



2.2.2 Eigenfunction Expansions

Let X be an Ito diffusion, with X, = 0. That is, X has drift and diffusion

coefficients which satisfy

|p(t,3:)|2 + |0'(t,33)|2
u(t,z) — p(t,y)l + |o(t,z) —o(t,y)

K[l +[z|"]
K|z — y| for some K < .

VAS/A

Consider the two-sided stopping time

T =1nf{t: X; ¢ (=b,a)},

t>0

where a and b are positive constants, and define ¢(¢,z) = P[r > t|X, = z]. Then
it 1s well known that ¢ is the unique solution to the partial differential system

(see Friedman (1975)):

Lip = 3—f
¢(t,a) = 0 (t#0) '
s(t,—b) = 0 (t#0) (2:1)
$(0,z) = 1 (-b<z<a)

where £;- is the infinitesimal generator of the diffusion. (In the general case where

X satlsﬁes dX; = o(t, Xt)dBt + u(t, X;)dt, then X has the infinitesimal generator

Lo = Lo?(t,2) 55 + plt, 7))
We now assume the process to be tlme homogeneous, and so we have the
infinitesimal generator L; = £+ = 2(:1:) - + p(z)2:, where p and o satisfy the

necessary growth conditions to ensure a unique solution to the partial differential

equation.
We shall seek a solution to (2.1) of the form

o(t,z) = ; ar(t)exr(z),

where the functions ex(z) (k = 1,2,---) are eigenfunctions of the infinitesimal

generator, which satisfy the boundary conditions ex(a) = 0 and ex(—b) = 0 for
our particular choice of @ and b. The a(t)’s are appropriately chosen weights. For
this approach to work, we require the differential operator to have eigenfunctions
leading to a countable number of distinct eigenvalues. Substituting this form of

¢ into the partial differential equation, we must solve

Zak(t)[:ek(:c) — z @—Eek(l‘)

13



subject to the boundary conditions. Using the eigenfunction property, this re-
duces to

Zk:ak(t)/\kek(w) =) %ek(w),

k

where Ar 1s the eigenvalue associated with eigenfunction e;.

Provided that the ei’s form an orthonormal basis with respect to some inner
product, taking this inner product with e; on both sides yields

daj

Aja;(t) = 7

or equivalently

a;(t) = c;e™".

where c; 1s a constant.

Since we are dealing with a one-dimensional diffusion in most cases, this ex-
pansion 1s possible, and the inner product can be written as

(£,9) = | f(@)g(@)p(x)dz,

where p = ‘2—":, the derivative of the scale measure with respect to the speed mea-
sure of the process (see for example Karatzas and Shreve (1988, Chapt. 5)). In
the most convenient cases, it i1s possible to find an orthonormal basis of eigen-
functions, which also has distinct, non-clustered eigenvalues. In particular this
means that, as all eigenvalues are negative, the dominant term asymptotically, 1s
the term corresponding to the least negative eigenvalue, and we have

o(t, z)

_ 1 (/\2—)\1)75 t,
——-—616)\”61(33) + € g(t, )

— 1 ast — o0,

for some function g.
The final solution 1s of the form

gb(t, .CL') — Z CkeAktek(:C).

The initial condition can be used to determine the values ci, and the boundary
conditions are satisfied by choosing the e, so that ex(z) =0 at x = a and r = —b.
Thus denoting the inner product by (-,-), we have the final expression ot

o(t,z) = Z (1, ex) eAktek(x)'

k
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Example: Brownian motion

As an example, consider the case of X; = B;, and again 7 is defined as

T = inf{t . By ¢ (_b’ a)}

t>0

To find the eigenvalues and eigenfunctions, we solve

1 d?e
a1
subject to the constraints that e(a) = e(—b) = 0. Clearly, if 2\ = —m?, we have

the solutions

e(z) = Asin(mz) + B cos(mz),

to the differential equation, which we can solve for A and m by selecting B = 1.

(Any constant multiplier of an eigenfunction is also an eigenfunction — we only
seek the functional form in z.) Substituting the boundary conditions, we find

cos(mb) _
sin(mb) and sin(ma + mb) = 0
Theretore, we select
nmw
m = forn=1,2,---.
a-+ b

Summarising this, we see the functional form of the eigenfunction 1s

nn

a4+ b

(e +b)],

en(2) = sin [

with corresponding eigenvalue

?’L27T2

= et b

Normalising the e,, by using the inner product
(f,9) = [_b f(z)g(z)dz,

(as p(z) = 1), we see an orthonormal basis of the space of C* functions with

f(a) = f(—=b) =0, is given by

15



Thus, we deduce

P[T >t|Xo — 1;] g(l,en)eXp{—éé—z—z_:—z)—{t} sin[ nm (x""b)]

ol 25w ]

Note that, 1n the symmetrlcal case a = b, this reduces to

4 _(2k=1)2x2 (2k — 1)z
Plr > t|X — B L BaZ ¢ 2 1. (2.
T X =2] = kz_:l( 1) (2F - 1)ﬂ_e COS ( » ) (2.2)

Notice that the asymptotic behaviour is closely approximated by the leading
term, and for small boundary values a, only a few terms would be necessary to

calculate P[7 > t]| in practice, due to the fact that the probability is the sum of
exponential terms. For a = b =1 and t > 0.2, after about twenty terms of this
sum, the summands are effectively zero, to computer accuracy of about (10)7°°,
and so truncation of the infinite sum is justifiable at this number of terms.
Notice, also, that the non-symmetrical case can be used as a basis for a one-
sided approximation, by l'etting b become large. In such a case, the first exit

time across the two-sided boundary will be a good approximation to the case ot
a single boundary at a, since the probability of the first exit being across —b i1s

very small.

Example: Ornstein-Uhlenbeck process (Symmetric Boundaries)

Consider the Ornstein-Uhlenbeck process satistying the stochastic differential
equation -

d.Xt — dBt — EXtdt

Let 7 = inf;so{t: | Xi| = a} and (¢, .’E) P[r > t|Xo = x|, which is a solution of
the partial differential equation L¢ = 77. We will also define

= {C* functions, f such that f(z) = 0 for x = %a}.

Clearly for fixed t, the function ¢(-) = ¢(t,-) € S. Furthermore, we define the
inner product

(£,9) = | f@)g(@)e 5 d

under which our operator L is self adjoint.
We can then use spectral theory, (see for example Dunford and Schwartz

(1963)) and deduce that the eigenfunctions of £ form an orthogonal, spanning set
of S, under the inner product defined above. We may now express ¢ as

o(t,z) = Z (0, €:) ei(T),

16



where the e;’s are eigenfunctions satisfying

1_4_23 ar de \
2 dx? 2 dzr T
subject to the condition that
e(£a) = 0.

T'his system 1s solved by confluent hypergeometric functions, and in particular by
parabolic cylinder functions (see Erdelyi (1953)).

The importance of this result is in the calculation of first exit time distributions
for Brownian motion across square root boundaries. This is because the Ornstein-
Uhlenbeck process may be expressed as

8
e” 2"

Ja

which makes 1t a time changed Brownian motion. A consequence of this time-scale
change 1s that constant boundaries for the Ornstein-Uhlenbeck process correspond
to square root boundaries for Brownian motion. That is

Xt — Becrt,

> a}E {|Beat| = ar/ae2'} = {|B,| > av/a /s, s = e*t}.

(X, > a} = {

This connection will be discussed further in a later section.

2.3 Implicit Function Methods

2.3.1 Method of Images

Consider B to be standard Brownian motion, started from By = 0. For this
process, there exist methods to find exact exit distributions across more complex
functional boundaries. One such technique i1s the so-called method of images

(see for example Lerche (1986) Chapter 1, Section 1, or Daniels (1982)). This
idea revolves around looking at the density of the Brownian motion distribution,

which in addition to its point mass at zero starting measure, also has a negatively
weighted starting distribution on the positive real state space (for example a point
mass at (0,1) in the (¢,z) plane). If we define this starting measure to be F'(df),

and

6—(3:'—9)2 /2tF(d9)

1
h(t,z) = e~ % /% _ g1 /

1
V27t V27Tt
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to be the density of the resulting Brownian motion under this mixed starting
measure, then 1t can be shown that there exists a unique solution, z = f(t), to
the equation h(t,z) = 0, for each t. We can then define

T = inf{t . By 2 f(t)}

£>0
= %1>1£ {t : B; = f(t)}, by continuity of the process,
= %I;g{t : h(t, B;) = 0}.

Several results can be proved about h(t,z), and its relationship to the exit

distribution and density from f(t) (see Lerche (1986) for the proofs). It is known
that h satisfies the following set of equations:

o _ 10
ot 2 0zx?
h(t, f(t)) = O for all ¢t > 0

0o Ol (—OO,f(O))

where 0p denotes the Dirac measure at zero. Note that these are virtually the
same set of equations as (2.1), satisfied by ¢. The only difference is the initial
condition, where a starting measure 1s given as opposed to a probability. Again,
the boundary condition 1s that the function 1s zero on the boundary. However,
defining p(t,z) = %(P[T > t,B; € dxl), 1t is easy to verify that p also satisfies
this system, and 1t can be deduced that

Plr > t,B; € dz] = h(t, z)dx,

using the uniqueness of the solution of such a parabolic differential system. Fol-
lowing from this result, by conditioning, we have

h(t,x)
1 T
74 (%)
where ¢(z) denotes the standard normal density function. This leads to the exit
distribution P|7r < t] on integration. That 1s

Plr<tj]=1—-2@ (i\%—)) +a”’ /Oooq) (f(t\)/z— 9) F(do)

where ®(z) is the standard normal distribution tunction.
The final result provides a direct link between the first exit density and h(t, z).

Specifically,
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which is shown by differentiating the result that P[r > t] = [/ c(;) h(t,y)dy. Thus

once we have calculated h(t,z), we can quite rapidly work out f(t), and its exit
distribution and density. These results can easily be extended to Brownian motion
with drift by the Cameron-Martin-Girsanov formula.

Examples

We can verify the Bachelier-Lévy formula. If we choose the extra starting measure
to be a point mass at 26, then we can calculate h(t,z) to be

1 T 1 r — 26 |
h(t,z) = —¢ | —| —a ' — .
(,2) \/ﬁ(\/z) ’ \/ﬁ( i )
This has the property that h(t, f(t)) = 0 for f(t) = 6 + °2¢, which is a straight
ine. Now differentiation of h with respect to z, and setting = f(¢) produces

p(t) = t3—6;2-¢ (i\/?) ,

which 1s the familiar Bachelier-Lévy formula. Obviously, by varying the start-
ing measure F', and the weighting factor a, more complex boundaries may be
produced.

An extension to this method i1s to use a starting measure F' which takes values
on the whole real line. The effect of this alteration is that h(¢,x2) = 0 no longer
has a unique solution, and instead, there exist two curves, f,(t) > 0and f_(t) <0
which satisfy this equation, and thus we can find the exit density in some two-
sided cases.

As an example of this, and of a more complex boundary curve, we shall give
the example of a family of curves discussed by Daniels (1982). In this example, a
will be taken as 7k, and F(df) will consist of symmetrical point masses, that is
F =6, + 6_,. In such a case, the two solutions to h(t, f(t)) = 0 can be given as

t 1 -
— 4 h—l (_ o /2t) |
fi(t) :I:a COS e

the shape of which has different properties according to the values of k chosen.

When k& > 1, only values of t < t; = a*/(2logk) produce real values for
f(t), which in practice means that the two sided boundary 1s closed at ¢t = ¢,
and so, the stopping time 7 < t;. Indeed its behaviour near ¢; can be shown

to be approximately ++/¢; — t. But when k£ < 1, for large ¢, f(t) =~ vt + O(1),
where v = (1/a) cosh™ (1/k), and this case has the property that k represents the
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