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Résumé 

La copie de partenaire, ou « mate-copying » est un comportement bien documenté chez de 

nombreuses espèces, parmi lesquelles des animaux en apparence aussi rudimentaires que Drosophila 

melanogaster. Chez cette espèce d’insecte, lorsqu’une femelle observe une autre femelle s’accoupler 

avec un mâle d’un certain phénotype, sa préférence pour les mâles de ce phénotype augmente. 

Autrement dit, elle copie la préférence de partenaire de la femelle démonstratrice. Ce comportement 

constitue un modèle d’apprentissage social observationnel que l’on peut exploiter tant au niveau des 

mécanismes proximaux (par exemple comportementaux et neurobiologiques) que distaux (par 

exemple pour son influence sur l’évolution). Dans ce travail, ces deux aspects du mate-copying sont 

abordés. Le premier chapitre de ma thèse étudie la stabilité de cette stratégie de choix de partenaire en 

fonction de conditions environnementales sociales, particulièrement sur la disponibilité apparente des 

mâles, et sa stabilité dans le temps (mémoire à long terme). J’ai montré que les femelles adaptent leur 

sélectivité en fonction de la disponibilité apparente des mâles, mais sans impact sur leur capacité à 

copier le choix de la femelle démonstratrice. J’ai aussi contribué à montrer que les femelles peuvent 

former une mémoire sociale à long terme (24h) impliquant la synthèse protéique. Les deuxième et 

troisième chapitres abordent les mécanismes cognitifs du mate-copying. Ainsi, j’ai montré que les 

neurotransmetteurs dopamine et sérotonine sont impliqués dans cet apprentissage ; j’ai montré 

également que le récepteur dopaminergique DAMB (DopAmine Mushroom Bodies) est requis pour 

cette mémoire sociale à long terme, mais pas à court terme, suggérant l’implication d’un autre 

récepteur dopaminergique que DAMB dans cet apprentissage social. J’ai enfin élaboré un nouveau 

protocole de démonstrations basé sur des photographies, qui contribuera à la caractérisation plus 

efficace des signaux visuels nécessaires, et à moyen terme, des mécanismes neurobiologiques. Enfin, 

j’ai montré que le mate-copying est un apprentissage basé sur le trait du mâle impliqué dans 

l’acceptation et non le rejet par la femelle démonstratrice, et impliquant des réseaux neuronaux 

dopaminergiques en jeu dans l’apprentissage aversif olfactif. 

 

Abstract 

Mate-copying has been reported in many Vertebrate and Invertebrate species, including animals as 

simple in appearance as Drosophila melanogaster. In this species, when a female observes another 

female mating with a male of a given phenotype, his attraction to other males of this phenotype 

increases. In other words, she copies the mate preference of the demonstrator female. This behavior 

constitutes a powerful model of social observational learning in animals, both for proximate 

mechanisms (for instance behavioral and neurobiological) as well as ultimate mechanisms (notably, as 

it takes part to sexual evolution). The present work studied these two aspects of mate-copying. The 

first chapter tested the stability of mate-copying across environmental social conditions, more 

specifically, apparent availability of males, and across time (long-term memory). I showed that, while 

sex-ratio affects female choosiness positively, Drosophila females seem to have evolved a mate-

copying ability independently of sex-ratio. I also participated in showing that females can form a social 

long-term memory (24h) involving protein synthesis. Chapters 2 and 3 deal with cognitive 

mechanisms in mate-copying. I showed that it involves the neurotransmitters dopamine and 

serotonine, while the dopaminergic receptor DAMB (DopAmine Mushroom Bodies) is required for this 

social long-term memory, but not for short-term memory, which suggests that another dopaminergic 

receptor is also involved in this social learning. I designed and tested a new protocol of demonstrations 

based on photographs, which will ease the study of the visual cues necessary for this behavior, and 

later the study of the neurobiological mechanisms. Finally, I showed that mate-copying is a learning 

based on on the trait of the male accepted by the demonstrator female, and not on the rejected one, 

and I found that, counter-intuitively, dopaminergic networks involved are those for aversive, not 

appetitive, olfactory learning. 
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Sexual selection 

Natural selection continuously selects for the individuals that have the higher chance of 

survival or reproduction in a given context. Thus, individuals that are less adapted to their 

environment, for instance because they are weak, sick or disabled, have lower chances of 

survival and will be counter-selected. However, in some species, traits that can appear as a 

disadvantage persist or strengthen over generations. It is the case for instance in several birds 

with long ornamented tails like in the peacock. Such ornaments can be viewed as handicaps 

with respect to escaping predators. The same holds for the bright colors of many birds species 

that prevent them from easily hiding. The solution of this apparent paradox is another 

evolutionary mechanism: sexual selection. This concept was first proposed by Darwin in The 

Origin of Species (Darwin, 1859), and later developed in his book (Darwin, 1871) as he felt 

that natural selection alone was unable to account for certain types of non-survival 

adaptations. 

Sexual selection occurs when members of one sex select members of the other sex to 

mate with (inter-sexual selection), or when members of the same sex (usually males) compete 

with each other for access to the other sex (intra-sexual selection). In this paradigm, 

exaggerated traits (ornaments, colors…) can be an advantage to successfully find a mate and 

reproduce (Figure 1). Sexual selection was later developed by Fisher (Fisher, 1930), who 

proposed several hypotheses to explain and describe it. Notably, the Fisher runaway process 

suggests that male ornaments and female preference for these ornaments are both heritable, 

with a co-evolution of both, which can lead to a positive feedback, selecting for the most 

extreme ornaments in males together with the highest preference for these traits in females. 

This mechanism is a possible explanation for the highly diverse and often astonishing 

ornaments of animals and plants. In plants, selection is actually performed by another agent, 

which is the pollinator, but the result is still that exaggerated traits like colorful flowers that 

we find very beautiful are in fact a byproduct of sexual selection.  

 

Figure 1: Examples of sexual selection. A. male peacock. ©Tuo Yang. B. male paradise bird. ©Tim 
Laman. 
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In 1948, Bateman published an experimental study of Drosophila’s reproduction in 

which he demonstrated sexual selection (Bateman, 1948). He reported that in that species the 

reproductive success depends on the number of successful matings in males, but not in 

females, for which one mating is usually sufficient to maximize their reproductive success. 

Moreover, he observed that the reproductive success is highly variable in males, depending 

on male-male competition intensity. In other words, females are the choosy sex in 

Drosophila as this is the case in most species. Apart from these few studies, sexual selection 

has been largely overlooked for more than a century, with a revival starting in the 1980s, in 

particular with the work from Lande (Lande, 1981) and Zahavi (Zahavi, 1975, 1977). Since 

that decade, sexual selection has become one of the most prominent subject studies in 

behavioral ecology (reviewed in Danchin and Cézilly, 2008).  

 

Mate choice, Mate-copying 

Choosing a mate is a decision with major fitness consequences, particularly for individuals 

that have few partners in their lifetime, because the quality of the mate affects the fitness of 

their progeny. In Drosophila, a study conducted on wild flies found that females mate four to 

six times in their whole life (Imhof et al., 1998), so it is of no surprise that they built strategies 

to maximize their chances of choosing a suitable partner. During male courtship, for 

instance, females can discriminate courtship songs from two closely related species (Kyriacou 

and Hall, 1982), and they show much higher preference for the courtship songs of males of 

their own species. 

Apart from personal assessment of male quality, females also developed an economical 

mate-choice strategy: mate-copying. After witnessing the mate-choice of another female 

between two males of different phenotypes, females build a clear preference for the male 

phenotype they saw being chosen over the one that was rejected during the demonstration. 

This behavior was described in several taxa. First descriptions of mate-choice copying came 

from field studies of lekking birds and mammals (reviewed in Gibson and Höglund, 1992). It 

was then reported in fish, in the guppy Poecilia reticulata (Dugatkin and Godin, 1993), in 

birds with the Japanese quail, Coturnix coturnix japonica, (White and Galef Jr, 1999), in 

mammals: humans (Waynforth, 2007) and the Nordway Rat Rattus Norvegicus (Galef et al., 

2008), and finally, Frederic Mery and collaborators demonstrated mate-copying in an 

invertebrate for the first time using Drosophila melanogaster in 2009 (Mery et al., 2009). In 

this species, females are able to memorize and copy the mate-choice decision of a 

demonstrator female after watching her freely choosing between two artificially dusted green 

and pink males (Dagaeff et al., 2016, Figure 2).  
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Figure 2: Mate-copying in D. melanogaster using artificial colors. A. Experimental device used in 
Dagaeff et al. 2016. B. Mate-copying index of drosophila females after different treatments. Informed 
flies: females that saw a demonstration in which the pink (grey bars) or the green (white bars) male 
was preferred, while the other male color was rejected. Uninformed flies: the partition between 
observer and demonstrators was opaque. P values: pairwise comparisons. Vertical bars: 95% Agresti-
Coull confidence intervals; horizontal dashed line: expected value if females chose randomly. B is 
excerpted from Dagaeff et al. 2016, Figure 4. 

 

In the past decade, Danchin and Isabel and their collaborators studied mate-copying 

from an evolutionary point of view (Loyau et al., 2012; Germain et al., 2016; Danchin et al., 

2018; Nöbel et al., 2018b, 2018a), gathering increasing knowledge on this social behavior and 

its evolutionary consequences. At the time I started my PhD, mate-copying in Drosophila had 

constituted a promising model to study the cognitive mechanisms of social learning in 

general (Dagaeff, 2015), although this field was really emerging. 

 

Evolutionary importance: selection, arbitrary 

traditions 

Mate-copying can be individual-based, when the observer female develops a preference for 

the very same male she saw being successful with another female. This form of mate-copying, 

without generalization, cannot persist in time, and can have drawbacks for the copier female, 

in particular disease transmission, and in some species in which males are sperm-limited (for 

instance, in drosophila, see Demerec and Kaufman, 1941; Loyau et al., 2012), the female will 

have less offspring with a single mating when her suitor already mated with another female 

just before. As a matter of fact, female fruit flies tend to avoid mating with a male they saw 

being chosen just before (Loyau et al., 2012). 

Another form of mate-copying is trait-based copying (Bowers et al., 2012), in which the 

female builds a preference for any male bearing the same trait as the successful male. For 
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instance, in D. melanogaster, observer females witnessing a choice between a pink and a 

green wild-type males later copy the preference for the chosen color when given the choice 

between a green and a pink curly-winged males, or between a pink and a green white-eyed 

males (Danchin et al., 2018). Thus, drosophila females do develop a preference for a trait.  

The important point is that only the trait-based copying can be transmitted among 

interacting individuals within a population, potentially leading to the emergence of local 

cultural traditions for an arbitrary trait (i.e. a trait not necessarily revealing the fitness of the 

males). As a matter of fact although interesting in itself, learning to prefer the very specific 

male that was chosen during the demonstration cannot be transmitted over generations 

because the potential transmission chain generated by such a social learning would end with 

the death of that male. 

Persistent local traditions then constitute a form of selection that can impact the 

evolution of male traits in the population, as females select some male traits (the preferred 

traits) against others. In other words, there would be a form of sexual selection that would 

not be genetically based, but would rather result from social learning.  

 

 

Social learning 

Building tools, learning a language, choosing a mate, all involve some learning, and some 

innate capacities. Learning from the other’s experience is probably the main learning method 

in Homo sapiens, who evolved a brain well-fitted for this purpose. Cecilia Heyes, in her book 

“cognitive gadgets, the cultural evolution of thinking” (Heyes, 2018), proposes that “the 

minds of human babies are only subtly different from the minds of newborn chimpanzees. 

We are friendlier, our attention is drawn to different things, and we have a capacity to 

learn and remember that outstrips the abilities of newborn chimpanzees. Yet when these 

subtle differences are exposed to culture-soaked human environments, they have enormous 

effects. They enable us to upload distinctively human ways of thinking from the social world 

around us”. In other words, our high capacity to socially learn is a major trait of our species, 

and we use social learning extensively to adapt to our environment. This use of social 

learning has the potential to lead to the emergence of cultural processes, that then become 

part of inheritance (that is parent-offspring resemblance), which may then interact with 

genetic evolution in affecting the evolutionary fate of populations. 

As a consequence, illnesses that affect social skills (e.g. autism spectrum disorders) or 

learning capacities in general usually cause strong disabilities. It thus appears of major 

interest to disentangle the cognitive processes underlying social learning in humans. This can 

be studied by cognitive sciences, psychology, as well as behavior biology. The last discipline 

takes advantage of inter-species similarities in the brain structures, genomes, and protein 

interaction networks to study complex processes using an easier-to-study species. 

Many animal species have been shown to be capable of social learning (Galef, 1985; 

Brown and Laland, 2003; Galef and Laland, 2005; Leadbeater and Chittka, 2007; Battesti et 

al., 2015). For instance, Nordway Rat pups have been shown to learn avoidance of a poisoned 

food by observing and copying their parent’s diet (Galef and Clark, 1971). In social insects, in 
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particular in honeybees, social learning abilities have been observed since ancient Greece: 

Aristotle himself, in his descriptions of animal species, praised the “extraordinary 

intelligence” of honeybees. In these species, information given by the relatives allows 

learning new foraging areas and synchronization of the nest activities (Leadbeater and 

Chittka, 2007). 

More recently, social learning was demonstrated in non-social insects, for instance in 

the Wood cricket Nemobius sylvestris (Coolen et al., 2005), and in fruit flies. In the latter 

insect, Sarin and Dukas (Sarin and Dukas, 2009), and later Battesti et al. (Battesti et al., 

2015) observed that oviposition site choice is heavily influenced by previous social 

interactions. 

In this context, fruit flies constitute a particularly suitable animal model as they can be 

used to study social learning mechanisms at the molecular, cellular and behavioral levels 

(Leadbeater, 2009). In the next section I illustrate the major importance of the fruit fly as a 

model animal in the past and present for biology. 

 

Drosophila as a model organism 

D. melanogaster entered in the history of scientific research at the beginning of the twentieth 

century, when Thomas Hunt Morgan used it in his “flyroom” (Figure 3).  

 

Figure 3: Morgan’s fly room, around 1920. Courtesy of American Philosophical Society. CC BY 4.0. 

 

The reasons of the success of this little dipter are many. First of all, it is cheap and easy 

to breed, needing only a small tube with corn flour-yeast medium, where it can reproduce 

quickly and in large proportions. It has a short generation time: at 25°C, the eggs laid by a 

female (up to 100 per day) will develop into a larva, a pupa, and finally a sexually mature 

adult after only eleven days (Figure 4). 
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Figure 4: Drosophila life cycle. The eggs laid by a female undergo several larval stages after hatching, 
then enter the pupal stage during which they undergo metamorphosis, leading to the imago (i.e. 
adult). Newly emerged adults become sexually mature a few hours after emergence. Approximate 
durations of each stage are indicated for standard rearing conditions at 25°C. 

 

The sexual behavior of both male and female drosophila is accurately described in the 

literature (Villella and Hall, 2008), and relatively easy to measure in the lab. Briefly, fruit 

flies acquire sexual maturity several hours after emergence (Manning, 1967). Before sexual 

maturity, females reject all males for copulation. Sexually mature, young virgin females are 

highly attractive to males (Tompkins and Hall, 1981), which courtship is stereotyped (Villella 

and Hall, 2008). The first easily observable behavior of the courtship sequence is the 

“singing”, when the male extends a wing to emit the courtship song. In all behavioral 

experiments I used this singing behavior as a measure of courtship initiation. Then the male 

chases the female, contacts its genital parts and tries to mount the female by bending its 

abdomen. Copulation acceptance in D. melanogaster is under female control (Connolly and 

Cook, 1973; Kimura et al., 2015), that is, there is no forced copulation in the wild. 

Historically, D. melanogaster was first used in genetics studies, but is now a broadly 

used model organism in many kinds of studies. Its genome was sequenced in 2000 (Adams et 

al., 2000), it has 170 Mbp (per haploid genome) which is rather small compared to a 

mammal’s. For instance, the mouse’s genome is 2.5 Gbp big (Church et al., 2009), and 

contains about 14,000 genes, while human genome has about 20,000 (Salzberg, 2018). A 

very detailed annotation of D. melanogaster genome is now available (flybase.org), and 

reveals that not less than half the genes has an ortholog in the human genome, making the 

fruit flies an excellent model to study many human diseases (Yamaguchi, 2018) like 

Parkinson, Alzheimer, cancer (Enomoto et al., 2018), immune system diseases, among others 

(Jeibmann and Paulus, 2009; Apidianakis and Rahme, 2011). On a structural point of view, 

the Drosophila genome is composed of four pairs of chromosomes, it is easy to observe in 

salivary gland cells of the larva, as they contain polytene chromosomes (massive duplication 
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of each strand without cytoplasmic division) and this last property eases the establishment of 

precise genomic cartography. 

Because of these properties, researchers developed a large diversity of genetic tools to 

modify the fly’s genome, drive the expression of a gene (ectopic or not), or modify the activity 

of a given structure or cell. Drosophilists, all around the world, constituted banks of strains, 

developmental and genomic data in which researchers can pick according to their needs. 

Thus, it is now relatively easy to build a custom-made drosophila strain that fits exactly 

someone’s needs. During my PhD, I used some of these genetic tools, in particular revolving 

around the UAS-Gal4 system. 

The UAS-Gal4 tool is a yeast genetic expression regulatory system (Figure 5): Gal4 

codes for a transcription factor that specifically recognizes an enhancer sequence called UAS 

(Upstream Activating Sequence) localized upstream a gene which expression will be activated 

when GAL4 binds to the enhancer. This system was used to express genes in animal cells 

(Kakidani and Ptashne, 1988; Webster et al., 1988) and has been used in Drosophila since 

that time (Fischer et al., 1988). Briefly, a UAS sequence (or several UAS sequences, to 

increase expression level) is placed upstream an interest gene “geneA” (from drosophila, or 

ectopic like the jellyfish green fluorescent protein gene) and introduced in the genome of the 

fly by genetic engineering. The fly strain will not express it in absence of Gal4 (theoretically, 

because in some cases a slight “leak” of gene expression can be observed). In parallel, the 

gene Gal4 can be introduced in the genome of a fly, in a random place: if the gene is 

downstream a promoter, it will be expressed with the spatio-temporal pattern determined by 

this promoter. For instance, if Gal4 is localized downstream of the gene of Tryptophan 

Hydroxylase, it will be specifically expressed in every cell expressing this gene, which is, for 

the adult stage, in the serotoninergic system in theory. When the Gal4 line is crossed with the 

line containing UAS-geneA, geneA will then be expressed with the spatio-temporal pattern 

determined by the position of the Gal4 (Figure 5). By doing so, it is possible to express a gene 

of interest with the desired spatio-temporal pattern, thanks to huge banks of Gal4 lines 

(VDRC for instance). 

 

Figure 5: UAS/Gal4 genetic expression system. One parental line contains the UAS-GeneA while the 
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other contains the Gal4 under the control of a specific promoter. The progeny will thus inherit both 
transgenes which will result in the expression of geneA in a specific tissue at a specific stage, 
determined by the orange promoter.  

 

Thanks to the genetic tools developed in drosophila and made easily available, the fruit 

fly has become a major model organism for the study of a large diversity of complex 

physiological processes, and the neurobiological processes governing learning and memory is 

not the least. 

 

Drosophila in associative learning 

Associative learning occurs when an individual experiences directly or observes a pairing 

between a conditional stimulus (CS) that is initially neutral, e.g. a blue circle, and a 

unconditional stimulus (US), either appetitive or aversive, e.g. sugar or electric shocks. The 

pairing will result in building a memory, appetitive or aversive depending on the valence of 

the US: later when the animal experiences the CS alone, it will display an approach or an 

avoidance behavior because it has associated the CS to a rewarding state or a punishment 

state, respectively. The most famous historical description of such a behavior is certainly that 

of Pavlov (Pavlov, 1927), who trained a dog to salivate at the sound of a bell, because this cue 

predicted the arrival of food in the training phase. 

D. melanogaster has been broadly used in associative memory research (the basis of 

which started with Quinn et al., 1974): in olfactory learning and memory for example (Zars et 

al., 2000; Isabel et al., 2004; Scheunemann et al., 2012; Cognigni et al., 2018) as well as in 

visual learning for instance (Brembs and Heisenberg, 2000; Liu et al., 2006; Vogt et al., 

2014, 2016). In olfactory learning in particular, the protocols to study associative olfactory 

learning were established decades ago (Quinn et al., 1974) and are still in use today. The ease 

of training and testing a large amount of flies altogether relatively quickly lead to outstanding 

progress in discovering the mechanisms underlying this form of learning. In particular, the 

different temporal phases of appetitive and aversive learning (Isabel et al., 2004; Trannoy et 

al., 2011), the neural structures and circuits involved are now well-described (Cognigni et al., 

2018), and constitute a good basis for any study about other forms of learning in Drosophila, 

or olfactory learning in other species. 

Several authors suggested that social learning should be studied as a form of associative 

learning. In particular, in Drosophila mate-copying, it was suggested (Avarguès-Weber et al., 

2015) that male color and observation of the demonstrator trio could mediate a conditioned 

and an unconditioned stimulus, respectively. This hypothesis is interesting because it can 

help designing several experiments that will elucidate the nature of the cues needed to elicit 

mate-copying, and how they are conveyed and processed from the sensory organs to the 

high-order integration systems of the drosophila. These are some of the questions I tackled 

during my PhD. Building a parallel between what is known from olfactory learning and our 

social learning paradigm, we can make several assumptions that I summarize in the above 

figure (Figure 6). Briefly, the CS could be mediated by visual system neural networks, while 

the unconditioned stimulus should require dopamine, the neurotransmitter signaling the 
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valence of the US in many olfactory and visual learning processes (Riemensperger et al., 

2005, 2011; Aso et al., 2012; Burke et al., 2012; Liu et al., 2012; Vogt et al., 2014). 

 

Figure 6: Mate-choice demonstration described in the CS/US paradigm. The observation of the 
copulating pair by the observer female can be divided into two components: the color of the 
successful male is the CS, while the observation of a couple successfully mating is an US (appetitive). 
US and CS converge on a coincidence detector in the female brain, Rutabaga (Nöbel et al, in prep). 

 

The fly brain 

Generalities  

The brain of adult drosophila (Figure 7) is composed of 100,000 neurons and has been 

recently mapped with precision (Zheng et al., 2018). Although flies have a rather small 

number of brain neurons, they are capable of highly diverse and sophisticated behaviors, like 

courtship dance, olfactory and visual learning, fighting, or copying. This modest size and the 

capacity to display complex behaviors make them very well fitted for the study of cognitive 

processes. 
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Figure 7: Drosophila adult brain. Lamina, medulla (Med.) and lobula (Lob.) are devoted to visual 
information primary processing. Antennal lobes process olfactory information; central complex and 
mushroom body are higher-order integration structures. Other brain structures are not depicted. 

 

In particular, the brain of adult Drosophila comprises two structures involved in 

higher-order integration of sensory stimuli from the fly’s environment, and thus responsible 

for learning and memory from different sensory modalities. These two structures are the 

mushroom bodies and the neuropils of the central complex. 

 

The Mushroom bodies 

The mushroom body (MB, Figure 8) is a higher processing center in the insect brain, it is 

functionally equivalent to the hippocampus of mammals (Davis and Han, 1996; Barnstedt et 

al., 2016). It is composed of Kenyon cells (in blue on Figure 8), about 2,200 per hemisphere 

(Kahsai and Zars, 2011), which mainly receive inputs from the antennal lobe’s projection 

neurons (Lin et al., 2007). The wiring between projection neurons of the antennal lobe and 

Kenyon cells of the MB is largely random, which may contribute to maximize the memory 

capacity of this mini brain (Caron et al., 2013). Some Kenyon cells (for instance the dorsal 

accessory Kenyon cells) are not contacted by projection neurons of the antennal lobe but 

receive inputs from other sensory modalities. MB lobes are the main output sites of this 

structure, but they also receive inputs from neurons of other brain structures. Kenyon cells 

form cholinergic synapses (Barnstedt et al., 2016) with 21 types of mushroom body output 

neurons (MBONs), organized into a highly-complex, multi-layered network (Aso et al., 

2014a, 2014b). MBONs project to several neuropils of the fly brain, and three MBON types 

also constitute a feedforward loop by contacting the MB lobes. Synapses between KCs and 
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MBONs are modulated by 20 different types of dopaminergic neurons (Aso et al., 2014b). 

Kenyon cells activity is also modulated by GABAergic neurons from the Anterior Paired 

Lateral neuron (APL). This regulation can suppress learning (Liu and Davis, 2009) and can 

sustain labile memory and/or anesthesia-resistant memory (Pitman et al., 2011; Wu et al., 

2013). The Dorsal Paired Median (DPM) neuron is required to consolidate mid-term memory 

via serotonin (Lee et al., 2011). Interestingly, APL and DPM are functionally connected with 

gap junctions, and they are critical for memory (Wu et al., 2011). 

 

 

Figure 8: drosophila mushroom body. The mushroom bodies of the adult fly brain are composed of 
three lobes: alpha/alpha’, beta/beta’, and gamma, composed of Kenyon cells axons, soma being 
located on top of the calyx (not represented). Arrows on the left part indicate information flow in the 
neurites: Projection neurons from the antennal lobe send axons to the calyx (grey arrows) and to 
medial structures of the fly brain. Information circulates from the dendrites located in the calyx, to 
the lobes (blue arrows) in which Kenyon cells axons contact dendrites of mushroom body output 
neurons (MBONs). AL: antennal lobe, CX: central complex. 

 

This brain structure is the center of formation and storage of associative memory 

(Heisenberg et al., 1985; Belle and Heisenberg, 1994; Dubnau et al., 2001; McGuire et al., 

2001; Cognigni et al., 2018). Notably, dopamine receptors and Rutabaga Adelylate Cyclase 

are specifically required in the mushroom body for olfactory memory formation and stability 

(Zars et al., 2000; McGuire et al., 2003; Isabel et al., 2004; Aso et al., 2012; Scheunemann et 

al., 2012; Waddell, 2013). MB cells play a key role in formation and storage of olfactory short-

term memory, in courtship conditioning memory, and in regulating the transition from 

walking to rest (reviewed in Zars, 2000; Riemensperger et al., 2011; Cognigni et al., 2018). 

Moreover, MBs are known to be involved in visual memory: they are required for visual 

context generalization (Liu et al., 1999), and they allow stabilization of visual memories in 

changing contexts (Brembs and Wiener, 2006). Finally, γ neurons of the mushroom bodies 

mediate memorization of simple associations between color stimuli and an expected outcome 

(sugar reward or electric shock punishment, Vogt et al., 2014). 
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The central complex 

The central complex (CX) is a medial structure of the fly brain composed of several thousands 

of neurons organized into four neuropils: protocerebral bridge, fan-shaped body, ellipsoid 

body, and the two noduli (Figure 9). The different structures are inter-connected into a 

complex and multilayered network called a connectome, and display strong inter-

hemispheric connections through chiasmata (Pfeiffer and Homberg, 2014). Central complex 

noduli receive inputs from visual processing structures (lamina, lobula and medulla) 

connected to compound eyes. 

 

Figure 9: Anatomy of the central complex of the adult fly brain. Neuropils of the CX are represented 
in green. MB: mushroom bodies, AL: antennal lobes, are represented for the purpose of orientation. 

 

The central complex has been shown to be involved in complex behaviors, notably 

during flight. It allows spatial navigation in insects (Webb and Wystrach, 2016). It is involved 

in landmark detection, angular position detection, and perception of body position, but also 

in visual pattern memory (Liu et al., 2006; Pan et al., 2009). In particular, the ellipsoid body 

is involved in visual place learning and short-term orientation memory (Neuser et al., 2008; 

Seelig and Jayaraman, 2013; Pfeiffer and Homberg, 2014), as well as in NMDA-receptor 

dependent long-term memory consolidation in olfactory learning (Wu et al., 2007). Thus 

visual learning and memory are achieved through dynamic interactions between the 

ellipsoid-body and the fan-shaped body. 

 

Mushroom bodies and the central complex are the two key structures in learning and 

memory. Their differential implication depends on the temporality and the sensory modality 

of the learning experience, but visual learning often requires both structures. Locomotion 

state (flying or walking) may also play a role in selecting the neural pathway involved in 

visual information memorization (Kottler and van Swinderen, 2014). To wrap everything up, 

we can hypothesize that in mate-copying, observational learning is allowed by the MB and/or 

the CX. 

 



27 
 

Questions and hypotheses tackled in my PhD 

During my PhD, I tried to address several questions linked to the evolutionary importance of 

mate-copying on one hand, and to the mechanisms underlying this social learning on the 

other hand. 

I first investigated the stability of this mate-choice strategy: stability in time and 

robustness to male availability. The aim was to evaluate the robustness of this behavior, in 

order to determine the evolutionary relevance of the behavior, and use mate-copying as a 

model for the study of social learning mechanisms. 

In the second part I investigated a part of neuronal mechanisms involved in the short 

term memory and the long term memory of social learning. I first focused on the roles of 

dopamine and serotonin in short/mid-term memory of mate-copying, then on the 

dopaminergic receptor DAMB, that is specifically required for long-term memory formation 

in appetitive and aversive olfactory learning (Musso et al., 2015; Plaçais et al., 2017). 

In the third part, I tried to find what are the necessary cues for mate-copying. Based on 

the strong assumption that only vision is needed (as glass partitions do not allow olfactory 

cues), I proposed a new protocol based on virtual demonstrations using pictures, in order to 

see whether fruit flies can mate-copy out of a picture. My hypothesis was that it is the case. I 

also disentangled positive from negative information (that is, female acceptance for a male 

trait, from female rejection for a male trait) during the demonstration of a mate-copying 

experiment to determine which from the positive or the negative part was necessary to elicit 

learning and copying in observer females. 
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Chapter I. Evolutionary importance of 

mate-copying 
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I first studied the evolutionary importance of mate-copying, and more precisely its stability 

across environment and across time. The aim of this first chapter is to bring pieces of 

evidence that mate-copying is a general, well-established strategy of mate-choice, and is thus 

a good model to study the mechanisms of a social learning and the potential outcomes of 

such a strategy on a long term. 

In the wild, fruit flies do not live alone: they aggregate on food patches (Rodrigues et 

al., 2015; Keesey et al., 2016) where they meet individuals of their own species and of other 

species. In these groups, inter-sex encounters can lead to copulations and same-sex 

encounters can give rise to competition, for instance for access to mates. Here, I first studied 

the effect of female competition on mate-copying scores and choosiness of female observers. 

In the conditions studied in the first experiment (part A-1), the sex-ratio or number of 

competitor females had no effect on mate-copying scores. This may result from several 

contradictory effects cancelling each other out, but all in all the pattern I mesured is an 

indication that mate-copying is a stable mate-choice strategy, that has a certain robustness to 

the social context. This work was published in Current Zoology in January 2018. In a second 

experiment (part A-2), I investigated whether the pattern I observed could be due to the sex-

ratio itself, by changing the sex-ratio during the demonstration while the number of observer 

females remained constant on one hand, and on the other hand this experiment tested the 

effect of male phenotypic rarity during the demonstration on mate-copying scores. These two 

experiments gave measures of the stability of mate-copying across different environmental 

conditions. 

In a second step (part B), I participated to studying whether female fruit flies can form 

a long-term memory of a mate preference after watching several mate-choice 

demonstrations. This experiment thus measured the stability of mate-copying across time. 

 

 

A. Stability in environment: study in a 

context of competition for access to males 

 

1- Article published in Current Zoology 
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2- Effect of sex-ratio and phenotype commonness on 

mate-copying scores and choosiness 

 

Introduction  

In the experiment just above, I showed that sex-ratio impacts female selectivity while mate-

copying scores do not differ significantly across a sex-ratio gradient. In order to manipulate 

the sex-ratio during the demonstration, I changed the number of females in the central arena 

of the hexagon during the demonstration. Thus the effects I observed could either be due to 

the sex-ratio, or more directly, to the number of competitor observer females. In this second 

experiment, I thus tried to disentangle sex-ratio effect from the effect of the number of 

competitors. To do so, I kept the latter parameter constant (12 observer females in the central 

arena, so 18 females in total with the 6 demonstrators), while the number of males in the 

peripheral compartments varied. My hypothesis was that female selectivity would be higher 

when the sex-ratio (males/females) is higher, i.e. when the intensity of the competition to 

access males is lower. This should be seen in higher courtship duration and higher rate of 

double courtship, in the group with the highest sex-ratio. 

Because the proportions of pink and green males in the hexagon were not equal in one 

of the treatments, I could also analyze the effect of phenotypic rarity (or phenotype 

commonness) on the mate-copying scores. My hypothesis was that the least common the 

chosen phenotype, the stronger the strength of social information, and the higher the mate-

copying scores. 

 

Methods 

Behavioral experiment 

I used the hexagon, with 12 observer females and 6 demonstrator females, and a varying 

number of demonstrator males: 12 (control treatment corresponding to the treatment with 12 

observer females in the previous experiment); 18 males with 9 of each color; 18 males with 6 

of the preferred color and 12 of the rejected color (Figure 1). After the end of all copulations 

in the peripheral compartments (or as soon as a male starts fighting or courting after the end 

of the copulation), the observer females are removed, and the mate-preference test takes 

place in the classical tubes set-up, after 50 or 65 min (6 females tested at 50 min, 6 tested at 

65 min). During the resting time, observer females are placed altogether in a food vial. The 

treatment in which proportions of pink and green males in the demonstration are different 

from 50/50 tested for the very first time in our model the effect of phenotype commonness. 
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Figure 1: Three different treatments were made by changing the composition of peripheral 
chambers during the demonstration. 12 OF: 12 observer females in the central arena. M: male, F: 
female. Example with pink males preferred. In treatment 1, 12 observer females observe 6 
demonstrator females mating with 6 pink males while 6 green males are rejected. The sex-ratio is 
thus 0.67 male per female and pink and green males are equally common. Treatment 2 is composed 
of 6 demonstrator females mating with 6 pink males, while 9 green and 3 pink males are rejected. 
Thus, sex-ratio is 1 and pink and green males are equally common. In treatment 3, 6 pink males are 
mating and 12 green males are rejected: demonstrator females prefer the rare phenotype, sex-ratio is 
1. 

Statistical analyses 

Analyses were conducted with R version 3.4.0. As in all my experiments, mate-copying scores 

were analyzed in females that chose after both males courted; the other trials (one male 

courting and/or no copulation) were excluded from the analyses. For each group, the 

departure of the mate-copying index from random choice was measured using a binomial 

test. A GLMM test between the three groups measured the effect of treatment on MCI: the 

starting model included treatment, normalized air pressure, normalized air pressure changes 

in the 6 hours before demonstration, log-transformed time when demonstration started, 

first-courting male (see part I-A-1, Methods, subsection Statistical analysis), and all 

interactions with potential biological sense, as well as a random block effect (6 females par 

block, tested in the same time). The selected model (backward selection approach using the 

AIC) included normalized air pressure changes, treatment and log-transformed time when 

demonstration started. Another GLMM tested the effect of phenotypic rarity on MCI: the 

starting model included phenotypic rarity (a parameter set to 1 if both male phenotypes are 

equally common in the demonstration, else 0), normalized air pressure, normalized air 

pressure changes, log-transformed time when demonstration started, interaction between air 

pressure and air pressure changes, and interactions between phenotype rarity and each of the 

previous parameters, as well as a random block effect. The selected model included 

phenotypic rarity, normalized air pressure changes and log-transformed time when 

demonstration began. A GLMM model tested the effect of sex-ratio on the double courtship 

rate. The response variable was a binomial variable taking the value 1 if both males courted 

before copulation, and 0 if only one male courted the female. Trials in which the female did 

not mate were excluded from the analysis. Fixed effects of the GLMM model were sex-ratio, 

normalized air pressure, chamber of the test box, and interactions between sex-ratio and the 

other variables, as well as a random block effect. The selected model included sex-ratio and 
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chamber and the random block effect. Finally, a LMM model tested the effect of sex-ratio, 

log-transformed time when courtship starts and interaction between them on courtship 

duration, with a random block effect. The selected model contained the variables without 

interaction. 

 

Results and discussion 

Mate-copying index 

Mate-copying indices significantly above 0.5 for control (sex-ratio = 0.67) and treatment 2 

(sex-ratio = 1; equal proportion of pink and green males in the hexagon) reveal preference for 

the phenotype chosen by the demonstrator females (Figure 2), while treatment 3 (sex-ratio = 

1; 6/18 males of the preferred phenotype) did not reveal mate-copying. A GLMM comparing 

the three groups did not reveal a significant difference between the three treatments (GLMM, 

Wald χ² test, N = 174, χ² = 4.01, P = 0.134), but when testing for the effect of phenotype 

commonness, this parameter has a significant effect on mate-copying scores (GLMM, Wald 

χ² test, N = 174, χ² = 4.44, P = 0.035). 

 

Figure 2: Mate-copying indices for the 3 treatments. Statistics: binomial tests (above each bar); 
GLMM of the effect of the treatment on MCI. Error bars: Agresti-Coull 95% confidence intervals. 
Inside each bar: sample size. Dashed line indicates random choice. 

 

Moreover, the GLMM model showed that atmospheric pressure and its variations 

within 6 hours before the experiment had no effect on the scores (P = 0.367). Contrastingly, I 

found a possibly strong, although slightly effect of the time when demonstration starts 

(GLMM, Wald χ² test, N = 174, χ² = 3.66, P = 0.056), with comparatively better scores in the 

afternoon compared to the morning (MCI 0.7 for the afternoon compared to 0.6 in the 

morning, Figure 3). Given that the different treatments were distributed evenly enough 



43 
 

during each experimental day, this might be due to the experimenter being more relaxed or 

more accurate in the afternoon, or related to the circadian rhythm of the flies that might 

learn better in the afternoon compared to the morning. 

 

Figure 3: Mate-copying scores depending on the time when demonstration started. From left to 
right, early morning (09:00) to late afternoon (15:30). All treatments are pooled together. The scores 
were better in the afternoon compared to the morning. Sample sizes of each group (left > right): 45, 
42, 41, 46. 

 

Double courtship rate and courtship duration 

I measured the proportion of samples in which both males courted the females before she 

accepted to mate, and I found a non-significant tendency to a lower rate of double courtship 

in the control group (treatment 1, sex-ratio = 0.67) compared to the two other groups (with 

sex-ratios of 1), in a GLMM testing the effect of sex-ratio on double courtship rate (GLMM, 

Wald χ² test; N = 414, χ² = 1.19, P = 0.276, Figure 4). The effect of chamber was almost 

significant (P = 0.055), with chambers A and B having comparatively lower double courtship 

rates than the four other chambers, which is difficult to explain. Prior to the test, males are 

introduced in the second tube of each device, starting with the one in chamber A, then in 

chamber B, etc. Thus, females in the first chambers (A and B) can observe males longer than 

those in the last chambers before the beginning of the test, so one might suggest that females 

in the first chambers had a higher chance to preselect their partner just by observing them 

through the glass partition before the test started, which could have lead to this lower 

frequency of double courtships. 
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Figure 4: Sex-ratio effect on the double courtship rate. Conditions 2 and 3 are pulled together as 
they have the same sex-ratio. The values are similar to those of the previous experiment. Sample 
sizes: 174, 240. 

 

When testing the effect of sex-ratio on courtship duration in a LMM, I found a slight 

albeit non-significant effect (LMM, N = 414, F = 1.68, P = 0.195, Figure 5), with longer 

courtships in the groups with a higher sex-ratio. Time when courtship starts had a strong 

effect (LMM, N = 414, F = 4.08, P = 0.043): the later the courtship started, the shorter it 

lasted. Also, rates of double courtship and courtship durations are coherent with what I could 

measure in the previous experiment (see part I-A-1). 

 

Figure 5 : Mean courtship duration depending on the sex-ratio. Conditions 2 and 3 are pulled 
together as they have the same sex-ratio. The values are similar to those of the previous experiment. 
Sample sizes: 174, 240. 
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Conclusions 

The first aim of this experiment was to disentangle the effect of sex-ratio from the effect of 

the number of competitors on female selectivity. My results are going in the expected 

direction, with values close to what I measured in the previous experiment. Unfortunately, 

the treatments I tested were not sufficiently different in terms of sex-ratio to show any 

significant effect of this parameter without a very large sample size. The difficulty was also 

that I could not reach extreme values without creating additional issues, like, too many flies 

in the peripheral compartments that would dilute the information, or too few flies in the 

peripheral compartments, that would have not allowed giving the same amount of 

information to the observer females. Thus, although this experiment is not absolutely 

conclusive, it strongly suggests that the sex-ratio in itself is influencing female selectivity, 

with females being less selective under female-biased sex-ratio. Concerning the previous 

experiment, we can thus say that the effect I observed is due to the sex-ratio, alone or in 

addition to the number of competitors itself. 

Concerning the effect of phenotype commonness on mate-copying scores, the results I 

measured were unexpected: my hypothesis was that mate-copying index would be higher 

than in control groups, and finally I could not even detect a preference for the phenotype 

chosen by the demonstrators: observer females of this group did not copy. Thus, the fact that 

the preferred phenotype is rare does not increase the strength of social information provided 

in the demonstration. Contrarily, my results suggest that females tend to prefer the most 

common phenotypes. Treatment 3 would be a limit situation, with opposite effects of mate-

copying and phenotype commonness cancelling each other out in the particular situation I 

studied. This tendency to prefer common phenotypes could somehow be a consequence of 

conformity, as the most common phenotypes may result from a preference for this phenotype 

in the previous generation, or from a higher fecundity of the fathers bearing the common trait 

value. Anyways, this question needs to be further studied; as such a behavior would imply 

that the settlement and invasion of new phenotypes in this species would be disadvantaged. 

In other words, this preference for common phenotypes would favor common phenotypes 

and disfavor rare phenotypes. It would be interesting to confirm my results with a larger 

experiment with various proportions of males from the preferred phenotype, to see if there is 

a positive correlation between mate-copying scores and commonness of the phenotype 

preferred by the demonstrator females. 

 

 

B. Stability across time: long-term memory 

and emergence of stable traditions 

Temporal stability can be seen at two different scales: (1) how long an observer female can 

remember and copy the information provided in the demonstration, and (2) how long this 

arbitrary tradition can be transmitted from teachers to pupils. Both questions have been 

answered in a paper in Science (Danchin et al., 2018), to which I participated. Here, I report 
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the part of this article that I took part in (criterion 3 of durable social learning), and provide 

an answer to the first question. 

Introduction 

In the wild, fruit flies often live in dense population on food sources like rotting fruits. In 

these habitat patches, copulations are common and it is thus very likely that virgin females 

witness several mate-choice demonstrations before they have the opportunity to mate. In a 

previous experiment conducted by Anne-Cécile Dagaeff, 24-h memory was not obviously 

detectable after only one presentation of the mate-choice demonstration (Dagaeff, 2015, 

Doctoral thesis). In olfactory aversive learning, a repeated presentation of the same pairing 

CS-US can lead to persistent memory in fruit flies, provided that the training sessions are 

separated temporally with resting intervals of sufficient duration (Tully et al., 1994; Beck et 

al., 2000; Pagani et al., 2009). We thus tried to apply the same kind of protocol in mate-

copying, presenting five times a mate-choice demonstration to an observer female, with 15 

min resting intervals between each presentation. Our hypothesis was that females would be 

able to remember the information 24h later, if it was presented repeatedly with resting 

intervals, as in olfactory learning. Moreover, long-term memory in olfactory learning is 

dependent on de novo protein synthesis (Tully et al., 1994). In order to see if a form of social 

long-term memory had this characteristic, we also trained and tested females that were fed 

with an inhibitor of protein synthesis prior to the demonstrations, and compared their scores 

with those of untreated flies. 

 

Methods 

Behavioral experiment and treatments 

We used adult Canton-S flies at 3-5 days after emergence. In order to inhibit protein 

synthesis, females were fed cycloheximide overnight before the experiment (sucrose 5 %, 

cycloheximide 35 mM in mineral Evian® water), while control females received vehicle 

solution alone, both were given on a Whatman paper soaked with 125 µL of solution. To elicit 

long-term memory, females were allowed witnessing five successive demonstrations of a 

female mating with a male of one color, while a male of the other color was apparently 

rejected. Demonstrations occurred in tube devices but instead of introducing three 

demonstrators and allowing the female to choose one of the males, we introduced a couple as 

soon as they started mating, plus a male of the opposite color. Demonstrator flies were then 

removed as soon as the copulation finished. Two demonstration steps were spaced by 15-30 

min resting intervals (“spaced training”). One “uninformed” group received the vehicle 

solution and had an opaque partition separating the observer and the demonstrator, thus 

providing no information about mate preference. Two other groups, one receiving vehicle 

and the other receiving cycloheximide, could watch the demonstration through a transparent 

partition and were thus informed about the mate preference. Finally, a fifth group received a 

cycloheximide treatment but could see only one demonstration and was tested immediately 

after, in order to verify that cycloheximide did not impair social learning. 
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Analysis 

Mate-copying scores were analyzed using the R software version 3.3.2 (2016). Departure 

from random choice was tested for each group in a binomial test. We then did a GLMM 

model testing the effect of treatment on mate-copying scores. The starting model comprised 

treatment, experimenter-ID and air pressure as well as a random block effect, and the 

selected model contained only treatment and a random block effect. 

Results  

Females receiving the sucrose treatment (“informed”) copied when tested after 24h (Figure1), 

while uninformed flies did not. Flies that could not do protein synthesis during the 

demonstration because they received cycloheximide were not able to build a long-term 

memory, while their capacity to learn from the classical protocol remained unchanged, 

showing that their short-term memory was not impaired. Thus, flies can build a long-term 

memory of a mate preference from a spaced training, and this memory is dependent on 

protein synthesis.  

 

Figure 1: Mate-copying index of flies 24 h after a spaced training. a. Flies tested after 24h; b. Flies 
tested immediately, to control that the effect of cycloheximide was specifically on long-term memory. 
Statistics: binomial tests (above each bar), GLMM. Dashed line indicates random choice, sample sizes 
are indicated inside the bars. Uninformed control is a group of flies that received a sucrose treatment 
(control treatment) but had the demonstrations occurring behind an opaque partition, preventing 
them to see. Figure excerpted from Danchin et al., 2018, figure 3. 

 

Discussion 
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This experiment showed that females are able to build a long-term memory of a mate 

preference, and this memory, like in olfactory learning, depends on de novo protein 

synthesis. Moreover, the discovery that flies have all cognitive capacities to transmit mate-

preferences culturally on the long-term (Danchin et al., 2018) makes this behavior quite 

stable at the individual level (at least for 24h) as well as at the population level. In olfactory 

learning it was shown that flies can remember for several days (Tully et al., 1994), it could be 

interesting to know how long flies can remember in our paradigm.  

 

Conclusion 

In this first chapter, I investigated the environmental and temporal stability of mate-copying. 

I first showed that this strategy is stable across a gradient of number of observer females 

during the demonstration, and in different sex-ratio conditions. My second experiment also 

showed that, contrary to female competition, male phenotypic rarity during the 

demonstration impacted mate-copying scores and could abolish the effect of social 

information on female mate-choice. Mate-copying is thus a mate-choice strategy that has 

some robustness, but is sensitive to at least one environmental condition: male phenotypic 

rarity. In these two experiments, all treatments I applied only impacted the demonstration, 

while the test remained unchanged. I thus studied the impact of different parameters on the 

acquisition of the social learning, not on the retrieval. Finally, these experiments revealed 

that mate-copying is a promising model for the study of a social learning, as it is in the same 

time, a robust strategy, but also dependent on some environmental conditions. 

The demonstration that flies can form a long-term memory of a mate preference 

opens great perspectives, as it shows the potential evolutionary impact of this social learning, 

and in the same time, constitutes a new field of exploration on the mechanisms of long-term 

memory in social learning, as it is likely that the mechanisms of long-term memory differ 

from those of short-term memory, like in olfactory learning (Isabel et al., 2004). 
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Chapter II: Neuronal mechanisms of 

mate-copying 
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Fruit flies possess several neurotransmitters that altogether ensure and modulate the great 

diversity of the behaviors and physiological functions in the fly brain. Some of these 

molecules also exist in Vertebrates, like glutamate, acetylcholine, GABA, dopamine and 

serotonin, among others. Dopamine and serotonin are known to be involved in olfactory and 

visual learning in drosophila. In this second chapter, I first studied whether dopamine and 

serotonin are involved in mate-copying, using a pharmacological approach, and then I 

focused on the role of one dopaminergic receptor expressed in MBs, DAMB (DopAmine 

Mushroom Bodies). 

 

 

A. Roles of dopamine and serotonin in 

observational social learning: a 

pharmacological study 

 

Context and overview 

In this article, I used a pharmacological approach to test the role of serotonin and dopamine 

in mate-copying. I reduced dopamine or serotonin synthesis in adult virgin females by 

feeding 3-iodotyrosine (3-IY) and DL-para-chloro-phenylalanine (PCPA), respectively, and 

then tested their mate-copying performance with the classical experimental design (speed 

learning). I found that drug-treated females with reduced dopamine or serotonin did not 

mate-copy, indicating that both are required for social learning. These results give a first 

insight into the mechanistic pathway underlying social learning in D. melanogaster. This 

work was published in Frontiers in Behavioral Neuroscience in January 2019. 
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Supplementary information 

Supplementary table 1: post-hoc χ² tests comparing groups of flies from figure 1 

 

Groups compared N χ² P-value 

PCPA to vehicle 180 4.27 0.039 

3-IY to vehicle 181 5.72 0.017 

 

 

Supplementary figure 1: Mean courtship duration for each treatment. Numbers inside bars 
represent the sample size. Log-transformed courtship duration was analyzed in a linear mixed model 
(LMM) with logistic regression. All trials with detailed times of courtship and copulation initiation 
were analyzed. Log-transformation (natural log) was used to achieve a Gaussian distribution of that 
variable. The starting model included treatment and log-transformed time when first courtship 
began. The selected model included this last parameter alone. Treatment effect was found non-
significant (LMM, N = 476, χ² = 4.73, P = 0.094), while time when first courtship began had a 
significant effect (P < 0.001, the later the courtship began the shorter it was).  

 
Supplementary table 2: Post-hoc χ² tests comparing groups of flies from figure 2. 

 

Groups compared N χ² P-value 

PCPA to vehicle 189 7.78 0.005 

PCPA to PCPA + 5-HTP 149 3.82 0.05 

3-IY to vehicle 185 18.6 <0.001 

3-IY to 3-IY + L-DOPA 145 10.9 <0.001 
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B. Role of DAMB 

Introduction  

In the previous experiment, I showed that dopamine is involved in mate-copying. In 

drosophila, this neurotransmitter can target four receptors: dDA1 (also known as DopR), and 

DAMB (also known as Dop1R2 or DopR2) are members of the D1-like family (a subclass that 

comprises dopamine receptors coupled to a stimulatory Gs or Gq protein), while D2R is 

coupled to inhibitory Gi/Go. A fourth receptor, DopECR, is activated by both dopamine and 

ecdysteroids (Srivastava et al., 2005). Dopamine, and thus dopaminergic receptors, is known 

to regulate a wide diversity of functions, like courtship and receptivity, locomotion, sleep, 

learning and memory (reviewed in Riemensperger et al., 2011; Waddell, 2013; Yamamoto 

and Seto, 2014; Ichinose et al., 2017).  In olfactory learning, DdA1 is required to mediate the 

unconditional stimulus in both appetitive and aversive learning (Kim et al., 2007; Qin et al., 

2012), while DAMB is specifically involved in both appetitive and aversive long-term memory 

formations (Musso et al., 2015; Plaçais et al., 2017). To go further into the role of dopamine 

in mate-copying, I chose to study the role of DAMB (DopAmine Mushroom Bodies), a 

dopaminergic receptor expressed in mushroom bodies (Kondo et al., 2020), the center of 

higher cognitive processes in insects. First, DAMB is involved in long-term memory in 

olfactory learning, and long-term memory is of particular interest in our paradigm as it is 

essential to allow the emergence of stable traditions on the populational, multigenerational 

level. Moreover, damb flies display normal short and mid-term memory, which provides a 

control for the experiments. In effect, up to now, we were not able to find a proper control for 

color vision, thus, it appears difficult to draw strong conclusions from experiments showing 

an absence of mate-copying in a mutant fly, without the proof that this mutant has no color 

vision impairment; especially because dopamine is known to be involved in visual processes, 

notably attention (Riemensperger et al., 2011). For these two reasons, I chose to start 

studying the roles of dopaminergic receptors with DAMB. 

DAMB is expressed in mushroom body neurons at the adult stage and in the third 

instar larva (Han et al., 1996), more precisely in the α’β’ lobes and in γ neurons (Kondo et al., 

2020), and is also expressed in part of the central complex: in the noduli and a part of the 

fan-shaped body (Kondo et al., 2020, Figure S5). This dopaminergic receptor is a “D1-like” 

GPCR (G-protein coupled receptor) first thought to be coupled to Gs that stimulates adelylate 

cyclase activity (Han et al., 1996), however, it was shown that it activates Gq much more 

efficiently (Himmelreich et al., 2017) and thus leads to [Ca2+] intracellular increase (Figure 1). 
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Figure 1: Localization of DAMB and its activity in drosophila memory. DAMB has a role in 
memorisation, and a possible role in forgetting (Berry et al., 2012). 

Methods 

Flies  

I used Canton-S flies from the wild-type strain and damb mutants (Knock-Out). In the 

second experiment I used the strain w+;;UAS-DAMB-RNAi (110947/KK from Vienna 

Drosophila Ressource Center) that expresses RNA interference (RNAi) anti-DAMB transcript 

under the control of a Gal4-activated promoter (Plaçais et al., 2017), and I crossed it with w-

;;VT30559-Gal4 (Gal 4 expressed in the whole mushroom body) to target the mushroom 

body neurons, and with wild-type flies as a control. I also crossed the Gal4 line with the wild-

type strain as a control, I thus had four lines to test (Table 1). 

Table 1: Name and genotype of the observer females tested in the LTM experiment. Four different 
genotypes were tested to investigate whether DAMB is required in mushroom bodies for long-term 
memory in mate-copying. Note that all flies have at least one wild-type copy of the white gene 
required for a proper vision. 

Name  Genotype Description  

MB/+ w-/w+;;VT30559/+ Control for the Gal4 driver VT30559 

MB/RNAi w-/w+;;VT30559/UAS-DAMB-RNAi Reduced DAMB expression in MB 

WT w+;; Wild-type control 

RNAi/+ w+;;UAS-DAMB-RNAi/+  Control for the UAS line 
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Behavioral test 

I used the protocol described in I-A, Methods for the test of long-term memory: females had 

five demonstrations of already formed couples, separated by resting intervals of 10-15 min. 

They were tested 21 to 24 h after the end of the demonstration. For the speed learning 

experiment, I used the design described in II-A, Methods: control and damb flies received a 

sucrose treatment for 36-40 h prior to the experiment, then had one demonstration in the 

classical set-up, and were placed individually in food vials between the end of the 

demonstration and the beginning of the test 3 h after. The reason why I used this protocol is 

that I tested damb flies together with the drug-treated flies described in II-A, and used the 

same control flies (WT flies that received a sucrose treatment). 

Analyses 

Data were analyzed as in II-A, Methods, with the following GLMM models, all including 

block as a random effect: for comparison between damb and control flies in speed learning 

(Figure 2, left), the starting model comprised genotype and normalized air pressure in 

Toulouse Airport weather station, and interactions between these two parameters. The 

selected model comprised genotype alone. For comparison between damb and control flies in 

LTM (Figure 2, right), the starting model included genotype, normalized air pressure in the 

room and normalized total duration of the five demonstration steps, and all interactions 

between these parameters. The selected model comprised genotype, and normalized 

demonstration duration. For comparison between the four different genotypes in experiment 

2 (Figure 4), the starting and selected models comprised genotype. 
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Results 

In short-term memory, damb flies are able to learn as well as control flies (Figure 2). I found 

no statistical difference between the two groups in a GLMM model (N = 102, χ²1 = 0.005, P = 

0.944). Contrastingly, in long-term memory, while wild-type flies show a strong tendency to 

copy, damb flies choose randomly, revealing the absence of long-term memory. The 

difference between the two groups is significant: GLMM with Wald χ² test: N = 62, χ²1= 4.22, 

P = 0.040. In the selected model, normalized demonstration duration had a slight non-

significant effect on mate-copying scores: N = 62, χ²1 = 2.77, P = 0.096 (Figure 3). 

 

Figure 2: Mate-copying index of Wild-type and damb flies. Left: tested 3 h after one demonstration. 
Right: tested 24 h after a spaced training (5 demonstrations). Numbers inside the bar indicate the 
sample size. Error bars represent Agresti-Coull 95 % confidence intervals. Statistics: binomial tests just 
above the bars, and GLMM tests comparing the two treatments. Dashed line indicates expected 
results under random choice. 

 

I tested the effect of demonstration total duration on mate-copying scores, and I found 

a positive correlation (Figure 3): the longer the demonstration, the higher the scores, but the 

effect is not significant in the selected model (comprising genotype and normalized 

demonstration duration, with block as a random effect), probably because the sample size is 

low. 
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Figure 3: Mate-copying scores of control and damb flies (pulled together) depending on 
demonstration duration. Flies that copulated after a double courtship are divided in four groups of 
equivalent sizes depending on the duration of the demonstration they had. Mate-copying scores 
correlate with total demonstration duration, although the effect is not significant. Error bars 
represent standard error of the mean, sample sizes are indicated above each bar. 

 

In a second step, I tried to locate the neural structure in which DAMB is required for 

long-term memory in mate-copying. To do so, I used the UAS-Gal4 system with RNAi anti-

DAMB, to reduce the expression of the receptor selectively in the mushroom bodies. I then 

measured the mate-copying index of these flies 24h after a spaced training (Figure 4), but 

unfortunately I did not manage to finish the experiment because of technical issues. The 

wild-type control as well as the Gal4 and UAS controls display normal learning scores, while 

we do not have evidence that flies expressing RNAi in the whole mushroom bodies learn 

(Binomial test, N = 30, P = 0.36). 
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Figure 4: Mate-copying index of observer females of different genotypes, tested 24h after 5 spaced 
demonstrations. For the exact genotypes, please refer to table 1 in the methods. Light blue = wilt-
type flies. Blue = control flies (normal DAMB expression), Purple = females with reduced DAMB 
expression in the MB. Error bars represent Agresti-Coull intervals. Statistics: binomial tests (just above 
each bar), GLMM with Wald χ² test. 

 

There is no significant difference between control groups and flies with reduced DAMB 

expression in the MB (GLMM, Wald χ² test, N = 148, χ²1 = 1.22, P = 0.27), however, the trend 

is in the expected direction as females expressing RNAi in the MBs tend to have a lower score 

than the controls. I cannot conclude whether DAMB is required in the mushroom bodies for 

long-term memory in mate-copying, but the partial results tend to support this hypothesis.  

 

Discussion 

DAMB is involved in long-term memory formation, as in olfactory memory. The tendency 

that longer demonstrations are correlated to higher mate-copying scores might mean that 

longer demonstrations lead flies to form a more robust memory of the mate preference. In 

this view, one can assume that four demonstrations only would have led to undetectable 

mate-copying. However, another possible explanation is that external factors like air pressure 

conditions influence both demonstration length and learning capacities of observer females. 

In effect, the length of the demonstrations depends on flies behavioral variables like stress 

level for instance, and we can assume that both demonstrator and observer flies are 

submitted to the same external factors that influence these variables in a positive or a 

negative manner. It would be interesting to find other measures of the quality of a 

demonstration, and to study correlations between these variables and mate-copying scores. 
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The precise region of the fruit fly brain where the receptor is needed for the behavior is 

still to be discovered. I tried to test flies with reduced expression of DAMB in the MB via anti-

DAMB RNAi, but despite several attempts to perform the experiment, I could not obtain 

conclusive results. In particular, some control lines (not shown here) displayed very low 

mate-copying scores, which raises the question of whether these lines have some unknown 

genetic mutations. Moreover, it is possible, in view of my preliminary results (Figure 4), that 

the reduction in DAMB expression is not sufficient to abolish long-term memory in our 

paradigm. It thus seems better to use the opposite strategy, that is, testing damb flies 

expressing DAMB only in the mushroom bodies (thanks to the line ;UAS-DAMB;damb). 

Last, at the time I performed the experiments (2018), there were no precise information on 

the precise expression pattern of DAMB in MB and CX. I thus tested several Gal4 drivers (for 

MB, but also for CX, not shown). In view of the results of Kondo et al. (2020), the driver for 

MBs was relevant as VT30559 labels all MBs’ lobes (Plaçais et al., 2017).  

Finally, it would be highly useful to develop a lighter protocol for the study of LTM in 

mate-copying, because the protocol I used is very long and delicate, and thus is not adapted 

to answer precise genetic questions that require testing many different genotypes. 
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Conclusion  

In this second chapter, I showed that the neural processes underlying mate-copying require 

dopamine and serotonin. I found that the dopaminergic receptor DAMB, known to be 

involved in olfactory learning for long-term memory and not for short-term memory, is 

required in the same way for mate-copying. This brings a new piece of indication that 

different types of learning can share the same neural networks. Finally, my attempt to 

localize the brain region in which DAMB is required was not very successful, raising the need 

for a lighter protocol that would allow crossing the bridge to a wide exploration of the neural 

mechanisms of this observational social learning. 
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Chapter III. Relevant cues in mate-

copying 
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I studied the cues used by the observer females to form a memory of a mate preference. First, 

I disentangled positive from negative information in the demonstration, to see which one (or 

whether both) is required in mate-copying. Then, using virtual demonstrations, I tried to 

refine what are the minimal visual and temporal characteristics of the demonstration 

allowing females to mate-copy. 

 

 

A. Disentangling positive and negative 

information in mate-copying 

While the neurobiological mechanisms underlying learning coming from an animal’s own 

experience are largely investigated, neurobiology of social learning is more scarcely 

addressed, especially in invertebrates. In this part, I provide evidence that mate-copying 

occurs through learning based on acceptance cue. Using a new protocol for the mate 

preference demonstration, I disentangled positive from negative information in the 

demonstration (original idea from Arnaud Pocheville), while they are classically provided 

simultaneously, and I found that females copy the acceptance, but not the rejection, of a 

male. 

This work has been submitted for publication in Proceedings of the Royal 

Society B, Biological Sciences in March 2020, and will be resubmitted to the 

same journal in the next few months. 

In the second part, I went further in the mechanisms, exploring the roles of 

populations of dopaminergic neurons known to be involved in appetitive and in aversive 

olfactory learning.  

 

Female fruit flies copy the acceptance, not the 

rejection, of a mate  
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Abstract  

Preferences and avoidances can be socially transmitted, in particular in the case of mating 

preferences. Drosophila melanogaster females that witness another female's mate choice can 

memorize and copy her preference. However, in mate-copying in Drosophila, it is not known 

whether information lies in the acceptance of the chosen phenotype, the avoidance of the 

rejected one, or both; as classical mate-copying designs provide both types of information to 

observer females in the demonstration. To disentangle the respective roles of positive and 

negative information in mate-copying, we performed experiments in which demonstrations 

provided only one type of information at a time. We showed that positive information is 

sufficient to trigger mate-copying: observer females prefered males of phenotype A after 

watching a female mating with a male of phenotype A in the absence of any other male. 

Conversely, giving negative information only (by showing a demonstrator female actively 

rejecting a male of phenotype A) did not affect observer female’s mating preference. This 

suggests that in mate-copying experiments in Drosophila, the informative part of 

demonstrations lies in the copulation with a given male, which in turns suggests that the 

underlying mechanisms may be shared with those involved in appetitive memory in non-

social associative learning. 

 

Keywords  

Drosophila melanogaster, mate-copying, social learning, appetitive learning, aversive 

memory, indirect learning. 

 

Introduction 

Preferences as well as avoidances can be transmitted through social learning. Social learning 

allows an individual to learn about its environment at a lower cost than with a trial-and-error 

tactic, potentially affecting fitness positively (Boyd and Richerson, 1995). In mammals, 

Norway rat pups were shown to avoid poisoned food after observing and copying their 

parent’s diet (Galef and Clark, 1971). Such kind of learning can be observed especially in 

animals with prolonged maternal care (Mirza and Provenza, 1990), or in social insects, where 

social information is used in finding new foraging areas and synchronizing nest activities 
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(Leadbeater and Chittka, 2007). Social information is also used in non-social insects like 

Drosophila (Mery et al., 2009; Sarin and Dukas, 2009; Lone and Sharma, 2011), notably in 

mate-choice. Mate-choice constituting a major fitness impacting decision, it is thus no 

surprise that animals often use multiple information sources for mate-choice (Danchin et al., 

2004).  

The learning processes of Drosophila melanogaster have been extensively studied for 

the last decades in several forms and sensory modalities in direct associative learning (Quinn 

et al., 1974; Tempel et al., 1983; Wolf and Heisenberg, 1991; Tully et al., 1994; Schwaerzel et 

al., 2003; Isabel et al., 2004; Aso et al., 2010; Vogt et al., 2014, 2016; Cognigni et al., 2018). 

Direct associative learning occurs when the animal experiences by itself the association 

between conditional and unconditional stimuli (with or without being active). On the 

contrary, indirect associative learning involves a demonstration and no direct experience of 

the stimuli association. Typically, social learning is an indirect form of learning (Olsson et al., 

2007) in which, a focal individual observes a demonstrator or teacher experiencing the 

association between a cue and a reward. The mechanisms of social learning in general and 

social learning in insects in particular are now under investigation (Burke et al., 2010; Debiec 

and Olsson, 2017; Kavaliers et al., 2017; Allsop et al., 2018), but we are still far from 

understanding them thoroughly. In particular, the question of the extent of the overlap 

between pathways of social learning and the better studied direct associative learning 

remains poorly explored (Heyes, 1994; Heyes and Pearce, 2015; Leadbeater and Dawson, 

2017). 

Here, we focused on a form of observational social learning called mate-copying. 

Described in many vertebrate and invertebrate species (reviewed in Varela et al., 2018), 

mate-copying occurs when after observing the mate-choice of demonstrator individuals the 

preference of the observer individuals is biased towards either the specific male chosen 

during the demonstration (individual-based mate-copying) or towards males of similar 

phenotypes (trait-based mate-copying; Bowers, Place, Todd, Penke, & Asendorpf, 2012). The 

latter can strongly affect evolution (Agrawal, 2001; Witte et al., 2015) as it can considerably 

amplify sexual selection on male traits. Trait-based mate-copying has been described and 

studied in Drosophila for a decade (Mery et al., 2009; Dagaeff et al., 2016; Nöbel, Allain, et 

al., 2018; E. Danchin et al., 2018; Nöbel, Danchin, et al., 2018; Monier et al., 2018, 2019), 

and constitutes a powerful model to dissect the mechanisms of observational social learning 

(Monier et al., 2019). A first question concerns the stimuli that elicit mate-copying, to refine 

experiments on both behavioural and neurobiological mechanisms. In the mate-copying 

design in Drosophila, the demonstration involves a female choosing between two males of 

contrasting phenotypes (randomly and artificially dusted in pink or green) in front of a naïve 

observer female, which thus gathers positive information for the successful male A and 

negative information for the rejected male B. Here, we provided only one kind of information 

(positive or negative) at a time, and then measured a preference bias in the observer female 

immediately after the demonstration, offering her the choice between a new green and a new 

pink male. To do so, we had two types of demonstrations plus a control with usual 

demonstrations. In the first type of demonstration, the demonstrator female copulated with a 

male of a given colour (“acceptance” treatment providing positive information), while in the 

second type of demonstration the female actively rejected the male of a given colour 

(“rejection” treatment providing negative information). In view of previous results, we 

hypothesized that flies receiving only positive information would copy the choice of the 

demonstrator, whereas flies receiving only negative information would not. This is because 
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the real information in choice seems to be in the copulation itself: this was suggested by the 

fact that Dagaeff et al. (Dagaeff et al., 2016) found no difference in mate-copying scores 

between trials in which observer females could watch the courtship plus the copulation 

during the demonstration and trials in which the observer female only saw the copulation). 

Rejection, on the other hand, does not necessarily carries information about male quality as 

non-receptive females reject all males independently from their quality.  

 

Methods 

Fly maintenance 

Wild-type Canton-S Drosophila melanogaster were raised in 30 ml vials on standard corn 

flour- agar-yeast-medium at 25 ± 1 °C and 56 ± 4 % relative humidity, in an artificial 12 h – 

12 h light/dark cycle. Newly emerged, virgin flies (male and female) were collected daily and 

sexed without anaesthesia, by gentle aspiration using a glass pipette, tubing and gauze. They 

were kept in unisex groups of 7 females and 15 males and used for the behavioural 

experiments when 3-5 days old. For the experiments, males were dusted with artificial green 

(Shannon Luminous Materials, Inc. #B-731) and pink (BioQuip Products, Inc. #1162R) 

powders, and let in a food vial for 20-30 min to allow them cleaning the excess of dust before 

being transferred to the experimental set-up. All males were randomly assigned to one 

colour. After the experiments, observers and demonstrators were euthanized in a freezer (12h 

at -20 °C). 

 

Animal welfare 

Animals used in this study were neither harmed, food or drink deprived, nor anesthetized. 

We kept their number as small as possible and they were gently handled with a mouth 

aspirator.  

 

Behavioural assay 

Experiments were conducted in the double plastic tube devices (see Dagaeff et al., 2016). We 

applied three different treatments: a control treatment, an acceptance treatment, and a 

rejection treatment (figure 1). For each treatment, the demonstration comprised two 

successive 30 min phases (1 and 2, figure 1) which order was reversed from one trial to the 

next. In the acceptance and the rejection treatments, phase 1 demonstration consisted of a 30 

min presentation of a single male, pink or green (alternating from one trial to the next for 

each treatment). This ruled out a potential novelty effect (i.e. the discovery of one male colour 

during the test), which could occur if the observer female has only seen one male colour 

before the mate-choice test. As that male was alone, this did not provide any social 

information about its attractiveness. In phase 2, a male of the opposite colour was presented 

together with a demonstrator female. The demonstrator female was either virgin (acceptance 
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treatment) or recently mated (rejection treatment). Recently mated D. melanogaster females 

actively reject courting males (Kimura et al., 2015), so the observer female in rejection 

treatment could witness rejection of one male, providing negative information for this male 

colour. Contrastingly, observer females in the acceptance treatment could see the 

demonstrator mating with the male, which provided positive information for this male 

colour. The few trials in which the virgin female constantly rejected the male were included in 

the rejection group. Similarly, trials in which the mated female copulated with the male were 

included in the acceptance treatment group as they in fact conveyed positive information. To 

ensure that the female really had access to negative information in the rejection treatment, 

we checked that the male courted the female and was rejected. Trials in which no courtship 

happened were discarded. In the control treatment, the observer female was alone during 

phase 1, and during phase 2 we introduced in the opposite compartment a virgin 

demonstrator female, a pink and a green males. The observer female could thus witness the 

courtship of the two males and the choice of the demonstrator female. Trials in which the 

female did not mate within the 30 min of the demonstration were discarded. After the end of 

copulation of the demonstrator female, or after 30 min of rejection of the male, demonstrator 

flies were removed and two new virgin males, one of each colour, were placed in the tube. 

After 5 min, the partition separating males and female was removed, beginning the mate-

choice test. During the test, we recorded the time of the first wing extension (“singing”) of a 

male as the beginning of courtship of this male, and its colour, as well as the time when 

copulation began and the colour of the chosen male. As in previous studies (Dagaeff et al., 

2016; Danchin et al., 2018; Monier et al., 2018, 2019; Nöbel et al., 2018b), trials in which 

only one male courted the female before the onset of the copulation were discarded because 

only when both males showed interest towards the female she was unambiguously in a 

position to choose. 

 

 

Figure 1: Demonstrations presented to observer female in each of the three treatments. 

Each phase lasts 30 min. Order of phases 1 and 2 was reversed from one trial to the next, and we also 
did the same demonstrations with reversed colours. 



74 
 

 

Mate-copying index 

For each trial, we computed a mate-copying score as a binomial variable taking the value 1 

when the observer female mated with a male of the colour preferred (or not rejected) by the 

demonstrator female, and 0 in the opposite case. For instance, if the demonstration showed a 

female rejecting a pink male (rejection treatment), the mate-copying index was 1 if the 

observer female mated with a green male in the test, and 0 if she mated with a pink male. We 

then calculated the mate-copying index for each group as the mean of mate-copying scores. 

For the analyses, we took all trials in which a copulation occurred after both males courted 

the female during the test (192 trials), because only when both males showed interest 

towards the female she was unambiguously in a position to choose. Mate-copying indices 

significantly above 0.5 indicate that observer females were biased in their mate choice 

towards the colour preferred or not rejected by the demonstrator, and thus reveal mate-

copying. 

 

Statistical analyses 

Raw data of the behavioural experiment has been uploaded as supplementary material. We 

analyzed the data using the version 3.5.1 of the R software (R Core Team, 2018). For each 

treatment, we measured the departure from random choice with a binomial test. We then ran 

GLMM (generalized linear mixed models) with binary logistic regression (package lme4; 

Bates, Mächler, Bolker, & Walker, 2014) between the three groups in order to see if treatment 

and normalized air pressure (air pressure at the beginning of the trial minus mean air 

pressure in the whole data set) have an effect on mate-copying scores. We included a random 

block effect to account for the non-independence of the set of six trials trained and tested in 

parallel in the same observation box. We used Wald chi-square tests implemented in the 

ANOVA function of the car package (Fox and Weisberg, 2011) to test the significance of fixed 

effects. The starting model included two fixed effects (treatment, normalized air pressure) 

and interaction between them, and the final models were obtained through a backward 

selection approach, removing the interaction as it was non-significant. We then selected a 

model with the lowest Akaike Information Criterion (AIC, Akaike, 1969). Finally, we did two-

by-two comparisons between groups using Pearson's Chi-squared test with Yates' continuity 

correction. 

 

Results 

We measured mate-copying scores after a demonstration showing either a female accepting a 

male, a female rejecting a male, or a female accepting a male while rejecting the other. 

Observer females that received positive information for one phenotype and negative 

information for the other one during the demonstration (control treatment) copied the choice 
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of the demonstrator (binomial test, N = 63, P = 0.043, figure 2). Females that received only 

positive information, by watching a demonstrator female accepting copulation with a male, 

also copied the demonstrators apparent preference (binomial test, N = 65, P < 0.001; right 

bar of figure 2). Contrastingly, females that only saw a male rejected by a female (negative 

information only) did not show a preference for the opposite phenotype, or in other words, 

they did not avoid mating with the male of the phenotype that was rejected by the 

demonstrator (binomial test, N = 64, P = 0.532, figure 2). We compared the mate-copying 

scores of the three groups in a GLMM including treatment, normalized air pressure and 

interactions between them, as well as a block random effect. Air pressure was added to the 

model because it was found that mate-copying scores are sensitive to this weather variable 

(Dagaeff et al., 2016). In the selected model, that comprises treatment plus normalized air 

pressure and the random block effect, treatment effect on mate-copying scores was 

significant (GLMM, Wald χ² test, N = 192, χ²2 = 9.26, P = 0.010) while normalized air 

pressure was not (GLMM, Wald χ² test, N = 192, χ²1 = 0.64, P = 0.423). Finally, we did two-

by-two comparisons between groups in post-hoc χ² tests, and found a significant difference 

between acceptance and rejection treatment groups (N = 129, χ²1 = 8.63, P = 0.003), but 

neither between control and acceptance (N = 128, χ²1 = 0.77, P = 0.373) nor between control 

and rejection (N = 127, χ²1 = 3.53, P = 0.060). Thus, positive information for a certain 

phenotype appeared sufficient to elicit mate-copying, but not negative information in our 

experimental conditions. 

 

 

Figure 2: Mate-copying index after a single demonstration. 

Observer females received the following treatments: positive and negative information (Control), 
negative information only (Rejection), and positive information only (Acceptance). Dashed line 
indicates expectations under random choice. Sample sizes are indicated inside the bars. Error bars 
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represent Agresti-Coull intervals. Above bars are the P-values of binomial tests for each group, of 
post-hoc χ² tests between two groups, and of GLMM test between the three groups. P-values under 
significance threshold (< 0.05) are highlighted by a star. 

 

Discussion 

Our experiment aimed at disentangling positive from negative information during 

observation of mate-choice decisions in D. melanogaster. We found that control females 

learned and copied the choice of the demonstrator females, as in previous studies (Dagaeff et 

al., 2016; Danchin et al., 2018; Nöbel et al., 2018b; Monier et al., 2019), and so did females 

receiving positive  information. In contrast, females receiving only negative information did 

not significantly avoid the colour they saw being rejected. Thus, positive information is 

sufficient to elicit mate-copying after one demonstration in fruit flies. 

Our negative result in the rejection treatment suggests that one rejection 

demonstration was not a strong-enough cue to elicit avoidance behaviour in the observer 

female, probably because a female can reject a male for reasons that are independent from 

male quality, like, a non-receptive status (Connolly and Cook, 1973; Neckameyer, 1998), 

which is actually the case in our study. Recent research on aversive olfactory memory in 

Drosophila showed that spaced training with sequences of conditioned stimuli (CS) 

reinforced with an aversive cue (CS+) followed by another CS without reinforcement (CS-) 

leads to an approach for the CS-, a “safety memory” (Jacob and Waddell, 2019), when the fly 

is later tested with a combination CS-/novel odour. Thus, a sequence of several rejection 

demonstrations (showing first the rejected male and then the single one, repeated several 

times) might elicit aversive learning and/or approach of the other male phenotype. In sailfin 

mollies (Poecillia latipina), females copied the rejection of a male (Witte and Ueding, 2003), 

but the set-up used was quite different from ours, in particular as the rejection 

demonstration consisted of a sequence of 12-min video of four different females escaping 

from a courting male, we can thus think that the rejection cue is stronger than in the present 

study, as several model female consistently reject the male. Similarly, a study in humans 

found that women, but not men, decrease their interest for a relationship to a model after 

watching a speed-dating video in which this model and a potential partner show mutual lack 

of interest (Place et al., 2010). This can indicate that above the experimental conditions, 

different species use different social cues in mate-copying. Finally, our results show that in 

the classical mate-copying experiment in Drosophila, the rejected male shown in the 

demonstration does not seem to be the relevant cue that biases the preference of the observer 

female. Moreover, one could wonder if the presentation of a male of the opposite colour 

together with the copulating pair in the classical demonstration could constitute a distractive 

stimulus rather than only a neutral additional cue. This could explain the non-significant 

tendency to display higher scores for the acceptance treatment compared to the control 

(figure 2): the observer female might have, to a lesser extent, associated the single male to the 

positive unconditional stimulus (US) provided by the copulating pair, in the presence of a 

rejected demonstrator male. 

Our finding that acceptance of a male by the demonstrator is sufficient to elicit a 

preference for this phenotype in the observer female suggests that mate-copying is achieved 
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through acceptance learning, likely involving networks of appetitive learning. Several authors 

suggested that social learning can have an associative explanation (Avarguès-Weber et al., 

2015; Heyes and Pearce, 2015; Leadbeater and Dawson, 2017), but it still has to be 

demonstrated. In asocial learning, like olfactory, associative, direct learning, pairing between 

a conditioned stimulus (CS; for instance, odour A) and an appetitive US (sucrose) lead flies to 

prefer odour A over B even in absence of any reward (Tempel et al., 1983), because they 

associate odour A to a rewarding state (Schultz et al., 1997). In our social learning paradigm, 

we can speculate that the relevant cues eliciting learning are the colour of copulating males 

and the observation of a couple of flies successfully mating. In this view, the copulating pair 

would mediate the appetitive US, while male colour would be the CS (Avarguès-Weber et al., 

2015). Under this hypothesis, it could be interesting to study whether mate-copying 

mechanisms resemble those of visual, appetitive, associative learning, given that its neural 

bases are now well-studied (Vogt et al., 2014, 2016). 

More generally, understanding how social learning works can only help sharpening our 

view on the evolution of the different types of learning: this would allow building accurate 

theories about the evolution of behaviour, cognition and culture in invertebrates. 
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Investigation of the dopamine neurons required in 

speed learning 

 

This experiment was started as a part of Guillaume Lespagnol’s master project that I 

supervised. GL set the protocol for the demonstration and collected most of the data. I 

continued data collection with the help of Sabine Noëbel, and I performed statistical 

analyses. 

 

Context 

My previous experiment shows that mate-copying is achieved through learning based on 

acceptance cue, and not on rejection cue. This result gives indication on how flies learn, and 

can orient the exploration of the underlying neural mechanisms, as we can make the 

assumption that mate-copying is an appetitive learning. 

In the second chapter I showed that dopamine is required for mate-copying in a speed 

learning design. In olfactory learning, dopa decarboxylase DDC-gal4 neurons (that is 118 

dopaminergic neurons from the Paired Anterior Medial –PAM–  cluster innervating almost 

all of the MB horizontal lobes) are responsible for appetitive learning (Liu et al., 2012; Shyu 

et al., 2017, reviewed in Vogt et al., 2014). On the contrary, aversive olfactory learning and 

aversive taste learning are under the control of TH-Gal4 labeled neurons, and more precisely 

those from the Paired Posterior Lateral (PPL1) cluster (Riemensperger et al., 2005; Kirkhart 

and Scott, 2015). 

I thus made the assumption that in mate-copying, DDC-Gal4 dopaminergic neurons, 

but not TH-Gal4 neurons, would be required for correct learning, similarly to what is known 

in olfactory learning. I blocked TH-Gal4 or DDC-Gal4 dopaminergic neurons in observer 

females during the mate-choice demonstration, and measured effects on mate-copying 

scores. To prevent developmental effects that could result from a lifetime impairment of 

some dopaminergic neurons activity, I used a conditional inactivation system: the Shibire 

thermosensitive protein (Kitamoto, 2001) was expressed either in DDC-Gal4, or in TH-Gal4 

cells, which resulted in a blockade of synaptic transmission from these cells when flies are 

placed at restrictive temperature (33°C).  

 

Methods  

Fly strains 

I crossed w+;;UAS-Shits flies with w-;;TH-Gal4 and w-,DDC-Gal4;; lines. I then tested the 

female progeny of each crossing, that is, flies expressing one copy of each transgene, and 

having one wild-type copy of the white gene required for proper vision. The genotypes of the 
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tested females are: w+/w-;;TH-Gal4/UAS-Shits, and w+/w-,DDC-Gal4;;+/UAS-Shits, 

hereinafter referred to as DDC>Shi(ts) and TH>Shi(ts), respectively. TH-Gal4 and DDC-Gal4 

are expressed in distinct but overlapping groups of dopaminergic neurons projecting to the 

mushroom bodies (Liu et al., 2012). 

Behavioral test 

As the thermosensitive Shibire blocks neuronal transmission at restrictive temperature only 

(Kitamoto, 2001), i.e. over 29°C, flies are assumed to have normal behavior in the classical 

rearing conditions at 25°C. This allows a precise temporal control of the activity of specific 

sets of neurons. To activate the neuronal blockade, observer females were put at a restrictive 

temperature (33°C) 30 min prior to the experiment, and were maintained at this temperature 

during the demonstration thanks to a heating mat under the observer’s tubes. Demonstration 

occurred in classical devices, and observer females were then removed and placed 

individually into food vials at 25°C for 3-4 hours to ensure that the neuronal blockade had 

stopped before the time of the test 

Statistics 

Data were analyzed as in II-A, Methods. The starting GLMM model, including block as a 

random effect, comprised genotype, normalized air pressure changes in the six preceding 

hours, normalized air pressure at the time when the demonstration began, and all interaction 

between them, plus experimenter-ID (3 different experimenters did this experiment). The 

selected model comprised genotype only. 

 

Results  

Females in which TH neuronal activity was blocked during the demonstration (TH>Shi(ts), 

Figure 2, left bar) exhibited no mate copying (binomial test, N = 49, P = 0.57), whereas flies 

in which DDC neurons were blocked during the demonstration (DDC>Shi(ts), Figure 2, right 

bar) copied the choice of the demonstrator (binomial test, N = 39, P = 0.024, Figure 2). I 

compared the scores from these two groups in a GLMM model and found a significant 

difference (GLMM with Wald χ² test, N = 88, χ²1 = 4.14, P = 0.042, Figure 2). Thus, blocking 

TH-Gal4, but not blocking DDC-Gal4 dopaminergic neurons during the mate choice 

demonstration impairs proper learning in a speed learning design. 
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Figure 2: Mate-copying indices of flies trained with neuronal blockade. Flies were tested after a 
single demonstration when they were warmed at 32°C to activate Shibire. TH>Shi(ts): females in 
which TH neuronal activity is blocked during the demonstration (genotype: w+/w-;;TH-Gal4/UAS-
Shits). DDC>Shi(ts): females in which DDC neuronal activity was blocked during the demonstration 
(genotype: w+/w-,DDC-Gal4;;+/UAS-Shits). Inside bars: sample size. Statistics indicate the P-values of 
binomial tests and of a GLMM comparing the effect of treatment in both groups. 

 

Discussion 

Dopamine is involved in mate-copying in a speed learning design (Monier et al., 2019). Here, 

I tested the involvement of two different groups of dopaminergic neurons known to be 

involved in olfactory learning, and I found that blocking TH-Gal4 neurons impaired learning, 

while blocking DDC-Gal4 neurons did not affect mate-copying scores. Thus, my hypothesis is 

invalidated, mate-copying in D. melanogaster has not the same mechanism as an appetitive 

olfactory learning, at least concerning the dopaminergic neurons involved. However, to 

conclude that TH-Gal4 neurons are the dopaminergic cluster involved in social learning in 

mate-copying, it is necessary to do additional tests: observer females should be tested after a 

demonstration at permissive temperature to validate the absence of any impairment when 

TH-Gal4 neurons are not blocked. Moreover, fruitflies can detect temperature changes (Bang 

et al., 2011; Tomchik, 2013; Barbagallo and Garrity, 2015) and display genetically controlled 

temperature preference behaviors, with an optimum at 24°C for wild-type flies. Thus, doing 

the demonstration at 33°C could have impaired proper learning because of the aversive 

valence of the temperature stimulus. The fact that DDC>Shi(ts) females have normal mate-

copying scores is thus an important control that the experimental conditions of the 

behavioral test can allow an observer female to learn and copy. 

DDC>Shi(ts) 
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 When Shibire is expressed in TH-Gal4 neurons, submitting flies to a restrictive 

temperature for 40 min or more  just after learning is known to greatly reduce forgetting 

(Berry et al., 2012; Berry and Davis, 2014) in olfactory aversive learning, because DAMB is 

expressed in the target neurons of TH-Gal4 and this dopaminergic receptor promotes 

forgetting. TH-Gal4 is also a neuronal cluster involved in cold detection (Tomchik, 2013). 

Taken together, these results indicate that TH-Gal4 neurons are involved in many functions 

and it could be good to confirm these results by an experiment that does not involve 

temperature shifts: for instance, by expressing Kir2.1 into TH-Gal4 neurons at the adult 

stage, which would silence them (Baines et al., 2001; Hodge, 2009). 

 Finally, this experiment strikingly suggests that the mechanisms underlying 

observational social learning may be distinct from those involved in appetitive memory in 

non-social associative learning, although they share some common characteristics. This 

exciting fact invites to a deeper study of the neuronal processes. Detailed research of 

structures and networks may involve testing many different treatments, and it is crucial to 

first try making the experiment as simple, fast and standardized as possible. 

 

 

 

B. Development of a protocol of 

demonstrations using virtual stimuli  

Introduction  

Virtual stimuli are now used in a wide variety of behavioral experiments (reviewed in 

Chouinard-Thuly et al., 2017). These methods can offer many advantages when they are used 

properly; notably, they can allow studying new questions that are not possible to study 

otherwise, and they can offer new ways of studying behavioral questions. 

I tried to elicit mate-copying in observer females by presenting them a picture of a 

demonstration (copulating couple and a rejected male) instead of live flies. The aim of this 

experiment was primarily to show that pictures can be used instead of live animals during the 

demonstration, with similar mate-copying scores. Such a discovery would then open the door 

for a lighter, more efficient, more homogenous, and simpler method for the study of mate-

copying in Drosophila.  

 

Methods 

Fly maintenance 
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Canton-S wild-type flies were reared as in previous experiments. Virgin flies were collected 

daily and sexed without anesthesia, and kept in unisex groups until use at 2-5 days.  

 

Pictures  

Flies were semi-constrained in a square, transparent plastic box 1.8 x 1.8 cm², closed with a 

white foam plug, so that flies could have a volume of about 1 x 1 x 0.4 cm3 in which they could 

walk and interact for several minutes. 

Pictures were taken with a camera Panasonic DMC FZ300 (25-600mm equivalent 

lens), under white light, at 3-5 cm of the flies. Pictures were then re-treated with Corel 

Photopaint to intensify the green and pink dusting of the males (green painting #00FF00, 

pink paintings #FF00FF and #FF0066), lighten the background (first protocol) or remove it 

(second protocol). On each painting in the final form, two couples of the same color and two 

rejected males of the opposite color were present together, in different positions (one topview 

and one frontview), for each protocol (Figure 1). The size of the flies on the printed picture 

(printed on glossy photopaper in the photographer studio ABCD Pictures, Castanet-Tolosan) 

was about 2.5 mm. 

 

Figure 1: Pictures presented to the observer flies as a demonstration. A: in the first protocol, B: in 
the second protocol. Note that the same raw pictures were used for both protocols (two different 
green couples, two different pink couples, and two different rejected males of each color). 

 

 

Behavioral test 
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In both protocols, pictures were presented at 0.9 to 1.2 cm to the glass partition (which was 

fixed to the plastic tube). In each block of six trials, three pictures showed green males 

copulating, while the three other showed pink males. The attribution of a picture to the 

observer fly was random and kept as blind as possible: each picture was paired to a device 

and only the number of the device was noted at the demonstration step. The color of the 

preferred male in the demonstration was noted after the end of the experiment. In the first 

protocol, observer females were first offered to observe two live, green and pink males, 

presented in the opposite compartment, in a classical tube device. After 5 min of “pre-

demonstration”, females were transferred to another device with a unique compartment 

facing the picture (Figure 2). Picture presentation lasted for 25 min, then females were 

transferred back to the classical device for the test. In the second protocol, I used devices with 

2 tubes and 2 glass partitions (Figure 2), the observer female was placed in the tube and the 

central partition was put as soon as the female was in the second compartment. The 

demonstration consisted in 30 min presentation of the picture, then the picture was hidden 

behind a white cardboard and two virgin males were introduced for the test. Thus, the second 

protocol had no pre-demonstration and observer females were not transferred from a device 

to another during the experiment. 

 

Figure 2: Devices used in the picture demonstration. A. Classical tube device used in the experiments 
with live demonstrations. B. Devices used in the first protocol of this experiment: pre-demonstration 
and test take place in the left device (classical device), while the demonstration with a picture takes 
place in the right device. This protocol thus requires two transfers of the observer female. C. Device 
used in the second protocol: the observer female is placed in the central compartment, and after the 
end of the demonstration the picture is hidden behind a white cardboard and males are introduced in 
the left compartment for the test. 
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Analyses 

Data are analyzed with the R software version 3.4.0 (R Core Team, 2018). For each condition, 

the departure from random choice was analyzed with a binomial test. Mate-copying scores 

were then analyzed in generalized linear mixed models (GLMM) with binary logistic 

regression (package lme4, Bates et al., 2014). A random block effect was introduced into the 

models to account for the non-independence of observer flies from the same block. The 

significance of fixed effects was tested using Wald chi-square tests implemented in the 

ANOVA function of the car package (Fox and Weisberg, 2011). Starting models included 

treatment (protocol A or protocol B), normalized air pressure at the time of the test, and its 

normalized variation within the 6 preceding hours, and color of the successful male in the 

demonstration, as well as interactions between these effects. I used a backward selection 

approach using P-values, removing the highest order interaction as soon as it was non-

significant. The final model was chosen as one with the lowest Akaike Information Criterium 

(AIC, Akaike, 1969). 

 

Results 

In both protocols, observer females copied the choice of the virtual demonstrator presented 

on the picture (binomial tests, N = 64 and 72, P = 0.033 and 0.003 respectively, Figure 3). 

Thus, females can recognize and use social information presented on a picture. Both 

protocols produce positive results, the difference between them is not significant: GLMM 

with Wald χ² test, N = 136, χ²10 = 2.12, P = 0.15, the selected model comprises protocol, color 

of the male chosen in the demonstration, normalized air pressure, air pressure variations, 

and all interactions between the three last parameters, as well as a random block effect. 
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Figure 3: Mate-copying index of females that had a picture demonstration. Left bars: protocol A, 
right bars: protocol B. Grey bars represent the total dataset. As results are different depending on the 
picture shown, results for each picture are also represented: pink bars represent the MCI for females 
that could observe a picture on which two pink males are successful while two green males are 
apparently rejected; green bars represent the MCI of flies that had the opposite demonstration, i.e., 
positive information for green males and negative information for pink males. Error bars represent 
Agresti-Coull intervals. P-values are the results of binomial tests for each group, and of a GLMM (see 
Analyses in the Methods section). 

 

 

I looked into more details into the results of each experiment and I recognized that 

the color of the males copulating on the picture presented was affecting the scores, 

particularly in protocol A (Figure 2). I thus did GLMM models with Wald χ² test on data from 

each protocol, in order to see if the color of the preferred male in the demonstration affected 

mate-copying scores. 

For protocol A, the selected model comprised air pressure, air pressure changes, color 

of the male as well as all interactions between the three parameters and a random block 

effect. The interaction between the three fixed effects had a significant effect on mate-copying 

scores: N = 64, χ²9 = 4.37, P = 0.037. To examine further the effect of male color, I thus ran a 

second analysis after removing data with the lowest air pressure values (N = 7 data points 

discarded), the starting model integrated color of the male, air pressure variations, 

interaction between them as fixed effects, and the selected model included color of the male 

only, this parameter having a significant effect on MCI: N = 57, χ²3 = 4.88, P = 0.027. I chose 
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to remove data from the analysis instead of splitting my dataset into two subsets and running 

two parallel analyses because the dataset is already rather small. 

For protocol B, the selected model comprised air pressure changes, color of the males 

and interaction between them, as well as a random block effect. The interaction had a 

significant effect on MCI: N = 72, χ²5 = 5.59, P = 0.018: green demonstrations elicited mate-

copying when air pressure was decreasing or stable, while pink demonstrations elicited mate-

copying when air pressure was stable or increasing. 

In a nutshell, the color of the male receiving positive information in the 

demonstration impacted mate-copying scores in both protocols. As I used only one picture 

for each color, it is plausible that this effect is driven by the picture itself (position of the flies 

for instance), and not by the color of the male. 

 

Discussion 

Drosophila females are able to perform mate-copying after observing a picture of copulating 

and rejected flies for 25-30 min only. This astonishing discovery could mean that they 

recognize the picture as male and female flies, and that they can detect that the female and 

one male are copulating while the male of the opposite color is single. 

This ability can surprise in such a simple and small organism, as we can imagine that it 

requires complex cognitive phenomena to associate a pictured fly with a living congener 

providing social cues. However, things might have to be considered in a much simpler way: 

fly brains might be “tuned” to recognize anything that has roughly the size and shape of a fly 

as a fly, and everything that has roughly the size and shape of a copulating pair as a 

copulating pair, even when these objects are not moving. A study showed that male flies 

initiate courtships towards magnets as if they were female flies, provided that those magnets 

have roughly the size of a female fly and that they move at the speed of a fly (Agrawal et al., 

2014). Our human brain is also tuned to quickly recognize human faces in our environment 

(Hadjikhani et al., 2009), for instance a “surprised face” in the Moon, a phenomenon called 

pareidolia. This ability of Drosophila females to mate-copy based on fly pictures might 

actually reveal a “pareidolic-like” behavior. 

One can suppose that this ability helps to quickly grasp social information from the 

environment, and could help flies to locate members of their own species and aggregate on 

food patches and oviposition sites for instance. Moreover, the pictures presented in this 

experiment are high quality pictures in which the flies are, to a human eye at least, very 

resembling. As copulating flies usually stay immobile for roughly the entire duration of the 

mating (personal observation) when they are not disturbed, and as flies are tiny and have a 

“depth” of about one millimeter, one can think that a picture of a couple is somehow not that 

different in appearance from a real couple. 

Finally, my experiment shows that virtual stimuli can be used in Drosophila in complex 

social learning situations. This replacement of live flies with pictures was initially mainly 

motivated by technical considerations that are simplifying, accelerating and standardizing 

the whole experiment. This aim has been reached and the perspectives of the experiment are 
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much larger than a simple improvement in techniques. I thus decided to push further my 

investigations, which I describe in the next part. 
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C. How far can we simplify the stimulus 

without losing its ability to elicit mate-

copying? 

Introduction  

My previous experiment showed that Drosophila females can copy with a picture 

demonstration. The results I obtained in the second experiment (protocol B; Figure 3, right 

bars) are comparable to what we usually see in similar conditions (one demonstration in 

tube, test 0-4 h after) with a live demonstration. Moreover, Sabine Nöbel showed that 

females that sequentially observed five different pictures of a couple mating plus a rejected 

male, always with the same color associations, learned and copied after 24h (Nöbel et al., in 

prep.), as we showed for five live demonstrations (chapter I, B), under similar conditions (5 x 

20 min demonstrations spaced by 15 min resting intervals, according to the “LTM protocol” 

described in chapter I, B). Thus, it is possible to elicit mate-copying by presenting a picture of 

a demonstration. This result opens a wide window on several fields of exploration: the study 

of mate-copying mechanisms on a much larger scale, due to the standardization and 

simplification of the demonstration that considerably lightens the whole experimental 

process, and also the dissection of the stimulus, that can now be controlled and artificially 

modified. 

In this third part, I studied which characteristics of the demonstration are necessary 

and sufficient to elicit mate-copying in a speed learning design. To do so, after a first step 

aiming at determining the minimal demonstration duration required for a proper learning, I 

gradually simplified the picture used in the demonstration step in an attempt to determine 

the minimal cue required to elicit mate-copying. 
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Methods  

Rearing of the flies was conducted as in the previous experiments, and experimental 

conditions were the same as in protocol B (III-B, Figure 2, bottom panel). 

In the first experiment, testing the effect of demonstration duration, I used the same 

pictures as in protocol B of the previous experiment (III-B, Figure 1-B), i.e. two couples and 

two rejected males per picture, with a white background. 

In the second experiment, I modified the pictures, creating three different conditions 

(with two different pictures per color per condition, which makes 12 different pictures in 

total). Starting pictures were taken with Antoine Wystrach (CRCA) or by David Villa 

(Sciencimage). Two pictures of a demonstration were selected for each color (two pictures 

showing a copulation with a green male, two showing a copulation with a pink male, all with 

a rejected male of the opposite color). The treatment described in III-B, protocol B was 

applied, that is, a white background, and colors intensified with the pencil tool of the 

software. This first set of pictures was used as a control treatment (Figure 1). The same four 

pictures were also modified to create simpler stimuli: legs were erased and the whole fly 

except the wings was covered by even colors. In the treatment “dots” (Figure 1), the colors 

were brown #B7702C for the fly bodies, pink #FA2F35, and green #76B018 for the colored 

dot on the male back, and dark red #B41912 for the fly eyes. Colors were chosen visually to 

resemble as much as possible to those on real colored drosophila, but more intense for the 

pink and green. Finally, in the treatment “painted” (Figure 1), the brown color was replaced 

with either green or pink, so that the whole couple was colored like the chosen male. 

 

 

Figure 1: Two examples of a picture transformation for the three treatments. From left to right: 
control (picture treated as described in III-B-protocol B: white background, intensified colors), “dots” 
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(pink or green dot on the back of the male), and “painted” (whole male and whole couple colored in 
pink or green). 

 

Analyses were conducted as described previously, with binomial tests and GLMM with 

Wald χ² tests including a random block effect. The starting model for the comparison of the 

different demonstration durations included demonstration time as a continuous variable, 

and normalized air pressure in the experimental room, and interaction between them, as 

fixed effects. The selected model comprised the two parameters without interaction. 

 

Results 

In a first experiment, I compared the mate-copying results for three different durations of the 

demonstration: 5 min presentation, 15 min presentation or 30 min presentation (control 

condition). Females that could watch the demonstration for 15 min, as well as control 

females, learned and copied the choice of the virtual demonstrator (Binomial test, N = 67 and 

64, P = 0.014 and 0.004, respectively; Figure 2).  

 

Figure 2: Effect of demonstration duration on mate-copying scores. Mate-copying scores of females 
that observed the picture demonstration for 30 min, 15 min or 5 min before the mate-choice test. 
Inside bars: sample size. Statistics indicate the P-values of binomial tests and of a GLMM comparing 
the effect of treatment in the three groups. Error bars represent Agresti-Coull 95% confidence 
intervals, and the dashed line indicates expected results under random choice. 
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In the second experiment, I measured the mate-copying scores of females that could 

watch either a picture (control), or a simplified picture (“dots” and “painted” treatments, 

Figure 3) for 20 min. However, COVID-19 outbreak interrupted the experiment and the data 

collected is not sufficient to draw any conclusion. 

 

Figure 3: Effect of a picture simplification on mate-copying scores. Inside bars: sample size. The 
dashed line indicates expected results under random choice. No statistical test was applied because 
of the very low sample size. 

 

Discussion 

I showed that females are able to learn and copy from a picture, and in this last part I 

modified the visual cue in order to find which characteristics allow flies to do mate-copying. I 

found that 15 min of demonstration are sufficient to elicit mate-copying, but 5 min are not. 

Then I simplified the picture and measured the scores, but the amount of data collected does 

not allow concluding. We can however imagine different scenarii. 

If the conditions “painted” and “dot” both elicit mate-copying like the control, this 

would mean that either flies still recognize the drawings as congeners, or another learning 

mechanism is occurring, like a sort of imprinting (Lorentz, 1941).  

If females watching the control picture can learn and both other conditions give non-

significant results, this would mean that the modification of the picture removed the salience 
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of the stimulus. A technical explanation can simply be that the colors chosen were not 

recognized as the powder dusts applied on males used for the test. A mechanistic explanation 

would be that flies notice that modified pictures do not present actual congeners, which 

would mean that Drosophila vision is good enough to detect details on a picture, like legs or 

abdominal stripes, and that the preference for an artificially colored phenotype can only be 

elicited by the presentation of realistic flies. In other words, flies would be able to visually 

recognize individuals from their own species, using visual cues present on the control picture 

and absent from the modified pictures. Several studies found that species recognition in 

drosophila can be mediated by pheromonal cues (Antony and Jallon, 1982; Keesey et al., 

2016), or by the courtship song of males (Schilcher, 1976; Talyn and Dowse, 2004), but visual 

cues involved in this function have not been explored so far. 

Finally, a third possible result could be that only the condition “painted” does not lead 

to mate-copying: my hypothesis would then be that the very colorful drawings of this 

condition do not reflect the colors on the males used in the test, and that an “enhanced” 

stimulus (brighter colors than in a live demonstration) does not increase the scores. To test 

this hypothesis, one could replace the bright green and pink colors by an averaging of all the 

colors present on the couple and on the male in the control picture. 

All in all, the experiments I conducted in this part bring a proof of concept that picture 

demonstrations and picture modification can be used not only to study mate-copying, but 

also to study species visual recognition and to explore many different types of social and non-

social learning. 
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Conclusion  

In this third chapter, I showed that females copy the acceptance, not the rejection of a mate, 

and that TH-Gal4, but not Ddc-gal4 dopaminergic neurons, are required for proper learning 

in a speed learning design. This result completes my finding that dopamine is involved in 

mate-copying, but a lot still has to be done in the exploration of the neuronal networks 

involved in mate-copying in short- and middle-term memory. I also found that a picture of a 

copulating couple plus a rejected male could elicit mate-copying in observer females, which 

will help efficiently in further investigation of the neuronal mechanisms, in particular for the 

study of long-term memory that requires several demonstrations. Finally, I started to use the 

pictures as a mean to explore the characteristics of the visual cue that leads to mate-copying. 

I found that the demonstration duration can be reduced to 15 min, which shortens the 

experiment, and I brought first pieces of evidence that the manipulation of the picture can be 

a great tool to explore species visual recognition. 
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General discussion 
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Overview  

This work brings several new elements in the study of mate-copying, and in its use as a model 

of social observational learning. 

First of all, it establishes that this social behavior is rather robust to demonstration 

conditions, and gives rise to a long-term memory of a mate preference when demonstrations 

are sequential, with resting intervals. These characteristics support our assumption that this 

model can be of great interest in the study of social learning in Drosophila and of its potential 

consequences in terms of cultural heredity. 

In the second chapter, I showed that neural mechanisms of mate-copying present some 

similarities with those of pavlovian, non-social, visual or olfactory learning, which suggests 

that several types of learning share common mechanisms and pathways. From a technical 

point of view, this second chapter, however, also shows the technical limits of the classical 

experimental design in the study of genetically modified flies, in particular in long-term 

memory, because experiments are very heavy and delicate, which hampers our ability to 

deeply investigate neural mechanisms by testing a diversity of genotypes. 

In the third chapter, I provided some responses to the problems raised in the second 

chapter: first of all, the elaboration of a protocol of virtual demonstrations can allow a great 

gain in time, homogeneity, and simplicity, by standardizing the protocol. This increases our 

capacities in terms of testing many demonstration conditions in parallel or sequentially, thus 

opening new avenues of exploration. Moreover, the replacement of live demonstrators with 

pictures of flies allows us to investigate several questions: first, the relevance of classifying 

different learning types dependent on the nature of the stimulus (social versus non-social) 

could be questioned by experiments of stimulus simplification. In particular, if mate-copying 

is a visual associative learning, what is the unconditional stimulus on the picture? If females 

learn to prefer a color after watching a demonstration in which pictures are modified, is it 

because they still recognize a couple and this has an appetitive value, or is another 

phenomenon occurring? Second, modifying pictures can also be a way of exploring species 

visual recognition in Drosophila. To explore the first and the second point, it would be 

necessary to compare the neuronal pathways involved in learning with live versus highly 

simplified demonstrations that nonetheless still trigger mate-copying. 

 

Mate-copying in the population 

From the lab to the wild 

Female fruit flies can learn and copy whatever the number of co-observer females during the 

demonstration, and in a range of 0.7 to 1.7 male:female sex-ratios in experimental conditions. 

In natural conditions, D. melanogaster often live in dense populations on food patches, 

together with other species (Markow, 2015), and they can interact with each other (Kacsoh et 

al., 2018). Copulations often occur while females are young, sexually mature adults, as 
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randomly collected flies in the wild all produce progeny (Markow, 2011), and as it seems that 

non-mating is costly to wild females (Markow, 2011). Hence, female fruitflies probably 

observe copulations commonly, in various sex-ratio and density conditions. Having acquired 

the ability to quickly grasp and use social information provided by their conspecific’s mate 

choice even in crowded conditions gives an evolutionary advantage when competition for 

access to mates and short lifespan do not allow too much indecision.  

However, my results obtained with Canton-S strain in laboratory conditions should be 

repeated using a wild population before one can claim that natural populations of flies do 

behave like the laboratory Canton-S strain on this particular ability. For instance, in mate-

copying, the demonstration duration is 30 min in the speed learning design, and up to 3 

hours in the protocol for long-term memory. However, it seems unlikely that a fruit fly would 

stay for 30 min in front of a demonstration. What probably happens in the wild is that 

fruitflies travel frequently from one food patch to another one, and they probably observe a 

high number of copulating couples, each for a brief lap of time. Somehow, this makes their 

ability to detect the preference of the majority highly relevant ecologically, as the observation 

of a single couple in the wild may not be enough to elicit a mate preference. About this point, 

a project currently conducted in our group aims at estimating how many demonstrations a 

female can observe simultaneously. 

Finally, there is a lack of information on how drosophila behave in the wild, notably in 

terms of distances travelled. Subsequently, it would be interesting to investigate further the 

ecology of drosophila in the wild, while very little is known for the moment (Markow, 2015). 

As a matter of fact, some behavioral traits primarily demonstrated on laboratory strains, 

under artificial conditions, can be quite different to what D. melanogaster actually does in 

the wild. For instance, several studies reported a cost of multiple mating in D. melanogaster 

females (Bateman, 1948; Wigby and Chapman, 2005) that decreases their lifespan, due to 

effects of ejaculate components on female physiology, while an experimental study on wild 

female fruitflies found that mated females live longer than virgin females (Markow, 2011), 

and another study on lab strains measured no difference in lifespan between monogamous 

and polyandrous females (Castrezana et al., 2017), except when polyandrous females mated 

with virgin males only, which decreased their lifespan. To wrap everything up, experimental 

conditions can greatly affect behavioral and physiological variables. 

Again, about the duration of the demonstration, circumstances in the wild are different 

from laboratory conditions. Maybe, in the wild, when fruit flies are not stressed at all, a short 

demonstration of a few minutes (that is likely to be observable by freely moving flies) can be 

sufficient to elicit memory. The need for a 20-min long demonstration might be a 

consequence of the manipulation stress of observer females. We observed an experimenter 

effect on learning scores: naïve experimenters undergo a “training period” before they master 

the experiment and obtain significant mate-copying scores with the control treatments. 

Training duration varies a lot among experimenters, from a few days up to 6+ weeks. The 

relationship between stress and learning and memory is complex (Gewirtz and Radke, 2010) 

and poorly explored in insects. Recently, stress pathways were studied in honeybees (Even et 

al., 2012), and anxiety pathways in Drosophila (Mohammad et al., 2016), but not in 

relationship with learning. The study in Drosophila revealed striking behavioral resemblance 

with mice, and the effects of anxiety and stress on learning in rodents were depicted in 

several studies: stress decreases the response of serotoninergic neurons signaling reward and 

cue (Zhong et al., 2017), potentially contributing to an anhedonia state. Injecting 
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corticosterone (the hormone of stress in mammals) to mice 1-3 hours after appetitive 

learning has a positive or neutral effect (depending on the learning task) on 24 hours 

memory (Micheau et al., 1984). Stress hormones in rodents and humans modulate learning 

and memory, positively or negatively depending on the context (McGaugh and Roozendaal, 

2002). Finally, the effect of stress on learning and memory depends both on the type of stress 

(notably, chronic stress/anxiety or acute stress) and the type or learning task. In our case, we 

have strong indication that the type of stress induced by manipulation negatively affects 

mate-copying as inexperienced manipulators often measure lower mate-copying scores than 

experienced ones. 

 

Under certain conditions, copying can be costly for the female (Witte et al., 2015). In D. 

melanogaster, Sabine Nöbel showed that it was possible to modify the preference for curly 

males that produce lower-fitness offspring (Nöbel et al., 2018b). Thus, we can manipulate the 

system so as to lead mate-copying to have a negative effect on offspring viability and fitness. 

Yet, my results on the environmental stability, together with Nöbel et al. results, suggest that 

mate-copying as a mate-choice strategy is robust to several environmental conditions. 

Finally, my finding that female choosiness can vary depending on the female competition 

context shows that D. melanogaster females can display strategies that allow a compensation 

of the possible costs associated with this social learning strategy. 

 

A striking fact that has to be taken into account is that all the results I presented in this 

manuscript exclude females that selected a male to mate with before the second male started 

courting. I considered, as in previous studies (Dagaeff et al., 2016; Danchin et al., 2018; 

Nöbel et al., 2018b) that only when both males show their sexual interest the female is really 

in a position to choose. Nevertheless, this selection leads to the exclusion of 50-75 % of the 

data collected on Canton-S flies, depending on the experiments and experimenters. Actually, 

without doing this selection, no bias in mate preference was detectable in the group of 

informed observer females, except in the first data set I collected (for the experiment 

published in Current Zoology) in which a significant proportion of about 55 % of the females 

chose the color that was preferred during the demonstration. This has major consequences: if 

our Canton-S population is representative of a wild drosophila population (in particular in 

terms of proportion of females quickly mating with the first male courting), and if the 

experimental conditions somehow reflect natural conditions, there is no chance that a 

tradition lasts longer than the very first transmission step –whatever the weather. 

Under such circumstances, building hypotheses and models of long-term transmission 

of an arbitrary trait in a wild drosophila population risks being like building castles in the air. 

Alternatively, one can argue that in the wild, drosophila females are choosier and that the 

naturally crowded conditions they experience in the wild make it unlikely that they are not in 

a position to choose between several potential suitors. This assumption is supported by the 

fact that in the first study of mate-copying in Drosophila, Frederic Mery and his collaborators 

(Mery et al., 2009) used a different strain (the Chavroche strain, caught in the wild a few 

years before) and observed strong mate-copying without selecting data based on the number 

of males courting the observer female. Thus, laboratory strains differ in behavioral traits like 

female choosiness, and it is thus delicate to extrapolate our findings to wild fruit fly 

populations. The Canton-S strain has been reared in laboratory for more than 75 years (Stern 
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and Schaeffer, 1943), which is more than two thousand generations in controlled conditions. 

This undeniably impacted behavioral traits that often evolve quickly with environmental 

changes (reviewed in Wong and Candolin, 2015). It is thus not unlikely that lab-reared 

Canton-S females evolved to a lower choosiness as selective pressure on progeny health is 

much lower than in the wild. The Canton-S strain is not the best one to study the ecology of 

the species, and it would be very informative to test mate-copying in one or several wild-

caught strains of drosophila, as their choosiness (and their sexual behavior in general) might 

slightly differ from that of Canton-S, with major evolutionary consequences. On the other 

hand, as it is the most broadly used D. melanogaster strain, Canton-S is much easier to work 

with when it comes to the use of genetic constructs, because the genetic background is more 

similar between the two parental lines, which decreases the risk of side effects. Moreover, it 

can make the experiments more easily reproducible by another researcher. 

In a nutshell, it could be greatly interesting to test mate-copying in wild-caught D. 

melanogaster from two or three different places, in a naturalistic protocol, and compare the 

results with Canton-S, as this would finally inform us about the capacity of D. melanogaster 

to transmit mate preferences culturally in the wild. It would also cast light on the evolution of 

Canton-S in the lab. 

 

 

Influence of phenotype commonness 

Contrary to the sex-ratio, phenotype commonness can influence mate-copying scores. 

Somehow, this could be related to the experiment with picture demonstration: seeing more of 

one color elicits a preference for this color compared to the other one. In the experiment 

testing the effect of sex-ratio and phenotype commonness on mate-copying scores, “more” of 

one color means that the proportion of each colored phenotype in the male population during 

the demonstration is not fifty-fifty, while in the picture demonstration experiment, seeing 

more of one color means that the surface of the couple, bearing the color of the chosen male, 

is greater than the surface of the single male. This is of course an interpretation that should 

be tested. 

Anyway, my experiment needs a complementary treatment in which demonstrator 

females prefer the most common phenotype: it would be very interesting to check that in this 

condition female build a strong preference for the phenotype that was both preferred and 

more common during the demonstration. My expectation is that mate-copying score in this 

condition would be a bit higher than in the control condition, but not significantly so: a 

gradient of four or more different conditions of phenotype commonness during the 

demonstration would probably reveal a significant effect of the proportions of pink and green 

males on the mate-copying scores, but it is difficult to predict the type of the relationship 

(linear or not), as the preference of demonstrator females also strongly influences the 

preference of observer females. One can imagine an additional experiment in which females 

would observe different proportions of pink and green males, without copulation, and see if 

this demonstration affects mate preference. 
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Finally, my experiment was a pilot study that opens new questions to further explore, 

and that could help better understanding the relationship and relative strength of different 

social factors influencing a female’s mate choice in D. melanogaster. 

 

From a technical point of view, I calculated the sex-ratio as total number of males over 

total number of females in the hexagon during the demonstration. However, the operational 

sex-ratio (OSR) usually takes into account the receptive status of females as it is calculated as 

the number of males ready to mate divided by the number of males and females ready to 

mate (Kvarnemo and Ahnesjo, 1996). However, in my study, it is difficult to estimate what 

should be taken into account for the calculation of an OSR: at the time of the demonstration, 

both males and females that are involved in a copulation are not “ready to mate”, one may 

thus calculate the sex-ratio as the number of non-mating males over the number of non-

mating flies in the hexagon. Alternatively, as males can theoretically re-mate quickly after a 

first sexual encounter (Demerec and Kaufman, 1941), they might be considered as ready to 

mate while their female partner might not, which ends up in a third different estimate of sex-

ratio. As these alternative ways of measuring the sex-ratio seemed equally challengeable to 

me, I chose the simplest one. 

 

 

Mate-copying across time 

Fruit flies are able to learn mate preferences from a single demonstration, and can remember 

this information for at least 24 hours, in a process involving protein synthesis. The fact that 

protein synthesis is involved is similar to the long-term memory in olfactory learning (Tully 

et al., 1994). In all organisms, long-term memory formation requires protein synthesis after 

training (mouse: Barondes and Cohen, 1967; rat: Daniels, 1971; praying matis: Jaffé, 1980; 

chicken: Rose and Jork, 1987).  

In drosophila, depending on the type of learning, memory retention time can differ: 

typically, in appetitive olfactory learning, a single conditioning trial can elicit long-term 

memory that is still present after several days (Krashes and Waddell, 2008), while in aversive 

olfactory learning, a single conditioning trial leads to short and mid-term memory, but no 

long-term memory (Tully et al., 1994). Nonetheless, in aversive learning, anesthesia-resistant 

memory independent of protein-synthesis can persist for several days after repetitive training 

(Tully et al., 1994). Similarly, in honeybees, 24-h memory in appetitive olfactory learning can 

be independent of protein synthesis (Wittstock et al., 1993; Wüstenberg et al., 1998). 

Depending on the protocol and the insect model, the duration of each type of memory can 

thus vary. In mate-copying, Anne-Cécile Dagaeff showed that one demonstration could be 

sufficient to elicit a preference in the observer female 6 h after the demonstration, but the 

memory does not last up to 24 hours (Dagaeff, 2015 and Sabine Nöbel, unpublished results). 

When using spaced training, with five sequential demonstrations separated by resting 

intervals, observer females memorize and copy immediately after and 24 hours after. It 

would be interesting to test flies at different times after the end of the demonstration, in 
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order to measure the kinetics of memory decay. Moreover, in olfactory learning, when several 

training sessions are presented without resting intervals (massed conditioning), flies do not 

form long-term memory (Tully et al., 1994). In mate-copying, we never tried to do massed 

conditioning, while this kind of protocol might be as naturalistic or more naturalistic as speed 

learning or spaced training. It might thus lead to the formation of a persistent memory like 

the spaced demonstrations we presented: in effect, contrary to olfactory conditioning, the 

demonstrations in our social learning paradigm are long and females are never forced to 

observe it, it is thus likely that they are not submitted to the stimuli all the time of the 

demonstration. 

It is noticeable that however appetitive, socially learning to prefer a mate is apparently 

not that striking a piece of information that it can be memorized on the long term after only 

one demonstration. A possible explanation can come from the fact that fruit flies are 

conformist in their mating preferences: they copy the majority (Danchin et al., 2018). One 

can think that having such an ability to grasp and memorize the preference of the majority 

supposes that a single demonstration will not reach a threshold leading to long-term 

memorization. Moreover, in appetitive olfactory learning, D. melanogaster has good 24 h 

memory after a single, 2-min long training session, only if individuals are starving at the time 

of the test (Krashes and Waddell, 2008). In the case of mate-choice, there is no such thing as 

starvation, as choosing one male among others is generally not a life-or-death decision. 

In a transmission chain, each observer female becomes a potential demonstrator when 

it then chooses a mate, creating one more transmission step. But during the night, there can 

be no observation, so no demonstration, and presumably very few mating as fruit flies are 

crepuscular animals that sleep during the night (Hendricks et al., 2000). The possibility of 

long-term memory in mate-copying is therefore crucial in allowing a possible persistence of 

mating traditions. Moreover, even during the day, environmental conditions are not always 

favorable to mating, in particular, if the weather is bad, courting and choosing a mate may 

not be a priority (Austin et al., 2014). Regarding this point, although many (if not all) 

experiments about mate-copying in D. melanogaster found a correlation between 

atmospheric pressure (considered as a proxy for weather) and mate-copying scores, it was 

never verified that the perception of unstable, decreasing or low air pressure by fruit flies was 

the only weather-related cause of low mate-copying scores. Testing this would be doable with 

the use of mutant flies (deaf flies) that do not sense pressure variations. 

Memory duration is an important factor to evaluate the ecological importance of this 

social behavior. Further studies should specify these points, and provide a better 

understanding of how environmental and experimental conditions influence the strength and 

duration of memory in mate-copying. 

 

Social cognition 

Like many animals, fruit flies are able to behave socially, that is, to adapt their behavior to the 

social context. This kind of behavior involves cognitive capacities, like social information 

acquisition, processing, storage and retrieval. Social competence is a trait of behavioral 

performance that quantifies how well an individual performs a complex social task, like 
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choosing a mate for instance. It comprises cognitive traits as well as other traits related to any 

function involved in the social task (Varela et al., 2020). 

Depending on the context, evolution can favor social competence or on the contrary, 

non-social competence, and since both are under selective pressure, it is possible that 

animals developed behavioral and cognitive traits that are specifically adapted to social or 

non-social competence. With this in mind, one can suggest that there can be specific 

cognitive mechanisms for social tasks that are different from those for non-social tasks 

(Rosati, 2017). Social and non-social cognition could involve specialized cognitive modules 

devoted to a particular type of task, or rather general processes that are adapted to both types 

of tasks – an hypothesis that has sometimes been named “associationist explanation” 

(Reader, 2016). The debate between these two apparently contradictory views will probably 

wait for the discovery of neural networks and brain structures involved in each type of 

learning to be closed. However, findings in one species may not be transferrable to a general 

knowledge of how cognitive networks are organized in other animal species. 

About this debate, Cecilia Heyes (Heyes, 1994, 2012) proposed that social learning can 

be social at two levels: it can simply be that the learned information is provided by another 

individual, or it can require specialized cognitive abilities devoted to that social situation. It is 

likely that the first type of social learning involves general-purpose cognitive mechanisms 

while the second one requires specialized networks. Thus, depending on the species and on 

the type of social learning task, the underlying processes could be fundamentally different.  

Concerning mate-copying, can we still call it “social learning” when flies copy out of a 

picture, or even more, out of a drawing? Finally, many questions remain unanswered without 

a deep jump into the neural mechanisms underlying mate-copying, and more specifically, 

each kind of situation in which flies are able to copy a mate preference (short or long-term 

memory, from live flies, photos or drawings). The true strength of D. melanogaster in this 

domain is that the mechanisms of several kinds of learning have already been precisely 

explored, which provides a very interesting set of genetic and technical tools, apparatuses and 

hypotheses to begin with. 

Several species demonstrated a particular ability to learn socially: in social corvids 

(Templeton et al., 1999) individuals learn faster socially than individually, which is not the 

case in a non-social corvid species. This is also the case of chimpanzees, but not of dogs 

(Wobber and Hare, 2009). This shows that some species that have a high level of sociality co-

evolved cognitive abilities particularly well-fitted for social learning specifically. On the 

contrary, in some other taxa, a social learning task is simply associative learning (Dawson et 

al., 2013), and a recent study modeling social learning as associative learning found that this 

theory could explain the emergence of most kinds of social learning (Lind et al., 2019).  

Between these two cases, there are many examples of animals in which social learning 

is probably often more than simple association, as they can modulate their propensity to copy 

depending on their social relationship with the demonstrator. For instance, chimpanzees 

modulate their level of copying depending on the level of assumed knowledge of the 

demonstrator (Kendal et al., 2015). Similarly, in mice, social learning about a biting fly is 

modulated by kinship and by social status (Kavaliers et al., 2005): observers from the same 

family have higher learning scores, and individuals learn better from a dominant than from a 

subordinate. On the contrary, bumblebees seem to lack this capacity, which leads them to 

make suboptimal choices by indiscriminate copying (Avarguès-Weber et al., 2018). In fruit 
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flies, Anne-Cécile Dagaeff studied the effect of a genetic variation of the foraging gene in the 

demonstrator and in the observer in mate-copying scores (Dagaeff, 2015), but the results 

were inconclusive. In our mate-copying experiments, the observer and the demonstrator 

come from two different tubes, and it would thus be interesting to test if mate-copying scores 

are different between a situation in which observer and demonstrator are siblings, kept 

together from emergence, and a situation in which the two females do not know each other. 

As there is indication that D. melanogaster can recognize each other (Loyau et al., 2012), it is 

possible that the level of familiarity impacts the strength of mate-copying. 

Finally, is it really relevant to oppose social learning and associative learning? Any 

learning type requires an association between several stimuli (internal or external), so even 

the more complex social learning imaginable involves stimuli association. The question is 

more about the way stimuli are processed in the brain of the animal: is there a specific 

network activated when the stimuli have a social component? In humans, the same two 

structures take part in social as well as pavlovian fear learning, but these two forms of 

learning differentially activate the network (Lindström et al., 2018). How is the use of this 

specialized network selected? And what is the advantage of having distinct networks for 

social and asocial learning? 

 

 

Neuronal mechanisms of a social learning 

Social learning has long been considered as a trait specific to “complex” animals like primates 

and other mammals, and eusocial insects. It has remained underexplored in all other animals 

for the last decades. Moreover, experiments that study social learning are often more 

complex to design than experiments on non-social, olfactory or visual learning. In the last 

decades, the number and diversity of taxa in which at least one form of social learning was 

found has dramatically increased. On the other hand, the term of “social learning” is really 

vast and gathers forms of learning involving contrasted neural mechanisms into a given 

species. It thus appears difficult to speak about mechanisms of social learning, one might 

better speak about mechanisms of a social learning. 

 

In the last decades, many researchers investigated the mechanisms of different forms of 

social learning and social transmission in animals (reviewed in Olsson et al., 2020). 

Understanding social learning mechanisms is a key point in better understanding the 

dynamics of transmission (Reader, 2016), as the type of learning mechanisms will greatly 

impact the type of transmission dynamics, and in better knowing what are the required 

capacities to learn socially, which would broaden our view of what species can learn socially 

(Reader, 2016). 

Concerning cues responsible for social learning, in rodents, social transmission from 

mother to pups of a fear response that can be memorized for days involves olfactory cues 

(Debiec and Sullivan, 2014), and social fear conditioning can be elicited by distress 

vocalizations alone (Kim et al., 2010). These cues that indicate the demonstrator’s fear or 
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distress provoke a strong, information-specific activation of the amygdala (the center of fear 

in mammals) which leads to changes in exploratory behavior (Knapska et al., 2006). This 

emotional contagion is supposed to have evolutionary functions (Dezecache et al., 2015), as 

emission and reception of emotional states are costly. In the case of mate-copying, one can 

wonder if there is a social transmission of a positive “emotional state” between the copulating 

demonstrator female and the observer female. A study found that Drosophila is able to 

transmit and receive visual information about the presence of a threat (a parasitoïd wasp), 

even between two closely relative species (Kacsoh et al., 2018, 2019). This communication is 

mainly visual, and if it can work for transmitting fear signals, one can imagine that it could 

also be the case for transmitting pleasure signals, as choosing a good mate, like protecting its 

progeny from parasitoid wasps, is highly fitness-relevant. The communication of the 

presence of a threat involves the visual system (notably, L2 and L4 neurons from the lamina, 

that take part to motion detection), and region 5 of the fan-shaped body (Kacsoh et al., 2019). 

The method they use (selective inactivation of brain regions using the thermosensitive 

Shibire under the control of a spatially restricted Gal4 promoter) is easily transposable to our 

model. Interestingly, Balint Kaksoh and his collaborators also found that an artificial 

activation of the brain regions involved (with TrpA1) could accelerate learning. It would be 

interesting to elaborate similar experiments in mate-copying, by silencing or activating the 

same brain regions during the mate choice demonstration, and measure effects on mate-

copying scores. 

Brain structures involved in social fear transmission were described in rodents (Olsson 

et al., 2007; Twining et al., 2017; Allsop et al., 2018) and primates (Burgos-Robles et al., 

2019). In humans, a study revealed that individuals with autism spectrum disorder and 

normal IQ had a different pattern of neural activation compared to neurotypical controls in a 

social learning task, although their performance in solving the task was similar (Schipul et al., 

2012). In drosophila, some sensory signals are conveyed to higher brain centers by a 

different, overlapping circuit depending on stimulus intensity (Lin et al., 2013). On the other 

hand, memories acquired through different sensory modalities can share neural circuits 

(Vogt et al., 2014). The correspondence between sensory modalities / type of memory and 

brain structures or neural circuits involved is thus highly complex, especially in mini brains 

like those of Insects that evolved an economical design of brain circuits. 

Social learning –as any form of learning– can trigger neurogenetic changes in the brain 

structures involved in the learning task (Cui et al., 2017). It would be interesting to carry 

transcriptomic analyses on different regions of the observer fly brain after the mate-copying 

demonstration (particularly after the five spaced demonstrations of the long-term memory 

protocol, as stable memories require changes in gene expression). This could reveal two 

pieces of information: which structures are involved in this social long-term memory, and 

which genes have modulated expression. 

In appetitive learning, social transmission of food preference in rats requires 

muscarinic transmission in the basolateral amygdala (Carballo-Márquez et al., 2009). We can 

make a parallel between this social learning and mate-copying, as in both cases, a preference 

is elicited in the observer by cues about the demonstrator’s choice. There is no known 

equivalent to the mammal’s amygdala in fruit flies, but they do have muscarinic 

neurotransmission: it is notably involved in olfactory learning (Bielopolski et al., 2019), and 

modulation of muscarinic reception in mushroom bodies can enhance or suppress olfactory 
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learning (Gai et al., 2016). It would be interesting to explore the function of cholinergic 

transmission in drosophila mate-copying. 

 

 

Mate-copying as a form of associative 

learning 

Mate-copying is an observational learning in which the visualization of a female copulating 

with a male of a given phenotype elicits a preference for this particular male phenotype. In 

the demonstration, the two important elements are the copulating female, and the phenotype 

of the male. As written in the introduction, the male phenotype could be a conditioned 

stimulus mediated by the visual pathway, while the copulating female would constitute the 

unconditional, appetitive stimulus, and would involve dopaminergic pathway and visual 

pathway. 

At first sight, one could propose that mate-copying is an appetitive associative learning, 

however my results of the neuronal blockade experiment showing that TH neurons, but not 

Ddc neurons, are required in this learning apparently go against this hypothesis. In this 

experiment, observer flies are submitted to a temperature shift during the demonstration. In 

olfactory aversive learning, the aversive cue can be a temperature of 34°C (Galili et al., 2014) 

so in the neuronal blockade experiment the demonstration could be considered as mediating 

an aversive cue because of the temperature shift. This makes the fact that Ddc>Shi(ts) 

females learn a bit surprising, as one could assume that presenting the demonstration 

together with an aversive cue would not elicit a preference for a given phenotype, or could 

even elicit an aversion. But maybe the appetitive valence of observing copulation overcomes 

the aversive value of the heat stimulus. Indeed, submitting TH-Gal4>UAS-Shits flies to 34°C 

did not affect appetitive memory in an experiment studying the roles of TH neurons in 

appetitive and aversive olfactory learning (Schwaerzel et al., 2003). This result indicates that 

temperature is not a sufficiently aversive cue to prevent appetitive learning. 

It would be interesting to submit observer females to appetitive or aversive stimuli 

during the demonstration and measure effects on mate-copying scores. For instance, we can 

imagine that an electric shock could impair (or reverse) the preference, depending on its 

intensity, while an appetitive stimulus like sugar could increase the scores or increase 

memory duration. This would allow studying how different learning modalities can interact 

with each other. 

Maybe, from a flie’s point of view, mate-copying from pictures is not exactly the same 

process as mate-copying from live demonstrators. It is possible that both share many 

common characteristics but present tiny differences linked to the fact that live flies offer a 

social situation that pictures do not. Exploring these differences could teach us a lot on the 

specificities of social learning. 

 



105 
 

Future directions 

This thesis opens many new perspectives of research. Concerning the cognitive mechanisms 

of mate-copying, I brought first elements and raised intriguing points, in particular, with the 

discovery that the dopaminergic neurons involved in mate-copying are not those required for 

appetitive olfactory learning. Thus, it would be interesting to first test TH>Shi(ts) females at 

25°C to make sure that they can learn and rule out a problem with the strain. This step being 

fulfilled, the use of more precise Gal4 drivers would allow refining the group of dopaminergic 

neurons required for mate-copying in a speed learning design. A final and very elegant 

experiment would then be to activate these neurons with optogenetics while presenting a 

male of a given color, and then test the preference of the female. Optogenetic tools have been 

developed in D. melanogaster in the past years (Dawydow et al., 2014) and allow evoking 

neuronal activity using a light beam. This neuronal activity can be restricted to the desired 

region using the UAS-Gal4 system to drive the expression of “ChR2-XXL” transgene, which is 

a mutant form of channelrhodopsin-2 providing very good results in living drosophila 

(Dawydow et al., 2014). With this tool, it would be possible to activate the neuronal activity of 

the specific dopaminergic neurons identified as necessary for short / mid-term memory in 

mate-copying, to provide the unconditional stimulus while presenting a male of a given color. 

The localization of DAMB receptor required for long-term memory formation in mate-

copying still has to be discovered. The use of picture demonstrations, and of the damb 

mutant with re-expression only in precise regions of the mushroom bodies or the central 

complex, should greatly help in this exploration, but it would be useful to verify at the end of 

the experiment that the results are the same when demonstrations involve real flies, by 

testing in a protocol using live demonstrations the genotype that re-expresses DAMB in the 

region involved in social LTM with pictures. 

Concerning pictures, their use could be strength not only in the discovery of neural 

mechanisms, but also as stated above, in the exploration of the cues necessary in species 

recognition. One can also imagine using the same kind of stimuli in other contexts, like 

preference for egg laying sites: if females observe pictures of flies around or on a substrate, 

will this increase the chance that they select it for egg laying compared to another one? The 

comparative exploration of the neural processes involved in a type of learning using pictures 

versus using live flies might also reveal interesting differences. We can then imagine 

replacing pictures with videos to observe the effect of motion in the artificial stimuli. 

Another interesting avenue that I opened is the effect of phenotype commonness, as 

this is indeed a crucial parameter for tradition in a population. Experiments in the hexagon 

could be a good way to start exploring this effect, first by observing the responses to a 

gradient of phenotype commonness for a given color preference. The use of pictures in this 

kind of experiments could also help. 

Concerning the occurrence of mate-copying in wild populations, exploring this field 

could help better understanding the evolution of the species. We could test several species of 

Drosophila for existence of mate-copying (particularly long-term memory in mate-copying), 

and do a comparative genomic and/or transcriptomic analysis of the species in which this 

behavior is present versus absent. This would give exciting insight into the evolution of this 

behavior in an insect species. 
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More generally, in this work I tried to consider mate-copying on two different but 

complementary aspects: ecology and evolution on the one hand, and molecular and cellular 

processes on the other hand. These two aspects, macroscopic and microscopic have 

historically been too often considered separately, while it is much more enriching to consider 

them altogether, as they are in close link. Recent and current works are progressing in this 

direction. 

 

 



107 
 

References 

Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., et al. (2000). 
The Genome Sequence of Drosophila melanogaster. Science 287, 2185–2195. 
doi:10.1126/science.287.5461.2185. 

Agrawal, A. F. (2001). The evolutionary consequences of mate copying on male traits. Behav. 
Ecol. Sociobiol. 51, 33–40. doi:10.1007/s002650100401. 

Agrawal, S., Safarik, S., and Dickinson, M. (2014). The relative roles of vision and chemosensation 
in mate recognition of Drosophila melanogaster. J. Exp. Biol. 217, 2796–2805. 
doi:10.1242/jeb.105817. 

Akaike, H. (1969). Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 21, 243–
247. doi:10.1007/BF02532251. 

Allsop, S. A., Wichmann, R., Mills, F., Burgos-Robles, A., Chang, C.-J., Felix-Ortiz, A. C., et al. (2018). 
Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning. 
Cell 173, 1329-1342.e18. doi:10.1016/j.cell.2018.04.004. 

Antony, C., and Jallon, J.-M. (1982). The chemical basis for sex recognition in Drosophila 
melanogaster. J. Insect Physiol. 28, 873–880. doi:10.1016/0022-1910(82)90101-9. 

Apidianakis, Y., and Rahme, L. G. (2011). Drosophila melanogaster as a model for human 
intestinal infection and pathology. Dis. Model. Mech. 4, 21–30. doi:10.1242/dmm.003970. 

Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T.-T., et al. (2014a). The neuronal 
architecture of the mushroom body provides a logic for associative learning. eLife 3, 
e04577. doi:10.7554/eLife.04577. 

Aso, Y., Herb, A., Ogueta, M., Siwanowicz, I., Templier, T., Friedrich, A. B., et al. (2012). Three 
Dopamine Pathways Induce Aversive Odor Memories with Different Stability. PLOS 
Genet. 8, e1002768. doi:10.1371/journal.pgen.1002768. 

Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K. R., Vogt, K., Belliart-Guérin, G., et al. (2014b). 
Mushroom body output neurons encode valence and guide memory-based action 
selection in Drosophila. eLife 3, e04580. doi:10.7554/eLife.04580. 

Aso, Y., Siwanowicz, I., Bräcker, L., Ito, K., Kitamoto, T., and Tanimoto, H. (2010). Specific 
Dopaminergic Neurons for the Formation of Labile Aversive Memory. Curr. Biol. 20, 
1445–1451. doi:10.1016/j.cub.2010.06.048. 

Austin, C. J., Guglielmo, C. G., and Moehring, A. J. (2014). A direct test of the effects of changing 
atmospheric pressure on the mating behavior of Drosophila melanogaster. Evol. Ecol. 28, 
535–544. doi:10.1007/s10682-014-9689-8. 

Avarguès-Weber, A., Lachlan, R., and Chittka, L. (2018). Bumblebee social learning can lead to 
suboptimal foraging choices. Anim. Behav. 135, 209–214. 
doi:10.1016/j.anbehav.2017.11.022. 



108 
 

Avarguès-Weber, A., Lihoreau, M., Isabel, G., and Giurfa, M. (2015). Information transfer beyond 
the waggle dance: observational learning in bees and flies. Front. Ecol. Evol. 3. 
doi:10.3389/fevo.2015.00024. 

Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T., and Bate, M. (2001). Altered Electrical 
Properties in Drosophila Neurons Developing without Synaptic Transmission. J. Neurosci. 
21, 1523–1531. doi:10.1523/JNEUROSCI.21-05-01523.2001. 

Bang, S., Hyun, S., Hong, S.-T., Kang, J., Jeong, K., Park, J.-J., et al. (2011). Dopamine Signalling in 
Mushroom Bodies Regulates Temperature-Preference Behaviour in Drosophila. PLOS 
Genet. 7, e1001346. doi:10.1371/journal.pgen.1001346. 

Barbagallo, B., and Garrity, P. A. (2015). Temperature sensation in Drosophila. Curr. Opin. 
Neurobiol. 34, 8–13. doi:10.1016/j.conb.2015.01.002. 

Barnstedt, O., Owald, D., Felsenberg, J., Brain, R., Moszynski, J.-P., Talbot, C. B., et al. (2016). 
Memory-Relevant Mushroom Body Output Synapses Are Cholinergic. Neuron 89, 1237–
1247. doi:10.1016/j.neuron.2016.02.015. 

Barondes, S. H., and Cohen, H. D. (1967). Comparative effects of cycloheximide and puromycin on 
cerebral protein synthesis and consolidation of memory in mice. Brain Res. 4, 44–51. 
doi:10.1016/0006-8993(67)90147-3. 

Bateman, A. J. (1948). Intra-sexual selection in Drosophila. Heredity 2, 349–368. 

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014). Fitting Linear Mixed-Effects Models 
using lme4. ArXiv14065823 Stat. Available at: http://arxiv.org/abs/1406.5823 [Accessed 
July 26, 2017]. 

Battesti, M., Moreno, C., Joly, D., and Mery, F. (2015). Biased social transmission in Drosophila 
oviposition choice. Behav. Ecol. Sociobiol. 69, 83–87. doi:10.1007/s00265-014-1820-x. 

Beck, C. D., Schroeder, B., and Davis, R. L. (2000). Learning performance of normal and mutant 
Drosophila after repeated conditioning trials with discrete stimuli. J. Neurosci. 20, 2944–
2953. 

Belle, J. de, and Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by 
chemical ablation of mushroom bodies. Science 263, 692–695. 
doi:10.1126/science.8303280. 

Berry, J. A., Cervantes-Sandoval, I., Nicholas, E. P., and Davis, R. L. (2012). Dopamine Is Required 
for Learning and Forgetting in Drosophila. Neuron 74, 530–542. 
doi:10.1016/j.neuron.2012.04.007. 

Berry, J. A., and Davis, R. L. (2014). “Chapter 2 - Active Forgetting of Olfactory Memories in 
Drosophila,” in Progress in Brain Research Odor Memory and Perception., eds. E. Barkai 
and D. A. Wilson (Elsevier), 39–62. doi:10.1016/B978-0-444-63350-7.00002-4. 

Bielopolski, N., Amin, H., Apostolopoulou, A. A., Rozenfeld, E., Lerner, H., Huetteroth, W., et al. 
(2019). Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory 
learning in adult Drosophila. eLife 8. doi:10.7554/eLife.48264. 

Bowers, R. I., Place, S. S., Todd, P. M., Penke, L., and Asendorpf, J. B. (2012). Generalization in 
mate-choice copying in humans. Behav. Ecol. 23, 112–124. doi:10.1093/beheco/arr164. 



109 
 

Boyd, R., and Richerson, P. J. (1995). Why does culture increase human adaptability? Ethol. 
Sociobiol. 16, 125–143. doi:10.1016/0162-3095(94)00073-G. 

Brembs, B., and Heisenberg, M. (2000). The Operant and the Classical in Conditioned Orientation 
of Drosophila melanogaster at the Flight Simulator. Learn. Mem. 7, 104–115. 
doi:10.1101/lm.7.2.104. 

Brembs, B., and Wiener, J. (2006). Context and occasion setting in Drosophila visual learning. 
Learn. Mem. 13, 618–628. doi:10.1101/lm.318606. 

Brown, C., and Laland, K. N. (2003). Social learning in fishes: a review. Fish Fish. 4, 280–288. 
doi:10.1046/j.1467-2979.2003.00122.x. 

Burgos-Robles, A., Gothard, K. M., Monfils, M. H., Morozov, A., and Vicentic, A. (2019). Conserved 
features of anterior cingulate networks support observational learning across species. 
Neurosci. Biobehav. Rev. 107, 215–228. doi:10.1016/j.neubiorev.2019.09.009. 

Burke, C. J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M. J., Das, G., et al. (2012). Layered 
reward signalling through octopamine and dopamine in Drosophila. Nature 492, 433–
437. doi:10.1038/nature11614. 

Burke, C. J., Tobler, P. N., Baddeley, M., and Schultz, W. (2010). Neural mechanisms of 
observational learning. Proc. Natl. Acad. Sci. 107, 14431–14436. 
doi:10.1073/pnas.1003111107. 

Carballo-Márquez, A., Vale-Martínez, A., Guillazo-Blanch, G., and Martí-Nicolovius, M. (2009). 
Muscarinic transmission in the basolateral amygdala is necessary for the acquisition of 
socially transmitted food preferences in rats. Neurobiol. Learn. Mem. 91, 98–101. 
doi:10.1016/j.nlm.2008.09.014. 

Caron, S. J. C., Ruta, V., Abbott, L. F., and Axel, R. (2013). Random convergence of olfactory inputs 
in the Drosophila mushroom body. Nature 497, 113–117. doi:10.1038/nature12063. 

Castrezana, S., Faircloth, B. C., Bridges, W. C., and Gowaty, P. A. (2017). Polyandry enhances 
offspring viability with survival costs to mothers only when mating exclusively with 
virgin males in Drosophila melanogaster. Ecol. Evol. 7, 7515–7526. 
doi:10.1002/ece3.3152. 

Chouinard-Thuly, L., Gierszewski, S., Rosenthal, G. G., Reader, S. M., Rieucau, G., Woo, K. L., et al. 
(2017). Technical and conceptual considerations for using animated stimuli in studies of 
animal behavior. Curr. Zool. 63, 5–19. doi:10.1093/cz/zow104. 

Church, D. M., Goodstadt, L., Hillier, L. W., Zody, M. C., Goldstein, S., She, X., et al. (2009). Lineage-
Specific Biology Revealed by a Finished Genome Assembly of the Mouse. PLoS Biol. 7. 
doi:10.1371/journal.pbio.1000112. 

Cognigni, P., Felsenberg, J., and Waddell, S. (2018). Do the right thing: neural network 
mechanisms of memory formation, expression and update in Drosophila. Curr. Opin. 
Neurobiol. 49, 51–58. doi:10.1016/j.conb.2017.12.002. 

Connolly, K., and Cook, R. (1973). Rejection Responses by Female Drosophila melanogaster: 
Their Ontogeny, Causality and Effects upon the Behaviour of the Courting Male. 
Behaviour 44, 142–165. doi:10.1163/156853973X00364. 



110 
 

Coolen, I., Dangles, O., and Casas, J. (2005). Social Learning in Noncolonial Insects? Curr. Biol. 15, 
1931–1935. doi:10.1016/j.cub.2005.09.015. 

Cui, R., Delclos, P. J., Schumer, M., and Rosenthal, G. G. (2017). Early social learning triggers 
neurogenomic expression changes in a swordtail fish. Proc. R. Soc. B Biol. Sci. 284, 
20170701. doi:10.1098/rspb.2017.0701. 

Dagaeff, A.-C. (2015). Selection, sex and sun: social transmission of a sexual preference in 
Drosophila melanogaster. Available at: http://thesesups.ups-tlse.fr/2881/ [Accessed 
December 9, 2019]. 

Dagaeff, A.-C., Pocheville, A., Nöbel, S., Loyau, A., Isabel, G., and Danchin, E. (2016). Drosophila 
mate copying correlates with atmospheric pressure in a speed learning situation. Anim. 
Behav. 121, 163–174. doi:10.1016/j.anbehav.2016.08.022. 

Danchin, E. G. J., and Cézilly, F. (2008). “Sexual selection: another evolutionary process.,” in 
Behavioural Ecology, ed. F. C. E. Danchin L. A. Giraldeau (Oxford University Press), 363–
426. Available at: https://hal.archives-ouvertes.fr/hal-00357434 [Accessed July 26, 
2017]. 

Danchin, É., Giraldeau, L.-A., Valone, T. J., and Wagner, R. H. (2004). Public Information: From 
Nosy Neighbors to Cultural Evolution. Science 305, 487–491. 
doi:10.1126/science.1098254. 

Danchin, E., Nöbel, S., Pocheville, A., Dagaeff, A.-C., Demay, L., Alphand, M., et al. (2018). Cultural 
flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions. 
Science 362, 1025–1030. doi:10.1126/science.aat1590. 

Daniels, D. (1971). Acquisition, storage, and recall of memory for brightness discrimination by 
rats following intracerebral infusion of acetoxycycloheximide. J. Comp. Physiol. Psychol. 
76, 110–118. 

Darwin, C. (1859). On the origin of species. Routledge. 

Darwin, C. (1871). The descent of man, and selection in relation to sex. London: J. Murray. 

Davis, R. L., and Han, K.-A. (1996). Neuroanatomy: Mushrooming mushroom bodies. Curr. Biol. 6, 
146–148. doi:10.1016/S0960-9822(02)00447-5. 

Dawson, E. H., Avarguès-Weber, A., Chittka, L., and Leadbeater, E. (2013). Learning by 
observation emerges from simple associations in an insect model. Curr. Biol. CB 23, 727–
730. doi:10.1016/j.cub.2013.03.035. 

Dawydow, A., Gueta, R., Ljaschenko, D., Ullrich, S., Hermann, M., Ehmann, N., et al. (2014). 
Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications. Proc. 
Natl. Acad. Sci. 111, 13972–13977. doi:10.1073/pnas.1408269111. 

Debiec, J., and Olsson, A. (2017). Social Fear Learning: from Animal Models to Human Function. 
Trends Cogn. Sci. 21, 546–555. doi:10.1016/j.tics.2017.04.010. 

Debiec, J., and Sullivan, R. M. (2014). Intergenerational transmission of emotional trauma 
through amygdala-dependent mother-to-infant transfer of specific fear. Proc. Natl. Acad. 
Sci. U. S. A. 111, 12222–12227. doi:10.1073/pnas.1316740111. 



111 
 

Demerec, M., and Kaufman, B. P. (1941). Time Required for Drosophila Males to Exhaust the 
Supply of Mature Sperm. Am. Nat. 75, 366–379. doi:10.1086/280971. 

Dezecache, G., Jacob, P., and Grèzes, J. (2015). Emotional contagion: its scope and limits. Trends 
Cogn. Sci. 19, 297–299. doi:10.1016/j.tics.2015.03.011. 

Dubnau, J., Grady, L., Kitamoto, T., and Tully, T. (2001). Disruption of neurotransmission in 
Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 
476–480. doi:10.1038/35078077. 

Dugatkin, L. A., and Godin, J.-G. J. (1993). Female mate copying in the guppy (Poecilia reticulata): 
age-dependent effects. Behav. Ecol. 4, 289–292. doi:10.1093/beheco/4.4.289. 

Enomoto, M., Siow, C., and Igaki, T. (2018). Drosophila As a Cancer Model. Adv. Exp. Med. Biol. 
1076, 173–194. doi:10.1007/978-981-13-0529-0_10. 

Even, N., Devaud, J.-M., and Barron, A. B. (2012). General Stress Responses in the Honey Bee. 
Insects 3, 1271–1298. doi:10.3390/insects3041271. 

Fischer, J. A., Giniger, E., Maniatis, T., and Ptashne, M. (1988). GAL4 activates transcription in 
Drosophila. Nature 332, 853–856. doi:10.1038/332853a0. 

Fisher, R. A., Sir, (1930). The genetical theory of natural selection. Oxford: Clarendon Press 
Available at: https://www.biodiversitylibrary.org/item/69976. 

Fox, J., and Weisberg, S. (2011). Multivariate linear models in R. An R Companion to Applied 
Regression. 

Gai, Y., Liu, Z., Cervantes-Sandoval, I., and Davis, R. L. (2016). Drosophila SLC22A Transporter Is 
a Memory Suppressor Gene that Influences Cholinergic Neurotransmission to the 
Mushroom Bodies. Neuron 90, 581–595. doi:10.1016/j.neuron.2016.03.017. 

Galef, B. G. (1985). Direct and Indirect Behavioral Pathways to the Social Transmission of Food 
Avoidance. Ann. N. Y. Acad. Sci. 443, 203–215. doi:10.1111/j.1749-6632.1985.tb27074.x. 

Galef, B. G., and Clark, M. M. (1971). Social factors in the poison avoidance and feeding behavior 
of wild and domesticated rat pups. J. Comp. Physiol. Psychol. 75, 341–357. 
doi:10.1037/h0030937. 

Galef, B. G., and Laland, K. N. (2005). Social Learning in Animals: Empirical Studies and 
Theoretical Models. BioScience 55, 489–499. doi:10.1641/0006-
3568(2005)055[0489:SLIAES]2.0.CO;2. 

Galef, B. G., Lim, T. C. W., and Gilbert, G. S. (2008). Evidence of mate choice copying in Norway 
rats, Rattus norvegicus. Anim. Behav. 75, 1117–1123. 
doi:10.1016/j.anbehav.2007.08.026. 

Galili, D. S., Dylla, K. V., Lüdke, A., Friedrich, A. B., Yamagata, N., Wong, J. Y. H., et al. (2014). 
Converging Circuits Mediate Temperature and Shock Aversive Olfactory Conditioning in 
Drosophila. Curr. Biol. 24, 1712–1722. doi:10.1016/j.cub.2014.06.062. 

Germain, M., Blanchet, S., Loyau, A., and Danchin, É. (2016). Mate-choice copying in Drosophila 
melanogaster: Impact of demonstration conditions and male–male competition. Behav. 
Processes 125, 76–84. doi:10.1016/j.beproc.2016.02.002. 



112 
 

Gewirtz, J. C., and Radke, A. K. (2010). “Effects of Stress on Learning and Memory,” in 
Encyclopedia of Behavioral Neuroscience, eds. G. F. Koob, M. L. Moal, and R. F. Thompson 
(Oxford: Academic Press), 461–468. doi:10.1016/B978-0-08-045396-5.00234-7. 

Gibson, R. M., and Höglund, J. (1992). Copying and sexual selection. Trends Ecol. Evol. 7, 229–232. 
doi:10.1016/0169-5347(92)90050-L. 

Hadjikhani, N., Kveraga, K., Naik, P., and Ahlfors, S. P. (2009). Early (N170) activation of face-
specific cortex by face-like objects. Neuroreport 20, 403–407. 
doi:10.1097/WNR.0b013e328325a8e1. 

Han, K.-A., Millar, N. S., Grotewiel, M. S., and Davis, R. L. (1996). DAMB, a Novel Dopamine 
Receptor Expressed Specifically in Drosophila Mushroom Bodies. Neuron 16, 1127–1135. 
doi:10.1016/s0896-6273(00)80139-7. 

Heisenberg, M., Borst, A., Wagner, S., and Byers, D. (1985). Drosophila Mushroom Body Mutants 
are Deficient in Olfactory Learning. J. Neurogenet., 1–30. 
doi:10.3109/01677068509100140. 

Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., et al. (2000). Rest 
in Drosophila Is a Sleep-like State. Neuron 25, 129–138. doi:10.1016/S0896-
6273(00)80877-6. 

Heyes, C. (1994). Social Learning in Animals: Categories and Mechanisms. Biol. Rev. 69, 207–231. 
doi:10.1111/j.1469-185X.1994.tb01506.x. 

Heyes, C. (2012). What’s social about social learning? J. Comp. Psychol. Wash. DC 1983 126, 193–
202. doi:10.1037/a0025180. 

Heyes, C. (2018). Cognitive Gadgets, The Cultural Evolution of Thinking. Cambridge: Harvard 
University Press doi:10.4159/9780674985155. 

Heyes, C., and Pearce, J. M. (2015). Not-so-social learning strategies. Proc. R. Soc. B Biol. Sci. 282, 
20141709. doi:10.1098/rspb.2014.1709. 

Himmelreich, S., Masuho, I., Berry, J. A., MacMullen, C., Skamangas, N. K., Martemyanov, K. A., et 
al. (2017). Dopamine Receptor DAMB Signals via Gq to Mediate Forgetting in Drosophila. 
Cell Rep. 21, 2074–2081. doi:10.1016/j.celrep.2017.10.108. 

Hodge, J. J. L. (2009). Ion Channels to Inactivate Neurons in Drosophila. Front. Mol. Neurosci. 2. 
doi:10.3389/neuro.02.013.2009. 

Ichinose, T., Tanimoto, H., and Yamagata, N. (2017). Behavioral Modulation by Spontaneous 
Activity of Dopamine Neurons. Front. Syst. Neurosci. 11. doi:10.3389/fnsys.2017.00088. 

Imhof, M., Harr, B., Brem, G., and Schlötterer, C. (1998). Multiple mating in wild Drosophila 
melanogaster revisited by microsatellite analysis. Mol. Ecol. 7, 915–917. 
doi:10.1046/j.1365-294x.1998.00382.x. 

Isabel, G., Pascual, A., and Preat, T. (2004). Exclusive Consolidated Memory Phases in Drosophila. 
Science 304, 1024–1027. doi:10.1126/science.1094932. 

Jacob, P. F., and Waddell, S. (2019). Spaced training forms complementary long-term memories 
of opposite valence in Drosophila. bioRxiv, 785618. doi:10.1101/785618. 



113 
 

Jaffé, K. (1980). Effect of cycloheximide on protein synthesis and memory in praying mantis. 
Physiol. Behav. 25, 367–371. doi:10.1016/0031-9384(80)90275-9. 

Jeibmann, A., and Paulus, W. (2009). Drosophila melanogaster as a model organism of brain 
diseases. Int. J. Mol. Sci. 10, 407–440. doi:10.3390/ijms10020407. 

Kacsoh, B. Z., Bozler, J., and Bosco, G. (2018). Drosophila species learn dialects through 
communal living. PLoS Genet. 14. doi:10.1371/journal.pgen.1007430. 

Kacsoh, B. Z., Bozler, J., Hodge, S., and Bosco, G. (2019). Neural circuitry of dialects through social 
learning in Drosophila. bioRxiv, 511857. doi:10.1101/511857. 

Kahsai, L., and Zars, T. (2011). “Learning and Memory in Drosophila: Behavior, Genetics, and 
Neural Systems,” in International Review of Neurobiology Recent advances in the use of 
Drosophila in neurobiology and neurodegeneration., ed. N. Atkinson (Academic Press), 
139–167. doi:10.1016/B978-0-12-387003-2.00006-9. 

Kakidani, H., and Ptashne, M. (1988). GAL4 activates gene expression in mammalian cells. Cell 
52, 161–167. doi:10.1016/0092-8674(88)90504-1. 

Kavaliers, M., Colwell, D. D., and Choleris, E. (2005). Kinship, familiarity and social status 
modulate social learning about “micropredators” (biting flies) in deer mice. Behav. Ecol. 
Sociobiol. 58, 60–71. doi:10.1007/s00265-004-0896-0. 

Kavaliers, M., Matta, R., and Choleris, E. (2017). Mate-choice copying, social information 
processing, and the roles of oxytocin. Neurosci. Biobehav. Rev. 72, 232–242. 
doi:10.1016/j.neubiorev.2016.12.003. 

Keesey, I. W., Koerte, S., Retzke, T., Haverkamp, A., Hansson, B. S., and Knaden, M. (2016). Adult 
Frass Provides a Pheromone Signature for Drosophila Feeding and Aggregation. J. Chem. 
Ecol. 42, 739–747. doi:10.1007/s10886-016-0737-4. 

Kendal, R., Hopper, L. M., Whiten, A., Brosnan, S. F., Lambeth, S. P., Schapiro, S. J., et al. (2015). 
Chimpanzees copy dominant and knowledgeable individuals: implications for cultural 
diversity. Evol. Hum. Behav. Off. J. Hum. Behav. Evol. Soc. 36, 65–72. 
doi:10.1016/j.evolhumbehav.2014.09.002. 

Kim, E. J., Kim, E. S., Covey, E., and Kim, J. J. (2010). Social Transmission of Fear in Rats: The Role 
of 22-kHz Ultrasonic Distress Vocalization. PLoS ONE 5, e15077. 
doi:10.1371/journal.pone.0015077. 

Kim, Y.-C., Lee, H.-G., and Han, K.-A. (2007). D1 Dopamine Receptor dDA1 Is Required in the 
Mushroom Body Neurons for Aversive and Appetitive Learning in Drosophila. J. Neurosci. 
27, 7640–7647. doi:10.1523/JNEUROSCI.1167-07.2007. 

Kimura, K., Sato, C., Koganezawa, M., and Yamamoto, D. (2015). Drosophila Ovipositor Extension 
in Mating Behavior and Egg Deposition Involves Distinct Sets of Brain Interneurons. 
PLOS ONE 10, e0126445. doi:10.1371/journal.pone.0126445. 

Kirkhart, C., and Scott, K. (2015). Gustatory Learning and Processing in the Drosophila 
Mushroom Bodies. J. Neurosci. 35, 5950–5958. doi:10.1523/JNEUROSCI.3930-14.2015. 

Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression 
of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92. 
doi:10.1002/neu.1018. 



114 
 

Knapska, E., Nikolaev, E., Boguszewski, P., Walasek, G., Blaszczyk, J., Kaczmarek, L., et al. (2006). 
Between-subject transfer of emotional information evokes specific pattern of amygdala 
activation. Proc. Natl. Acad. Sci. 103, 3858–3862. doi:10.1073/pnas.0511302103. 

Kondo, S., Takahashi, T., Yamagata, N., Imanishi, Y., Katow, H., Hiramatsu, S., et al. (2020). 
Neurochemical Organization of the Drosophila Brain Visualized by Endogenously Tagged 
Neurotransmitter Receptors. Cell Rep. 30, 284-297.e5. doi:10.1016/j.celrep.2019.12.018. 

Kottler, B., and van Swinderen, B. (2014). Taking a new look at how flies learn. eLife 3, e03978. 
doi:10.7554/eLife.03978. 

Krashes, M. J., and Waddell, S. (2008). Rapid Consolidation to a radish and Protein Synthesis-
Dependent Long-Term Memory after Single-Session Appetitive Olfactory Conditioning in 
Drosophila. J. Neurosci. 28, 3103–3113. doi:10.1523/JNEUROSCI.5333-07.2008. 

Kvarnemo, C., and Ahnesjo, I. (1996). The dynamics of operational sex ratios and competition for 
mates. Trends Ecol. Evol. 11, 404–408. doi:10.1016/0169-5347(96)10056-2. 

Kyriacou, C. P., and Hall, J. C. (1982). The function of courtship song rhythms in Drosophila. Anim. 
Behav. 30, 794–801. doi:10.1016/S0003-3472(82)80152-8. 

Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. 
Sci. 78, 3721–3725. doi:10.1073/pnas.78.6.3721. 

Leadbeater, E. (2009). Social Learning: What Do Drosophila Have to Offer? Curr. Biol. 19, R378–
R380. doi:10.1016/j.cub.2009.03.016. 

Leadbeater, E., and Chittka, L. (2007). Social Learning in Insects — From Miniature Brains to 
Consensus Building. Curr. Biol. 17, R703–R713. doi:10.1016/j.cub.2007.06.012. 

Leadbeater, E., and Dawson, E. H. (2017). A social insect perspective on the evolution of social 
learning mechanisms. Proc. Natl. Acad. Sci. 114, 7838–7845. 
doi:10.1073/pnas.1620744114. 

Lee, P.-T., Lin, H.-W., Chang, Y.-H., Fu, T.-F., Dubnau, J., Hirsh, J., et al. (2011). Serotonin–
mushroom body circuit modulating the formation of anesthesia-resistant memory in 
Drosophila. Proc. Natl. Acad. Sci. 108, 13794–13799. doi:10.1073/pnas.1019483108. 

Lin, H.-H., Chu, L.-A., Fu, T.-F., Dickson, B. J., and Chiang, A.-S. (2013). Parallel Neural Pathways 
Mediate CO2 Avoidance Responses in Drosophila. Science 340, 1338–1341. 
doi:10.1126/science.1236693. 

Lin, H.-H., Lai, J. S.-Y., Chin, A.-L., Chen, Y.-C., and Chiang, A.-S. (2007). A map of olfactory 
representation in the Drosophila mushroom body. Cell 128, 1205–1217. 
doi:10.1016/j.cell.2007.03.006. 

Lind, J., Ghirlanda, S., and Enquist, M. (2019). Social learning through associative processes: a 
computational theory. R. Soc. Open Sci. 6. doi:10.1098/rsos.181777. 

Lindström, B., Haaker, J., and Olsson, A. (2018). A common neural network differentially 
mediates direct and social fear learning. NeuroImage 167, 121–129. 
doi:10.1016/j.neuroimage.2017.11.039. 



115 
 

Liu, C., Plaçais, P.-Y., Yamagata, N., Pfeiffer, B. D., Aso, Y., Friedrich, A. B., et al. (2012). A subset of 
dopamine neurons signals reward for odour memory in Drosophila. Nature 488, 512–
516. doi:10.1038/nature11304. 

Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., et al. (2006). Distinct memory traces for two 
visual features in the Drosophila brain. Nature 439, 551–556. doi:10.1038/nature04381. 

Liu, L., Wolf, R., Ernst, R., and Heisenberg, M. (1999). Context generalization in Drosophila visual 
learning requires the mushroom bodies. Nature 400, 753–756. doi:10.1038/23456. 

Liu, X., and Davis, R. L. (2009). The GABAergic anterior paired lateral neuron suppresses and is 
suppressed by olfactory learning. Nat. Neurosci. 12, 53–59. doi:10.1038/nn.2235. 

Lone, S. R., and Sharma, V. K. (2011). Social synchronization of circadian locomotor activity 
rhythm in the fruit fly Drosophila melanogaster. J. Exp. Biol. 214, 3742–3750. 
doi:10.1242/jeb.057554. 

Lorentz, K. (1941). Vergleichende Bewegungsstudien an Anatiden. J. Ornithol. 89, 194–293. 

Loyau, A., Blanchet, S., Van Laere, P., Clobert, J., and Danchin, E. (2012). When not to copy: female 
fruit flies use sophisticated public information to avoid mated males. Sci. Rep. 2. 
doi:10.1038/srep00768. 

Manning, A. (1967). The control of sexual receptivity in female Drosophila. Anim. Behav. 15, 239–
250. doi:10.1016/0003-3472(67)90006-1. 

Markow, T. A. (2011). “Cost” of virginity in wild Drosophila melanogaster females. Ecol. Evol. 1, 
596–600. doi:10.1002/ece3.54. 

Markow, T. A. (2015). The secret lives of Drosophila flies. eLife 4, e06793. 
doi:10.7554/eLife.06793. 

McGaugh, J. L., and Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting 
memories in the brain. Curr. Opin. Neurobiol. 12, 205–210. doi:10.1016/S0959-
4388(02)00306-9. 

McGuire, S. E., Le, P. T., and Davis, R. L. (2001). The Role of Drosophila Mushroom Body Signaling 
in Olfactory Memory. Science 293, 1330–1333. doi:10.1126/science.1062622. 

McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., and Davis, R. L. (2003). Spatiotemporal 
Rescue of Memory Dysfunction in Drosophila. Science 302, 1765–1768. 
doi:10.1126/science.1089035. 

Mery, F., Varela, S. A. M., Danchin, É., Blanchet, S., Parejo, D., Coolen, I., et al. (2009). Public Versus 
Personal Information for Mate Copying in an Invertebrate. Curr. Biol. 19, 730–734. 
doi:10.1016/j.cub.2009.02.064. 

Micheau, J., Destrade, C., and Soumireu-Mourat, B. (1984). Time-dependent effects of 
posttraining intrahippocampal injections of corticosterone on retention of appetitive 
learning tasks in mice. Eur. J. Pharmacol. 106, 39–46. doi:10.1016/0014-2999(84)90675-
7. 

Mirza, S. N., and Provenza, F. D. (1990). Preference of the mother affects selection and avoidance 
of foods by lambs differing in age. Appl. Anim. Behav. Sci. 28, 255–263. 
doi:10.1016/0168-1591(90)90104-L. 



116 
 

Mohammad, F., Aryal, S., Ho, J., Stewart, J. C., Norman, N. A., Tan, T. L., et al. (2016). Ancient 
Anxiety Pathways Influence Drosophila Defense Behaviors. Curr. Biol. 26, 981–986. 
doi:10.1016/j.cub.2016.02.031. 

Monier, M., Nöbel, S., Danchin, E., and Isabel, G. (2019). Dopamine and Serotonin Are Both 
Required for Mate-Copying in Drosophila melanogaster. Front. Behav. Neurosci. 12. 
doi:10.3389/fnbeh.2018.00334. 

Monier, M., Nöbel, S., Isabel, G., and Danchin, E. (2018). Effects of a sex ratio gradient on female 
mate-copying and choosiness in Drosophila melanogaster. Curr. Zool. 64, 251–258. 
doi:10.1093/cz/zoy014. 

Musso, P.-Y., Tchenio, P., and Preat, T. (2015). Delayed Dopamine Signaling of Energy Level 
Builds Appetitive Long-Term Memory in Drosophila. Cell Rep. 10, 1023–1031. 
doi:10.1016/j.celrep.2015.01.036. 

Neckameyer, W. S. (1998). Dopamine Modulates Female Sexual Receptivity in Drosophila 
Melanogaster. J. Neurogenet. 12, 101–114. doi:10.3109/01677069809167259. 

Neuser, K., Triphan, T., Mronz, M., Poeck, B., and Strauss, R. (2008). Analysis of a spatial 
orientation memory in Drosophila. Nature 453, 1244–1247. doi:10.1038/nature07003. 

Nöbel, S., Allain, M., Isabel, G., and Danchin, E. (2018a). Mate copying in Drosophila melanogaster 
males. Anim. Behav. 141, 9–15. doi:10.1016/j.anbehav.2018.04.019. 

Nöbel, S., Danchin, E., and Isabel, G. (2018b). Mate-copying for a costly variant in Drosophila 
melanogaster females. Behav. Ecol. 29, 1150–1156. doi:10.1093/beheco/ary095. 

Olsson, A., Knapska, E., and Lindström, B. (2020). The neural and computational systems of 
social learning. Nat. Rev. Neurosci. 21, 197–212. doi:10.1038/s41583-020-0276-4. 

Olsson, A., Nearing, K. I., and Phelps, E. A. (2007). Learning fears by observing others: the neural 
systems of social fear transmission. Soc. Cogn. Affect. Neurosci. 2, 3–11. 
doi:10.1093/scan/nsm005. 

Pagani, M. R., Oishi, K., Gelb, B. D., and Zhong, Y. (2009). The phosphatase SHP2 regulates the 
spacing effect for long-term memory induction. Cell 139, 186–198. 
doi:10.1016/j.cell.2009.08.033. 

Pan, Y., Zhou, Y., Guo, C., Gong, H., Gong, Z., and Liu, L. (2009). Differential roles of the fan-shaped 
body and the ellipsoid body in Drosophila visual pattern memory. Learn. Mem. 16, 289–
295. doi:10.1101/lm.1331809. 

Pavlov, I. (1927). Conditioned reflexes. Oxford University Press. 

Pfeiffer, K., and Homberg, U. (2014). Organization and Functional Roles of the Central Complex in 
the Insect Brain. Annu. Rev. Entomol. 59, 165–184. doi:10.1146/annurev-ento-011613-
162031. 

Pitman, J. L., Huetteroth, W., Burke, C. J., Krashes, M. J., Lai, S.-L., Lee, T., et al. (2011). A Pair of 
Inhibitory Neurons Are Required to Sustain Labile Memory in the Drosophila Mushroom 
Body. Curr. Biol. 21, 855–861. doi:10.1016/j.cub.2011.03.069. 



117 
 

Plaçais, P.-Y., de Tredern, É., Scheunemann, L., Trannoy, S., Goguel, V., Han, K.-A., et al. (2017). 
Upregulated energy metabolism in the Drosophila mushroom body is the trigger for 
long-term memory. Nat. Commun. 8. doi:10.1038/ncomms15510. 

Place, S. S., Todd, P. M., Penke, L., and Asendorpf, J. B. (2010). Humans show mate copying after 
observing real mate choices. Evol. Hum. Behav. 31, 320–325. 
doi:10.1016/j.evolhumbehav.2010.02.001. 

Qin, H., Cressy, M., Li, W., Coravos, J. S., Izzi, S. A., and Dubnau, J. (2012). Gamma Neurons Mediate 
Dopaminergic Input during Aversive Olfactory Memory Formation in Drosophila. Curr. 
Biol. 22, 608–614. doi:10.1016/j.cub.2012.02.014. 

Quinn, W. G., Harris, W. A., and Benzer, S. (1974). Conditioned Behavior in Drosophila 
melanogaster. Proc. Natl. Acad. Sci. 71, 708–712. doi:10.1073/pnas.71.3.708. 

R Core Team (2018). R: A language and environment for statistical computing. Available at: 
https://www.R-project.org/. 

Reader, S. M. (2016). Animal social learning: associations and adaptations. F1000Research 5. 
doi:10.12688/f1000research.7922.1. 

Riemensperger, T., Isabel, G., Coulom, H., Neuser, K., Seugnet, L., Kume, K., et al. (2011). 
Behavioral consequences of dopamine deficiency in the Drosophila central nervous 
system. Proc. Natl. Acad. Sci. 108, 834–839. doi:10.1073/pnas.1010930108. 

Riemensperger, T., Völler, T., Stock, P., Buchner, E., and Fiala, A. (2005). Punishment Prediction 
by Dopaminergic Neurons in Drosophila. Curr. Biol. 15, 1953–1960. 
doi:10.1016/j.cub.2005.09.042. 

Rodrigues, M. A., Martins, N. E., Balancé, L. F., Broom, L. N., Dias, A. J. S., Fernandes, A. S. D., et al. 
(2015). Drosophila melanogaster larvae make nutritional choices that minimize 
developmental time. J. Insect Physiol. 81, 69–80. doi:10.1016/j.jinsphys.2015.07.002. 

Rosati, A. G. (2017). Foraging Cognition: Reviving the Ecological Intelligence Hypothesis. Trends 
Cogn. Sci. 21, 691–702. doi:10.1016/j.tics.2017.05.011. 

Rose, S. P. R., and Jork, R. (1987). Long-term memory formation in chicks is blocked by 2-
deoxygalactose, a fucose analog. Behav. Neural Biol. 48, 246–258. doi:10.1016/S0163-
1047(87)90808-9. 

Salzberg, S. L. (2018). Open questions: How many genes do we have? BMC Biol. 16. 
doi:10.1186/s12915-018-0564-x. 

Sarin, S., and Dukas, R. (2009). Social learning about egg-laying substrates in fruitflies. Proc. R. 
Soc. B Biol. Sci. 276, 4323–4328. doi:10.1098/rspb.2009.1294. 

Scheunemann, L., Jost, E., Richlitzki, A., Day, J. P., Sebastian, S., Thum, A. S., et al. (2012). 
Consolidated and labile odor memory are separately encoded within the Drosophila 
brain. J. Neurosci. 32, 17163–17171. doi:10.1523/JNEUROSCI.3286-12.2012. 

Schilcher, F. von (1976). The function of pulse song and sine song in the courtship of Drosophila 
melanogaster. Anim. Behav. 24, 622–625. doi:10.1016/S0003-3472(76)80076-0. 



118 
 

Schipul, S. E., Williams, D. L., Keller, T. A., Minshew, N. J., and Just, M. A. (2012). Distinctive Neural 
Processes during Learning in Autism. Cereb. Cortex 22, 937–950. 
doi:10.1093/cercor/bhr162. 

Schultz, W., Dayan, P., and Montague, P. R. (1997). A Neural Substrate of Prediction and Reward. 
Science 275, 1593–1599. doi:10.1126/science.275.5306.1593. 

Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., and Heisenberg, M. 
(2003). Dopamine and Octopamine Differentiate between Aversive and Appetitive 
Olfactory Memories in Drosophila. J. Neurosci. 23, 10495–10502. 
doi:10.1523/JNEUROSCI.23-33-10495.2003. 

Seelig, J. D., and Jayaraman, V. (2013). Feature detection and orientation tuning in the Drosophila 
central complex. Nature 503, 262–266. doi:10.1038/nature12601. 

Shyu, W.-H., Chiu, T.-H., Chiang, M.-H., Cheng, Y.-C., Tsai, Y.-L., Fu, T.-F., et al. (2017). Neural 
circuits for long-term water-reward memory processing in thirsty Drosophila. Nat. 
Commun. 8, 1–13. doi:10.1038/ncomms15230. 

Srivastava, D. P., Yu, E. J., Kennedy, K., Chatwin, H., Reale, V., Hamon, M., et al. (2005). Rapid, 
Nongenomic Responses to Ecdysteroids and Catecholamines Mediated by a Novel 
Drosophila G-Protein-Coupled Receptor. J. Neurosci. 25, 6145–6155. 
doi:10.1523/JNEUROSCI.1005-05.2005. 

Stern, C., and Schaeffer, E. W. (1943). On Primary Attributes of Alleles in Drosophila 
Melanogaster. Proc. Natl. Acad. Sci. U. S. A. 29, 351–361. 

Talyn, B. C., and Dowse, H. B. (2004). The role of courtship song in sexual selection and species 
recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180. 
doi:10.1016/j.anbehav.2003.11.023. 

Tempel, B. L., Bonini, N., Dawson, D. R., and Quinn, W. G. (1983). Reward learning in normal and 
mutant Drosophila. Proc. Natl. Acad. Sci. 80, 1482–1486. doi:10.1073/pnas.80.5.1482. 

Templeton, J. J., Kamil, A. C., and Balda, R. P. (1999). Sociality and social learning in two species of 
corvids: The pinyon jay (Gymnorhinus cyanocephalus) and the Clark’s nutcracker 
(Nucifraga columbiana). J. Comp. Psychol. 113, 450–455. doi:10.1037/0735-
7036.113.4.450. 

Tomchik, S. M. (2013). Dopaminergic Neurons Encode a Distributed, Asymmetric Representation 
of Temperature in Drosophila. J. Neurosci. 33, 2166–2176. 
doi:10.1523/JNEUROSCI.3933-12.2013. 

Tompkins, L., and Hall, J. C. (1981). The different effects on courtship of volatile compounds from 
mated and virgin Drosophila females. J. Insect Physiol. 27, 17–21. doi:10.1016/0022-
1910(81)90026-3. 

Trannoy, S., Redt-Clouet, C., Dura, J.-M., and Preat, T. (2011). Parallel processing of appetitive 
short- and long-term memories in Drosophila. Curr. Biol. CB 21, 1647–1653. 
doi:10.1016/j.cub.2011.08.032. 

Tully, T., Preat, T., Boynton, S. C., and Del Vecchio, M. (1994). Genetic dissection of consolidated 
memory in Drosophila. Cell 79, 35–47. doi:10.1016/0092-8674(94)90398-0. 



119 
 

Twining, R. C., Vantrease, J. E., Love, S., Padival, M., and Rosenkranz, J. A. (2017). An intra-
amygdala circuit specifically regulates social fear learning. Nat. Neurosci. 20, 459–469. 
doi:10.1038/nn.4481. 

Varela, S. A. M., Matos, M., and Schlupp, I. (2018). The role of mate-choice copying in speciation 
and hybridization. Biol. Rev. 93, 1304–1322. doi:10.1111/brv.12397. 

Varela, S. A. M., Teles, M. C., and Oliveira, R. F. (2020). The correlated evolution of social 
competence and social cognition. Funct. Ecol. 34, 332–343. doi:10.1111/1365-
2435.13416. 

VDRC for instance VDRC Stock Center: Main Page. Available at: 
https://stockcenter.vdrc.at/control/main [Accessed May 12, 2020]. 

Villella, A., and Hall, J. C. (2008). Neurogenetics of courtship and mating in Drosophila. Adv. 
Genet. 62, 67–184. doi:10.1016/S0065-2660(08)00603-2. 

Vogt, K., Aso, Y., Hige, T., Knapek, S., Ichinose, T., Friedrich, A. B., et al. (2016). Direct neural 
pathways convey distinct visual information to Drosophila mushroom bodies. eLife 5. 
doi:10.7554/eLife.14009. 

Vogt, K., Schnaitmann, C., Dylla, K. V., Knapek, S., Aso, Y., Rubin, G. M., et al. (2014). Shared 
mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife 3. 
doi:10.7554/eLife.02395. 

Waddell, S. (2013). Reinforcement signalling in Drosophila; dopamine does it all after all. Curr. 
Opin. Neurobiol. 23, 324–329. doi:10.1016/j.conb.2013.01.005. 

Waynforth, D. (2007). Mate Choice Copying in Humans. Hum. Nat. 18, 264–271. 
doi:10.1007/s12110-007-9004-2. 

Webb, B., and Wystrach, A. (2016). Neural mechanisms of insect navigation. Curr. Opin. Insect Sci. 
15, 27–39. doi:10.1016/j.cois.2016.02.011. 

Webster, N., Jin, J. R., Green, S., Hollis, M., and Chambon, P. (1988). The yeast UASG is a 
transcriptional enhancer in human hela cells in the presence of the GAL4 trans-activator. 
Cell 52, 169–178. doi:10.1016/0092-8674(88)90505-3. 

White, D. J., and Galef Jr, B. G. (1999). Mate choice copying and conspecific cueing in Japanese 
quail, Coturnix coturnix japonica. Anim. Behav. 57, 465–473. 
doi:10.1006/anbe.1998.1015. 

Wigby, S., and Chapman, T. (2005). Sex Peptide Causes Mating Costs in Female Drosophila 
melanogaster. Curr. Biol. 15, 316–321. doi:10.1016/j.cub.2005.01.051. 

Witte, K., Kniel, N., and Kureck, I. M. (2015). Mate-choice copying: Status quo and where to go. 
Curr. Zool. 61, 1073–1081. doi:10.1093/czoolo/61.6.1073. 

Witte, K., and Ueding, K. (2003). Sailfin molly females (Poecilia latipinna) copy the rejection of a 
male. Behav. Ecol. 14, 389–395. doi:10.1093/beheco/14.3.389. 

Wittstock, S., Kaatz, H. H., and Menzel, R. (1993). Inhibition of brain protein synthesis by 
cycloheximide does not affect formation of long-term memory in honeybees after 
olfactory conditioning. J. Neurosci. 13, 1379–1386. doi:10.1523/JNEUROSCI.13-04-
01379.1993. 



120 
 

Wobber, V., and Hare, B. (2009). Testing the social dog hypothesis: Are dogs also more skilled 
than chimpanzees in non-communicative social tasks? Behav. Processes 81, 423–428. 
doi:10.1016/j.beproc.2009.04.003. 

Wolf, R., and Heisenberg, M. (1991). Basic organization of operant behavior as revealed in 
Drosophila flight orientation. J. Comp. Physiol. A 169, 699–705. 
doi:10.1007/BF00194898. 

Wong, B. B. M., and Candolin, U. (2015). Behavioral responses to changing environments. Behav. 
Ecol. 26, 665–673. doi:10.1093/beheco/aru183. 

Wu, C.-L., Shih, M.-F. M., Lai, J. S.-Y., Yang, H.-T., Turner, G. C., Chen, L., et al. (2011). Heterotypic 
gap junctions between two neurons in the drosophila brain are critical for memory. Curr. 
Biol. CB 21, 848–854. doi:10.1016/j.cub.2011.02.041. 

Wu, C.-L., Shih, M.-F. M., Lee, P.-T., and Chiang, A.-S. (2013). An octopamine-mushroom body 
circuit modulates the formation of anesthesia-resistant memory in Drosophila. Curr. Biol. 
CB 23, 2346–2354. doi:10.1016/j.cub.2013.09.056. 

Wu, C.-L., Xia, S., Fu, T.-F., Wang, H., Chen, Y.-H., Leong, D., et al. (2007). Specific requirement of 
NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat. 
Neurosci. 10, 1578–1586. doi:10.1038/nn2005. 

Wüstenberg, D., Gerber, B., and Menzel, R. (1998). Long- but not medium-term retention of 
olfactory memories in honeybees is impaired by actinomycin D and anisomycin. Eur. J. 
Neurosci. 10, 2742–2745. doi:10.1046/j.1460-9568.1998.00319.x. 

Yamaguchi, M. ed. (2018). Drosophila Models for Human Diseases. Springer Singapore 
doi:10.1007/978-981-13-0529-0. 

Yamamoto, S., and Seto, E. S. (2014). Dopamine Dynamics and Signaling in Drosophila: An 
Overview of Genes, Drugs and Behavioral Paradigms. Exp. Anim. 63, 107–119. 
doi:10.1538/expanim.63.107. 

Zahavi, A. (1975). Mate selection—A selection for a handicap. J. Theor. Biol. 53, 205–214. 
doi:10.1016/0022-5193(75)90111-3. 

Zahavi, A. (1977). The cost of honesty: Further Remarks on the Handicap Principle. J. Theor. Biol. 
67, 603–605. doi:10.1016/0022-5193(77)90061-3. 

Zars, T. (2000). Behavioral functions of the insect mushroom bodies. Curr. Opin. Neurobiol. 10, 
790–795. doi:10.1016/S0959-4388(00)00147-1. 

Zars, T., Fischer, M., Schulz, R., and Heisenberg, M. (2000). Localization of a Short-Term Memory 
in Drosophila. Science 288, 672–675. doi:10.1126/science.288.5466.672. 

Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie, D., et al. (2018). A 
Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. 
Cell 174, 730-743.e22. doi:10.1016/j.cell.2018.06.019. 

Zhong, W., Li, Y., Feng, Q., and Luo, M. (2017). Learning and Stress Shape the Reward Response 
Patterns of Serotonin Neurons. J. Neurosci. 37, 8863–8875. 
doi:10.1523/JNEUROSCI.1181-17.2017. 

 



121 
 

 


	Avant-propos
	Résumé
	Abstract
	Table of contents
	Introduction
	Sexual selection
	Mate choice, Mate-copying
	Evolutionary importance: selection, arbitrary traditions
	Social learning
	Drosophila as a model organism
	Drosophila in associative learning
	The fly brain
	Generalities
	The Mushroom bodies
	The central complex

	Questions and hypotheses tackled in my PhD

	Chapter I. Evolutionary importance of mate-copying
	A. Stability in environment: study in a context of competition for access to males
	1- Article published in Current Zoology
	Abstract
	Materials and Methods
	Fly maintenance
	Experimental protocol
	Mate-copying index
	Statistical analysis

	Results
	Mate-copying along a gradient of sex ratio
	Rate of double courtship along a sex ratio gradient
	Courtship duration along the sex ratio gradient

	Discussion
	No detectable effect of sex ratio on mate-copying
	Female choosiness increased with sex ratio
	Mechanisms of sex ratio detection
	Effect of first -courting male on MCI
	Effect of atmospheric pressure on Drosophola sexual behavior

	References

	2- Effect of sex-ratio and phenotype commonness on mate-copying scores and choosiness
	Introduction
	Methods
	Behavioral experiment
	Statistical analyses

	Results and discussion
	Mate-copying index
	Double courtship rate and courtship duration

	Conclusions


	B. Stability across time: long-term memory and emergence of stable traditions
	Introduction
	Methods
	Behavioral experiment and treatments
	Analysis

	Results
	Discussion

	Conclusion

	Chapter II: Neuronal mechanisms of mate-copying
	A. Roles of dopamine and serotonin in observational social learning: a pharmacological study
	Context and overview
	Supplementary information


	B. Role of DAMB
	Introduction
	Methods
	Flies
	Behavioral test
	Analyses

	Results
	Discussion

	Conclusion

	Chapter III. Relevant cues in mate-copying
	A. Disentangling positive and negative information in mate-copying
	Female fruit flies copy the acceptance, not the rejection, of a mate
	Abstract
	Keywords
	Introduction
	Methods
	Fly maintenance
	Animal welfare
	Behavioural assay
	Mate-copying index
	Statistical analyses

	Results
	Discussion
	Acknowledgements and author contributions
	Funding statement

	Investigation of the dopamine neurons required in speed learning
	Context
	Methods
	Fly strains
	Behavioral test
	Statistics

	Results
	Discussion


	B. Development of a protocol of demonstrations using virtual stimuli
	Introduction
	Methods
	Fly maintenance
	Pictures
	Behavioral test
	Analyses

	Results
	Discussion
	Acknowledgements

	C. How far can we simplify the stimulus without losing its ability to elicit mate-copying?
	Introduction
	Methods
	Results
	Discussion

	Conclusion

	General discussion
	Overview
	Mate-copying in the population
	From the lab to the wild
	Influence of phenotype commonness

	Mate-copying across time
	Social cognition
	Neuronal mechanisms of a social learning
	Mate-copying as a form of associativelearning
	Future directions

	References



