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DYNAMIC PREDICTION MODELS FOR DATA WITH COMPETING

RISKS

Qing Liu, PhD

University of Pittsburgh, 2014

ABSTRACT: Prediction of cause-specific cumulative incidence function (CIF) is of primary

interest to clinical researchers when conducting statistical analysis involving competing risks.

The predicted CIFs need to be dynamically updated by incorporating the time-dependent

information measured during follow-up. However, dynamic prediction of the conditional

CIFs requires simultaneously updating the overall survival and the CIF while adjusting for

the time-dependent covariates and the time-varying covariate effects which is complex and

challenging. In this study, we extended the landmark Cox models to data with competing

risks, because the landmark Cox models provide a simple way to incorporate various types

of time-dependent information for data without competing risks. The resulting new models

are called landmark proportional subdistribution hazards (PSH) models. In this study, we

first investigated the properties of the Fine-Gray model under non-PSH and proposed a

robust risk prediction procedure which is not sensitive to the PSH assumption. Then, we

developed a landmark PSH model and a more comprehensive landmark PSH supermodel.

The performance of our models was assessed via simulations and through analysis of data

from a multicenter clinical trial for breast cancer patients. As compared with other dynamic

predictive models, our proposed models exhibited three advantages. First, our models are

robust against violations of the PSH assumption and can directly predict the conditional CIFs

bypassing the estimation of overall survival and greatly simplify the prediction procedure.

Second, our landmark PSH supermodel enables users to make predictions with a set of

landmark points in one step. Third, the proposed models can simply incorporate various
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types of time-varying information. Finally, our models are not computationally intensive

and can be easily implemented with existing statistical software.

Public Health Significance: Prognostic models for predicting the absolute risk of a patient

in having a disease are very useful in performing risk stratification and making treatment

decisions. Since the patient’s prognosis can change over time, it is necessary to update the

risk prediction accordingly. The dynamic prediction models developed in this study can

provide more accurate prognoses over the course of disease progression and will be helpful

to physicians in adopting personalized treatment regimes.

Keywords: Competing risks; cumulative incidence function; dynamic prediction; landmark

analysis; proportional subdistribution hazards; time-dependent variables; time-varying

covariate effects.
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1.0 INTRODUCTION

For data with competing risks, although much attention was given to identify the prognostic

or risk factors on cause-specific hazard rate and on the cause-specific failure probabilities,

clinicians are showing great interest in predicting absolute risk of a cause-specific failure in

the presence of competing risks.

In quantifying the likelihood of failure from a specific cause of interest, the complement of

the Kaplan-Meier estimator where competing events are treated as censored is inappropriate

and not interpretable when the main event and competing events are correlated. In contrast,

the cumulative incidence function (CIF, also referred to as sub-distribution) is more proper in

describing a cause-specific failure probability with no assumptions of dependencies between

competing events [21]. The CIF is defined as the cumulative probability that the event of

interest occurs before a given time t in a framework where a subject is exposed to multiple

causes of failure [13].

Predicting a cause-specific CIF based on a patient’s prognostic information collected at

the time of diagnosis or at the start of treatment is essential in risk stratification and in

decision-making process. To predict CIFs, the most commonly used regression procedure is

the proportional sub-distribution hazards (PSH) model proposed by Fine and Gray (1999)

[8] which is easy to implement and can yield a simple form of the estimated CIF after adjust-

ing for multiple discrete and continuous covariates. In practice, however, the proportionality

assumption of the PSH model is often violated, especially for clinical studies with long-

term follow up. When it is used on non-proportional sub-distribution hazards, the standard

PSH model will lead to biased estimates of the CIFs. In the first part of this dissertation,

we propose a simple risk prediction procedure that adopts the PSH model yet relaxes the

1



PSH assumption. The procedure can yield easy and accurate predictions of CIFs without

modeling the potentially time-varying covariate effects.

With the progression of a disease, the patient’s prognosis may change as time elapse from

the initial diagnosis. Risk prediction is not only needed at baseline but also at later time

points during follow-up. For a patient who has not yet experienced any event at a certain

time point, clinicians may predict the cumulative incidence for the occurrence of event of

interest within the next w-years. To perform dynamic prediction for competing risks data

is to dynamically predict the conditional cause-specific CIF based on the patient’s disease

history and all the information available at the specific time point during follow-up. For

data containing no competing risks, van Houwelingen (2007) [31] proposed landmark dy-

namic prediction models to predict an additional w-years conditional survival probability for

a patient who is still alive at certain time points during follow-up. The proposed landmark

models can incorporate various types of time-dependent information, including the poten-

tial time-varying covariate effects, intermediate clinical events, and longitudinally measured

biomarkers simultaneously through a simple prediction model and the implementation is

not computationally intensive. In the context of dynamic prediction, the landmark models

are more advantageous and straightforward as compared with multi-state models and joint

modeling approach [32, 33]. In the second part of this dissertation, we extend the landmark

method to data with competing risks and propose landmark proportional sub-distribution

hazards model and supermodel for dynamic prediction of the conditional CIFs for data

containing competing risks.
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2.0 ROBUST PREDICTION OF CUMULATIVE INCIDENCE FUNCTION

UNDER NON-PROPORTIONAL SUBDISTRIBUTION HAZARDS

2.1 INTRODUCTION

For data containing competing risk events, the cumulative incidence function (CIF) is a

proper summary statistic describing a subject’s absolute risk of failure from a specific cause

of interest with no assumptions of dependencies between competing events. In clinical appli-

cations, prognostic models that predict CIF from a patient’s clinical and genomic information

collected at the time of diagnosis are very useful to the physicians when performing risk strat-

ifications and making decisions on treatments. For example, with accurate predictions of

the CIF of locoreginal recurrence (LRR) oncologists can optimize radiation therapy for the

breast cancer patients. The main purpose of our study is to introduce a new approach for

predicting a subject-specific CIF directly.

Similar to the Kaplan-Meier estimator, the widely used nonparametric estimator of

the CIF has its limitations in that only a few discrete and categorized continuous co-

variates can be included. In practice, the risk of LRR often depends on a number of

histological and clinical factors, such as tumor size, nodal status, surgical margin sta-

tus, histologic subtype, and vascular invasion. When physicians tailor therapy for per-

sonalized oncology interventions, it is required that regression modeling procedures in-

corporate both discrete and continuous covariates simultaneously. One approach used is

to model the cause-specific hazards for all causes separately then combine them to es-

timate the CIF of the cause of interest. The validity of this approach depends on all

cause-specific hazards being modeled correctly which is difficult to achieve in practice.
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To date, several regression procedures were used to model the cumulative incidence

probabilities directly, including the Fine-Gray model which is also a Cox-like proportional

subdistribution hazards model [8], the pseudovalue approach [15], and the direct binomial

regression model [26]. The Fine-Gray model has become the most commonly used regression

procedure, since it provides a simple explicit form of estimation for the CIF which makes

the coefficients of covariates easier to interpret.

However, the proportional subdistribution hazards (PSH) assumption of the Fine-Gray

model may not hold for all covariates, especially in studies with long-term follow-up. For

example, some studies have shown that the effect of histologic grade shows a diminishing

trend on overall survival among patients with breast cancer. Ignoring nonproportionality

could introduce bias in prediction of CIF and this could lead to a misleading conclusion.

To handle nonproportional hazards, the most straightforward approach is to fit a Fine-Gray

model by adding time-covariate interaction terms; however, an additional assumption for

the functional form of time is required. Sun et al. (2006) [30] proposed a more flexible

and general additive-multiplicative subdistribution hazards model that can be used to es-

timate fixed covariate effects parametrically and to estimate time-varying covariate effects

nonparametrically. Although this model is superior in flexibility and generalizability, the

implementation of predicting the CIF is complicated. Alternatively, Zhou et al. (2011) [37]

proposed a stratified Fine-Gray model over a set of discrete factors where the PSH assump-

tion is not satisfied. This method categorizes a continuous variable with time-varying effect

and it cannot be used to predict a CIF if data is highly stratified. Note that in each of the

aforementioned methods a goodness-of-fit test has to be performed in advance to identify

covariates that violate the PSH assumption.

For data not containing competing risks, Struthers and Kalbfleisch (1986) [29] and Xu

and O’Quigley (2000) [35] showed that the maximum partial likelihood estimator for a Cox

proportional hazards model converges to a limiting value which is a weighted average of the

true time-varying covariate effect. Van Houwelingen (2007) [31] elucidated that a simple

Cox model with additional administrative censoring at a certain time point of interest (the

horizon time, thor) can provide an approximation for the predicted survival probabilities at
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thor if the time-varying effect does not vary much over time, if the effect of covariate is small,

and if the length of the follow-up period is limited. This valid prediction model was named

the “stopped Cox model”, meaning that the model stopped at the horizon time [33].

In this study, we introduced a new approach for predicting a subject-specific CIF directly

using a method that robust to the PSH assumption. We extended the stopped Cox model

approach to the Fine-Gray model for competing risks data, therefore our model is named

“stopped proportional subdistribution hazards model” (or a “stopped PSH model”). When

applying our models, a researcher can accurately predict a CIF without constructing complex

procedures to estimate time-varying effects when the PSH assumption is violated. In order

to eliminate the impact of heavy random censoring before the horizon time thor, we further

modified the stopped PSH model by adding a weight to reduce bias.

In Section 2.2, we review the Fine-Gray PSH model and discuss its potential issues when

the PSH assumption is violated. We then present the proposed stopped and weighted stopped

PSH models. In Section 2.3, we assess the performance in prediction for the proposed models

and compare the performance with existing methods through simulations. In Section 2.4,

we apply the proposed models to predict the CIF of LRR given a set of prognostic factors

from a breast cancer treatment trial. Discussion is provided in Section 2.5.

2.2 METHODS

2.2.1 Notations and PSH Model

Let T and C be the failure and censoring time, respectively; ε ∈ {1 . . . k} be the cause of

failure; and Z be a p-dimensional vector of time-fixed covariates. Here, we assume Ci is

independent of Ti and Zi, and refer to it as random censoring. For right censored data,

we observe an independently and identically distributed quadruplet of {Xi = Ti ∧ Ci,∆i =

I(Ti ≤ Ci),∆iεi,Zi} for subject i (i = 1 . . . n). Subdistribution or CIF for failure from cause

1 is defined as F1(t;Z) = Pr(T ≤ t, ε = 1|Z). Our objective is to predict the CIF of a

subject given his or her covariate values.
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Fine and Gray (1999) [8] proposed a proportional hazards regression model for the sub-

distribution F1(t;Z). This PSH model takes the form

λ1(t;Z) = λ10(t) exp(ZTβ),

where the baseline subdistribution hazards λ10(t) = −d log{1 − F1(t;Z = 0)}/dt is an

unspecified, nonnegative function; and where β is a vector of unknown regression parameters.

Thus, the cumulative incidence function can be calculated as

F1(t;Z) = 1− exp

{
−
∫ t

0

λ10(u) exp(ZTβ) du

}
.

The regression coefficients β are estimated through a partial likelihood approach with

modified risk sets defined as R(Ti) = {j : (Tj ≥ Ti) ∪ (Tj ≤ Ti ∩ εj 6= 1)} for the ith

individual. R(Ti) includes all individuals who have not failed from the cause of interest

by time Ti. When random right censoring is present, the inverse probability of censoring

weighting (IPCW) technique [25] is applied to obtain an unbiased partial likelihood estimator

β̂PL via a weighted score function U(β) given by

U(β) =
n∑
i=1

∫ ∞
0

{
Zi −

∑
j ωj(t)Yj(t)Zj exp(ZT

j β)∑
j ωj(t)Yj(t) exp(ZT

j β)

}
ωi(t) dNi(t), (2.1)

where Ni(t) = I(Ti ≤ t, εi = 1), Yi(t) = I(Ti ≥ t) + I(Ti < t, εi 6= 1) and ωi(t) =

I(Ci ≥ Ti ∧ t)Ĝ(t)/Ĝ(Xi ∧ t) in which Ĝ(t) is the Kaplan-Meier estimator of the censoring

survival distribution G(t) = Pr(C ≥ t). The baseline cumulative subdistribution hazards

Λ10(t) =
∫ t

0
λ10(u) du can be estimated using a modified version of the Breslow estimator,

Λ̂10(t) =
1

n

n∑
i=1

∫ t

0

1
1
n

∑
j ωj(u)Yj(u) exp(ZT

j β̂PL)
ωi(u) dNi(u). (2.2)

Therefore, the predicted CIF can be calculated as F̂1(t; z) = 1− exp
{
− exp(zT β̂PL)Λ̂10(t)

}
for an individual with covariatesZ = z at time t. It has been shown that β̂PL is consistent for

β; Λ̂10(t) uniformly converges in probability to the true baseline cumulative subdistribution

hazard value Λ10(t) on the interval [0, τ), where τ = sup{t : Pr(X ≥ t) > 0}; and F̂1(t; z)

uniformly converges to F1(t; z) on the same interval [8, 12].
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The PSH assumption would be violated if a subdistribution hazards ratio changes over

time. Although it is straightforward to incorporate time-varying coefficients β(t) into a PSH

model

λ1(t;Z) = λ10(t) exp{ZTβ(t)}, (2.3)

we will need to estimate the time-varying functional form β(t) in order to predict the CIF.

This could make prediction complicated, especially when there are more than one covariate

with time-varying effects. By extending the idea of stopped Cox model [33] to data with

competing risks, we investigate the prediction performance of the Fine-Gray PSH model

with additional administrative censoring at the prediction horizon time thor, when the PSH

assumption is not satisfied.

2.2.2 Stopped PSH Model

Struthers and Kalbfleisch (1986) [29] have investigated the properties of β̂PL of a Cox propor-

tional hazards (PH) model when the true model is actually accelerated failure time model.

Xu and O’Quigley (2000) [35] showed that under nonproportional hazards, the β̂PL is con-

sistent for a weighted average of true time-varying effects β(t) over time. We can also derive

similar properties of β̂PL for the PSH model when the proportionality assumption is vio-

lated. In the following sections, we suppose the true model is given by model (2.3). For

complete data and censoring-complete data where the censoring time is always observed, the

PSH model is inherited from the usual Cox PH model [8]; so that the properties derived

from the Cox model can be directly generalized to the PSH model. Thus, we mainly focus

on the situation where random right censoring is present.

Define S(r)(β, t) = 1
n

∑n
i=1 ωi(t)Yi(t)Z

⊗r
i exp(ZT

i β) and s(r)(β, t) = ES(r)(β, t), for r =

0, 1, 2, where the expectations are taken with respect to the true distribution of (T,C,Z).

Suppose the Andersen-Gill-type conditions (see Appendix A) hold throughout the paper, we

have the following theorem.
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Theorem 1. Under random right censoring, the partial likelihood estimator β̂PL from

the proportional subdistributional hazards model is a consistent estimator of β∗, where β∗ is

the solution to the equation

∫ ∞
0

{
s(1)(β(t), t)

s(0)(β(t), t)
− s

(1)(β, t)

s(0)(β, t)

}
s(0)(β(t), t)λ10(t) dt = 0. (2.4)

As described in Fine and Gray (1999) [8], an improper failure time T ∗, defined as T ×

I(ε = 1) + ∞ × {1 − I(ε = 1)}, has a distribution function as F1(t) for t ≤ ∞ and a

point mass at t = ∞. The subdistribution hazard λ1(t) is actually the hazard function

for T ∗. We can treat the PSH model for event time T of cause 1 as the Cox PH model

for the improper failure time T ∗. Under random censoring, we have S(r)(β, t) = S(r)
∗ (β, t)

and s(r)(β, t) = s
(r)
∗ (β, t), for r = 0, 1, 2, where S(r)

∗ (β, t) = 1
n

∑n
i=1 Y

∗
i (t)Z⊗ri exp(ZT

i β),

s
(r)
∗ (β, t) = ES(r)

∗ (β, t), Y ∗(t) = I(X∗ ≥ t), and X∗ = T ∗ ∧ C. Hence, in terms of the

improper failure time T ∗, Theorem 1 is identical to Theorem 2.1 in Struthers and Kalbfleisch

(1986) [29]. Proof of Theorem 1 can be seen in Struthers and Kalbfleisch (1986) [29].

To get an interpretable form of β∗, we need to make some transformation for equa-

tion (2.4). As discussed in Xu and O’Quigley (2000) [35], S(1)
∗ (β(t), t)/S(0)

∗ (β(t), t) can

be thought of as a conditional expectation of Z taken with respect to the empirical dis-

tribution
Y ∗
i (t) exp{ZTi β(t)}∑n

j=1 Y
∗
j (t) exp{ZTj β(t)} . Under the Andersen-Gill-type conditions (see Appendix A),

S(1)
∗ (β(t), t)/S(0)

∗ (β(t), t) converges in probability to s
(1)
∗ (β(t), t)/s

(0)
∗ (β(t), t). Then, we have

s(1)(β(t), t)

s(0)(β(t), t)
=
s

(1)
∗ (β(t), t)

s
(0)
∗ (β(t), t)

= E(Z|T ∗ = t), (2.5)

∂

∂β

(
s(1)(β, t)

s(0)(β, t)

)
β=β(t)

=
∂

∂β

(
s

(1)
∗ (β, t)

s
(0)
∗ (β, t)

)
β=β(t)

= Var(Z|T ∗ = t). (2.6)

Hence,

s(1)(β(t), t)

s(0)(β(t), t)
− s

(1)(β, t)

s(0)(β, t)
≈ {Var(Z|T ∗ = t)}T{β − β(t)}. (2.7)
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Under random censoring,

s(0)(β(t), t)λ10(t) = E[ω(t)Y (t) exp{ZTβ(t)}]λ10(t)

= E[ω(t)Y (t) exp{ZTβ(t)}λ10(t)]

= E{ω(t)Y (t)}E{λ1(t|Z)|T ≥ t} (2.8)

= {1− F1(t)}G(t)λ1(t),

where λ1(t) is the marginal subdistribution hazard and F1(t) is the marginal subdistribution.

Thus, the equation (2.4) is approximately given by

∫ ∞
0

{Var(Z|T ∗ = t)}T{β − β(t)}{1− F1(t)}G(t)λ1(t) dt = 0. (2.9)

When we add additional administrative censoring at horizon time thor and take the first-

order Taylor series approximation to the integrand of (2.9), the β∗ becomes

β∗hor ≈
∫ thor

0
{1− F1(t)}G(t)λ1(t){Var(Z|T ∗ = t)}Tβ(t) dt∫ thor
0
{1− F1(t)}G(t)λ1(t)Var(Z|T ∗ = t) dt

, (2.10)

which is similar to the approximation of β∗ in Cox model shown by van Houwelingen (2007)

[31]. If the cumulative incidence function F1(t) does not get too large; the censoring propor-

tion is not too high before thor (G(thor) ≈ 1); and the effect of a covariate is not too large

and does not vary too much over time, Var(Z|T ∗ = t) could be approximated by a constant.

Therefore, we have

β∗hor ≈
∫ thor

0
λ10(t)β(t) dt∫ thor

0
λ10(t) dt

, (2.11)

which is a weighted average of β(t) over time. Approximation (2.11) is similar to formula

(3.2) given in Xu and O’Quigley (2000) [35].

After applying the PSH model to the data up to thor, the cumulative subdistribution

hazard can be estimated by

Λ̂1(thor;Z) = exp(ZT β̂PL)Λ̂10(thor),

9



where Λ̂10(thor) is given in (2.2). Following the derivations of the approximated limiting

values of the Breslow estimated hazards for the Cox model [31], the Breslow-type subdistri-

bution baseline hazard estimate λ̂10(t) = dΛ̂10(t)/dt converges in probability to λ∗10(t), which

is approximated by

λ∗10(t) ≈ λ10(t) exp[E(Z|T ∗ = t)T{β(t)− β∗hor}]. (2.12)

The derivation of the approximation (2.12) is given in the Appendix B.

The corresponding limiting value of Λ̂1(thor;Z) is

Λ∗1(thor;Z) = exp(ZTβ∗hor)

∫ thor

0

λ∗10(t) dt,

so that Λ∗1(thor;Z) has an approximation

Λ∗1(thor;Z) ≈ exp(ZTβ∗hor)

∫ thor

0

λ10(t) exp[E(Z|T ∗ = t)T{β(t)− β∗hor}] dt. (2.13)

The true value Λ1(thor;Z) =
∫ thor

0
λ10(t) exp{ZTβ(t)} dt can be written as the form

Λ1(thor;Z) = exp(ZTβ∗hor)

∫ thor

0

λ10(t) exp[ZT{β(t)− β∗hor}] dt. (2.14)

Under the conditions for yielding the approximation (2.11), the conditional distribution of Z

given T ∗ = t can be seen as stable over time, and hence, we have the following relationships

Λ̂1(thor;Z)
p→ Λ∗1(thor;Z) ≈ Λ1(thor;Z). (2.15)

Therefore, even though the proportional hazards assumption does not hold, the PSH

model with administrative censoring at thor provides approximately correct prediction of

F1(t;Z) at t = thor over the interval [0, thor], if 1−F1(t) and G(t) are close to 1 and the true

covariate effects β(t) or the subdistribution hazards ratio does not vary too much over time.

We name such a PSH model as the stopped PSH model, indicating that the PSH model

stopped at the horizon time thor.

So far, we have shown that under non-proportional hazards, the stopped PSH model

performs well on predicting the CIF. We also investigated its properties when the PSH

assumption holds. For complete data, the stopped PSH model at thor is exactly the PSH

model for data with administrative censoring, so that the model properties have been shown
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in Section 3.2 of Fine and Gray (1999) [8]. For incomplete data with random right censoring,

the stopped PSH model also applies the IPCW approach to adjust for the censoring effect

before thor. When t ≤ thor, the weight function ω(t) in stopped PSH model is the same as it

calculated via the Fine-Gray PSH model. To predict the Λ̂1(t;Z) at time thor,

Λ̂1(thor;Z) =
1

n

n∑
i=1

∫ thor

0

exp(ZT β̂PL)
1
n

∑
j ωj(u)Yj(u) exp(ZT

j β̂PL)
ωi(u) dNi(u), (2.16)

we only need the information up to thor, because for subjects {j : Xj ≥ thor}, the risk set

at thor will not change regardless of whether they were censored, had competing events,

or were still alive. Hence, under proportional hazards, according to the properties of the

PSH model given in Fine and Gray (1999) [8], the stopped PSH model also gives reliable

prediction of F1(thor;Z) if thor is less than τ = sup{t : Pr(X ≥ t) > 0}. However, as shown

in equation (2.16), the Λ̂1(thor;Z) depends on the partial likelihood estimator β̂PL; so that

the F̂1(thor;Z) from the stopped PSH model may be less efficient compared to that from the

Fine-Gray PSH model, since less events are used when we calculate the β̂PL in the stopped

PSH model.

2.2.3 Weighted Stopped PSH Model

As discussed in Section 2.2.2, the limiting value β∗hor of the partial likelihood estimator β̂PL

in the stopped PSH model depends on the unknown censoring distribution G(t) through

s(0)(β(t), t). If there is a heavy censoring before thor, the approximation of β∗hor shown in

(2.11) will not be valid, and the limiting value of the Λ̂1(thor;Z) will not be approximately

equal to the true value. Thus, F̂1(thor;Z) will lose accuracy when thor is far away from the

origin. Therefore, the stopped PSH model needs to be modified in order to correct the heavy

random censoring before thor.

In the Cox model, Xu and O’Quigley (2000) [35] proposed a weighted partial likelihood

estimator whose limiting value is independent of censoring. We generalize their method to

the PSH model and derive a reweighted score equation as the form

Uw(β) =
n∑
i=1

∫ ∞
0

W (t)

{
Zi −

∑
j ωj(t)Yj(t)Zj exp(ZT

j β)∑
j ωj(t)Yj(t) exp(ZT

j β)

}
ωi(t) dNi(t), (2.17)
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where W (t) = Ŝ(t)/
∑n

i=1 Y
′
i (t), Ŝ(t) is the left continuous version of the Kaplan-Meier

estimator of the overall survival S(t) and Y ′i (t) = I(Xi ≥ t). The solution to equation

(2.17) is denoted as β̂w. If there is no ties, W (Xi) can be viewed as the increment of the

nonparametric estimate of the marginal cumulative incidence function F1(t) at an observed

main event time Xi. It can be verified that W (t)G(t) is approximately equal to a constant

c. Under random censoring, now we have

s(0)(β(t), t)λ10(t) = E[W (t)ω(t)Y (t) exp{ZTβ(t)}λ10(t)]

= c{1− F1(t)}λ1(t). (2.18)

Thus, the influence of censoring has been removed from s(0)(β(t), t). Following Theorem 3.2

in Lin (1991) [16] and Theorem 2 in Xu and O’Quigley (2000) [35], we have

Theorem 2. Under non-proportional PSH model (2.3), the weighted estimator β̂w con-

verges in probability to β̃, where β̃ is the unique solution to the equation∫ ∞
0

{
s(1)(β(t), t)

s(0)(β(t), t)
− s

(1)(β, t)

s(0)(β, t)

}
{1− F1(t)}λ1(t) dt = 0, (2.19)

if
∫∞

0
υ(β̃, t){1− F1(t)}λ1(t) dt > 0, where υ(β̃, t) = s(2)(β̃,t)

s(0)(β̃,t)
−
{
s(1)(β̃,t)

s(0)(β̃,t)

}⊗2

If we rewrite equation (2.19) in terms of T ∗, the proof of Theorem 2 could follow the

arguments in Xu (1996) [34]. It is clear that the censoring distribution G(t) is not involved

in equation (2.19); therefore, G(t) is not involved in the form of solution β̃.

Similarly, in the presence of administrative censoring at thor, applying (2.7) to equation

(2.19), then the first-order Taylor series approximation of β̃ becomes

β̃hor ≈
∫ thor

0
{1− F1(t)}λ1(t){Var(Z|T ∗ = t)}Tβ(t) dt∫ thor
0
{1− F1(t)}λ1(t)Var(Z|T ∗ = t) dt

. (2.20)

Following the same derivation in Section 2.2.2 , it can be easily shown that the limiting

value Λ̃1(thor;Z) of Λ̂1(thor;Z) calculated by β̂w is approximately equal to the true value

Λ1(thor;Z) if the variation of β(t) over time is not too large and 1 − F1(thor) is not too

far away from 1, where Λ̃1(thor;Z) takes the same approximation form as Λ∗1(thor;Z) does,

which was shown in (2.13), only replacing β∗ with β̃.
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Therefore, compared to the stopped PSH model, the weighted stopped PSH model not

only provides an accurate predictive cumulative incidence at thor but also remedies the impact

of the heavy censoring before thor.

2.2.4 Measure of Predictive Accuracy

To evaluate the predictive accuracy of the proposed procedures, we adapted the Brier score

which is an estimate of the mean-squared prediction errors of the predicted event probabilities

over the observed event status [11, 27]. For competing risks data, the expected Brier score

at horizon time is defined as

BSthor = E{I(T ≤ thor, ε = 1)− F1(thor;Z)}2.

In the presence of random censoring, a consistent estimator of BSthor was proposed by Schoop

et al. (2011) [27], which was applied the IPCW approach [24],

B̂Sthor =
1

n

n∑
i=1

{I(Xi ≤ thor,∆iεi = 1)− F̂1(thor;Zi)}2wb(Xi),

for all times thor ≤ sup{t : G(t) > 0}, where

wb(Xi) =
I(Xi ≤ thor,∆iεi 6= 0)

Ĝ(Xi−)
+
I(Xi > thor)

Ĝ(thor)
.

To quantify the improvement of predictive accuracy for the stopped PSH model compared

to the Fine-Gray PSH model under nonproportional hazards, we utilized a relative increment

of prediction errors (RIPE) by making the nonparametric estimates as a reference, i.e.,

RIPES-PSH = B̂S
S-PSH

thor
/B̂S

NP

thor
− 1.

In addition, we also measure the global prediction errors by computing the integrated Brier

scores,

IBSthor =

∫ thor

0

BSt dt,

which is estimated by using the composite trapezoidal rule [27, 33].
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2.3 SIMULATION STUDIES

We evaluated the performance in prediction for the proposed procedures with simulated

data under both proportional and nonproportional subdistribution hazards. We compared

the Brier scores of the proposed methods to the nonparametric estimates and the PSH model.

For simplicity, only two failure types were considered. Type 1 failure was the main event of

interest, and type 2 failure indicated competing event.

For data under PSH, we generated the type 1 failure times from the subdistribution

function

F1,PSH(t;Zi) = 1− (1− p[1− exp{−(λt)α}])exp(Ziβ),

which is a two-parameter Weibull mixture distribution. Zi is a dichotomous covariate from

Bernoulli(0.5). We let (α, λ, β) = (2.2, 0.18,−1). For data under non-PSH, we created two

different sets of simulations. In the first set we let the rate parameter λ be dependent on

the covariate Zi; and the subdistribution of the main event became

F1,1stnonPSH(t;Zi) = p(1− exp[−{λ1 exp(Ziβ1)t}α1 ]).

In the second set we generated data based on

F1,2ndnonPSH(t;Zi) = 1− (1− p[1− exp{−(λ2t)
α2}])exp(Ziβ21+Ziβ22t),

where the coefficient of Zi is a linear function of time. Under both non-PSH settings, we con-

sidered Zi as Bernoulli(0.5) variates and let (α1, λ1, β1, α2, λ2, β21, β22) = (3.2, 0.18,−0.8, 2.2,

0.12, 0.5, 0.01). For the second non-PSH set, we also considered Zi as a continuous vari-

able from Normal(0.5, 0.01) and let (α2, λ2, β21, β22) = (1.2, 0.12, 0.5, 0.01). For all simu-

lations, we let p = 0.3, which produced about 30% main events at Zi = 0 when there

was no censoring. We generated the type 2 failure times from an exponential distribution

Pr(Ti ≤ t|εi = 2, Zi) = 1 − exp{− exp(Ziβct)} by taking Pr(εi = 2|Zi) = 1 − Pr(εi = 1|Zi),

where βc = 0.5. Sample size of n = 500 was chosen and the data were simulated repeat-

edly; N = 1000 times. The censoring times were generated independently from a uniform

distribution which resulted in about 20% censoring.
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In the first non-PSH set, we compared the performances in prediction for CIFs obtained

from the nonparametric method, the PSH model, the proposed stopped PSH model, and the

proposed weighted stopped PSH model. In the second non-PSH set, we also fitted a PSH

model with time-varying effects by adding an interaction term of covariate Zi and a linear

function of time. The resulted CIFs were compared with that from our proposed models.

Figure 1 depicts the true and the estimated CIFs under different approaches. By comparing

the performances between models, we found that the stopped PSH model was as good as the

nonparametric method under both PSH and non-PSH scenarios in the absence of censoring,

and that the stopped PSH model shows slight bias at the late follow-up years when there was

a 20% censoring. The results showed that the bias was reduced if a weighted stopped PSH

model was used. Note that the differences in the estimated CIFs obtained from different

models diminish over time. This is because at the end of a long follow-up, the number of

events is very small and not enough to capture the differences.

We also evaluated the prediction errors for each approach by estimating the Brier scores

and used 3-fold cross-validation to correct for possible overfitting. Figure 2 shows the relative

increments of prediction errors with corresponding empirical standard deviation at horizon

time from 0 to 10 years. In the case of discrete covariate, we chose the nonparametric

estimate as a reference. In the case of continuous covariate, we chose the estimate from the

PSH model with time-covariate interactions as a reference. To examine the global prediction

accuracy over short-term and long-term periods, we calculated the cross-validated integrated

Brier score (with empirical standard deviation and the 95% confidence interval) at 5 and 10

years, respectively. The results are shown in Table 1. As expected, in both non-PSH sets

the predictive accuracy of the stopped PSH model was almost the same as that obtained

from the nonparametric method. Compare to the stopped PSH model, the weighted stopped

PSH model reduced the prediction errors further in the presence of censoring. In the second

non-PSH set, there were only minor differences in prediction errors among the stopped

PSH model, the weighted stopped PSH model, and the PSH model with time-covariate

interactions.
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Table 1: Cross-validated (3-fold) estimates for the integrated Brier scores (IBS) at thor = 5

and 10, the corresponding empirical standard deviation (SD) and empirical 95% confidence

interval.

(a) 1st non-PSH setting: Z ∼ Bernoulli (0.5)

thor = 5 thor = 10

Censoring Ave. SD 95% C.I. Ave. SD 95% C.I.

0 IBSNP 10.744 1.795 – 72.350 5.521 –
IBSPSH 11.295 1.925 – 80.143 6.186 –
IBSS-PSH 10.743 1.795 – 72.368 5.527 –
RIBSPSH/NP 5.095 2.148 (4.961, 5.228) 10.807 3.112 (10.614, 11.000)
RIBSS-PSH/NP -0.008 0.022 (-0.009, -0.007) 0.025 0.120 (0.017, 0.032)

20% IBSNP 10.784 1.965 – 72.459 6.341 –
IBSPSH 10.912 2.001 – 73.962 6.409 –
IBSS-PSH 10.785 1.965 – 72.595 6.385 –
IBSWS-PSH 10.781 1.964 – 72.492 6.353 –
RIBSPSH/NP 1.180 1.633 (1.079, 1.282) 2.098 1.827 (1.985, 2.212)
RIBSS-PSH/NP 0.003 0.185 (-0.008, 0.015) 0.186 0.633 (0.145, 0.225)
RIBSWS-PSH/NP -0.032 0.192 (-0.044, -0.020) 0.046 0.517 (0.014, 0.078)

(b) 2nd non-PSH setting: Z ∼ Bernoulli (0.5)

thor = 5 thor = 10

Censoring Ave. SD 95% C.I. Ave. SD 95% C.I.

0 IBSNP 17.532 2.585 – 98.202 6.703 –
IBSPSH.f(t) 17.577 2.590 – 98.380 6.724 –
IBSS-PSH 17.531 2.585 – 98.198 6.703 –
RIBSPSH.f(t)/NP 0.261 0.747 (0.215, 0.307) 0.180 0.263 (0.164, 0.197)
RIBSS-PSH/NP -0.005 0.021 (-0.007, -0.004) -0.004 0.062 (-0.008, 0.000)

20% IBSNP 17.548 2.785 – 98.505 7.602 –
IBSPSH.f(t) 17.516 2.777 – 98.548 7.614 –
IBSS-PSH 17.546 2.786 – 98.554 7.623 –
IBSWS-PSH 17.537 2.782 – 98.488 7.606 –
RIBSPSH.f(t)/NP -0.179 0.505 (-0.210, -0.147) 0.044 0.596 (0.007, 0.081)
RIBSS-PSH/NP -0.011 0.147 (-0.020, -0.002) 0.049 0.500 (0.018, 0.080)
RIBSWS-PSH/NP -0.064 0.146 (-0.073, -0.055) -0.017 0.461 (-0.046, 0.011)
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(c) 2nd non-PSH setting: Z ∼ Normal (0.5, 0.01)

thor = 5 thor = 10

Censoring Ave. SD 95% C.I. Ave. SD 95% C.I.

0 IBSPSH.f(t) 36.202 3.944 – 123.236 8.289 –
IBSS-PSH 36.238 3.947 – 123.301 8.294 –
RIBSS-PSH/PSH.f(t) 0.099 0.153 (0.089, 0.108) 0.053 0.059 (0.049, 0.057)

20% IBSPSH.f(t) 36.226 4.160 – 123.310 9.032 –
IBSS-PSH 36.259 4.163 – 123.352 9.031 –
IBSWS-PSH 36.250 4.162 – 123.352 9.046 –
RIBSS-PSH/PSH.f(t) 0.092 0.125 (0.084, 0.099) 0.035 0.150 (0.026, 0.044)
RIBSWS-PSH/PSH.f(t) 0.067 0.128 (0.059, 0.075) 0.074 0.151 (0.065, 0.084)

NP: the nonparametric estimates; PSH: the PSH model; PSH.f(t): the PSH model with time-covariate

interactions; S-PSH: the stopped PSH model; WS-PSH: the weighted stopped PSH model. RIBS is the

relative increment of integrated Brier scores, i.e., RIBSPSH/NP = IBSPSH/IBSNP - 1. All entries are

multiplyed by 100.

2.4 APPLICATION

To illustrate the use of our proposed methods in predicting subject-specific CIF, we used

data from the NSABP B-14 trial which was a multicenter phase III clinical trial for women

with estrogen receptor positive and historically nodes-negative primary breast cancer [10]. In

this trial, 2,892 patients were randomly assigned to receive 5 years of tamoxifen or placebo

after surgeries. Among the 2,767 clinically eligible patients whom were followed up, 286

developed locoreginal recurrence (LRR), 1,155 had other events before LRR including distant

recurrence, second primary cancers, and death; the remaining 1,326 were censored. The

median follow-up time was 6.4 years. Our main interest in this application is to predict

the cumulative probabilities of LRR given a set of prognostic factors including treatment

(tamoxifen vs. placebo), surgery type (lumpectomy plus radiation therapy [L+XRT] vs.

mastectomy), age at the time of surgery (< 50 vs. ≥ 50 years old), and tumor size ranging

from 0 to 9.8 cm with a median of 2 cm.

We began our analysis by examining the PSH assumption for each prognostic factor from

the plot of Shoenfeld-type residuals versus time. Figure 3 shows that all prognostic factors

of interest violated the PSH assumption significantly. We also assessed the PSH assumption
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Figure 1: Predicted cumulative incidence functions (averaged over 1000 simulations) at a set

of horizon times.
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The prediction errors were cross-validated (3-fold) estimates for the Brier scores (BS). NP:
nonparametric method; PSH: the PSH model; PSH.f(t): the PSH model with time-covariate
interactions; S-PSH: the stopped PSH model; WS-PSH: the weighted stopped PSH model.

Figure 2: Relative increment of prediction errors (and their standard deviation) at horizon

time from 0 to 10.
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using the numeric goodness-of-fit test proposed by Zhou et al. (2013) [36]. The testing results

suggested significant linear covariate effects for all prognostic factors and significant quadratic

time-varying effects for treatment, surgery type, and tumor size (Table 2). By adding linear

and quadratic time interaction terms to the Fine-Gray PSH model we substantially improved

the model fit. This is depicted by the Shoenfeld-type residual plots in Figure 3.

We estimated the cumulative probabilities of LRR over time for patients with differ-

ent characteristics from four different models: the PSH model, the PSH model with time-

covariate interactions, and our two proposed models (stopped PSH and weighted stopped

PSH models). For demonstration, we selected two subgroups of patients with different sets

of characteristics: the first subgroup included younger breast cancer patients (< 50 years old

at the time of surgery) with 3 cm tumor size, received L+XRT, and treated with placebo;

the second subgroup included older patients (≥ 50 years old at the time of surgery) with 1

cm tumor size, received mastectomy, and treated with tamoxifen. Figure 4 depicts the esti-

mated predicted cumulative probabilities of LRR for the two subgroups of patients obtained

from the aforementioned four different modeling approaches. The results show that the es-

timates from our proposed models (both unweighted and weighted stopped PSH models)

agree with that obtained from the PSH model with time-covariate interactions but disagree

with that obtained from the simple PSH model. From the simple PSH model, no substantial

differences were found in the probabilities of developing LRR between the two subgroups.

We also compared the predictive capability of the four models by estimating the Brier

scores at 1, 3, 5, 7, and 9 years (Table 3). In order to quantify how much the proposed models

gained in terms of prediction accuracy, we chose the PSH model as the reference model and

assessed the relative increment (or reduction) of prediction errors for other three regression

models in comparison with the reference model (Table 3). The results show that our proposed

stopped PSH model surpasses PSH model in prediction accuracy and it also surpasses the

PSH model with time-covariate interactions. The weighted stopped PSH model also yielded

smaller prediction errors, and the stopped PSH model had the smallest prediction errors.

One possible reason for the weighted stopped PSH model not performing as well as

the stopped PSH model with this particular data is that there was only less than 10% of

the samples censored before year 10, which may lead to biased estimates of the weights.
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To account for the possible overfitting, we also computed a 3-fold cross-validated Brier

scores and the standard errors (SE), where the SE estimates were obtained from estimating

sampling distribution of the Brier scores by resampling the original dataset of size 2,767 for

B = 500 times. Because that the number of main events (developing LRR) was too small,

our proposed models and the PSH model with time-covariate interactions only showed minor

improvements in prediction accuracy and became less efficient in comparison with the simple

PSH model. An alternative strategy is to validate the performance of our models with an

external dataset that is independent of the dataset used for fitting the model.

Table 2: Goodness-of-fit test for the PSH model.

Covariates t t2 t+ t2

Treatment 0.005 0.011 0.020

Surgery type < .001 < .001 < .001

Age 0.021 0.058 0.033

Tumor size 0.017 0.020 0.066
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Table 3: Estimated Brier scores at various prediction horizon times (thor= 1, 3, 5, 7, and 9

years).

thor

1 3 5 7 9

BSPSH 0.611 3.376 4.691 5.880 6.751

BSPSH.f(t) 0.607 3.368 4.675 5.879 6.756

BSS-PSH 0.603 3.368 4.671 5.875 6.750

BSWS-PSH 0.603 3.369 4.672 5.877 6.753

RIPEPSH.f(t)/PSH -0.614 -0.230 -0.342 -0.013 0.084

RIPES-PSH/PSH -1.225 -0.224 -0.426 -0.083 -0.009

RIPEWS-PSH/PSH -1.223 -0.192 -0.401 -0.041 0.038

PSH: the PSH model; PSH.f(t): the PSH model with time-covariate interactions; S-PSH: the

stopped PSH model; WS-PSH: the weighted stopped PSH model. RIPE is the relative increment

of prediction errors where BSPSH is a reference, i.e., RIPEPSH.f(t)/PSH = BSPSH.f(t)/BSPSH - 1.

All entries are multiplyed by 100.
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(b) The PSH model with time-covariate interactions

The solid line is a locally weighted regression smooth with span= 0.5.

Figure 3: Plots of Shoenfeld-type residuals of the PSH model and the PSH model with

time-covariate interactions.
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Figure 4: Predicted cumulative incidences of locoreginal recurrence for two subgroups defined

by Zi = (treatment, surgery type, age, tumor size).
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2.5 DISCUSSION

In this study, we propose a risk prediction modeling procedure to accurately estimate the

cumulative incidence function for data with competing risks. The proposed methods are

robust, simple to implement, not sensitive to the proportional subdistribution hazards as-

sumption, and can incorporate multiple discrete and continuous prognostic factors without

the need to test the model fit.

In the simulation studies, we compared cross-validated prediction errors and found that

our proposed stopped PSH model has the same prediction accuracy as that obtained from

the nonparametric estimates if all covariates are discrete; and it has the same prediction

accuracy as the PSH model with time-covariate interactions when the functional form of

time was correctly specified. Using real data from a breast cancer clinical trial, it illustrated

that the proposed approach is straightforward and simple to implement for risk prediction.

As compared with the PSH model with time-covariate interactions, our stopped PSH model

has another appealing advantage that is it does not require modeling the functional forms of

time-varying effects. Although the Schoenfeld-type residuals could be utilized to represent

and test the functional forms, if the functional form is incorrectly specified, the residuals

would have little use and the goodness-of-fit testing procedure would become less powerful

[36]. There may also be concerned about the issue of overfitting if adding time-covariate

interactions increases the number of parameters. As shown in our simulations, in the first

non-PSH setting, adding time-covariate interactions may not capture all nonproportionality

effects. In this situation, we found that the goodness-of-fit tests and the modeling procedure

allowing time-covariate interactions into the PSH model are not applicable.

Our proposed models might be less efficient in some situations. As opposed to the PSH

model which uses information over the entire follow-up period, the stopped PSH model uses

information only up to the prediction horizon time. Therefore, the stopped PSH model

might be less efficient than the PSH model at the early follow-up period. Also, if the cen-

soring proportion is low prior to the horizon time, the nonparametric estimates of censoring

probabilities could be less efficient. As a result, the weights derived from these censoring

probabilities would yield unreliable results in the weighted stopped PSH model.
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In estimation of the Brier score with the traditional method, one often uses the IPCW

to deal with censoring. This approach could lead to biased estimates if the number of main

events is low and the censoring percentage is high. An alternative strategy is to use the

pseudo-observation approach to deal with high percent of censoring [5]. Moreover, if the

number of main events is small, the cross-validation strategy is not effective. In this case,

it is preferred to validate the performance of the models using an external dataset which is

independent of the dataset used for fitting the model.

The proposed methods allow the users to predict the CIF at a given horizon time therefore

can be used for risk stratification or therapy assignments. If a researcher’s goal is to find

the absolute risk of a specific event, our procedure is more attractive and less complex than

the currently available models. However, our proposed models do not serve the purpose of

estimating a covariate effect or capturing the overall trajectory of the effect through time.
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3.0 LANDMARK PROPORTIONAL SUBDISTRIBUTION HAZARDS

MODELS FOR DYNAMIC PREDICTION OF CUMULATIVE INCIDENCE

PROBABILITIES

3.1 INTRODUCTION

A patient’s baseline prognosis predicted at the moment of diagnosis or at the beginning of

treatment often changes over time with the progression of disease. Patients who share similar

baseline prognosis could have very different prognosis at later time points during follow-up

because of population heterogeneity. In such cases, prognosis performed at the baseline are

unable to reveal the underlying dynamic changes. Prognosis tools that can update patients’

prognosis dynamically using information collected during follow-up about disease progression

will be more helpful to patients and clinicians in their decision-making [4, 17].

A dynamic prediction refers to dynamically predicting a patient’s prognosis at later

time points during follow-up by incorporating all the time-dependent prognostic information

collected up to the time points. The time-dependent information includes the potential

time-varying covariate effects, i.e. the effect of some prognostic factors may diminish as

time elapses from diagnosis, the intermediate clinical events, i.e. the occurrence of acute

graft versus host disease (aGvHD) for acute lymphoid leukemia patients after bone marrow

transplantation, and the longitudinally measured biomarkers, i.e. CD4 cell count for HIV

patients and prostate-specific antigen (PSA) level for prostate cancer patients.

The quantities of primary interest in dynamic prediction are conditional survival proba-

bility for data containing no competing risks and conditional cause-specific cumulative inci-

dence function for data with competing risks [31, 33]. The conditional survival probability

is defined as the probability of surviving beyond a pre-specified time (the prediction horizon
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time, thor) or surviving an additional w-years given that the patient is still alive at certain

specified time points (the landmark time, tLM) during follow-up. Similarly, the conditional

cause-specific cumulative incidence function is the probability that the event of interest oc-

curs before thor conditional on the patient who has not yet failed from any cause at tLM . For

those patients who have not experienced any event at tLM , clinicians may predict the risk

by estimating the next w-years cumulative incidence function based on all the prognostic

information available at the landmark time point.

Several statistical methods have been used to incorporate the intermediate clinical events

or the repeated measures of biomarkers in dynamic prediction. Van Houwelingen and Putter

(2008) [32] utilized multi-state models to dynamically estimate the failure free survival during

follow-up of acute lymphoid leukemia patients after transplantation given the history on

aGvHD. Proust-Lima and Taylor (2009) [3] developed a joint modeling approach derived from

a joint latent class model to dynamically predict the risk of recurrence given the longitudinal

posttreatment PSA measures. Mauguen et al. (2013) [18] proposed a dynamic prognostic

tool based on joint frailty models to predict patients’ risk of death given the history on cancer

recurrence.

Although multi-state models and joint models are useful in understanding the underlying

process of a disease progression over time, predictions using either of these two models

are complex and the implementation could be cumbersome. In multi-state models, where

all the intermediate and terminal events are defined as states, each transition from one

state to another need to be modeled separately [22] which could result in overfitting. In

addition, when the Markov assumption is not satisfied in practice, the multi-state models

could not provide explicit expressions for the dynamic prediction probabilities and additional

simulation procedures are needed [9]. The limitation of applying joint models as a dynamic

prognostic tool is the computational complexity in jointly modeling the longitudinal covariate

processes and time-to-event data [3, 33]. Furthermore, developing multi-state models or

joint models for data with various types of time-dependent information will be even more

complicated.

Van Houwelingen (2007) [31] developed a more simple and straightforward dynamic prog-

nostic tool for data containing no competing risks. In contrast to the multi-state models

28



and joint modeling approach, the proposed landmark Cox dynamic prediction models can

incorporate time-varying covariate effects, intermediate events, and repeated measurements

of biomarkers simultaneously into one single model that also provides an explicit expression

for the conditional survival probability [31–33]. The landmark method avoids complex pro-

cedures of modeling either the time-varying effects or the longitudinal covariate processes,

thus it is less demanding in computation and easier to implement than other methods of

dynamic prediction.

The landmark method was originally introduced by Anderson et al. (1983) [1] to cor-

rect the immortal time bias in the analysis of survival of ”responders” and ”nonresponders”

in cancer patients to evaluate the effect of response to chemotherapy. The immortal time

bias was introduced when the survival probabilities were compared between ”responders”

and ”nonresponders” from the start of the study, since the patients’ response status was

determined at later time points during follow-up but not at the baseline. This bias leaded

the survival probability to be overestimated for ”responders” but underestimated for ”nonre-

sponders”. The landmark method is applied to patients who are alive at a fixed pre-specified

time point, the landmark, during follow-up with survival analyses conditional on these pa-

tients using their response status measured at the landmark time. All patients who died or

were censored before landmark are excluded from the analysis [1, 7].

Van Houwelingen (2007) [31] applied the landmark method to the Cox proportional

hazards model and proposed the landmark Cox model to dynamically predict the probability

of failure at prediction horizon time thor conditional on the subjects who have not yet failed

at landmark time tLM given the event’s history and the time-dependent covariates until

tLM . The proposed landmark Cox model can also accommodate the time-varying effects,

because it is robust against violation of the proportional hazards assumption. In addition,

van Houwelingen (2007) [31] further developed more comprehensive landmark supermodels

that requires fitting only one model for making dynamic prediction at any landmark point

from a pre-specified interval, instead of fitting a landmark Cox model for each landmark

time point separately.

To extend the landmark dynamic prediction method to data containing competing risks,

Nicolaie et al. (2013) [19] developed landmark supermodels based on the cause-specific
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hazards function. However, in order to estimate the conditional CIFs, this approach requires

fitting the landmark supermodels for all causes of failure separately then combining the

results. Hence, there is a lack of one-to-one correspondence in the interpretation of landmark-

dependent covariate effects on the dynamic predictive probabilities. To directly predict the

conditional CIFs, Nicolaie et al. (2013) [20] proposed landmark supermodels based on the

dynamic pseudo-observations that are updated at each landmark point. Cortese et al. (2013)

[5] applied the landmark method to the Fine-Gray proportional sub-distribution hazards

(PSH) model [8] at a small set of pre-defined fixed time points. However, they did not assess

robustness of their proposed model against violations of the PSH assumption, nor did they

construct a more comprehensive landmark supermodel to reduce complexity in computation

when there are multiple landmark time points of interest. The major difficulty encountered

by other researchers attempting to develop a landmark model/supermodel based on the

Fine-Gray model was in constructing the landmark subset at each landmark time point to

properly deal with the competing events [19].

In this study, we overcame the aforementioned challenges and extended the landmark

approach to the Fine-Gray PSH model for data with competing risks. We proposed a simple

landmark PSH model that can be used to directly predict the conditional CIFs in one step

and will provide simple and accurate prediction of the conditional CIFs for covariates with

possible time-varying effects bypassing complex modeling of the process of time-varying co-

variates effect. We further developed a landmark PSH supermodel which can be used to make

dynamic predictions at arbitrary landmark points by fitting only one model. In addition, we

adopted the concept of sliding prediction window from van Houwelingen and Putter (2012)

[33] and allowed the horizon time to vary. In this case, the landmark PSH models provide a

dynamic prediction tool to estimate conditional CIFs at tLM + w, where w is a fixed width

of the prediction window. Compared to the currently available landmark models for data

containing competing risks, our proposed landmark PSH models are straightforward, easy to

implement and can yield a simpler and explicit estimation form for the desired conditional

CIFs.

In the next section, we introduce the dynamic prediction probabilities in competing

risks, and present our proposed landmark PSH model and landmark PSH supermodels. In
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Section 3.4, we assess the performance in prediction for the proposed models and compare

with the existing methods through simulations. In Section 3.5, we apply the proposed models

to predict the w-year fixed width cumulative incidences of locoregional recurrence given a

set of prognostic factors from a breast cancer clinical trial. The discussions are provided in

Section 3.6.

3.2 DYNAMIC PREDICTION WITH TIME-VARYING COVARIATE

EFFECTS

3.2.1 Conditional Cumulative Incidence Function

In Section 3.2, we only consider time-fixed covariates, but the covariate effects might be

changing over time. The target dynamic prediction probability is the conditional cause-

specific cumulative incidence function that is the cumulative incidence probability of occur-

ring the event of interest by a pre-specified prediction horizon time thor conditional on the

individuals who have not yet failed from any cause at a landmark time point tLM .

Following the same notations introduced in Section 2.2.1, the corresponding conditional

CIF for cause 1 is defined as

F1,LM(thor|Z, tLM) = Pr(T ≤ thor, ε = 1|T > tLM ,Z), (3.1)

where T is the failure time, ε ∈ {1, . . . , k} is the cause of failure, and Z is a p-dimensional

vector of time-fixed covariates. Using the definition of conditional probabilities, we can

rewrite the conditional CIF as

F1,LM(thor|Z, tLM) =
F1(thor;Z)− F1(tLM ;Z)

S(tLM ;Z)
=
F1(thor;Z)− F1(tLM ;Z)

1−
∑k

j=1 Fj(tLM ;Z)
,

where Fj(tLM ;Z) is the CIF for cause j and S(tLM ;Z) is the overall survival at time tLM .

Several methods can be used to estimate F1,LM(thor|Z, tLM), including the nonparamet-

ric estimates, the cause-specific hazards model, the Fine-Gray proportional subdistribution

hazards (PSH) model [8], the multistate model [6], the pseudo-value approach [15], and the
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direct binomial regression model [26]. However, all these methods require at least two steps

in estimating the conditional CIFs; the first step is to estimate the probabilities of having no

event up to the landmark time; and the second step is to estimate the cumulative incidences

of developing the main event between the landmark time and the horizon time. Moreover,

to predict the conditional CIFs at a set of landmark time points using the aforementioned

methods, one has to fit the models separately for each landmark point; which could be com-

putationally cumbersome. In addition, the cause-specific hazards model and the Fine-Gray

model are sensitive to the proportionality assumption which assumes that the covariate ef-

fects are constant over time, yet often the assumption is violated in a long-term follow-up.

Therefore, these methods are not ideal for dynamic prediction when dealing with competing

risks data.

In order to directly estimate the conditional CIF in one step, we generalize the landmark-

ing approach proposed by van Houwelingen (2007) [31] into the Fine-Gray PSH model and

propose a landmark PSH model. The proposed landmark PSH model can also accommodate

the potential time-varying covariate effects because it is robust against the misspecification

of the proportional subdistribution hazards.

3.2.2 Landmark PSH Model

To directly estimate the F1,LM(thor|Z, tLM), we define a conditional subdistribution hazard

λ1(t|Z, tLM) = lim
∆t→0

1

∆t
Pr{t ≤ T ≤ t+ ∆t, ε = 1|T ≥ t ∪ (tLM ≤ T ≤ t ∩ ε 6= 1),Z}

for t ≥ tLM , which is the subdistribution hazards λ1(t|Z) defined in Section 2.2.1 conditional

on the subjects who have no event occurred from any cause prior to tLM . It can be shown

that

F1,LM(thor|Z, tLM) = Pr(tLM < T ≤ thor, ε = 1|Z)/Pr(T > tLM |Z)

= 1− Pr{(T > thor) ∪ (tLM < T ≤ thor ∩ ε 6= 1)|Z}/Pr(T > tLM |Z)

= 1− exp[−{Λ1(thor|Z, tLM)− Λ1(tLM − |Z, tLM)}]

= 1− exp

{
−
∫ thor

tLM

λ1(t|Z, tLM) dt

}
. (3.2)
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Following the form of the PSH model, we define a landmark PSH model which is given

by

λ1(t|Z, tLM) = λ10(t|tLM) exp{ZTβLM} for tLM ≤ t ≤ thor. (3.3)

Therefore, the conditional CIF can be easily computed from F̂1,LM(thor|Z, tLM) = 1 −

exp{−
∫ thor
tLM

λ̂1(t|Z, tLM) dt}. The model can be fitted by applying the Fine-Gray PSH model

to the data of individuals who have not failed from any cause at tLM and ignoring the events

occurring after the horizon time thor by adding administrative censoring at thor.

The landmark PSH model with truncation at tLM and administrative censoring at thor

is also robust against violations of the proportional subdistribution hazards assumption.

Under the nonproportionality, based on the results showed Chapter 2, we can derive that

the partial likelihood estimator β̂LM calculated from the landmark PSH model is a weighted

average of the true time-varying effects in the interval [tLM , thor] and the corresponding

F̂1,LM(thor|Z, tLM) is an approximately correct estimate for the underlying true conditional

CIF at time thor.

So, the proposed landmark PSH model provides a convenient and straightforward way to

predict the conditional CIF F1,LM(thor|Z, tLM) in one model. In addition, it can incorporate

the potential time-varying covariate effects into dynamic prediction via a simple model form

without constructing complex procedures to model the time-varying effects.

3.2.3 Landmark PSH Supermodel

Different from the fixed horizon time, van Houwelingen and Putter (2012) [33] proposed

the idea of sliding prediction window, which is taking a window with a fixed width of w

and predicting the failure probabilities at thor = tLM + w given that the subjects have

not experienced any event before tLM . The idea of sliding window is the basis of dynamic

prediction. Generalizing this idea to data with competing risks, our aim is to predict the

cumulative probabilities at the next w years conditional on the individuals who are event-free

at a set of landmark time points tLM = s within an interval [s0, sL]. The target conditional

CIF is defined as F1,LM(s+ w|Z, s).
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Applying landmark PSH models to dynamic prediction is less practical because it is

necessary to fit a landmark PSH model for each landmark point separately. We used the

smoothing strategy of van Houwelingen (2007) [31] for the Cox model to develop a landmark

supermodel based on the PSH model. Similar to the landmark Cox model, the landmark

PSH supermodel is also based on an augmented dataset which is constructed as follows:

we first select a set of landmark points s from an interval [s0, sL]; for each s, we create a

landmarking subset by selecting the individuals who have not failed from any cause at s and

adding administrative censoring at s + w for those who have events occur after s + w; and

then stacking all the individual landmarking subsets into a super prediction dataset.

3.2.3.1 Stratified Landmark PSH Supermodel As discussed in Chapter 2, we have

shown that the β̂LM calculated from model (3.3) is consistent for a weighted average of

possibly time-varying effects over the interval [s, s + w]. As discussed in van Houwelingen

(2007) [31], we can also expect the effect of s on βLM(s) in a smooth way and model βLM(s)

as continuous functions of s. Then, we have the stratified landmark PSH supermodel

λ1(t|Z, s, w) = λ10(t|s, w) exp{ZTβLM(s)} for s ≤ t ≤ s+ w, (3.4)

where λ10(t|s, w) is the unspecified baseline subdistribution hazard for each s. For simplicity,

we can fit a linear model for βLM(s), which takes the form

βLM(s) = βLM(s|θ) =

mβ∑
j=1

θjfj(s)

where f(s) is a set of parametric functions of s and θj is a vector of parameters.

Model (3.4) can be fitted by applying a PSH model with landmark-covariate interactions

Z ∗ fj(s) to the stacked dataset with stratification on s. To obtain the consistent estimates,

we impose that any landmark time point s satisfies s + w < τ , where τ is chosen such that

G(τ) > 0 and S(τ) > 0. The consistent estimates of θ can be obtained by maximizing a

pseudo partial log-likelihood

ipl(θ) =
n∑
i=1

I(εi = 1)

( ∑
s:s≤Ti≤s+w

ln

[
exp{ZT

i βLM(s|θ)}∑
j∈Rs(Ti) exp{ZT

j βLM(s|θ)}

])
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where Rs(Ti) = {j : (Ti ≤ Tj ≤ s + w) ∪ (s < Tj ≤ Ti ∩ εj 6= 1)}. The ipl(θ) is similar as

that shown in van Houwelingen (2007) [31]; the difference is the modified risk sets Rs(Ti).

In the presence of random right censoring, the ipl(θ) need to be modified by including the

IPCW weights. In terms of the counting process, the weighted ipl(θ) takes the form

iplw(θ) =
n∑
i=1

∫ ∞
0

∑
s:s≤t≤s+w

ln

[
exp{ZT

i βLM(s|θ)}∑
j ω

s
j (t)Y

s
j (t) exp{ZT

j βLM(s|θ)}

]
ωsi (t) dN

s
i (t)

where N s
i (t) = I(s < Ti ≤ t, εi = 1), Y s

i (t) = I(t ≤ Ti ≤ s + w) + I(s < Ti < t, εi 6= 1) and

ωsi (t) = Ĝs(t)

Ĝs(Xi)
I(s < Xi < t, εi 6= 1) + I(t ≤ Xi ≤ s+w), Ĝs(t) is the Kaplan-Meier estimate

of the conditional censoring survival distribution Gs(t) = Pr(C ≥ t|C ≥ s). To obtain the

standard errors for the estimated parameters, a robust sandwich estimator is required to

adjust for the correlation between the risk sets because the same subject is repeatedly used

when we estimate the parameters based on the stacked dataset.

For each stratum s, the Breslow-type estimator of the baseline conditional subdistribution

hazard is

λ̂10(Ti|s, w) =
1∑

j∈Rs(Ti) exp{ZT
j β̂LM(s)}

for s ≤ Ti ≤ s+ w. (3.5)

Similarly, in the presence of random right censoring, the Breslow-type estimator need to be

modified by the IPCW weights.

In the implementation, the R function coxph() can be used to fit model (3.4) and also

provide the robust sandwich estimates for the standard errors; but it requires a transforma-

tion for each landmarking subset in the process of constructing the super prediction dataset.

Before stacking the subsets into a big dataset, following the strategy in Geskus (2011) [12],

we need to transform each subset into the counting process style and include time-varying

IPCW weights for the subjects experienced competing events when random right censoring

is also present. We will then construct a new super dataset by stacking all the transformed

subsets together and run the PSH model in coxph() stratified by s.
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3.2.3.2 Proportional Baselines Landmark PSH Supermodel In practice, the limi-

tation of the stratified landmark PSH model is that it estimates the baseline subdsitribution

hazard separately for each landmark point. As the Breslow estimator (3.5) showed, the

dependence of λ̂10(Ti|s, w) on s is through β̂LM(s); so that we can also expect that the

λ10(t|s, w) varies continuously with s. Following the strategy of van Houwelingen (2007)

[31], we can directly model the λ10(t|s, w) as

λ10(t|s, w) = λ10(t) exp{γ(s)}.

This lead to the proportional baselines landmark PSH supermodel (PBLM-PSH supermodel)

λ1(t|Z, s, w) = λ10(t) exp{ZTβLM(s) + γ(s)} (3.6)

for s0 ≤ t ≤ sL + w. Similarly, γ(s) can be fitted as a linear model

γ(s) = γ(s|η) =

mλ10∑
j=1

ηjgj(s),

where g(s) is a set of parametric functions of s and η is a vector of parameters. Note

that g(s) do not need to contain the constant term and have the restriction of gj(s0) = 0

for all j(j = 1, . . . ,mλ10) due to identifiability of the baseline subdistribution hazard, some

discussion as shown in van Houwelingen (2007) [31].

Model (3.6) can still be fitted by applying a PSH model with landmark-covariate inter-

actions Z ∗ fj(s) to the stacked dataset. Instead of stratifying on the landmark point, it

directly fits s as g(s) into model. To consistently estimate the parameters (θ,η), a Breslow

partial log-likelihood is required for tied events. This is because in the stacked dataset, one

subject with event time Ti has ni = #{s : s ≤ Ti ≤ s+w, s ∈ [s0, sL]} repeated observations.

Thus, fitting the model is equivalent to maximizing a different pseudo partial log-likelihood

which is given by

ipl∗(θ,η) =
n∑
i=1

I(εi = 1) ln

[ ∑
s:s≤Ti≤s+w exp{ZT

i βLM(s|θ) + γ(s|η)}∑
s:s≤Ti≤s+w

∑
j∈Rs(Ti) exp{ZT

j βLM(s|θ) + γ(s|η)}

]
.
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Similarly, in the presence of random right censoring, the ipl∗(θ,η) need to be weighted by

the IPCW weights. In terms of the counting process, the weighted ipl∗(θ,η) takes the form

ipl∗w(θ,η) =
n∑
i=1

∫ ∞
0

ln

[ ∑
s:s≤t≤s+w ω

s
i (t) exp{ZT

i βLM(s|θ) + γ(s|η)}∑
s:s≤t≤s+w

∑
j ω

s
j (t)Y

s
j (t) exp{ZT

j βLM(s|θ) + γ(s|η)}

]
dN̄i(t),

where N̄i(t) = I(s0 < Ti ≤ t ≤ sL + w, εi = 1). Again, robust estimates of the standard

errors for the estimated parameters can be obtained by using the sandwich procedure.

For complete and censoring complete data, the estimate of λ10(Ti) is given by

λ̂10(Ti) =
#{s : s ≤ Ti ≤ s+ w, εi = 1}∑

s:s≤Ti≤s+w
∑

j∈Rs(Ti) exp{ZT
j β̂LM(s) + γ̂(s)}

for s0 ≤ Ti ≤ sL + w (3.7)

and the cumulative subdistribution hazard is estimated by Λ̂10(t) =
∑

(Ti≤t,εi=1) λ̂10(Ti).

When random right censoring exists, Λ̂10(t) takes the form

Λ̂10(t) =
n∑
i=1

∫ t

0

∑
s:s≤u≤s+w ω

s
i (u)∑

s:s≤u≤s+w
∑

j ω
s
j (u)Y s

j (u) exp{ZT
j βLM(s|θ) + γ(s|η)}

dN̄i(u).

Thus, the target dynamic prediction probabilities F1,LM(s + w|Z, s) have a simple and

explicit estimation form, which is given by

F̂1,LM(s+ w|Z, s) = 1− exp
[
−eZT β̂LM (s)+γ̂(s){Λ̂10(s+ w)− Λ̂10(s−)}

]
(3.8)

for all s ∈ [s0, sL]. Compared to model (3.4) which can only get the prediction for the

pre-specified landmark points because the baseline subdistribution hazard is specific for

each s, the proportional baselines landmark PSH supermodel can provide the prediction of

F1,LM(s + w|Z, s) in any period of length w starting anywhere in [s0, sL]. Note that model

(3.6) assume that the effect of s on the baseline subdistribution hazard in an additive way.

As discussed in van Houwelingen (2007) [31], this assumption hold if the follow-up is not too

long or the effect of covariates is not too big. So, if we choose an optimal width w for the

prediction window and a rational range [s0, sL] for the landmark points, according to the

robustness of the PSH model, the proportional baselines landmark PSH supermodel directly

provides a correct approximation for the conditional cumulative incidence function at time

s+ w for any s ∈ [s0, sL].
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In practice, fitting the PBLM-PSH supermodel in the stacked dataset requires software

that allows for delayed entry or left truncation at s. Following the same data transformation

strategies we mentioned before, the coxph() can be still used; and the provided robust sand-

wich covariance matrix for (θ,η) can be used for the significance testing of the estimated

regression coefficients. As we discussed before, the landmark effect on the baseline subdis-

tribution hazard is through βLM(s), so that there is a correlation between θ and η. Van

Houwelingen (2007) [31] suggested to center the covariates, so that the correlation would be

reduced.

3.2.4 Measure of Predictive Accuracy

To evaluate the dynamic predictive accuracy of the proposed procedures, we adapted the

time-dependent Brier score which is an estimate of the mean-squared prediction errors of the

predicted event probabilities at thor = s+w over the observed event status for subjects who

are still alive at landmark s [5, 28]. For competing risks data, the expected time-dependent

Brier score at landmark s for the prediction at horizon thor is defined as

BSLM(thor, s) = E
[
{I(T ≤ thor, ε = 1)− F1,LM(thor|Z, s)}2|T > s

]
,

where thor > s. For complete data, BSLM(thor, s) can be consistently estimated by

B̂SLM(thor, s) =
1

ns

∑
i∈Rs

{I(Ti ≤ thor, εi = 1)− F̂1,LM(thor|Zi, s)}2,

where Rs = {i : Ti > s} and ns is the number of subjects in Rs. When random right

censoring exists, we utilize a pseudovalue-based consistent estimator of BSLM(thor, s), which

was proposed by Cortese et al. (2013) [5]

B̂SLM(thor, s) =
1

ñs

∑
i∈R̃s

[
Q̂

(i)
1,LM(thor|s){1− 2F̂1,LM(thor|Zi, s)}+ F̂1,LM(thor|Zi, s)

2
]
,

where R̃s = {i : Xi > s} and ñs is the number of subjects in R̃s. Q̂
(i)
1,LM(thor|s) is a jackknife

pseudovalue for ith subject who is still alive at s, which is defined by

Q̂
(i)
1,LM(thor|s) = ñsF̂1,LM(thor|s)− (ñs − 1)F̂

(i)
1,LM(thor|s),
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where F̂1,LM(thor|s) is the nonparametric estimate of the conditional cumulative incidence

function Pr(T ≤ thor, ε = 1|T > s) and F̂
(i)
1,LM(thor|s) is the same estimate but based on the

data where the ith subject has been removed.

3.3 DYNAMIC PREDICTION WITH TIME-DEPENDENT COVARIATES

3.3.1 Landmark PSH Supermodel

When there are time-dependent covariates that may be the occurrence of intermediate events

and/or repeated measurements of biomarkers, the clinical interest is in the dynamic predic-

tion of cumulative incidences given the covariates history available up to the landmark time

point s. The target conditional CIF is defined as

F1,LM(s+ w|Z(s), s) = Pr(T ≤ s+ w, ε = 1|T > s,Z(s)),

where Z(s) include the time-fixed covariates measured at baseline and the time-dependent

covariates whose values are fixed at landmark time s.

To incorporate time-dependent covariates and time-varying covariate effects simultane-

ously, the landmark PSH supermodels provide a simpler way in dynamic prediction for data

with competing risks. The stratified landmark PSH supermodel becomes

λ1(t|Z(s), s, w) = λ10(t|s, w) exp{Z(s)TβLM(s)} for s ≤ t ≤ s+ w, (3.9)

where βLM(s) is also a continuous function of s, can be modeled as βLM(s) = f(s)θ. The

parameter β can be consistently estimated by maximizing

ipl(θ) =
n∑
i=1

I(εi = 1)

( ∑
s:s≤Ti≤s+w

ln

[
exp{Zi(s)

TβLM(s|θ)}∑
j∈Rs(Ti) exp{Zj(s)TβLM(s|θ)}

])
.

The estimate of the landmark-specific baseline conditional subdistribution hazards λ10(t|s, w)

is given by

λ̂10(Ti|s, w) =
1∑

j∈Rs(Ti) exp{Zj(s)T β̂LM(s)}
for s ≤ Ti ≤ s+ w.
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As before, we can assume multiplicative effects of landmark s on λ10(t|s, w) and have the

proportional baseline landmark PSH supermodel

λ1(t|Z(s), s, w) = λ10(t) exp{Z(s)TβLM(s) + γ(s)} (3.10)

for s0 ≤ t ≤ sL + w, where βLM(s) = f(s)θ and γ(s) = g(s)η. The consistent estimates of

the parameters (θ,η) can be obtained by maximizing

ipl∗(θ,η) =
n∑
i=1

I(εi = 1) ln

[ ∑
s:s≤Ti≤s+w exp{Zi(s)

TβLM(s|θ) + γ(s|η)}∑
s:s≤Ti≤s+w

∑
j∈Rs(Ti) exp{Zj(s)TβLM(s|θ) + γ(s|η)}

]
.

The estimate of λ10(Ti) is given by

λ̂10(Ti) =
#{s : s ≤ Ti ≤ s+ w, εi = 1}∑

s:s≤Ti≤s+w
∑

j∈Rs(Ti) exp{Zj(s)T β̂LM(s) + γ̂(s)}
for s0 ≤ Ti ≤ sL + w.

Thus, the conditional CIF F1,LM(s+ w|Z(s), s) has a simple estimation form

F̂1,LM(s+ w|Z(s), s) = 1− exp
[
−eZ(s)T β̂LM (s)+γ̂(s){Λ̂10(s+ w)− Λ̂10(s−)}

]

for all s ∈ [s0, sL].
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3.3.2 Adjusted Landmark PSH Supermodel

In the landmark PSH supmermodel 3.9 and 3.10, we assume that the Markov property is

held where the distribution of the future depends only on the current value, and we use Z(s)

as a proxy for the true value of Z(t). But, if the Z(t) is changing rapidly over time, the big

variation between Z(s) and Z(t) might cause an attenuated covariate effects βLM(s) and

subsequently provide bias estimation of the conditional CIF.

To adjust for this issue, we can explore a set of suitable landmark points to postulate

the process of Z(t) and model the attenuation process. Van Houwelingen and Putter (2012)

[33] proposed a simple method to adjust the attenuated covariate effects by adding a mono-

tonically decreasing function ϕ(t − s) with ϕ(0) = 1 to ϕ(∞) = 0. Utilizing this strategy,

the stratified landmark PSH supermodel can be modified as

λ1(t|Z(s), s, w) = λ10(t|s, w) exp{Z(s)T (βLM(s) ∗ ϕ(t− s))} for s ≤ t ≤ s+ w, (3.11)

where ∗ denotes coordinate-wise multiplication. Similarly, the PBLM-PSH supermodel can

also be adjusted. As a note, to fit the adjusted landmark PSH supermodels, when con-

struct the super stacked dataset, at each landmark-specific subset, we need to expand each

individual’s record at each combinition of landmark point s and event time t.

3.4 SIMULATION STUDIES

We evaluated the performance of the proposed methods for dynamic prediction using sim-

ulated data under two different settings of nonproportional subdistribution hazards (non-

PSH). The time-dependent Brier scores were compared among the proposed landmark PSH

model, the landmark PSH supermodel, the nonparametric method, and the standard PSH

model. For simplicity, only two failure types were considered: type 1 failure is the main

event of interest; type 2 failure indicates competing events.

In the first non-PSH setting, we generated the type 1 failure times from a two-parameter

Weibull mixture distribution with the subdistribution function

F1,1stnonPSH(t;Zi) = p(1− exp[−{λ1 exp(Ziβ1)t}α1 ])
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with (α1, λ1, β1) = (3.2, 0.18,−0.81), where the rate parameter depends on the covariate Zi.

In the second non-PSH setting, we let the coefficient of Zi be a function of time; and the

subdistribution of the main event became

F1,2ndnonPSH(t;Zi) = 1− (1− p[1− exp{−(λ2t)
α2}])exp{Ziβ21+Ziβ22 ln(t+1)}

with (α2, λ2, β21, β22) = (3.2, 0.12, 0.8, 0.3). In both settings, we considered Zi as a discrete

covariate from Bernoulli(0.5), and let p = 0.3, which produced about 30% main events

at Zi = 0 when there was no censoring. We generated the type 2 failure times from an

exponential distribution Pr(Ti ≤ t|εi = 2, Zi) = 1 − exp{− exp(Ziβct)} by taking Pr(εi =

2|Zi) = 1 − Pr(εi = 1|Zi), where βc = 0.5. Sample size of n = 1000 was chosen and the

data were simulated repeatedly for N = 1000 times. The censoring times were generated

independently from a uniform distribution which resulted in about 20% censoring.

The performance of the proposed landmark PSH model and the landmark PSH super-

model in dynamic prediction of the conditional CIFs using a fixed width of w at a set of

landmark points were compared with the performance of nonparametric method and the

standard PSH model. We chose a prediction window of width w = 3 for the first non-PSH

setting and w = 2 for the second non-PSH setting. For fitting the landmark PSH super-

model, we set up a fine grid of landmark points with equidistant step of 0.1 from 0 to 5 for

the first non-PSH setting and from 0 to 4 for the second non-PSH setting. In both settings,

we took ordinary polynomials for the basis functions as f(s) = {1, s, s2} and g(s) = {s, s2}.

Since the performance of the stratified landmark PSH supermodel is as good as that of the

proportional baselines landmark supermodel (PBLM-PSH supermodel), we only present the

simulation results of the PBLM-PSH supermodel in this section. Note that the landmark

PSH supermodel in absence of censoring cannot be fitted using the coxph() function in

R, because that the competing risks data cannot be transformed into the counting process

format if there is no censoring; and that the model cannot be fitted by the crr() function in

R either since crr() does not allow delayed entries. Therefore, we only fitted our landmark

PSH model (LM-PSH model) in complete cases. Figure 3.4 depicts the true and estimated

conditional cumulative incidence probabilities obtained from different approaches. We found
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that in two different non-PSH scenarios, the performance of the landmark PSH model and

the PBLM-PSH supermodel are as good as that of the nonparametric methods.

For each approach we evaluated the prediction errors in the dynamic conditional CIFs by

estimating time-dependent Brier scores, and we used a 3-fold cross-validation to correct for

possible overfitting. Table 4 shows averaged estimates of the cross-validated time-dependent

Brier score and its empirical standard deviation. To quantify the improvement of predic-

tive accuracy for the proposed landmark PSH models to the standard PSH model under

nonproportional hazards, we utilized a relative increment (or reduction) of prediction errors

by treating the nonparametric estimates as a reference. The relative increment of predic-

tion errors are presented in Figure 6. As expected, in both non-PSH settings the predictive

accuracy of the LM-PSH model was almost the same as that obtained from the nonpara-

metric method. As compared with the LM-PSH model or the nonparametric method, the

PBLM-PSH supermodel has slightly lower accuracy, yet the differences in prediction errors

are negligible.

Table 4: Cross-validated (3-fold) estimates for the time-dependent Brier score and its em-

pirical standard deviation (SD).

(a) 1st non-PSH setting: prediction window with fixed width of w = 3

Landmark NP PSH LM-PSH PBLM-PSH

tLM Censoring Ave. SD Ave. SD Ave. SD Ave. SD

0 0 2.059 0.430 2.087 0.441 2.074 0.434
20% 2.058 0.470 2.066 0.474 2.058 0.470 2.076 0.476

1 0 4.065 0.498 4.323 0.554 4.116 0.504
20% 6.986 0.889 7.126 0.923 6.986 0.889 7.093 0.909

2 0 5.182 0.411 6.124 0.500 5.271 0.423
20% 12.529 0.854 13.207 0.897 12.529 0.854 12.818 0.934

3 0 4.678 0.406 6.405 0.385 4.790 0.427
20% 14.211 1.104 15.512 0.882 14.212 1.104 14.666 1.238

4 0 3.525 0.448 5.556 0.356 3.624 0.467
20% 12.700 1.820 14.054 1.513 12.707 1.819 13.233 1.939

5 0 2.775 0.409 4.424 0.331 2.851 0.423
20% 11.338 2.269 12.082 2.055 11.356 2.270 12.043 2.441
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(b) 2nd non-PSH setting: prediction window with fixed width of w = 2

Landmark NP PSH LM-PSH PBLM-PSH

tLM Censoring Ave. SD Ave. SD Ave. SD Ave. SD

0 0 0.639 0.253 0.640 0.253 0.643 0.255
20% 0.640 0.270 0.641 0.271 0.640 0.270 0.646 0.273

1 0 2.257 0.456 2.275 0.462 2.282 0.461
20% 3.536 0.792 3.550 0.796 3.536 0.792 3.579 0.802

2 0 4.662 0.522 4.797 0.543 4.731 0.535
20% 10.078 1.247 10.211 1.257 10.078 1.247 10.253 1.277

3 0 6.326 0.452 7.003 0.453 6.451 0.477
20% 17.716 1.271 18.642 1.181 17.718 1.271 18.180 1.407

4 0 4.739 0.457 7.100 0.344 4.859 0.477
20% 17.713 1.751 21.588 1.323 17.127 1.750 17.936 1.983

NP: the nonparametric method; PSH: the standard PSH model; LM-PSH: the landmark PSH
model; PBLM-PSH: the proportional baselines landmark PSH supermodel. All entries are
multiplyed by 100.

3.5 APPLICATION

3.5.1 Application 1

To illustrate the use of our proposed landmark PSH supermodel in prediction of the con-

ditional cumulative incidence probabilities for a moving (or dynamic) time interval with

fixed width, we used the data from the NSABP B-20 trial which was a multicenter phase

III clinical trial for women with estrogen receptor positive and historically nodes-negative

primary breast cancer. In this trial, 2,363 patients were randomly selected to receive one

of the following three regimens: tamoxifen 10mg daily for 5 years, tamoxifen 10mg daily

for 5 years plus Metrotrexate (M) and Fluorouracil (F), and tamoxifen 10mg daily for 5

years plus M and F, and Cyclophosphamide (C). For simplicity, we will call these treatments

as TAM, TAM+MF, and TAM+CMF, respectively. Among the 2,272 clinically eligible pa-

tients followed up, 119 developed locoregional recurrence (LRR); 482 had other events before

LRR, including distant recurrence, second primary cancers, and death; and the remaining

1,671 were censored. The median follow-up time was 11.2 years. Our main interest in this

application is to dynamically predict the conditional cumulative incidence of LRR for the

subsequent w years given no event occurred before the landmark time point s. Prognostic
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Black curves: the Z = 1 group; gray curves: the Z = 0 group. True: underlying true conditional
CIFs. NP: nonparametric method; PSH: the standard PSH model; LM-PSH; the landmark PSH
model; PBLM-PSH: the proportional baselines landmark PSH supermodel.

Figure 5: Predicted conditional cumulative incidence functions over w years (averaged over

1000 simulations) at a set of landmark time points.
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The prediction errors were cross-validated (3-fold) estimates for the time-dependent Brier scores,
where w = 3 for the 1st non-PSH setting and w = 2 for the 2nd non-PSH setting. NP:
nonparametric method; PSH: the standard PSH model; LM-PSH; the landmark PSH model;
PBLM-PSH: the proportional baselines landmark PSH supermodel.

Figure 6: Relative increment of prediction errors (and their standard deviation) at a set of

landmark time points.
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covariates of interest include the treatment type (TAM, TAM+MF, or TAM+CMF), surgery

type (lumpectomy plus radiation therapy [L+XRT] vs. mastectomy), age at the study entry

(< 50 vs. ≥ 50 years old), clinical tumor size (≤ 2 vs. > 2 cm), and tumor grade (well,

moderate, and poor). All covariates were measured at the baseline.

Figure 7(a) and 7(b) shows that the estimated cumulative incidence of LRR is stable

after 12 years (i.e., only a few LRR events occurred); and that few random censoring events

occurred during the first 10-year of follow-up. Therefore, we set up a grid of landmark

time points from 0 to 8 years and chose the prediction interval of width w = 2. To fit a

proportional baselines landmark PSH (PBLM-PSH) supermodel to this dataset, we took 41

equally space landmark points s (0 ≤ s ≤ 8) and set the basis functions for βLM(s) and

γ(s) as βLM(s) = θ1 + θ2s+ θ3s
2 and γ(s) = η1s+ η2s

2, respectively. The frequency of LRR

in each of the landmark sub-dataset for s = 0, 1, . . . , 8 years are shown in Figure 7(c) for

illustration.

We began our analysis by selecting covariates which effects are dependent on the land-

mark points using the backward selection procedure. We tested the landmark-covariate

interactions for each covariate using the Wald test based on the robust covariance matrix

of the estimated coefficients from the PBLM-PSH supermodel. We found that only the

effect of tumor grade (poor vs. well) are significantly dependent on the landmark points

(χ2
[2] = 6.76, p = 0.034). Effects of other covariates do not deviate significantly from time-

invariant effects. The effect of treatment TAM+MF is not significantly different from that of

the treatment TAM. The effects of well and moderate tumor grade on the incident LRR are

almost undifferentiable. The estimated log subdistribution hazard ratio and its correspond-

ing robust standard error for a given prognostic factor are reported in Table 5. Multivariate

Wald test for the baseline parameters (η1, η2) is significant (χ2
[2] = 8.59, p = 0.014), indicating

that the baseline subdistribution hazard is also dependent on the choice of landmark points.

Figure 8(a) shows the comparison between the estimated log subdistribution hazards

ratio and the associated pointwise 95% confidence intervals for patients with poorly differ-

entiated tumor and those with well differentiated tumor adjusting for other covariates. As

shown in the figure, the effect of tumor grade (poor vs. well) decreases over the landmark

time from s = 0 on, and becomes stable after s = 5 years. The subdistribution hazard ratio
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of poor to well tumor grade changes from 3.58(= exp(1.28)) at the beginning of the follow-up

to 0.74(= exp(−0.30)) at year 5. The risk effect of poor tumor grade is diminishing over

time of landmarking. This result is in line with many breast cancer studies which reported

an attenuated prognostic effect of tumor grade as follow-up progressed. We also graphically

examined the estimated landmark-dependent effect of tumor grade and the 95% confidence

intervals obtained from the landmark PSH model (figure not shown). We found that the

curves from these two different landmark PSH models are almost identical, which indicates

that the landmark PSH supermodel can provide a good smoothing on the landmark effect.

Figure 8(b) and 8(c) demonstrate the estimated cumulative baseline subdistribution hazard

Λ̂10(t) and the estimated landmark effect on the baseline subdistribution hazard. Along with

the increase of s, exp(γ̂(s)) rises rapidly at the beginning then slows down, and decreases

in the right tail. The right-tail decreasing could be explained by that patients with better

prognosis are more likely to be included in the landmark subset for the landmark time points

close to 8 years.

For each level of tumor grades (poor, moderate, and well) and for each treatment group

(TAM, TAM+MF, or TAM+CMF), Figure 9 depicts the predicted dynamic 2-year fixed

width cumulative incidences of LRR for patients younger than 50 years old with tumor

larger than 2cm and were receiving L+XRT. In all three treatment groups, we found similar

patterns of dynamic predictive cumulative incidence over the landmark time changing from

0 to 8 years between the moderately differentiated tumor group and the well differentiated

tumor group. In contrast, patients with poorly differentiated tumor grade had apparently

higher risks of LRR for the subsequent 2 years of the given landmark time (less than 3.5 years

from baseline), especially for those who received TAM or TAM+MF. There is a higher risk of

LRR shown at the beginning of follow-up for patients with poorly differentiated tumor grade;

yet if they survive for about one and half years, their 2-year cumulative incidence of LRR

decreased dramatically. After 3.5 years from the baseline, patients with poorly differentiated

tumor grade had similar 2-year risk of LRR as those with moderate and well differentiated

tumor grades. This indicates that the effect of tumor grade is insignificant for those patients

who are still alive or who have not failed from any cause up to the landmark points that are

after 3.5 years.
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Table 5: Estimated regression parameters of the proportional baselines landmark PSH su-

permodel for locoregional recurrence.

Time Parameter Robust
Covariate function estimate standard error

TAM + MF vs. TAM Constant -0.258 0.222
TAM + CMF vs. TAM Constant -1.305 0.307
Age (≥ 50 vs. < 50) Constant -0.780 0.210
Mastectomy vs. L + XRT Constant -0.521 0.210
Clinical tumor size (> 2 vs. ≤ 2 cm) Constant 0.620 0.213
Tumor grade (moderate vs. well) Constant -0.216 0.251
Tumor grade (poor vs. well) Constant 1.275 0.469

s -0.515 0.300
s2 0.040 0.038

Baseline parameters
η1 s 0.229 0.121
η2 s2 -0.017 0.013

3.5.2 Application 2

In this application example, we used the same data set as the one used in previous Section

3.5.1. But, at this time, the main event of interest is distant metastasis, and death is

competing events. For early stage breast cancer patients who received surgery, development

of locoregional recurrence (LRR) is an important prognostic clinical event affecting the risk

of distant metastasis. Therefore, we treat LRR as intermediate clinical event to dynamically

predict the risk of distant metastasis within the subsequent 3-years for a breast cancer

patient, based on her LRR status measured during follow-up and other prognostic covariates

measured at baseline. We also compared the dynamic 3-year fixed width probabilities of

distant metastasis and death based on a patients LRR history.

Among the 2,272 clinically eligible patients followed up, 241 developed distant metastasis,

127 died due to other causes before distant metastasis could occur, and the remaining 1,904

were censored. In this data, 17.8% of the patients developed LRR before progressing to

distant metastasis; but only 7.1% patients experienced LRR before death. Figure 10(a)

shows that both the estimated cumulative incident distant metastasis and the estimated
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mortality rates are stable after 13 years (i.e., few events occurred). Figure 10(b) depicts the

estimated distribution of LRR. Only a few random censoring events occurred during the first

10 years of follow-up (figure not shown). We chose the range of landmark points from 0 to 10

years and prediction window with a fixed width of 3-years. To fit a PBLM-PSH supermodel

to this dataset, we took 51 equally spaced landmark points s (0 ≤ s ≤ 10) and set the

basis functions for βLM(s) and γ(s) as βLM(s) = θ1 + θ2s + θ3s
2 and γ(s) = η1s + η2s

2,

respectively. The frequencies of distant metastasis and death in each of the landmark sub-

dataset for s = 0, 1, . . . , 10 years are shown in Figure 10(c).

We began our analysis using the backward selection procedure to select those covariates

the effects of which were dependent on the landmark points. We tested the landmark-

covariate interactions for each covariate via the Wald test based on the robust covariance

matrix of the estimated coefficients from the PBLM-PSH supermodel. We found that for

distant metastasis, the effects of TAM+MR and age are significantly dependent on the

landmark points, whereas for death, only the effect of LRR status is dependent on the

landmark points. The estimated coefficient and the corresponding robust standard error for

a given prognostic factor are summarized in Table 6. Multivariate Wald tests for the baseline

parameters (η1, η2) are significant for both distant metastasis and death, indicating that the

baseline subdistribution hazard also depends on the choice of landmark points.

For different locoregional recurrence status (no LRR developed over the course of study,

with LRR occurred at 3, 5, and 7 years) and for each treatment group (TAM, TAM+MF,

or TAM+CMF), Figure 11 depicts the predicted dynamic 3-year fixed width cumulative

incidences and the associated bootstrap 95% confidence intervals of distant metastasis and

death for a patient 50 years old or younger with poorly differentiated tumor, size larger than

2cm and were receiving L+XRT. If the patient did not have a LRR, her risk of having distant

metastasis within the subsequent 3 years is very close to the risk of death for any treatment

group. However, if the patient had a LRR, she had a much higher risk of distant metastasis

as compared to the risk of death, especially for TAM+MF treatment group. Similar results

were obtained for patients who experienced LRR at 3, 5, and 7 years, respectively.
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3.6 DISCUSSION

In this study, we developed dynamic predictive models for data containing competing risks

by extending the landmark approach to the Fine-Gray PSH model. The resulting landmark

PSH models can be used to directly predict the dynamic cumulative incidences of failure

for a specific cause within a given prediction window of a fixed width by incorporating all

available information updated up to this landmark time under the condition that the patient

has not failed at the landmark time.

Our proposed models have several advantages over currently available methods in pre-

dicting conditional CIFs. The first is that our landmark PSH models can provide accu-

rate estimates even when a covariate effect is time-varying (a violation of the PSH as-

sumption), whereas the model developed by Cortese et al. (2013) [5], which also incor-

porates the landmark approach into the Fine-Gray model, will not give an unbiased es-

timate if a covariate in the model violates the PSH assumption. The second advantage

is that unlike the standard Fine-Gray PSH model which does not allow the use of inter-

nal time-dependent covariate for predicting the CIF [2, 14], our proposed landmark PSH

models can incorporate both internal and external time-dependent information through a

simple model form without simultaneously modeling the covariate changing process and

the time-to-event outcome process. The landmark approach can provide simpler explicit

form of estimates and it is much easier to incorporate time-dependent covariates as com-

pared to the multistate models and joint models which are more complicated and prone

to overfitting. Furthermore, our landmark PSH supermodel could be more straightfor-

ward and simpler in implementation using the existing software packages. Being differ-

ent from the landmark supermodel based on the cause-specific hazards [19], our landmark

PSH supermodel predicts the conditional CIFs in one step and provides a direct interpre-

tation of predictive probabilities. In comparison with the landmark supermodel based on

the pseudo-observations [20], our landmark PSH supermodel is simpler in computation,

whereas the GEE-based method used in pseudo-observations would have convergence is-

sues for large sample size especially when dealing with many landmark points of interest.
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Through simulations, we evaluated the prediction performance of our proposed models

and compared them with other existing methods. We determined how closely the estimated

conditional CIFs would approximate the true probabilities for our models, which is the first

of its kind done in this area of study. We further utilized time-dependent Brier score to

assess a model’s discrimination and calibration capabilities simultaneously. The simulation

results showed that our models performed well in prediction even when the PSH assumption

was violated. Although some other studies applied time-dependent ROCs to evaluate their

prediction models [23] we did not choose the same approach because the ROCs and AUCs

can only be used to assess the capability of discrimination not calibration. In the future, we

will use ROC-based method as a tool to evaluate the discriminative accuracy of the marker

for a specific marker of interest.

In application studies, we found that the baseline conditional subdistribution hazard

was significantly dependent on the landmark s through exp(γ(s)). When applying PBLM-

PSH supermodel to other data, it is possible that the baseline subdistribution hazard is

independent of s. In such case, we suggest that one keeps exp(γ(s)) in the model to maintain

coherence; more discussions on this topic can be found in van Houwelingen (2007) [31]. If

there are too many covariates significantly dependent on the landmark time point, it is better

to reduce the dimension by combining covariates into a prognostic index before fitting the

landmark PSH supermodel.

52



0 2 4 6 8 10 12 14
0.0

0
0.0

5
0.1

0
0.1

5

Time (years)

Cu
mu

lat
ive

 In
cid

en
ce

 Fu
nc

tio
n

(a) Nonparametric estimate of the cumulative incidence
of locoregional recurrence (LRR).

0 2 4 6 8 10 12 14

0.0
0.2

0.4
0.6

0.8
1.0

Censoring Time (years)

Su
rvi

va
l F

un
cti

on

(b) Kaplan-Meier estimate of the censoring distribution.

0 1 2 3 4 5 6 7 8

Distribution of LRR per landmark dataset

Time of Landmark (years)

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

35

(c) Frequencies of LRR for each of the specified landmark
data sets.

Figure 7: Descriptive analysis of the NSABP B-20 data.

53



0 2 4 6 8
−3

−2
−1

0
1

2
3

Time of Landmark (years)

β̂ LM
(s)

(a) Estimated regression coefficients βLM (s) of tumor
grade (poor vs. well) and associated pointwise 95% con-
fidence intervals.

0 2 4 6 8 10

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

Time (years)

Cu
mu

lat
ive

 B
as

eli
ne

 S
ub

dis
trib

uti
on

 H
az

ard

(b) Estimated cumulative baseline subdistribution haz-
ards Λ̂10(t).

0 2 4 6 8

1.0
1.2

1.4
1.6

1.8
2.0

2.2

Time of Landmark (years)

ex
p(γ̂

(s)
)

(c) Estimated γ(s) on exponential scale.

Figure 8: Regression results from the PBLM-PSH supermodel.
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Figure 9: The esimated 2-year fixed width predictive cumulative incidences of locoregional

recurrence for patients younger than 50-years old with tumor larger than 2cm and treated

with L + XRT, in each of the treatment groups (TAM, TAM + MF, TAM + CMF) and

different levels of tumor grade.
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Table 6: Estimated regression parameters of the proportional baseline landmark PSH super-

model for distant metastasis and death.

Distant metastasis Death

Covariate β̂ SE(β̂) β̂ SE(β̂)

TAM + MF vs. TAM Constant -1.091 0.331 -0.312 0.238
s 0.482 0.160
s2 -0.050 0.017

TAM + CMF vs. TAM Constant -0.470 0.170 0.160 0.219
Age (≥ 50 vs. < 50) Constant -0.540 0.257 1.057 0.218

s 0.407 0.135
s2 -0.035 0.015

Mastectomy vs. L + XRT Constant 0.424 0.144 -0.115 0.189
Clinical tumor size (> 2 vs. ≤ 2 cm) Constant 0.284 0.141 0.334 0.196

Tumor grade (moderate vs. well) Constant 0.221 0.179 0.104 0.221
Tumor grade (poor vs. well) Constant 0.752 0.189 0.124 0.258

Local-regional recurrence status Constant 2.315 0.237 3.575 1.230
s -0.492 0.582
s2 0.008 0.056

Baseline parameters
η1 s -0.400 0.088 -0.001 0.014
η2 s2 0.035 0.009 0.002 0.001
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Figure 10: Descriptive analysis of the B-20 data in application 2
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Figure 11: The predicted 3-year fixed width cumulative incidences of distant metastasis

(solid lines), death (dashed lines) and associated 95% confidence intervals (shaded areas)

for different landmark time points, for a patient younger than 50-tears old with poor tumor

grade, tumor larger than 2cm and treated with lumpectomy, for each of the treatment groups

and with locoregional recurrence occurred at none, 3 years, 5 years and 7 years.
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APPENDIX A

ANDERSEN-GILL-TYPE CONDITIONS

Following Xu and O’Quigley (2000) [35], we define w(t) = S(t)/E{I(X ≥ t)}, which is

a non-negative bounded function uniformly in t. Here, we assume that there is enough

information on F1(t) in the tails in the presence of censoring.

Andersen-Gill-type conditions:

A. (Finite interval).
∫ 1

0
λ10(t)dt <∞.

B. (Asymptotic stability). There exists a neighbourhood B of β such that 0 and β(t), in

which t ∈ [0, 1], are in the interior of B, and for r = 0, 1, 2

sup
t∈[0,1]

|S(r)(β(t), t)− s(r)(β(t), t)| P−→ 0,

sup
t∈[0,1]

|S(r)(β, t)− s(r)(β, t)| P−→ 0, sup
t∈[0,1]

|nW (t)− w(t)| P−→ 0.

C. (Lindeberg condition). There exists δ > 0 such that

n−1/2 sup
i,t
|Zi|Yi(t)I{ZT

i β(t) > −δ|Zi|}
P−→ 0,

n1/2 sup
i,t
W (t)|Zi|Yi(t)I{ZT

i β(t) > −δnW (t)|Zi|}
P−→ 0.

D. (Asymptotic regularity conditions). All (deterministic) functions in B are uniformly

continuous in t ∈ [0, 1]; s(r), r = 0, 1, 2, are continuous functions of β ∈ B, and are

bounded on B × [0, 1]; s(0)(β(t), t) and s(0)(β, t) are bounded away from zero. For all

β ∈ B, t ∈ [0, 1], s(1)(β, t) = ∂
∂β
s(0)(β, t), s(2)(β, t) = ∂2

∂β2s(0)(β, t).
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APPENDIX B

DERIVATION OF THE APPROXIMATION (2.12) IN CHAPTER 2

Let λ̂10(β(t), t) be the Breslow estimator of the baseline subdistribution hazard under a

coorect model specification, and λ̂10(β(t), t) is consistent for the true value λ10(t). The

λ̂10(t) is the Breslow estimator calculated from the model using arbitrary β, and λ̂10(t)

converges in probability to a limiting value λ∗10(t).

Following the same derivations in van Houwelingen (2007) [31], we have

λ̂10(β(t), t)

λ̂10(t)
=

S(0)(t,β)

S(0)(t,β(t))

p→ s(0)(t,β)

s(0)(t,β(t))
=

s
(0)
∗ (t,β)

s
(0)
∗ (t,β(t))

.

As in the deviation of equation (2.5), under random right censoring, it can be shown that

s
(0)
∗ (t,β)

s
(0)
∗ (t,β(t))

= E
[
exp{ZT (β∗hor − β(t))}|T ∗ = t

]
≈ exp

[
E(Z|T ∗ = t)T{β∗hor − β(t)}

]
. (B.1)

Under the assumption that the β(t) does not vary too much over time, the approxima-

tion (2.12) can be derived from (B.1), given by

λ∗10(t) ≈ λ10(t) exp[E(Z|T ∗ = t)T{β(t)− β∗hor}].
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