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Abstract

The research investigates the random nonlinear vibration of a spur gear pair subjected

to both deterministic and random loads by path integration method. Different models

and approaches to apply the path integration method are presented in Chapters 2–

4. Backlash nonlinearity and time-varying mesh stiffness in gear systems are both

considered in Chapters 2 and 3. In Chapter 2, the time-varying mesh stiffness is

modeled as a constant plus a cosinusoidal component, and the discontinuous backlash

nonlinearity is approximated with a cubic polynomial through curve fitting. Then

Gaussian closure procedure is employed to obtain the mean and variance of transition

probability density function (PDF). In Chapter 3, the time-varying mesh stiffness is

approximated with a square wave function. The variance of the responses is calculated

and expressed as closed forms for two different cases in gear systems. In Chapter

4, the gear rattling model which only considers backlash is presented. A degenerate

Gaussian distribution is employed as transition PDF. The path integration results are

compared with deterministic results (Chapters 2 and 3) and Monte Carlo simulation

results (Chapters 3 and 4). Good agreement is found between them, which could verify

the accuracy of path integration method in the study of random gear dynamics.
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Chapter 1

Introduction

1.1 Scope of the Research

The aim of the research is to apply the path integration method to the stochastic

nonlinear model of a spur gear pair considering both backlash and time-varying mesh

stiffness and investigate its random response, which includes:

• investigating the accuracy of the path integration method applied in different

stochastic nonlinear gear models.

• investigating the probability distribution of displacement and velocity responses

under both deterministic and random loads.

• investigating the complicated nonlinear phenomena in random case, such as

multiple coexisting stable motions and chaotic motions.

Different stochastic nonlinear gear models are investigated in Chapters 2–4 depending

on the approximation of backlash nonlinearity and time-varying mesh stiffness:

1



2

1. Smoothing backlash nonlinearity and harmonic approximation of mesh

stiffness (Chapter 2). The backlash nonlinearity is simplified as a softening

cubic nonlinearity by curve fitting and the time-varying mesh stiffness is rep-

resented as a constant plus a cosinusoidal component. In this case, only the

single-sided impact is considered.

2. Piecewise linear backlash nonlinearity and square wave approximation

of mesh stiffness (Chapter 3). The backlash nonlinearity is represented as a

piecewise linear function and the time-varying mesh stiffness is approximated

as a square wave function.

3. Rattling model (Chapter 4). This is a rigid vibro-impact model considering

only backlash. The abrupt change of velocity occurs when impact happens.

1.2 Thesis Outline

Chapter 1 includes an introduction of the research scope and brief review of previous

research on gear dynamics from the mathematical models, analytical and numerical

algorithms aspects.

Chapter 2 investigates the random response of the gear model with smoothing back-

lash nonlinearity and harmonic approximation of mesh stiffness under single-sided

impact. The Gaussian closure procedure is applied to obtain the mean and variance

of transition PDF.

Chapter 3 investigates the random response of the gear model with piecewise linear

backlash nonlinearity and square wave approximation of mesh stiffness. A new pro-

cedure to calculate the variance is presented. Multiple coexisting stable motions are
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captured with certain parameter values.

Chapter 4 is the investigation of random response of a gear rattling model. A de-

generate form of transition PDF is employed and aperiodic motion is observed in

deterministic case.

Chapter 5 is the summary of various approaches of path integration methods applied

to different gear models in Chapters 2–4. Meanwhile, topics for further research are

also discussed.

1.3 Literature Review

The application of gears could be found from drilling in offshore platforms to space-

crafts in aerospace, from automobiles in daily life to machine tools in industry. The

wide application of gears triggered intensive study on design, manufacture, dynamic

performance, fatigue and reliability evaluation, etc., during the past decades. The

study of dynamic performance could identify and estimate the elements which affect

the working performance of gears and thus contribute to improving the gear design

and manufacturing techniques. The following review focuses on the study of gear

dynamics from modeling, methodology and dynamic response aspects.

1.3.1 Linear Gear Dynamics

Early studies of gear dynamics are based on a linear model. By assuming constant

mesh stiffness, modeling equivalent mass and ignoring damping, a spring-mass model

was proposed by Tuplin [1, 2] to investigate the stress and load on gear teeth. Some
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linear translational and torsional models with constant mesh stiffness were also sum-

marized by Özgüven and Houser [3] in their review paper. The nonlinear factors, such

as backlash between gear teeth and time-varying mesh stiffness due to the variation

of contact area between gear teeth during the mesh cycle, could greatly affect the

accuracy of dynamic load evaluation. Later models [4,5] considered the time-varying

mesh stiffness in the study of dynamic load. The linear model without considering

these nonlinear factors could not capture the complicated nonlinear phenomena such

as jump, multiple coexisting stable motions, subharmonic and superharmonic reso-

nances and chaotic motions demonstrated in experiments by Kahraman and Blanken-

ship [6]. Although the linear model could not reveal the nature of real gear dynamics,

it laid the foundation for the later nonlinear gear model. More detailed linear gear

models and approaches of solutions in deterministic gear dynamics could be found in

literature [3].

1.3.2 Nonlinear Gear Dynamics

The multiple nonlinearities in gear systems such as backlash, time-varying mesh stiff-

ness, static transmission error and friction between gear teeth [7] highlight the neces-

sity of nonlinear gear modeling. The review by Wang, Li and Peng [7] classified the

nonlinear model based on the nonlinear elements considered and the number of degree

of freedom. They also reviewed various approaches to study the nonlinear dynamic

response of gear systems including digital simulation [8–10], analog simulation [8],

piecewise linear techniques [11], harmonic balance method (HBM) [8, 9, 12–14], per-

turbation method [15], model analysis method and shooting method. In addition

to the methods summarized by Wang, Li and Peng [7], the direct numerical inte-

gration [12, 16], and finite element method [17] were also adopted in the study of

deterministic nonlinear gear dynamics. The numerical results are relatively easier to
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obtain than analytical results. And the numerical methods are frequently used to

validate the analytical methods (see references [8, 9, 12,16]).

As mentioned above, multiple nonlinearities exist in the real gear systems. The pur-

pose of gear modeling is to simplify real gear systems properly without losing their

dynamic nature. The nonlinear gear model in literature [6,9,10,12–14,16] considered

only the two main nonlinearities in gear dynamics [7]–backlash and time-varying mesh

stiffness. And the nonlinear gear model evolved from including only backlash [9] to

including both backlash and time-varying mesh stiffness [10, 12–14, 16]. In the fol-

lowing part, literature is reviewed from nonlinear gear modeling, methodology and

dynamic response aspects.

Kahraman and Singh [9] presented a nonlinear model of a spur gear pair consider-

ing only backlash. They summarized the excitation types from external and internal

aspects, but the harmonic excitation in their model focused on the internal aspect.

Digital simulation and HBM were adopted to get dynamic response of the gear system.

Good agreement was found in the comparison between results from digital simulation

and HBM, while some solutions were not captured by the numerical method, because

the numerical solution greatly depends on the value of initial conditions in a multi-

valued region. They also compared the analytical results with experimental results

from Munro [18]. Although these two kinds of results were not well matched, the

jump phenomenon in the frequency domain was well observed from both of them.

They further conducted parametric studies by varying the value of excitation force

to study the influence on dynamic response in the frequency domain. Nonlinear phe-

nomena such as jump, multiple coexisting stable motions, superharmonic resonances

and chaotic motions were observed from their plots.
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Blankenship and Kahraman [12] presented a mechanical model considering both time-

varying mesh stiffness and clearance which could be applied to describe the model of

a spur gear pair. They adopted the HBM including multiple harmonics in the study

of frequency response. Experiments were conducted by them to verify the HBM, and

results from the HBM matched well with those from experiments. They also observed

superharmonic resonance and multiple coexisting steady motions from experimental

results. Parametric studies were conducted by varying the value of stiffness, damping

ratio and preload to investigate their influence on response amplitude in the frequency

domain. They extended their research (see reference [13]) on the study of subharmonic

resonance from experimental and theoretical aspects. Parametric studies were also

conducted by them to investigate the effect of phase angle and alternating force on

response amplitude in the frequency domain.

Theodossiades and Natsisvas [16] presented a spur gear pair model considering both

time-varying mesh stiffness and backlash. They proposed a new perturbation method

which combined the piecewise linear techniques and classical perturbation. This

method was applied to three cases: no impact, single-sided impact and double-sided

impact. Results from direct integration was obtained to validate the accuracy and effi-

ciency of the proposed method. Its validity was demonstrated by the good agreement

between analytical results and numerical results. They also conducted parametric

studies for the stiffness, damping, constant force, alternating force and phase angle.

Chaotic motion was observed from their response history plot and Poincaré section.
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1.3.3 Stochastic Gear Dynamics

The presence of random components in real gear systems is inevitable. They may

come from internal aspects such as gear teeth profile deviation from manufacturing

error and wear, or external aspects such as the torque fluctuation. Therefore, a gear

model including random excitation is more realistic and necessary. Many nonlinear

stochastic systems [19–23] modeled the random excitation as white noise with the ad-

vantage of easy mathematical treatment. The random response of such systems could

be described as a Markov process and the PDF could be obtained by solving the

Fokker-Planck equation [24]. Researchers [20, 21, 25] attempted to obtain numerical

solutions of the Fokker-Planck equation by numerical methods such as path integra-

tion as the analytical solutions rarely exist in most cases [26].

Yu, Cai and Lin [25] proposed a new path integration method and applied it in sev-

eral nonlinear stochastic systems excited by Gaussian white noise. By following the

Gauss-Legendre scheme, the stationary probability densities obtained by path inte-

gration were compared with exact analytical solutions. Good agreement was observed

between them.

Yu and Lin [20] investigated a non-homogeneous Markov process by path integration.

The transition PDF was assumed as a Gaussian distribution. Moment equations were

applied to obtain its mean and variance. They studied the jump phenomenon in the

frequency domain and the existence of two stable motions in deterministic and ran-

dom cases.

The development of a stochastic gear model provides a new perspective to investi-

gate gear dynamics. The developed stochastic gear model could vary depending on
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the nonlinear factors considered. Pfeiffer and Kunert [27] presented a stochastic gear

model considering backlash in the study of the gear rattling problem. Wang and

Zhang [28] presented a gear model randomly excited by transmission error. The time-

varying mesh stiffness was also considered in their model. Naess, Kolnes and Mo [23]

developed a stochastic gear model by adding white noise excitation. The backlash was

considered in their model. However, the time-varying mesh stiffness which could lead

to parametric vibration was not considered. Subsequently, Yang and Yang [29] pre-

sented a stochastic model considering both backlash and time-varying mesh stiffness

in the study of random response of a spur gear pair. Yang [30] presented a two-stage

stochastic gear model excited by deterministic force and white noise. In the following

part, literature is reviewed from stochastic gear modeling, methodology and dynamic

response aspects.

Pfeiffer and Kunert [27] developed mathematical models from deterministic to stochas-

tic approach on a single stage gear rattling problem. The system governed by the

Fokker-Planck equation was solved by finite difference method. They studied the

Poincaré map along with the velocity probability distribution. The velocity proba-

bility distribution obtained from the Fokker-Planck equation was also compared with

that from the point mapping equation. They further extended their study to the

stochastic rattling model in gear-boxes in literature [31] with similar approach.

Naess, Kolnes and Mo [23] investigated a stochastic spur gear pair by path integration.

In their approach, a degenerate Gaussian distribution was employed as a transition

PDF whose variance is linearly changed with time step size. The mean of the tran-

sition PDF was obtained by a Runge-Kutta scheme and Newton iteration. They

studied the influence of different forms of initial conditions and different parameter
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values on the probability distribution. As the pioneering study on stochastic gear

dynamics by path integration method, their gear model considered only backlash and

the time-varying mesh stiffness was simplified as a constant. Afterwards, Mo and

Naess [32] investigated the chaotic motion of a similar system by path integration.

They presented the Poincaré map in deterministic case and joint probability distri-

bution in random case.

Yang and Yang [29] investigated the random response of a spur gear pair by path

integration. In their stochastic model, the time-varying mesh stiffness and backlash

were both considered. With the application of numerical direct integration and statis-

tic linearization technique, the mean and variance of transition PDF were obtained.

They also studied the single-sided and double-sided impact in gear systems for both

deterministic and random cases by varying the value of excitation force.

1.3.4 Summary of previous work

The mathematical model of gear systems has evolved from linear model to nonlinear

model and stochastic nonlinear model. The linear model is no longer suitable to study

the complex gear dynamics. The study within nonlinear scope has been intensive and

complicated dynamic phenomena have been revealed. A more realistic stochastic

model has been proposed by some researchers [23, 27–30, 32]. The current research

of stochastic gear dynamics focuses on the application of numerical methods, and

the complicated nonlinear phenomena such as multiple coexisting stable motions in

random case are still under exploration.
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1.4 Co-authorship Statement

The main purpose of this section is to illustrate the co-author contributions to the

conference and journal papers presented in Chapter 2 and Chapter 3, respectively. In

accordance with the thesis content and format, some content in the original papers is

slightly changed and literature review is not presented in the thesis. The unmentioned

work like programing and simulation was conducted by the thesis author.

1.4.1 Co-author Contributions-Chapter 2

Chapter 2 presents "Random Vibration Response of a Spur Gear Pair with Periodic

Stiffness and Backlash", a conference paper accepted by American Society of Me-

chanical Engineers (ASME, IMECE2013). The modeling, smoothing of the backlash

nonlinearity and approach to study random response of a spur gear pair were dis-

cussed by all authors. Among them, Dr. Jianming Yang contributed significantly

to the smoothing of backlash nonlinearity. The simulation results were discussed be-

tween Dr. Jianming Yang and the thesis author. The draft was mainly written by

the thesis author and revised by Dr. Jianming Yang.

1.4.2 Co-author Contributions-Chapter 3

Chapter 3 presents "Random Dynamics of a Nonlinear Spur Gear Pair in Probabilistic

Domain", a journal paper accepted by Journal of Sound and Vibration. The proper

modeling and adopted path integration method were the effort from all authors. Dr.

Yang contributed significantly to the proposition of new procedure to calculate the

variance of transition PDF. The simulation results were analyzed by Dr. Yang and

the thesis author. The manuscript was written by Dr. Yang and the thesis author

and the revision was conducted by Dr. Yang.



Chapter 2

Random Vibration Response of a

Spur Gear Pair with Periodic

Stiffness and Backlash

2.1 Introduction

This chapter investigates the random response of a spur gear pair under single-sided

impact case. The spur gear pair under a combination of harmonic force and white

noise excitation is modeled with the consideration of backlash and time-varying mesh

stiffness. Path integration, as an effective numerical method to study the Markov

Process, is applied to obtain the probability distribution. The backlash nonlinearity

is treated with a cubic polynomial by curve fitting, which could contribute to the ap-

plication of Gaussian closure procedure to obtain the mean and variance of transition

PDF.

11
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2.2 Mechanical Model

Figure 2.1 shows a pair of gears in mesh subjected to torque T1(t) and T2(t). The

mesh stiffness changes periodically with time. This gear pair is governed by [29]:

T

r2 2

2

θ

rr1

1 T1

2b
ck

θ

Figure 2.1: Mechanical model of the gear pair

J1θ̈1 = T1(t)− fr1 (2.1)

J2θ̈2 = −T2(t) + fr2 (2.2)

where J represents the moment of inertia, θ is the angular displacement, and r des-

ignates the radius of the base circle. The subscripts 1 and 2 represent gears 1 and 2,

respectively. The meshing force f could be computed from

f = k(t)g(x) + c(r1θ̇1 − r2θ̇2) (2.3)
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where k(t) and c are the time-varying mesh stiffness and damping coefficient, x is

the relative displacement between gear teeth, and g(x) is the backlash nonlinearity

function expressed in the form:

g(x) =


x− b if x > b

0 if − b ≤ x ≤ b

x+ b if x < −b

(2.4)

where 2b is the total backlash. After some mathematic manipulations and merging

the two equations into one, the general form of motion could be represented in the

following form:

mẍ+ cẋ+ k (t) g (x) = F (2.5)

where m and F are equivalent mass and force respectively expressed as:

x = r1θ1 − r2θ2 (2.6)

m = J1J2

J1r2
2 + J2r2

1
(2.7)

F = J2T1(t)r1 + J1T2(t)r2

J1r2
2 + J2r2

1
(2.8)
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Introducing the following parameters [16]:

x̃ = x

b
(2.9)

ω0 =
√
k0

m
(2.10)

t̃ = ω0t (2.11)

ζ = c

2
√
mk0

(2.12)

κ
(
t̃
)

= k (t)
k0

(2.13)

f0 = F

bω2
0m

(2.14)

where k0 is the average mesh stiffness in a mesh cycle. For simplicity, x̃ and t̃ are

replaced with x and t respectively in the rest part of the chapter. Considering the

excitation from static transmission error (internal excitation), a periodic excitation

f1 cos (ωt) is added. In both external and internal excitations, there may be some

random components which are represented by Gaussian white noise W (t) with unit

intensity in this chapter. Equation (2.5) can be rewritten as the following nondimen-

sionalized form:

ẍ+ 2ζẋ+ κ (t) g(x) = f0 + f1 cos (ωt) + rW (t) (2.15)

where ω is the ratio of mesh frequency to ω0, κ (t) is approximated as a periodic

function with the following form:

κ (t) = 1 + ε cos (ωt) (2.16)
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where ε is a small parameter. g(x) is in the following form:

g(x) =


x− 1 if x > 1

0 if − 1 ≤ x ≤ 1

x+ 1 if x < −1

(2.17)

2.3 Curve Fitting

The backlash nonlinearity in this chapter is approximated by a cubic function in the

form below:

g(x) = a0 + a1x+ a3x
3 (2.18)

This equation could be obtained through curve fitting by predefining the range of

response. Given the fact that most gears are designed for power transmission, double-

sided impact rarely happens. In addition, the equilibrium point moves to the right

because of the static average load f0. This is to say that only a small portion of the

motion will be in the backlash region. The range of response can be estimated by

firstly solving the Eq. (2.15) without Gaussian white noise. This practice is justified

by the fact that random noise is generally small compared with the deterministic

loads. Considering both the range of response and the accuracy of curve fitting,

the equilibrium point is located at the region where gear teeth are in contact. The

function g(x) is changed to

g(x) =


0 if − 1.7 ≤ x ≤ −0.9

x+ 0.9 if x > −0.9
(2.19)
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The curve fitting is implemented in Matlab; 261 evenly distributed points within the

range [-1.7 0.9] are used. The results of the curve fitting are listed below:

a0 = 0.9076, a1 = 1.096, a3 = −0.2035

The comparison between the cubic approximation and the original backlash nonlin-

earity function is shown in Fig. 2.2.

Figure 2.2: Curve fitting of backlash nonlinearity function

2.4 Path Integration

Path integration is a stepwise algorithm to calculate the probability density evolu-

tion. The probability density at n step p(Xn, tn) is the integration of the product of

probability density at previous step p(Xn−1, tn−1) and transition probability density

q(Xn, tn|Xn−1, tn−1).

p(Xn, tn) =
∫
R
q(Xn, tn|Xn−1, tn−1)p(Xn−1, tn−1)dXn−1 (2.20)
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With a given initial PDF and transition PDF, the probability density at n step can

be obtained by this stepwise algorithm from the initial step as follows:

p(Xn, tn) =
∫
R
q(Xn, tn|Xn−1, tn−1)dXn−1∫

R
q(Xn−1, tn−1|Xn−2, tn−2)dXn−2

...

∫
R
q(X2, t2|X1, t1)dX1

∫
R
q(X1, t1|X0, t0)p(X0, t0)dX0 (2.21)

In order to capture the probability distribution evolution of random response of the

gear pair, the initial PDF and transition PDF need to be known. The former can

be assumed as either deterministic or random form with certain distribution. In this

chapter, it takes a Gaussian form (see Eq. (2.22)). The latter is approximated as a

two-dimensional Gaussian distribution in a time step [20] in the following form:

p(x0, ẋ0) = 1
2πσx0σẋ0

exp

−
(
x0 − µx0

)2

2σ2
x0

−

(
ẋ0 − µẋ0

)2

2σ2
ẋ0

 (2.22)

q(x, ẋ) = 1
2πσxσẋ

√
1− ρ2

exp

(
− 1

2 (1− ρ2)

[
(x− µx)2

σ2
x

+ (ẋ− µẋ)2

σ2
ẋ

− 2ρ (x− µx) (ẋ− µẋ)
σxσẋ

])
(2.23)

where µ is the mean, σ2 is the variance and ρ is the correlation coefficient. Those

parameters could be obtained by moment equations which was also adopted by Sun

and Hsu [22]. Submitting Eqs. (2.16) and (2.18) into Eq. (2.15), yield

ẍ+ 2ζẋ+ (1 + ε cos (ωt))
(
a1x+ a3x

3
)

= f ′0 + f ′1 cos (ωt) + rW (t) (2.24)



18

with

f ′0 = f0 − a0 (2.25)

f ′1 = f1 − εa0 (2.26)

Based on Gaussian closure, the moment equations used to calculate the mean and

variance of transition PDF are expressed as [20]:

ṁ10 = m01 (2.27)

ṁ01 = −2ζm01 − (1 + ε cos (ωt)) (2.28)[
a1m10 + a3

(
−2m3

10 + 3m10m20
)]

+ f ′0 + f ′1 cos (ωt)

ṁ11 = m02 − 2ζm11 − (1 + ε cos (ωt)) (2.29)[
a1m20 + a3

(
−2m4

10 + 3m2
20

)]
+m10 (f ′0 + f ′1 cos (ωt))

ṁ20 = 2m11 (2.30)

ṁ02 = −4ζm02 − 2 (1 + ε cos (ωt)) (2.31)[
a1m11 + a3

(
−2m3

10m01 + 3m20m11
)]

+ 2m01 (f ′0 + f ′1 cos (ωt)) + r2

where mij = E[xiẋj], E[] is the assemble average.

2.5 Simulation Results

The simulation is conducted with the following parameter values:

ζ = 0.05, ε = 0.065, ω = 1.1, f0 = 0.15, f1 = 0.1, r = 0.06
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For the initial PDF, the following parameter values are used.

µx0
= −0.9, µẋ0

= 0, σ2
x0 = 0.02, σ2

ẋ0 = 0.02

125 130 135 140 145
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

t

x

Figure 2.3: Displacement in deterministic case
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Figure 2.4: Velocity in deterministic case
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Figure 2.5: Evolution of probability distribution.

Before conducting the path integration, solution to the deterministic equation (Eq. (2.24)

without the Gaussian white noise) is obtained through numerical integration. The

results are shown in Fig. 2.3 and 2.4. The range of displacement is [-0.96, -0.6],

which corresponds to the single-sided impact. The velocity ranges from -0.2 to 0.2.

The moment equations are solved by 4th and 5th order adaptive step size Runge-

Kutta method. The time step size is taken as T/4. And the state space is taken as

[−1.8, 0.29] × [−1.2, 1.4] with 32 × 35 evenly distributed subintervals. With four
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Figure 2.6: Probability distribution.

Gauss quadrature points in each subinterval, there are 64× 70 points in total.

Figure 2.5 is the probability distribution at 0, 5T, 15T and 25T. As can be seen,

the probability distribution at 15T and 25T are almost the same, which indicates the

response is stable after 15T.

Figure 2.6 shows the probability distribution evolution within 25T from four sub-plots.
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Table 1 records the deterministic results of displacement and velocity at corresponding

time spots. For comparison purposes, those deterministic results are marked with "+"

in the plane of (x,v) as shown in Fig. 2.7. Figure 2.7 is the contour plot of probability

distribution corresponding to Fig. 2.6. As can be seen, the "+" marks are very close to

the peak value of probability distribution, which means the probability distribution

of random response is distributed around the deterministic results and the deviation

between random response and deterministic results comes from the perturbation of

Gaussian white noise. This good agreement between random response and determin-

istic results indicates the capability of path integration method in analysis of random

response of the gear pair.

Figure 2.8 shows the contour of the probability distribution at 25T, but with different

intensities of Gaussian white noise. As can be seen, the probability distribution tends

to spread out wider with stronger Gaussian white noise. This is straightforward and

easy to understand.

Table 2.1: Deterministic results of x and v
Time x v

251
4T -0.7458 0.1921

252
4T -0.6098 -0.0436

253
4T -0.8230 -0.1896

26T -0.9565 0.0411
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Figure 2.7: Contour of probability distribution.



24

x

v

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) r=0.04

x

v

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) r=0.05

Figure 2.8: Contour of probability distribution at 25T with different r.

2.6 Conclusions

This chapter investigates the random vibration response of a spur gear pair with

path integration method. Both time-varying mesh stiffness and backlash nonlinearity

are accounted for in this model. The mesh stiffness is modeled as a constant plus a

cosinusoidal component, and the discontinuous backlash nonlinearity is approximated

with a cubic polynomial through curve fitting. In the curve fitting process, only

the single-sided impact case is considered based on the fact that most gear pairs are

for power transmission; therefore, double-sided impact rarely happens. The random

results are compared with deterministic results. Good agreement is found between

them, which shows the promising potential for path integration applied in random

gear dynamics.



Chapter 3

Random Dynamics of a Nonlinear

Spur Gear Pair in Probabilistic

Domain

3.1 Introduction

This chapter investigates the random response of a spur gear pair including time-

varying mesh stiffness and backlash by path integration method. In Chapter 2, the

backlash nonlinearity is treated as a cubic polynomial, while it is directly represented

as its original piecewise-linear form in this chapter. Gaussian closure procedure is thus

inapplicable to obtain the mean and variance of the transition PDF due to the discon-

tinuity of backlash nonlinearity. And the time-varying mesh stiffness is approximated

as a square wave function in this chapter instead of a cosine function in Chapter 2. A

new method to construct the transition PDF is presented and path integration results

are validated by Monte Carlo simulation. The responses in deterministic and random

cases are presented and compared in the time domain.

25
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3.2 Mechanical Model

The system investigated in this chapter is shown in Fig. 3.1. It consists of two gears

in mesh. For simplicity, only the rotation of the gears is considered. Without loss of

generality, the vibration of the gears in rotation can be expressed as:

T

r2 2

2

θ

rr1

1 T1

2b

ck

θ

Figure 3.1: Model of the gear system

J1θ̈1 = T1 − fr1 (3.1)

J2θ̈2 = −T2 + fr2 (3.2)

where ri, θi, Ti, Ji are the radius of the base circle, the rotational angular displacement,

the input or output torque and the moment of inertia of gear i, respectively. Subscript

i represents the number of the gear; in this case, i = 1, 2. The meshing force f between
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the two gears is calculated by

f = kg(x) + c(r1θ̇1 − r2θ̇2) (3.3)

where k and c are the mesh stiffness and the damping coefficient, respectively. g(x)

takes one of the three forms below depending on the value of displacement x.

g(x) =



x− b if x > b,

0 if − b < x < b,

x+ b if x 6 −b.

(3.4)

2b represents the total backlash. x is the relative linear displacement between the

two meshing gears along the action line. The change of teeth number in contact

during operation leads to the variation of gear mesh stiffness. Wang and Howard [33],

Kiekbusch et al. [34] investigated the variation of mesh stiffness of spur gears using

finite element methods. According to their research, the gear mesh stiffness could be

approximated as a square wave as shown in Fig. 3.2.

TmTh t

k

k

1

2

k

0

Figure 3.2: Gear mesh stiffness
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k =


k1 if (n− 1)Tm 6 t < (n− 1)Tm + Th,

k2 if (n− 1)Tm + Th 6 t < nTm. n = 1, 2, 3...
(3.5)

where k1 and k2 are two different stiffness values. Tm is the mesh period of gear teeth.

Th represents the portion of time within a period corresponding to k1. Multiplying

Eq. (3.1) by r1/J1 and Eq. (3.2) by r2/J2, then subtracting the second from the first

one gives the following equation after some manipulations:

ẍ+ c̄ẋ+ k̄g(x) = F (3.6)

The variables and parameters in the above equation are as follows:

x = r1θ1 − r2θ2 (3.7)

c̄ = c(r2
1/J1 + r2

2/J2) (3.8)

k̄ = k(r2
1/J1 + r2

2/J2) (3.9)

F = T1r1/J1 + T2r2/J2 (3.10)

Through the above transformation, the equation is simplified into a single degree-of-

freedom system with time-varying stiffness and backlash nonlinearity.
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Defining the following parameters [16]:

km =
(
Th
Tm

k1 + Tm − Th
Tm

k2

)
(r2

1/J1 + r2
2/J2) (3.11)

ωm =
√
km (3.12)

t̄ = ωmt (3.13)

κ = k̄

km
(3.14)

u = x

b
(3.15)

α = c̄√
km

(3.16)

where t is time, km is the equivalent average mesh stiffness within one mesh cycle.

Eq. (3.6) can be changed to dimensionless form as below by applying the transfor-

mation from Eq. (3.11) to (3.16). And the excitation F is split into a constant

deterministic part f0, a deterministic periodically changing part f1cos(Ωmt̄) and a

random part ξ(t̄).

ü+ αu̇+ κg(u) = f0 + f1 cos(Ωmt̄) + ξ(t̄) (3.17)

In the above equation, κ is a periodic function of dimensionless time t̄. It takes the

form as shown in Fig. 3.2. Ωm is the ratio of mesh frequency to ωm. u̇ and ü are the

first- and second-order derivatives with regard to dimensionless time t̄, respectively.

g(u) takes one of the following three values:

g(u) =



u− 1 if u > 1,

0 if − 1 < u < 1,

u+ 1 if u 6 −1.

(3.18)
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And ξ(t̄) is Gaussian white noise with

E(ξ(t̄)) = 0 (3.19)

E(ξ(t̄)ξ(t̄+ τ)) = rδ(τ) (3.20)

Eq. (3.17) is a parametric nonlinear equation. The t̄ is replaced by t for brevity in

the remainder of the chapter. Numerous researchers [7, 16] have investigated such a

system under only deterministic excitation. It can be rewritten as the following form

with the transformation u1 = u and u2 = du1/dt:

du1

dt = u2 (3.21)
du2

dt = f0 + f1 cos(Ωmt)− αu2 − κg(u1) + ξ(t) (3.22)

The above equations can be further arranged into the so-called Ito’s form and ex-

pressed in a compact matrix format as below.

dU(t) = A[U, t]dt+ B[U, t]dW(t) (3.23)

where A[U, t] is the drift vector and B[U, t] is the diffusion matrix, dW(t) is a

standard Wiener vector process.

3.3 Path Integration

Path integration is a numerical procedure which describes the evolution of the PDF

of a Markov process in time from an initial condition. It provides an alternative to

directly numerical solution of the Fokker-Planck equation. The central idea of path

integration is the assumption that a Markov process locally looks like a Gaussian
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diffusion process. Therefore, the transition PDF can be expressed in closed form. In

the following sections, the basic steps for carrying out path integration scheme are

presented.

3.3.1 Short Time Transition PDF

Due to the periodic change of the mesh stiffness, the response of the gear pair may

be non-stationary even under a stationary random excitation. For such a system, an

exact, analytic solution of Eq. (3.17) is rarely known. A practical and more feasible

alternative is to seek an approximately numerical solution. Path integration is such

a method which assumes the transition PDF is Gaussian within a short time interval

[22]. Several expressions exist in the literature [20,22,23] for the short time Gaussian

transition PDF. In the present chapter, the one used by Yu et al. [20] as below is

adopted:

qi = p (Ui, ti|Ui−1, ti−1)

= 1
2πσ1σ2

√
1− ρ2 e

[
− z

2(1−ρ2)

]
(3.24)

z = (u1 − µ1)2

σ2
1

− 2ρ (u1 − µ1) (u2 − µ2)
σ1σ2

+ (u2 − µ2)2

σ2
2

(3.25)

In the above equations, µj and σj (j = 1, 2) are the mean and the standard deviation

of uj, respectively. ρ is the correlation between u1 and u2. µ1 and µ2 can be obtained

through 4th and 5th order Runge-Kutta numerical integration to deterministic parts

of Eqs. (3.21, 3.22) in each time step. Depending on the value of u, σ2
1, σ

2
2 and covari-

ance σ12 can be expressed in closed form as described below.

If u > 1 or u 6 −1, the system takes a closed form to normal mass-damping-spring

system subjected to stationary delta-correlated excitation and the following equations
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apply [35]:

σ2
1 = G0

4ξω3
0

(
1− e−2ξω0∆t

[
ω2

0
ω2
d

+ ξω0

ωd
sin 2ωd∆t−

ξ2ω2
0

ω2
d

cos 2ωd∆t
])

(3.26)

σ2
2 = G0

4ξω0

(
1− e−2ξω0∆t

[
ω2

0
ω2
d

− ξω0

ωd
sin 2ωd∆t−

ξ2ω2
0

ω2
d

cos 2ωd∆t
])

(3.27)

σ12 = G0

2ω2
d

e−2ξω0∆t sin2 ωd∆t (3.28)

with

G0 = 2πr (3.29)

ζ = α

2
√
κ

(3.30)

ω0 =
√
κ (3.31)

ωd = ω0

√
1− ζ2 (3.32)

If −1 < u < 1, it is a zero stiffness system and the following equations apply:

σ2
1 = G0

α2

[
∆t− 1

α

(3
2 − 2e−α∆t + 1

2e
−2α∆t

)]
(3.33)

σ2
2 = G0

2α
(
1− e−2α∆t

)
(3.34)

σ12 = G0

α2

[1
2 − e

−α∆t + 1
2e
−2α∆t

]
(3.35)

Once σ1, σ2 and σ12 are known, ρ is calculated as below for both cases.

ρ = σ12

σ1σ2
(3.36)

The derivation of Eqs. (3.33) to (3.35) is presented in the Appendices.

It is possible for some points starting in one case but ending in another case within a
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time step. In this case, ∆t1 which represents the transition time between two different

cases is estimated. Then the means µ1 and µ2 can be calculated by breaking the ∆t

into two parts and integrating the deterministic equations in corresponding case. For

the variances σ2
1, σ

2
2 and covariance σ12, an equivalent stiffness is firstly approximated

as below, then they are calculated by Eqs. (3.26) to (3.28).

ke = ∆te
∆t k (3.37)

where ∆te is the time when gear teeth are in contact and ∆t is a time step size.

Depending on the starting case, ∆te is equal to either ∆t1 or ∆t − ∆t1. The initial

PDF takes a two-dimensional Gaussian form expressed as:

p(u0, u̇0) = 1
2πσu0σu̇0

exp

−
(
u0 − µu0

)2

2σ2
u0

−

(
u̇0 − µu̇0

)2

2σ2
u̇0

 (3.38)

3.3.2 Time and space discretization

The time step size in the above process should be carefully considered. If it is too

large, computation error would increase and the real transition PDF may significantly

deviate from the normal assumption. While if it is too small, the computation time

would be too long. In this chapter, it is taken as T/12.

The ranges of u1 and u2 need to be appropriately estimated beforehand as well. In this

chapter they are estimated within [-1.8 3.2]×[-1.8 1.8] for displacement and velocity,

respectively. The number of sub-areas discretized in this area could vary depend on

the smoothness level and computation time of the results. In each of the sub-area,

four Gaussian quadrature points are used to maintain accuracy.
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3.4 Simulation

The parameters used in the simulation are listed below:

α = 0.1, f0 = 0.4, f1 = 0.1

κ =


1.2 (n− 1)T 6 t < (n− 1)T + T/2,

0.8 (n− 1)T + T/2 6 t < nT. n = 1, 2, 3...

The parameters used in the initial PDF are as below:

µu0 = 1.1, µu̇0 = 0, σ2
u0 = 0.04, σ2

u̇0 = 0.04

Before conducting simulation in random case, the deterministic part of the responses

are firstly sought by setting the random part as zero. u1 and u2 are replaced with x

and v for brevity from Fig. 3.3 to 3.11. When Ωm is set to be 0.75, two stable solutions

exist. Figures 3.3 and 3.4 show the displacement and velocity obtained for the two

stable solutions. It is well known that which solution the system takes depends on

the initial conditions. To get a clear picture on the effect of the initial conditions,

Fig. 3.5 illustrates the domains of attraction under different initial conditions.

In the simulation of the random case, Ωm is firstly set to be 0.85 and the intensity of

Gaussian white noise r is 0.0009. For comparison purposes, Monte Carlo simulation

is conducted as well with the same parameters. Figures 3.6 and 3.7 show the joint

and marginal probability distributions of u1 and u2 respectively at time 40T . Some

samples in Monte Carlo simulation results are distributed far away from the peak,

which could result in the deviation of peak height between path integration and Monte

Carlo simulation. But in general, good agreement could be found between them.
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Figure 3.3: Displacement response in deterministic case (Ωm = 0.75).

180 190 200 210 220 230 240

−1

−0.5

0

0.5

1

t

v

Figure 3.4: Velocity response in deterministic case (Ωm = 0.75).
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Figure 3.5: Domains of attraction (Ωm = 0.75).
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Figure 3.6: Joint distribution(Ωm = 0.85, r = 0.0009, t = 40T ). (a) Monte Carlo
simulation; (b) path integration.

It has been proven that multi-solutions exist for gear systems with backlash nonlinear-

ity [16]. To capture this nonlinear feature, the simulation parameters are changed to
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Figure 3.7: Marginal distribution (Ωm = 0.85, r = 0.0009, t = 40T ). (a) displacement;
(b) velocity.

be Ωm=0.75 and r=0.0004. Similar to the previous case, both path integration and

Monte Carlo simulation are conducted with the same simulation parameters. The

comparison between results from the two methods are illustrated in Figs. 3.8 and

3.9. Figure 3.8 shows the joint probability distributions of u1 and u2, while Fig. 3.9

illustrates the marginal probability distributions of u1 and u2 at time 30T .

It is observed that the results from path integration agree with that from Monte

Carlo simulation, especially in the tail regions. However, the discrepancy in this

multi-solutions case is bigger than that in the single solution case (Fig. 3.6 and 3.7),

especially in the peak areas. This discrepancy could be caused by several reasons,

such as numerical errors, discretization of time and space, sample size of Monte Carlo

simulation, and initial conditions. The initial conditions of Monte Carlo simulation

are points randomly distributed around the point (1.1, 0) with Gaussian distribu-

tion. And the initial conditions of path integration are Gaussian quadrature points

in grids distributed around the point (1.1, 0). The initial conditions of Monte Carlo
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(a) (b)

Figure 3.8: Joint distribution(Ωm = 0.75, r = 0.0004, t = 30T ). (a) Monte Carlo
simulation; (b) path integration.
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Figure 3.9: Marginal distribution (Ωm = 0.75, r = 0.0004, t = 30T ). (a) displacement;
(b) velocity.

simulation and path integration cover two different attraction areas in Fig. 3.5. In

the multi-solutions case, when a small grid covers the boundary of different attrac-

tion domains in Fig. 3.5, the four Gaussian quadrature points in the grid used in the
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(a) (b)

(c) (d)

Figure 3.10: Surface plot of probability distribution. (a) 391
4T ; (b) 392

4T ; (c) 393
4T ;

(d) 40T .
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Figure 3.11: Contour plot of probability distribution. (a) 391
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3
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path integration could not represent the attraction tendency of the whole grid. This

discrepancy will always exist as long as there are small areas covering the attraction

boundary. However, this discrepancy could be controlled by making the grid areas

covering the attraction boundary as small as possible through uneven partition of the

solution range space. This has not been done yet in this chapter, and will be examined

in future. However, this discrepancy does not hinder the significance of this method.

As indicated by Naess and Johnsen [36,37], the real power of path integration lies in

estimating the probability distribution of the tail regions which are particular interest

in reliability study dealing with low probability events. It is obvious that the results of

path integration and Monte Carlo simulation agree well in the tail regions in Fig. 3.9.

The two obvious peaks in these figures indicate that two solutions exist in this system.

Figure 3.10 depicts the change of the probability distribution within one period. The

four sub-plots show the probability distributions at four equally spaced time instants

within the 39th period. The contour plot of Fig. 3.10 is given in Fig. 3.11. The

corresponding solutions of the deterministic case at the same time instants are also

shown in the sub-plots with the mark +. As expected, the solutions of the random

case are around the deterministic ones. This is exactly the diffusion effect caused by

the random excitation. This fact verifies that the path integration method in this

chapter indeed captures the multi-solutions in the dynamic response of the nonlinear

gear system.

3.5 Conclusions

This chapter investigates the random dynamics of a spur gear pair under harmonic and

white noise excitation. Two important features in gear dynamics, time-varying mesh
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stiffness and backlash nonlinearity, are accounted for in the model. The probability

distribution evolution of the responses is examined with path integration method.

The variance which constructs transition PDF is presented as different closed forms

depending on the value of displacement. The results of path integration are compared

with that of Monte Carlo simulation and deterministic results. Good agreements are

found between them. The multi-solutions feature is also captured in the simulation

results.



Chapter 4

Random Response of a Single

Stage Gear Rattling System

4.1 Introduction

The existence of backlash in gear systems could lead to repeated impact. Two different

models, rigid and elastic impacting body models [8], were widely employed in the

study of gear dynamics [8,9,27,31]. The first model was commonly used to study the

rattling problem in automobile transmission systems [27, 31, 38]. The second model

was widely used to study more general gear systems [8–10, 16, 23]. Rattling could

be commonly found in automobile transmission systems due to the lightly loaded or

unloaded driven gear [27]. This chapter presents the application of path integration

method in gear rattling problems. Unlike the elastic impacting body model employed

in chapters 2 and 3, the rigid impacting body model is adopted in this chapter.

The mathematical gear models could be simplified based on different applications.

For instance, the influence of the backlash between gear teeth could be neglected

in a heavily loaded gear system. For a rattling system, the influence from mesh
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stiffness is neglected and a restitution coefficient is introduced when impact happens.

The stochastic rattling model was firstly studied by Pfeiffer and Kunert [27, 31]. By

solving the Fokker-Planck equation with finite differencing methods, they investigated

the velocity distribution at one backlash boundary. The response of a rattling system

under white noise excitation is a Markov process. The path integration method was

widely used to investigate the random response of the Markov process (see references

[20, 22, 25]). The system nonlinearity comes from the backlash between mesh gear

teeth and abrupt velocity change when impact occurs. The deterministic and random

responses in the time domain are investigated. Monte Carlo simulation is conducted

as well to verify the accuracy of the applied path integration method.

4.2 Mechanical Model

The single stage rattling model investigated in this chapter is based on the model

used by Pfeiffer and Kunert [27] as shown in Fig. 4.1.

Figure 4.1: Model of rattling
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When the gear teeth are under no contact, the system is governed by [27]:

I1θ̈1 + d1θ̇1 = −T1 (4.1)

where I1 represents the moment inertia, θ1, d1 and T1 are angular displacement,

damping ratio and torque, respectively. When an impact occurs, the relative velocity

between driven gear and driving gear changes both the amplitude and direction as:

v+
r = −sv−r (4.2)

where v+
r , v

−
r are relative velocities immediately after and before an impact respec-

tively, s is the restitution coefficient. As shown in Fig. 4.1, 2b, r1, re and e(t) are total

backlash, radius of the base circle and harmonic rotation displacement with amplitude

a and frequency ω, respectively. Defining the following parameters [27]:

t̄ = ωt (4.3)

x = e(t)− r1θ1

b
(4.4)

α = d1

I1ω
(4.5)

f0 = T1r1

I1bω2 (4.6)

f1 = a

b
(4.7)

Considering the excitation from the random component, Eq. (4.1) could be trans-

formed into a dimensionless form by applying the transformation from Eq. (4.3) to

(4.7) in the free flight phase:

ẍ+ αẋ = f0 + f1(sin(t̄)− α cos(t̄)) +W (t̄) (4.8)
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And W (t̄) is Gaussian white noise with

E(W (t̄)) = 0 (4.9)

E(W (t̄)W (t̄+ τ)) = rδ(τ) (4.10)

And for the impact moment (x = ±1),

ẋ+ = −sẋ− (4.11)

The t̄ is replaced by t for brevity in the remainder of the chapter. Two-dimensional

stochastic differential equations could be obtained from Eq. (4.8) by defining x1 = x

as follows:

dx1

dt = x2 (4.12)
dx2

dt = −αx2 + f0 + f1(sin(t)− α cos(t)) +W (t) (4.13)

4.3 Path Integration

The basic form of path integration could be expressed as:

p(Xn, tn) =
∫
R
q(Xn, tn|Xn−1, tn−1)p(Xn−1, tn−1)dXn−1 (4.14)

where p(Xn, tn) and q(Xn, tn|Xn−1, tn−1) are probability density at n step and transi-

tion PDF from n−1 step to n step. Based on this stepwise algorithm, p(Xn, tn) could

be calculated with given initial PDF and transition PDF. As demonstrated by Sun

and Hsu [22], the transition PDF could be assumed as Gaussian within a short time

for the nonlinear system excited by Gaussian white noise. A degenerate multidimen-
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sional Gaussian transition PDF used by Naess et al. [23] is employed in this chapter,

which could be expressed as:

q(Xn, tn|Xn−1, tn−1) = δ (x1 − µx1) 1√
2πr∆t

exp
(
−(x2 − µx2)2

2r∆t

)
(4.15)

where µ, r∆t and δ() are mean, variance and Dirac delta function, respectively. The

mean could be obtained by 4th and 5th order Runge-Kutta numerical integration to

deterministic parts of Eqs. (4.12, 4.13) in each time step. The initial PDF takes a

two-dimensional Gaussian format expressed as below:

p(x0, ẋ0) = 1
2πσx0σẋ0

exp

−
(
x0 − µx0

)2

2σ2
x0

−

(
ẋ0 − µẋ0

)2

2σ2
ẋ0

 (4.16)

4.4 Simulation

The simulation is conducted with the following parameter values:

α = 0.05, f0 = 0.1, f1 = 0.3, r = 0.005

And for initial PDF, the following parameter values are used:

µx0 = 0, µẋ0 = 0.5, σ2
x0 = 0.01, σ2

ẋ0 = 0.01

Contrary to random response, the displacement and velocity responses are investi-

gated in deterministic case as shown in Figs. 4.2 and 4.3. No periodic solution could

be found from them. This aperiodicity could be further demonstrated by the phase

plot in Fig. 4.4. As can be seen, stable motion does not exist.
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Figure 4.2: Displacement response in deterministic case.
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Figure 4.3: Velocity response in deterministic case.
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Figure 4.4: Phase plot.

Monte Carlo simulation is adopted to verify the efficiency of path integration method

by comparing the consistency of results between the two methods. Figures 4.5 and 4.6

represent the comparison results between Monte Carlo simulation and path integration

on joint and marginal probability distributions. It can be seen that the results from

path integration match well with that from Monte Carlo simulation, which could

illustrate the high accuracy of path integration method on capturing the random

response in rattling system.

The deterministic response at certain moment is a fixed value while the response of a

system excited by random component diffuses within a certain scope, which could be

represented by probability distribution. Figures 4.7 and 4.8 show the joint probabil-

ity distribution at four different time instants with different restitution coefficients.

Vibro-impact in two sides (x = ±1) and the evolution of joint probability distribution

could be observed from Figs. 4.7 and 4.8. The abrupt change of velocity on amplitude

and direction occurs at the impact moment.
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Figure 4.5: Joint distribution (s = 0.9, t = 188.496). (a) Monte Carlo simulation; (b)
path integration.
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Figure 4.6: Marginal distribution (s = 0.9, t = 188.496). (a) displacement; (b)
velocity.

Figure 4.9 compares the influence of different Gaussian white noise intensities on joint

probability distribution. The main difference between Figs. 4.9 (a) and 4.9 (b) comes

from the peak height. Stronger white noise means stronger perturbation, which could

directly lead to wider probability distribution and lower peaks.
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Figure 4.7: Surface plot of probability distribution (s = 0.9). (a) t = 246.615; (b)
t = 248.186; (c) t = 249.757; (d) t = 251.327.
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Figure 4.8: Surface plot of probability distribution (s = 0.8). (a) t = 246.615; (b)
t = 248.186; (c) t = 249.757; (d) t = 251.327.
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Figure 4.9: Joint probability distribution with different white noise intensities (s =
0.9, t = 251.327). (a) r = 0.0025; (b) r = 0.0075.

4.5 Conclusions

The random response of a single stage gear rattling model has been investigated by

path integration method for the first time. A degenerate multidimensional transition

PDF is applied. The probability distributions with different restitution coefficients at

four time instants are presented. The aperiodicity of the response has been studied

in deterministic case. The consistency between results from Monte Carlo simulation

and path integration indicates the successful application of path integration method

in the random dynamics study of gear rattling system.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The random response of a spur gear pair has been investigated by path integration

method. Different path integration approaches are adopted based on the form of

transition PDF and approach to obtain its mean and variance. Chapter 2 presents a

two-dimensional Gaussian transition PDF and its parameters are calculated by mo-

ment equations. The same form of transition PDF is adopted in Chapter 3 while a

new approach to obtain the variance is proposed. The method applied in Chapter

2 is limited to single-sided impact in gear dynamics, while the method presented in

Chapter 3 could be applied to no impact, single-sided impact and double-sided im-

pact. A degenerate multidimensional transition PDF is applied to deal with the gear

rattling problem in Chapter 4.

The random response of a spur gear pair is represented as the joint probability distri-

bution of displacement and velocity. For comparison purposes, deterministic response

is also investigated. The multiple coexisting stable motions are captured in determin-
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istic and random cases in Chapter 3. In random case, the multiple coexisting stable

motions are displayed with multiple peaks in joint probability distribution. The ap-

plication of path integration method in gear rattling system is pioneering. Based on

the good agreement between the results from deterministic case, path integration and

Monte Carlo simulation, the application of path integration method in the study of

random response of a spur gear pair is successful and effective.

5.2 Future Work

Based on the present work, future work could be extended to the following aspects:

• The method presented in Chapter 2 is used to investigate the random response

of a spur gear pair in single-sided impact case. In the case of no impact, the

system is actually more simple with the elimination of the backlash nonlinearity.

And such a system could be studied with the same method presented in Chapter

2 without the procedure of curve fitting.

• The study of nonlinear gear dynamics revealed complicated dynamic phenom-

ena, like multiple coexisting stable motions and chaotic motions [6, 9, 16]. The

multiple coexisting stable motions in random case have been captured in Chap-

ter 3. Mo and Naess [32] investigated the chaotic motion of a stochastic spur

gear pair model with backlash, but the chaos study of a more realistic stochas-

tic gear model which also considers the time-varying mesh stiffness could be

conducted with the method proposed in Chapter 3 in future work.

• The current stochastic gear model is based on a single stage. Yang [30] has

extended his stochastic gear dynamics study to two-stage gears. The stochas-

tic gear dynamics study could be extended to multi-stage gears in future. In
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that case, the system is more complicated due to the increase of the degree of

freedom. Besides, as mentioned by Kahraman and Singh [9], the harmonic ex-

citation derives from both internal and external aspects. Current gear models

in Chapters 2 and 3 consider only harmonic excitation from the internal as-

pect. The harmonic excitation in the later stochastic gear model could include

multiple harmonics from both internal and external aspects.
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Appendices

For the system

ü+ αu̇ = f(t) (5.1)

f(t) = f0 + f1 cos(Ωmt) + ξ(t) (5.2)

The impulse response function for u

hu(t) = α−1(1− e−αt) (5.3)

The autocorrelation function for f(t)

φff = E [f(t)f(s)] = E [(f0 + f1 cos(Ωmt) + ξ(t)) (f0 + f1 cos(Ωms) + ξ(s))]

= E[f 2
0 + f0f1 (cos(Ωms) + cos(Ωmt)) + f0ξ(s) + f 2

1 cos(Ωmt) cos(Ωms)

+ f1 cos(Ωmt)ξ(s) + ξ(t)(f0 + f1 cos(Ωms) + ξ(s))]

= f 2
0 + f0f1 (cos(Ωms) + cos(Ωmt)) + f 2

1 cos(Ωmt) cos(Ωms) +G0δ(t− s) (5.4)
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The autocovariance function for f(t)

Kff = φff − E [f(t)]E [f(s)]

= f 2
0 + f0f1 (cos(Ωms) + cos(Ωmt)) + f 2

1 cos(Ωmt) cos(Ωms)

+G0δ(t− s)− (f0 + f1 cos(Ωmt))(f0 + f1 cos(Ωms))

= G0δ(t− s) (5.5)

The autocovariance function for displacement u

Kuu(t1, t2) =
∫ ∞
−∞

∫ ∞
−∞

Kff (s1, s2)hu(t1 − s1)hu(t2 − s2)ds1ds2

= G0

α2

∫ ∞
−∞

∫ ∞
−∞

δ(s1 − s2)
(
1− e−α(t1−s1)

) (
1− e−α(t2−s2)

)
ds1ds2

= G0

α2

∫ min(t1,t2)

0

(
1− e−α(t1−s)

) (
1− e−α(t2−s)

)
ds

= G0

α2

∫ min(t1,t2)

0

(
1− e−α(t1−s) − e−α(t2−s) + e−α(t1+t2−2s)

)
ds

= G0

α2

(
s− 1

α
e−α(t1−s) − 1

α
e−α(t2−s) + 1

2αe
−α(t1+t2−2s)

)
|min(t1,t2)
0 (5.6)

when t1 = t2

σ2
1 = G0

α2

[
t− 1

α

(3
2 − 2e−αt + 1

2e
−2αt

)]
(5.7)

The impulse response function for u̇

hu̇(t) = e−αt (5.8)
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The autocovariance function for velocity u̇

Ku̇u̇(t1, t2) =
∫ ∞
−∞

∫ ∞
−∞

Kff (s1 − s2)hu̇(t1 − s1)hu̇(t2 − s2)ds1ds2

= G0

∫ min(t1,t2)

0
e−α(t1+t2−2s)ds

= G0

( 1
2αe

−α(t1+t2−2s)
)
|min(t1,t2)
0 (5.9)

when t1 = t2

σ2
2 = G0

2α
(
1− e−2αt

)
(5.10)

The cross-covariance function for displacement u and velocity u̇

Kuu̇(t1, t2) =
∫ ∞
−∞

∫ ∞
−∞

Kff (s1, s2)hu(t1 − s1)hu̇(t2 − s2)ds1ds2

=
∫ ∞
−∞

∫ ∞
−∞

G0δ(s1 − s2)α−1
(
1− e−α(t1−s1)

)
e−α(t2−s2)ds1ds2

= G0

α

∫ min(t1,t2)

0

(
e−α(t2−s) − e−α(t1+t2−2s)

)
ds

= G0

α

( 1
α
e−α(t2−s) − 1

2αe
−α(t1+t2−2s)

)
|min(t1,t2)
0 (5.11)

when t1 = t2

σ12 = G0

α

( 1
α

(
1− e−αt

)
− 1

2α
(
1− e−2αt

))
(5.12)

= G0

α2

[
1− e−αt − 1

2 + 1
2e
−2αt

]
= G0

α2

[1
2 − e

−αt + 1
2e
−2αt

]


