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Oncolytic viruses (OVs) are novel immunotherapeutic agents whose anticancer effects
come from both oncolysis and elicited antitumor immunity. OVs induce mostly immuno-
genic cancer cell death (ICD), including immunogenic apoptosis, necrosis/necroptosis,
pyroptosis, and autophagic cell death, leading to exposure of calreticulin and heat-shock
proteins to the cell surface, and/or released ATP, high-mobility group box 1, uric acid, and
other damage-associated molecular patterns as well as pathogen-associated molecular pat-
terns as danger signals, along with tumor-associated antigens, to activate dendritic cells
and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive
antitumor immunity. The mode of cancer cell death may be modulated by individual OVs
and cancer cells as they often encode and express genes that inhibit/promote apoptosis,
necroptosis, or autophagic cell death.We can genetically engineer OVs with death-pathway-
modulating genes and thus skew the infected cancer cells toward certain death pathways
for the enhanced immunogenicity. Strategies combining with some standard therapeu-
tic regimens may also change the immunological consequence of cancer cell death. In
this review, we discuss recent advances in our understanding of danger signals, modes of
cancer cell death induced by OVs, the induced danger signals and functions in eliciting sub-
sequent antitumor immunity. We also discuss potential combination strategies to target
cells into specific modes of ICD and enhance cancer immunogenicity, including blockade
of immune checkpoints, in order to break immune tolerance, improve antitumor immunity,
and thus the overall therapeutic efficacy.

Keywords: immunogenic cancer cell death, DAMPs, PAMP, autophagy, tumor-associated antigen, cross-
presentation, immune tolerance, antitumor immunity

INTRODUCTION
Oncolytic viruses (OVs) have been shown to be effective in treat-
ing cancer in preclinical models and promising clinical responses
in human cancer patients (1–3). OV-mediated cancer therapeutic
includes three major mechanisms. The first is the direct infec-
tion of cancer and endothelial cells in the tumor tissue leading
to direct oncolysis of these cells. The second is necrotic/apoptotic
death of uninfected cells induced by anti-angiogenesis and vascu-
lature targeting of the OVs as shown in both animal models and
human cancer patients (4–6). The last is the activated innate and
adaptive tumor-specific immunity, which exert cytotoxicity to sur-
viving cancer and stromal cells. A number of recent studies have
demonstrated that the antitumor immunity has played an impor-
tant role in the overall efficacy of oncolytic virotherapy, which has
been shown to contribute to the efficacy of oncolytic virotherapy
(7–14). In the case of oncolytic vesicular stomatitis virus (VSV),
reovirus, and herpes simplex virus (HSV), the antitumor immune
response is very critical to the overall efficacy of oncolytic virother-
apy, sometimes even more important than that of direct oncolysis
(7, 9, 11, 14).

Oncolytic viruses provide a number of potential advantages
over conventional cancer therapies. First, OVs are tumor-selective
antitumor agent, thus providing higher cancer specificity and bet-
ter safety margin. Second, OV-mediated oncolysis not only leads

to regression of tumor size, but this process provides key sig-
nals to dendritic cells (DCs) and other antigen presenting cells
to initiate a potentially potent antitumor immune response. The
immunogenic types of cell death induced by OVs provide dan-
ger signal (signal 0) and a natural repertoire of tumor-associated
antigens (TAAs) to DCs, both required to trigger an adaptive
immunity against cancer (15–17). The danger signals include
damage-associated molecular pattern (DAMP) and pathogen-
associated molecular pattern (PAMP) molecules derived from the
OVs. Therefore, this process could provide a highly favorable
immunological backdrop for the host to respond and generate
potent adaptive antitumor immunity. However, just like other
immunotherapeutic regimens for cancer, a number of challenges
remain for OVs-mediated immunotherapy. One is that relative
inefficiency of delivering OVs to tumor nodules, viral replication
within tumor mass, and spread to distant metastases dampens
its overall efficacy. Second, most TAAs are self-antigens and thus
weakly immunogenic. As we will discuss below, OVs may enhance
tumor immunogenicity in many cases. Yet, this low immuno-
genicity still is a problem due to the highly immunosuppressive
tumor microenvironment (TME). Third, a highly immunosup-
pressive TME in late stages of cancer often suppresses the activ-
ities of tumor-infiltrated lymphocytes (TILs) generated either
spontaneously or by an immunotherapeutic regimen (18).
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In this review, we will discuss different modes of cell death
induced by various OVs, their potential effects on the subsequent
antitumor immunity. Then we discuss rationales and strategies of
inducing ideal types of cancer cell death by either genetic modifi-
cation on OVs or by combination with specific antitumor agents
that lead to specific mode of immunogenic cancer cell death (ICD).
Finally, we provide some perspective on future combination strate-
gies to improve antitumor immunity for enhanced overall efficacy
of virotherapy.

OV: TUMOR SELECTIVITY AND RELEVANCE OF ANIMAL
MODEL
Ideally, OVs selectively infect and replicate in cancer cells and
cancer-associated endothelial cells, leading to direct oncolysis and
subsequent antitumor activities without harming normal tissue
(1–3). Some OVs display intrinsic tumor tropism (naturally occur-
ring OVs), while others obtain their tumor selectivity through
natural evolution or genetic engineering. The mechanisms under-
lying the tumor selectivity may include altered signaling pathways
of ataxia telangiectasia mutated (ATM), epidermal growth factor
receptor (EGFR),p53,PKR,Ras,RB/E2F/p16,Wnt,anti-apoptosis,
or defects in cellular innate immune signaling pathways or hypoxia
conditions in the TME (1, 3, 19, 20).

Viruses display strict viral tropism, specific for a cell type, tissue,
or species. However, OVs often broaden their tropism to can-
cer cells from non-permissive species to various degrees. As an
example, human adenovirus (Ad) does not infect normal murine
cells, yet infect murine cancer cells even though the production
of infectious virus progeny is often limited. A recent study may
provide some answer to this phenomenon. McNeish et al. have
found that murine cancer cells support viral gene transcription,
mRNA processing, and genome replication of human Ad, but there
is a profound failure of viral protein synthesis, especially late struc-
tural proteins with reduced loading of late mRNA onto ribosomes.
Interestingly, in trans expression of the non-structural late protein
L4-100K increases both viral mRNA loading on ribosomes and
late protein synthesis, accompanied by reduced phosphorylation
of eIF2α and improved anticancer efficacy (21). The key point is
that some OVs display aberrant, non-productive infection in non-
native hosts such as mouse cells, leading to mode of cancer cell
death different from the mode of cell death in native host. As we
will discuss extensively later, the mode of cancer cell death dic-
tates to a significant degree the subsequent antitumor immunity.
As a consequence, the OV-elicited antitumor immunity in tumor
models of syngeneic animals might not be relevant to the situation
in human cancer patients. This is an often overlooked issue when
tumor models in animals are chosen along with OVs as therapeutic
models for human cancer.

SIGNAL 0: DAMPs AND PAMPs
PAMPs: SIGNAL 0s FROM PATHOGENS
In the late 1980s, Charles Janeway proposed that the immune sys-
tem protects the host against infectious pathogens by presenting
the molecules as signal 0s, which is what now called PAMPs, to
the antigen presenting cells (22, 23). PAMPs consist of essen-
tial components of microorganisms that direct the targeted host
cells, key components in the innate immune arm, to distinguish

“self” from “non-self,” and promote signals associated with innate
immunity (24). Major PAMPs are nucleic acids (DNA, double-
stranded RNA, single-stranded RNA, and 5′-triphosphate RNA),
proteins (lipoproteins and glycoproteins), as well as other com-
ponents of the cell surface and membrane (17, 25). Interestingly,
defective viral genomes arising in vivo are a critical danger signal
for triggering antiviral immunity in the lung (26).

This concept of PAMPs has been strongly supported by
the discovery of several classes of pattern-recognition receptors
(PRRs). These PRRs include the toll-like receptors (TLRs), retinoic
acid-inducible gene-1 (RIG-1)-like receptors (RLRs), nucleotide
oligodimerization domain (NOD)-like receptors (NLRs), AIM2-
like receptors, and the receptor for advanced glycation end prod-
ucts (RAGE) (17, 27). It is now well accepted that both DAMPs and
PAMPs stimulate the innate immune system through PRRs. DCs
express a wide repertoire of these PRRs. The binding of PAMP to
its receptors on the APC activates the DCs (28, 29).

DAMPs: SIGNAL 0s FROM HOST
Matzinger proposed what is known now as the “danger theory” in
1994 (30). In the theory, it proposed that the immune system can
distinct self from non-self and dangerous from innocuous signals.
In this model, APCs are activated by both PAMPs and DAMPs
from distressed or damaged tissues or microbes. The theory has
been well accepted in recent years, as we have learned more and
more about how dying cells alert immune system to danger (31).
Over the years, a number of endogenous danger signals have been
discovered. For examples, it was shown that uric acid functions
as a principal endogenous danger signal, which is released from
injured cells (32).

Damage-associated molecular patterns are molecules derived
from normal cells that can initiate and perpetuate immunity in
response to cell stress/tissue damage in the absence of pathogenic
infection. DAMPs vary greatly depending on the type of cell and
injured tissue. They can be proteins, DNA, RNA, or metabolic
products. Protein DAMPs include intracellular proteins, such as
high-mobility group box 1 (HMGB1),heat-shock proteins (HSPs),
and proteins in the intracellular matrix that are generated follow-
ing injury, such as hyaluronan fragments (33). HMGB1 is one
prototypic DAMP (34, 35). The protein DAMPs can be localized
within the nucleus, cytoplasm, cell membrane, and in exosomes,
the extracellular matrix, or as plasma components (17). Other
types of DAMPs may include DNA, ATP, uric acid, and heparin
sulfate. It is interesting to note that mitochondria are a rich and
unique source of DAMPs, including formyl peptides, the mito-
chondrial DNA (mtDNA)-binding proteins, transcription factor
TFAM, and mtDNA itself (36). Following interactions between
DAMPs and PRRs on the target cells, the intracellular signaling cas-
cades triggered by the interactions between DAMPs and PRRs lead
to activation of genes encoding inflammatory mediators, which
coordinate the elimination of pathogens, damaged, or infected
cells (27). In cancer, chronic inflammation and release of DAMPs
promotes cancer, while acute inflammation of release/presentation
of DAMPs may induce potent antitumor immunity and helps in
cancer therapy (35, 37). Based on the work in chemotherapy and
radiation therapy, the concept of ICD of cancer cells has been
established about 10 years ago (37, 38). As we will discuss below,
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this concept leads to development of novel strategies for cancer
therapeutics.

OVs INDUCE MOSTLY MULTIMODALITY ICD AND
RELEASE/PRESENT DANGER SIGNAL MOLECULES
Investigators have long been interested in what defines the
immunogenicity of cancer cells and how we can enhance the
immunogenicity for the purpose of immunotherapy. Pioneer-
ing work by Lindenmann and Klein almost half a century ago
demonstrated that viral oncolysis of cancer cells by influenza
virus increases immunogenicity of tumor cell antigens (39). How-
ever, it was not clear how this immunogenicity was enhanced
at the time. Over a decade ago, it was found that tumor
immunogenicity is enhanced by cell death via induced expres-
sion of HSPs (40). A few years ago, investigators working on
chemotherapy and radiation for cancer therapy have led to this
new concept as they classify the types of cancer cell death by
the immunological consequence, into “immunogenic cancer cell
death” (ICD) and “non-immunogenic cancer cell death” (NICD)
(41–43). The original concept of ICD includes only“immunogenic

apoptosis.” We and others have recently proposed that ICD
includes not only immunogenic apoptosis, but also necropto-
sis, necrosis, autophagic cell death, and pyroptosis of cancer
cells (Figure 1) (44, 45). Basically, cancer cells dying via ICD
have the following common features as summarized by Tes-
niere, Zitvogel, Kroemer, and their colleagues (46). They stated
that, “some characteristics of the plasma membrane, acquired
at pre-apoptotic stage, can alarm immune effectors to recog-
nize and then attack these pre-apoptotic tumor cells. The signals
that mediate the immunogenicity of tumor cells involve ele-
ments of the DNA damage response, elements of the endoplasmic
reticulum stress response, as well as elements of the apoptotic
response” (46). For cells undergoing pre-apoptotic phase, they
may express “danger” and “eat-me” signals on the cell surface
(calreticulin and HSPs) or can secrete/release immunostimulatory
factors (cytokines, ATP, and HMGB1) to stimulate innate immune
effectors (46). For other types of ICD, extracellular ATP, HMGB1,
uric acid, other DAMPs, and PAMPs released in the mid or late
phases functions as potent danger signals, thus making it highly
immunogenic.

FIGURE 1 | Four key modes of cancer cell death and their
immunogenicity. In classic apoptosis, the retention of plasma
membrane integrity and the formation of apoptotic bodies render it an
immunologically silent death mode, or non-immunogenic cell death.
However, recent studies have shown that cancer cells treated with
certain cytotoxic agents (some chemotherapeutic agents and oncolytic
viruses) lead to the cell surface exposure of calreticulin (ecto-CRT) and
heat-shock proteins (HSPs) prior to apoptosis, and other DAMPs

released in the later phase of apoptosis, danger signals to DCs. This is
immunogenic apoptosis. Cancer cells dying by necrosis/necroptosis or
pyroptosis secrete pro-inflammatory cytokines and release their
cytoplasmic content, including DAMPs (ATP, HMGB1, and uric acid, etc.),
into the extracellular space. Some DAMPs (such as HMGB1) can be
secreted through non-classical pathways (25). These later modes of
cancer cell death are ICD. Drawings are modified and reprinted from
Lamkanfi and Dixit (47), copyright 2010, with permission from Elsevier.
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Oncolytic viruses kill cancer and associated endothelial cell
through a variety of types of cell death as classically defined
by the morphological and ultrastructural changes of dying cells.
These include apoptosis, necrosis, necroptosis, pyroptosis, and
autophagic cell death, often with one as the predominant form
of death for a particular OV. By the new definition, cancer cell
death induced by OVs is mostly immunogenic (Table 1). Probably
all oncolytic Ads induced autophagic cell death in cancer cells (48–
51). Coxsackievirus B3 (CVB3) induces immunogenic apoptosis
in human non-small cell lung cancer cells (52). Measles virus (MV)
causes ICD in human melanoma cells, because inflammatory

cytokines and HMGB1 are released, and DCs are activated by MV-
infected cancer cells (53). HMGB1 release often happens in late
stage of apoptosis, during autophagy process and in necrotic cells
infected with OVs. We first reported in 2005 that human cancer
cells infected by an oncolytic poxvirus, led to necrotic/apoptotic
death pathways and release of HMGB1 (54). Later studies have
confirmed and extended the findings of HMGB1 release in can-
cer cells infected with Ads (12), CVB3 (52), an MV (53), vaccinia
viruses (VVs) (55–57), HSV (14, 58), and parvovirus H-1 (H-1PV)
(59). Extracellular ATP is another potent danger signal released
from OV-infected cancer cells (12, 52, 56, 60). The third danger

Table 1 | Oncolytic viruses lead to specific mode of immunogenic cell death and exposure/release of DAMPs/PAMPs.

OV DAMP/PAMP Receptor Type of cell death Immunological functions Reference

Ad5/3-D24-

GM-CSF;

CVB3; vvDD

ATP P2Y2 and

P2X7

Necrosis, autophagic cell death,

and immunogenic apoptosis

Function as a “find-me” signal, and cause

NLRP3-inflammasome-based IL-1β production

(52, 56, 60)

Ad5/3-D24-

GM-CSF;

CVB3

Ecto-CRT

(calreticulin)

CD91 Immunogenic apoptosis (either

pre-apoptotic, early or mid

apoptotic surface exposure) or

secondary necrosis

Function as an “eat-me” signal and it is a potent

mediator of tumor immunogenicity crucial for

elicidation of antitumor immunity

(52, 60)

Parvovirus H-1

(H-1PV)

HSPs: (HSP90,

HSP70,

Hsp72)

CD91, TLR2,

TLR4, SREC1,

and FEEL1

Immunogenic apoptosis

(surface exposure) or necrosis

(passively released)

Surfaced-exposed HSP90 can mediate adaptive

antitumor immunity, while secreted HSP90 can

inhibit TGF-β1 activation; Leads to TAA-specific

antitumor immunity

(65–67)

? (Not

identified)

Histones TLR9 Apoptosis (cell surface

exposure) or accidental

necrosis (passively released)

Released histones can cause initiation of

TLR9-MyD88-mediated inflammation

(68)

Many OVs: Ad;

HSV; MV; VV;

H-1PV

HMGB1 TLR2, TLR4,

RAGE ,and

TIM3

Immunogenic apoptosis;

necrosis; autophagic cell death

Activate macrophages and DCs; recruit

neutrophils; promote in vivo the production of

IFN-γ, TNF-α, IL-6, IL-12, and antigen-specific

activation of CD8+ T cells

(53, 54, 56,

57, 59, 60)

MV-eGFP IL-6 IL-6R and

GP130

Necroptosis A cell type-specific endokine DAMP with potent

pro-inflammatory activity

(53)

Telomelysin

(Ad)

Uric acid P2Y6 Autophagic cell death Stimulate the production of inflammatory

cytokines such as IL-1, TNF-α, and IL-6 and

chemotactic factors for neutrophils such as

IL-8/CXCL8 and S100A8/A9

(61, 69)

Newcastle

disease virus

(NDV)

dsRNA and

other PAMPs

TLR3; and by

the

cytoplasmic

receptors

MDA-5 and

RIG-I

Immunogenic Apoptosis;

autophagy

(1) Upregulation of HLA antigens and ICAM-1; (2)

induction of type I IFNs and chemokines (CCL5

and CXCL10); (3) activate DCs and T effector cells

but also to block Treg cells; (4) local therapy with

oncolytic NDV induces inflammatory immune

infiltrates in distant tumors, making them

susceptible to systemic therapy

(70–74)

Reovirus The virus itself

(PAMP)

Dendritic cells

(DCs)

(Cancer cell independent

mechanism)

Induce DC maturation and stimulate the

production of the pro-inflammatory cytokines

IFN-α, TNF-α, IL-12p70, and IL-6. Reovirus directly

activates human DC and that reovirus-activated

DCs stimulate innate killing by not only NK cells,

but also T cells

(75)
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signal molecule released from OV-infected cells is uric acid (61).
Some OVs may induce cell death partly through pyroptosis, a
caspase-1 dependent inflammatory form of cell death (62). Both
necrotic cells and pyroptotic cells release ATP more efficiently than
apoptotic cells do. Pyroptotic cells, just like apoptotic cells, actively
induce phagocytosis by macrophages using “eat-me” and “find-
me” signals (63). Cytolytic immune cells, elicited by OVs or other
agents, kill additional cancer cells leading to release of DAMPs
such as HMGB1 (64). In summary, most OVs induce ICD of can-
cer cells and present/release a number of potent danger signals,
and TAAs to DCs to trigger adaptive immune response (Table 1).

Cancer cell death induced by some OVs has not been exam-
ined for their direct features of ICD. However, other properties
suggest that cancer cells infected by the OV are immunogenic, or
the viruses themselves are highly immunogenic. Newcastle dis-
ease virus (NDV) is a well-studied virus for its virology and
immunostimulatory properties (76). NDV induces cancer cells
into apoptosis (70), with autophagy taking place during the
process (71). Human cancer cells infected by NDV show upregu-
lation of HLA class I and II antigens, and costimulatory molecule
ICAM-1, as well as induction of IFNs, chemokines (IP10 and
RANTES) before apoptosis (72). Moreover, the inflammatory con-
ditions and type I IFNs inhibit Treg cells (73). With these potent
immunostimulatory properties, local administration of oncolytic
NDV overcomes systemic tumor resistance to immunotherapy
by blockade of immune checkpoints (74). Another RNA virus,
reovirus, also induces cancer cells into apoptosis (77, 78), with
autophagy taking place in the process (79–81). Melanoma cells
infected with reovirus release a range of inflammatory cytokines
and chemokines while IL-10 secretion is abrogated (82). These
molecules may provide a useful danger signal to reverse the
immunologically suppressive environment of this tumor. Even
more interestingly, reovirus can also interact with DCs directly
and matured DCs activate NK and T cells (75) (Table 1). Those
activated NK and T cells exert innate killing of cancer cells.
This innate effector mechanism may complement the virus’s
direct cytotoxicity and thus induced adaptive antitumor immu-
nity, potentially enhancing the efficacy of reovirus as a therapeutic
agent (75).

OV-INDUCED AUTOPHAGY IN CANCER CELLS PROMOTES
CROSS-PRESENTATION OF TAAs AND ELICITS STRONGER
ANTITUMOR IMMUNITY
Autophagy mediates sequestration, degradation, and recycling of
cellular organelles and proteins, and intracellular pathogens. It
is not too surprising that autophagy plays roles in both innate
and adaptive immunity (17, 83). A number of OVs, such as
Ad (48–51), encephalomyocarditis virus (84), HSV (62, 85, 86),
influenza virus (87), NDV (71), reovirus (79–81), and VSV (84),
induce autophagy in infected cancer cells. Evidence shows that
autophagy may enhance tumor immunogenicity. One mechanism
is that autophagic cells selectively release DAMPs such as ATP (88,
89), HMGB1 (90), and uric acid (61). The other mechanism is
that autophagy promotes antigen cross-presentation from cancer
cells by DCs to naïve T cells. It stimulates antigen processing for
both MHC class II (91), and MHC class I pathways. These have
been demonstrated for endogenous viral antigens during HSV-1

infection (85), and for cross-presentation of TAAs from uninfected
cancer cells (92), and influenza A virus-infected tumor cells (93).
In other words, autophagy within the antigen donor cells facilitates
antigen cross-priming to generate TAA-specific or virus-specific
CD8+ T cells (92–95). This property has been explored for cancer
vaccines (96), and for enhanced OV-mediated antitumor effects in
the future (97).

VIRUSES OFTEN ENCODE SPECIFIC GENES TO MODULATE
APOPTOSIS, AUTOPHAGY, NECROPTOSIS, AND POSSIBLY
OTHER DEATH PATHWAYS
Successful viral replication requires the efficient production and
spread of progeny virus, which can be achieved through effi-
cient evasion of host defense mechanisms that limit replication
by killing infected cells. Viruses have thus evolved to encode genes
whose products function to block or delay certain cell death path-
ways until sufficient progeny have been produced (47). These
gene-encode products target a variety of strategic points in apop-
tosis, necroptosis, autophagy, or other death pathways. Table 2
lists some examples of genes encoded by viruses especially OVs
that can intervene apoptosis, autophagy, or necroptosis. The pres-
ence of these types of viral genes may skew the mode of infected
cancer cells from one to another cell death pathway(s). OVs can
be engineered genetically with deletion or insertion of such genes
so that a desired mode of ICD would happen in the virus-infected
cancer cells.

CANCER CELLS OFTEN SHOW DEFECTS IN CERTAIN CELL
DEATH PATHWAYS
Every cell in a multicellular organism has the potential to die by
apoptosis. However, cancer cells often have faulty apoptotic signal-
ing pathways evolved during carcinogenesis. This property derives
from the overexpression of anti-apoptotic genes, deficiency of pro-
apoptotic genes, or both (121). These defects not only increase
tumor mass, but also render the cancer resistant to therapy.

Evidence has also been accumulating that necroptosis can be
impaired in cancer cells. Chronic lymphocytic leukemia cells have
defects in signaling pathways involved in necroptosis regulation
such as RIP3 and the deubiquitination cylindromatosis (CYLD),
an enzyme directly regulating RIP1 ubiquitination (122). Skin can-
cer cells contain an inactivating CYLD mutation (123). Despite
the fact some cancers are resistant to necroptosis due to genetic
and epigenetic defects, necroptosis undoubtedly represents an
important death pathway induced by many anticancer regimens,
particularly important to those cancer resistant to apoptosis. In
this case, investigators have found that some compounds can cir-
cumvent cancer drug resistance by induction of a necroptotic
death (124).

The fact that cancer cells resist certain death pathways will dic-
tate to a degree which types of drugs (including OVs) to be used
in therapeutic regimens. As we stated before, a number of OVs,
such as VVs, often induces cancer cells into necroptotic cell death
(54, 56, 57), while other viruses such as oncolytic Ad often induce
cancer cells into autophagic cell death. Appropriate OVs can be
picked depending on the sensitivity of the cancer to certain death
pathways, and the immunogenic consequence if it is combined for
immunotherapy.
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Table 2 | Examples of viruses and viral genes modulating apoptosis, autophagy, and necroptosis.

Virus Gene Type of action Mechanism of action Reference

Ad E1A AS Associate with the pRb/p300 family and induce p53-dependent apoptosis (98)

E1B-19K AI Sequester pro-apoptotic Bcl-2-like proteins and p53; inhibit apoptosis triggered by

numerous stimuli

(99–101)

E1B-55K AI Bind to p53 and functionally inactivates it (102)

E3-6.7 AI Complexes with 10.4 and 14.5 resulting in downregulation of TRAIL receptors (103)

HSV ICP34.5 ATI Inhibit PKR signaling and directly bind to beclin-1 (104)

ICP34.5 AI IFN-mediated pathway; decrease elF-2α phosphorylation by PKR (105–107)

Us3 AI Ser/Thr kinase that prevents virus-induced apoptosis (108)

Us5 AI Cooperates with Us3 (108)

VV SPI-1 Serpin, inhibit cell-cell fusion (109)

SPI-2 AI Serpin, direct inhibitor of caspases (110)

F1L AI Interact with the pro-apoptotic protein Bak and inhibit Bak activation (111)

N1L AI Inhibit multiple pro-apoptotic Bcl-2-like proteins (112)

MYXV M11L AI Prevent the mitochondria from undergoing a permeability transition; inhibit apoptotic

response of macrophages and monocytes

(113, 114)

MCMV vIRA NI Target RIP1, RIP3, TRIF, and DAI; inhibit RIP3-dependent necrosis (115)

Influenza virus M2 ATI Block autophagosome fusion with lysosomes (116)

NS1 AI/ATS Inhibit apoptosis and upregulate autophagy (117)

Measles virus H AS Induce apoptosis of HeLa cells via both extrinsic and intrinsic pathways (118)

Virion ATS Binding of virus to CD46 on cell surface induces autophagy (119)

NDV V AI Inhibit IFN response and apoptosis (120)

AI, apoptosis inhibitor; AS, apoptosis stimulator; NI, necroptosis inhibitor; ATI, autophagy inhibitor; ATS, autophagy stimulator.

STRATEGIES TO MODULATE THE MODE OF CANCER CELL
DEATH FOR ENHANCED IMMUNOGENICITY
We know now that immunogenic apoptosis, necrosis/necroptosis,
and autophagic cell death are desired modes of cancer cell death
because they are ICD. Is immunogenic apoptosis (the original
form of ICD) better than other forms of ICD in the induction
of antitumor immunity? We do not know for sure. This question
needs to be addressed in the future. What we do know now is that
there are strategies that can enhance the ICD and subsequent anti-
tumor immunity. They can be classified into, genetic modification
of OV vectors, combination with ICD inducers, and combination
with specific immunostimulatory regimens.

GENETIC ENGINEERING OF VIRAL VECTORS
Cancer cells have usually accumulated a number of genetic muta-
tions and epigenetic modifications that enable them to resist
apoptosis. Based on this property, a number of OVs are built
for high tumor selectivity by deleting viral genes encoding anti-
apoptotic genes (see Table 2). These viruses can replicate in cancer
cells but lead to rapid apoptosis in normal cells. For examples, the
γ34.5 gene has been deleted in many oncolytic HSVs, including
the T-VEC that is going through a successful phase III clinical trial
(125). The adenoviral protein E1B-19K is a Bcl-2 homolog that
blocks apoptosis induction via the intrinsic and extrinsic pathways,
specifically including tumor necrosis factor (TNF)-mediated cell
death. Liu et al. have demonstrated that an E1B-19K gene deletion

mutant had TNF-enhanced cancer selectivity due to genetic blocks
in apoptosis pathways in cancer cells (126). Similarly, a tumor-
selective oncolytic vaccinia virus was constructed by deleting two
serpin genes,SPI-1 and SPI-2 (54). Due to the deletion of viral anti-
apoptosis genes, these mutant OVs display more potent oncolysis
through apoptosis pathways when combined with appropriate
apoptosis-inducing agents.

We believe that by arming OVs with necrosis and autophagy-
promoting genes, it is possible that the desired cell death pathway
can be activated in cancer cells when infected with such OVs,
leading to more ICD. More future studies with this strategy are
warranted.

COMBINATION WITH ICD INDUCER OR AUTOPHAGY INDUCER
In theory, OV in combination with an ICD inducer would pro-
vide more potent danger signals to DCs and potentially elicit
stronger antitumor immunity. Workenhe et al. demonstrated in
a recent study that such a strategy worked well indeed (127).
HSV-1 ICP0 null oncolytic vectors possess antitumor activity,
but the virus alone is insufficient to break immune tolerance.
Thus, the authors hypothesized that combination therapy with
an ICD-inducing chemotherapeutic drug might get the job done.
Indeed, the combination of HSV-1 ICP0 null oncolytic virus with
mitoxantrone, which induces ICD, provided significant survival
benefit to the Balb/C mice bearing Her2/neu TUBO-derived mam-
mary tumors. Increased infiltration of neutrophils and tumor
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antigen-specific CD8+ T cells into tumor tissues provide the pro-
tection, as depletion studies verified that CD8-, CD4-, and Ly6G-
expressing cells are essential for the enhanced efficacy. Importantly,
the combination therapy broke immune tolerance. In conclu-
sion, this study suggests that such a combination can enhance the
tumor immunogenicity, breaking immunologic tolerance estab-
lished toward the tumor antigens, thus a promising novel strategy
for cancer therapy (127).

As we stated earlier, the autophagy in antigen donor cells (can-
cer cells) promotes the cross-presentation of antigens from DCs
to T cells. The autophagy could be induced by some OVs, or its
inducer could be provided in trans. This strategy works in com-
bination with oncolytic adenoviruses that induce autophagy by
themselves (60, 128). However, it may not work with an oncolytic
vaccinia virus that does not induce autophagy by itself (our
unpublished data).

ARMED VIRUS AND COMBINATION STRATEGIES FOR BREAKING
IMMUNE TOLERANCE AND ENHANCING ANTITUMOR IMMUNITY
In order to further enhance the antitumor immunity, OVs have
been armed with TAAs, cytokines (e.g., GM-CSF), chemokines
(such as CCL5), or other innovative and artificial genes. We
have recently reviewed the promising strategies of OVs in com-
bination with other immunotherapeutic regimens (44). As we
mentioned, two OVs in the most advanced stages of clinical tri-
als, T-VEC, and Pexa-Vec, are HSV and VV armed with GM-CSF
(125, 129). An oncolytic VV expressing the 4-1BBL T cell costim-
ulatory molecule (rV-4-1BBL) showed modest tumor regression
in the poorly immunogenic B16 murine melanoma model. How-
ever, rV-4-1BBL injection with lymphodepletion promoted viral
persistence by reducing antiviral antibody titers, and promoted
MHC class I expression, and rescued effector-memory CD8+ T
cells. This significantly improved the therapeutic effectiveness of
the oncolytic virus (130). Similarly, an unarmed oncolytic virus
combined with anti-4-1BB agonist antibody elicits strong anti-
tumor immunity against established cancer (56). We have also
shown that the chemokine CCL5-expressing oncolytic VV in com-
bination with a cancer vaccine or activated T cells resulted in
better therapeutic effect in a MC38 colon cancer model (131).
Recently, our collaborators have made an oncolytic VV encoding
a secretory bispecific T cell engager consisting of two single-chain
variable fragments specific for CD3 and the tumor cell surface
antigen EphA2 [EphA2-T cell engager-armed VV (EphA2-TEA-
VV)] (132). This virus retains its normal oncolytic potency and
the secreted molecule also activates T cells. The virus plus T cells
had potent antitumor activity in a lung cancer xenograft model.
Thus, arming oncolytic VVs with T cell engagers may represent a
promising approach to improve oncolytic virotherapy. In the con-
text of OV-mediated cancer immunotherapy, it is interesting to
observe the dual effects of antiviral immunity on cancer therapy.
On one hand, the antiviral immunity may attenuate the replication
of an OV and thus diminish the effect of direct oncolysis; on the
other hand, antiviral immunity plays a key role for the therapeutic
success of oncolytic virotherapy in some cases (11, 133).

The tumor-associated immune tolerance is a big obstacle in
cancer immunotherapy. Some armed OVs (such as a GM-CSF-
armed oncolytic Ad) can break immune tolerance and generated

antitumor immunity in at least some human cancer patients (134).
In other cases, an OV alone is not enough to break the immune tol-
erance in highly immunosuppressive TME (127). In these cases, a
combination with an ICD-inducing chemotherapeutic drug may
break the immune tolerance (127). Alternatively, an OV can be
combined with an immune checkpoint inhibitor to achieve the
same effect. During the preparation of this review, a study has
just been published on such a strategy with oncolytic NDV and
systemic CTLA-4 blockade. This combination led to rejection of
pre-established distant tumors and protection from tumor rechal-
lenge in poorly immunogenic tumor models (74). It showcases the
promise of such a combination strategy.

CONCLUSION AND PERSPECTIVES
The TME in the advanced stage of disease is highly immuno-
suppressive (18). This immunological property is a double-edged
sword for OV-mediated cancer therapy: good for viral replication
but bad for the antitumor immunity. The evidence is accumulating
that OVs not only kill infected cancer cells and associated endothe-
lial cells by direct and indirect oncolysis, but also release/present
danger signals to DCs and other professional APCs to elicit both
antiviral and antitumor immunity. It has been demonstrated for a
number of OVs, that the virus-elicited antitumor immunity plays
a critical role in the overall efficacy of oncolytic virotherapy. As
we and other colleagues have realized, ICD is important to elicit
antitumor immunity (44, 45, 135).

In order to improve the potency of antitumor immunity, one
key step is the initial presentation of danger signal (signal 0)
and cross-presentation of TAAs (signal 1). Recent studies demon-
strated that ICD of cancer cells leads to potent danger signals,
and autophagy in antigen donor cells, in this case cancer cells
and associated endothelial cells, enhance the cross-presentation of
TAAs to naïve T cells by DCs. Genetic engineering and combina-
tion strategies can skew the cancer cell death into modes of ICD
and autophagy, leading to potent and sustained antitumor immu-
nity and thus enhancing the efficacy of oncolytic immunotherapy.
Which mode of ICD in the context of OVs is the most potent
way to elicit antitumor immunity needs careful investigation in
the near future. It is also important to keep in mind that oncolytic
viruses modulate cancer immunogenicity through multiple mech-
anisms (136). Other than the induced danger signals, they are out
of the scope of this review article and thus have not been dis-
cussed. Finally, we and others believe that it is important to further
test the idea that combination of OV with blockade of immune
checkpoints for potent and sustained antitumor immunity would
enhance this novel form of immunotherapy for cancer. We look
forward to more exciting development of both preclinical and
clinical studies with OVs as tools for cancer immunotherapy.
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