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Ionic microgels are intriguing soft and deformable colloids with an

effective pair potential that crosses over from Yukawa-like at large

distances to a much softer repulsive interaction at short distances.

Here we report the effect of adding an anisotropic dipolar contri-

bution to colloids with such ‘‘ultra-soft’’ interactions. We use an

alternating electric field to induce a tunable dipolar contribution,

and study the resulting particle self-assembly and phase transitions

in situ with confocal laser scanning microscopy. We find significant

field-induced structural transitions at low as well as at very high

effective volume fractions. Atfeff¼ 0.1 we observe a transition from

an isotropic to a string fluid. At feff ¼ 0.85, there is a reversible

transition from an amorphous to a dipolar crystalline state, followed

by the onset of a gas–(string) solid coexistence. At feff ¼ 1.6 and

2.0, i.e. far above close packing, evidence for a field-induced arrested

phase separation is found.
Soft colloids, where the interparticle distance as can be smaller than

the particle diameter s, and where the interaction potential shows a

finite repulsion at or beyond contact, have recently attracted

considerable interest from the experimental and theoretical soft

matter community.1–6 In particular, cross-linked microgels such as

poly(N-isopropylacrylamide) (PNIPAm) have been used

frequently7–13 as excellent model systems for soft colloids. As a result

of the soft potential, microgels can be packed to give an effective

volume fraction feff far above closed packing fcp, with enormous

consequences for the resulting structural and dynamic properties.10,12

Ionic microgels are particularly intriguing model systems in this

context, as recent theoretical3,4 and experimental14,15 studies have

demonstrated that the effective interaction potential crosses over

from a Yukawa type interaction at as [ s to a much softer one at

as# s. This soft-repulsive interaction is expected to dominate at high

feff, and to give rise to an extremely rich phase behavior with various

new crystalline phases appearing.3,4

There is increasing interest in colloidal systems with non-centro-

symmetric interaction potentials. Approaches include short-range
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anisotropic interactions, such as those in Janus or ‘‘patchy’’

colloids,16–18 and long-ranged anisotropic contributions to hard-

sphere-like systems through the application of an external electric

field.19–23 Previous studies on different colloids in aqueous or partially

polar media have clearly shown that the dipolar interaction is the

dominant field-induced interaction at high frequencies.19,21–24 An

external field applied to hard-sphere suspensions induces structural

transitions from an isotropic to a string fluid at low densities, and to

body-centred tetragonal crystallites at higher packing

fractions.2,19–23,25–27 For colloids with soft, electrostatic repulsive

interactions an interplay between long-range electrostatic repulsion

and the external field gives many non-close-packed crystalline struc-

tures.23,24 We thus expect that adding anisotropy to the interaction

potential between soft, deformable particles should lead to an even

more complex phase behavior.

Microgel colloids exhibit glassy behavior at zero fields and high

packing. The competition between crystallization and vitrification

has been studied in hard-sphere systems,28–30 and while local

re-arrangements during the aging process have been studied experi-

mentally,31 the detailedmicroscopicmechanism of the glass-to-crystal

transition remains unclear. A model system that could exhibit field-

driven transitions out of an amorphous state could thus be used to

understand these microscopic mechanisms.

A study of such a system could also have other implications.

Dipolar colloids have been explored extensively as possible electro-

rheological materials20,32 that display a field-induced yield stress, but

these yield stresses are too small in hard-sphere suspensions to be

practical in applications. Larger yield stresses have recently been

obtained in colloids with significant dielectric constant heterogene-

ities, with the surface playing an important role.33,34 PNIPAm-based

microgel particles have a very large surface area. As a result of their

thermoresponsive nature, their dielectric constant and concomitantly

their electric field response are expected to be temperature sensitive35

(this is demonstrated in this work in the ESI, Fig. S3†). Moreover,

ionic microgels usually contain a large amount of confined counter-

ions, which should result in strong field effects due to conductivity

contributions. Moreover, ionic microgels usually contain a large

amount of confined counterions with a possible non-uniform distri-

bution36 due to a difference in density between the dense core and the

fuzzy shell. This could lead to an interesting field effect due to an

additional conductive contribution.

Here we report on the first study of ionic microgel dispersions in

their swollen state (at T ¼ 20 �C) in the presence of an alternating
Soft Matter, 2012, 8, 10819–10822 | 10819
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Fig. 2 (A) Static light scattering intensity versus the scattering vector,

I(Q) vs. Q, for a dilute microgel suspension together with a fit using the

fuzzy sphere model. The inset shows a schematic representation of the

ionic microgel with the different radii obtained. (B) Pair correlation

function g(r) for a microgel suspension at feff ¼ 0.2, obtained in the fluid

state using CLSM (typical image shown in the inset) together with a

calculation based on a Yukawa potential.
(AC) electric field. These studies were carried out in two different

regimes: (a) feff ¼ 0.1 � fcp, where the long-range screened

Coulomb potential dominates, and (b) feff ¼ 0.85, 1.6, and 2.0 [

fcp, where the soft-repulsive interaction dominates. An overview of

our observations is shown in Fig. 1. At low packing (feff ¼ 0.1), a

transition from isotropic to string fluid was observed, qualitatively

consistent with field effects in colloids with hard-sphere or electro-

static repulsions.22,23 Above the close packing limit, at feff ¼ 0.85,

we observed a transition from a disordered (glass-like) phase to a

dipolar ordered phase. At ultra-high packing fractions (feff ¼ 1.6

and 2.0), we found field induced aggregation or phase separation at

a very low field strength, consistent with an electric-field-driven

transition from a repulsive to an attractive glass.

Zero-field behavior – Ionic PNIPAm microgels were synthesized

by free-radical precipitation polymerization.7,9 Initial characteriza-

tion was carried out by static light scattering in the swollen state at

20 �C. The results shown in Fig. 2 are consistent with a core–shell

structure following the ‘‘fuzzy sphere’’ model,8 with a core radius

Rcore ¼ 586 nm, a shell thickness 2ssurf ¼ 78 nm, a hydrodynamic

radius Rh ¼ 724 nm, and a polydispersity of 10%. Details of the

particle synthesis and characterization are provided in the ESI,

Fig. S1 and text.†

Concentrated suspensions were imaged using confocal laser scan-

ningmicroscopy (CLSM) in the absence of an external electric field in

order to assess their intrinsic interaction potential. Measurements

were made at a temperature of 20 �C with either an upright CLSM

(Nikon Eclipse 80-i with C1 point scanner, excitation wavelength l¼
561 nm) or an inverted CLSM (Leica DMI6000 and SP5 tandem

scanner in the resonant mode at 50 frames per second, excitation

wavelength l ¼ 543 nm), and 60� and 63� immersion objectives

with a numerical aperture of 1.4.

Allmeasurementsweremademore than 10particle diameters away

fromthecover slide tominimizewall effects.The resulting imageswere

analyzed using standard methods,37,38 and pair correlation functions

g(r) were determined. A typical example at feff ¼ 0.2 is shown in

Fig. 2B together with a theoretical calculation for particles interacting
Fig. 1 Phase behavior of ionic microgels in the presence of an alter-

nating electric field exhibits not only the fluid–string–BCT phase

sequence seen for hard spheres at low packing, but also novel glass to

crystal and to arrested dynamical states at higher packing.
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with an effective pair potential of a Yukawa form

UeffðrÞ ¼ Zeff
2e2

4p330

�
expðkRÞ
1þ kR

�2
expð�krÞ

r
.HereweusedR¼ 650nm,an

effective chargeZeff¼ 400epermicrogel and aDebye screening length

k�1 ¼ 175 nm, and the calculation was performed using liquid state

theory based on the HNC closure relation (note that the overall bare

chargeon theparticles ismuch larger, resulting froma largenumberof

confined internal counterions, as was verified by previous titration

experiments on ionic (PNIPAM-co-PAA) microgels14). The experi-

mental g(r) is quantitatively reproduced except for short distances r<

2R, where we see small but systematic deviations that are most likely

duetocontributions fromthe intrinsic softnessof themicrogelsandthe

finite resolution of the CLSM. Fig. 2B demonstrates that the inter-

actions between the particles at distances r > 2R are dominated by

weakly screened electrostatic interactions, resulting in a phase

behavior thatmimics that of charged colloids up to fairly high volume

fractions, when the softness of the particles becomes important.3,4

Field effects at low feff – Experiments were carried out at feff¼ 0.1

at a frequency of 100 kHz. Two-dimensional (2d) images at different

electric field strengths E (in Vrms mm
�1, with the field applied in the

image plane, along the X-axis) are shown in Fig. 3, top row. The

samples were contained between two cover slides separated by a 70

mm spacer. One cover slide was coated with indium tin oxide (ITO)

with a 700 mm sample gap etched out, which ensures a homogeneous

field in the sample area where CLSM experiments were performed.

At field strengths as low as 0.06 Vrms mm
�1, the particles associate

into chains that orient along the field direction, with strings coexisting

with single particles, and breaking and reforming due to competition

between thermal fluctuations, repulsion and attractive dipole–dipole

interactions. Upon increasing E, chains grow in length and stiffen,

and intra-chain particle–particle distances as decrease. The entire

process is field-reversible for all field strengths investigated.

It is interesting to compare the field effects to those previously

observed for a hard-sphere-like PMMA colloidal system,23 where the

interaction potential was a combination of a hard sphere contribu-

tion, a soft Yukawa repulsion and an induced dipole attraction of

variable strength. For the PMMA system, as also decreased upon

increasing field strength, but as was limited to a value greater than or

equal to the particle diameter s. This is quite different for the

microgels, where the intrinsic softness of the particles allows for

values of as/s < 1, and we find as/s z 0.75 at 0.21 Vrms mm
�1. In

principle, knowing the strength of the dipolar attraction in our
This journal is ª The Royal Society of Chemistry 2012



Fig. 3 Top: microgels at feff¼ 0.1 in an applied electric field. 2d confocal images taken in the bulk (10 particle diameters from the cover glass surface) at

E¼ 0.06, 0.11, 0.155, 0.21 Vrms mm
�1. Middle: microgels at feff¼ 0.85, images at 2� and right insets at 8� zoom, in an applied electric field E¼ 0.0, 0.23,

0.29 Vrms mm
�1 respectively. Bottom: microgels at feff ¼ 2.0, images at 3� zoom, at E ¼ 0.0, 0.06 Vrms mm

�1, and a plot of as/s as a function of E for

feff ¼ 0.1, 0.85. as is the average distance between particles in a chain and s is the zero-field diameter in the swollen state. In all images, the two-headed

arrow indicates the field direction and the left insets show the Fourier transforms of the corresponding images.
experiments we could directly measure the soft repulsive potential

between ionic microgels at distances below contact. Unfortunately,

the fact that the particles contain a large number of trapped but

mobile counterions and a complex density profile makes this a

difficult task, and we can currently only provide the phenomeno-

logical relationship as vs. Erms shown in the last panel of Fig. 3. At

higher field strengths (E ¼ 0.25 Vrms mm�1), the strings start to

associate laterally to form aggregates (data not shown), similar to but

less well ordered than those seen in the case of hard spheres.22

Field effects at high feff – We next looked at the field response at

very high volume fractions (feff >fcp). Under these conditions (as/s<

1), short-range soft-repulsive interactions dominate, and a glass-like

structure has been reported in the absence of an external field14 (see

also Fig. S2 in the ESI†). This is a concentration regime that is not

accessible for dipolar hard spheres, and thus no previous data exist.

Forfeff¼ 0.85, we variedE from 0 to 0.3 Vrms mm
�1.With increasing

field strength, we observed a re-entrant order–disorder transition

(Fig. 3, middle row). An initial field response occurred around E ¼
0.17 Vrms mm

�1, where the particles started to form strings along the

field direction. Ordering thus occurs at higher field strengths

compared to the observations made at lower feff, consistent with the

fact that now a larger dipolar force is required to overcome the

arrested dynamics in the glassy state. Clearly ordered structures

formed by well-aligned parallel strings could be observed between

0.19 and 0.29 Vrms mm
�1. AtErms¼ 0.29 Vrms mm

�1, the strings show

a greater lateral overlap with a dramatically decreased value of as/s

and form larger aggregates, thus creating additional free space that

contains some individual strings. This is akin to a gas–solid coexis-

tence, which has previously been observed in hard-sphere systems
This journal is ª The Royal Society of Chemistry 2012
with added dipolar interactions.27 This re-entrant, field-induced

disorder–order–disorder transition is particularly visible in the

Fourier transforms of the images, shown in the insets of Fig. 3.

As is normal inmicroscopy, the resolution alongZ is worse than

the XY resolution. When coupled with the substantial refractive-

index mismatch between particles and medium and the overlap in

fluorescence within a string of touching and fully fluorescent

particles, this makes it challenging to obtain a fully reconstructed

3d image and establish the nature of the crystalline state observed

at an intermediate field strength (Fig. 3, middle row).We therefore

performed experiments with the field along the Z direction,

perpendicular to the image plane. In this case the samples were

contained between two ITO-coated cover glasses separated by a

70mmspacer.Fig. 4 (imageplane inX–Yand thefieldE¼0.23Vrms

mm�1 along theZ direction) shows that the order is polycrystalline

at best. However, it unambiguously demonstrates the presence of

tiny crystallites with a square unit cell (shown in Fig. 4C).

The unit cell spacing in the X–Y plane with the field along Z,

extracted fromFig. 4, is a¼ b¼ O2� 0.95¼ 1.34 mm. The average

nearest neighbor distance extracted from Fig. 3 (with the field

alongXY) is c¼ 1.14mm.A test for 4-foldbondorientational order

yields approximately 40% of the particles showing square

symmetry in the plane perpendicular to the field direction (calcu-

lated using a method reported elsewhere39). The inability to form

crystallites over many inter-particle distances could be related to a

lowering of the stability of the BCT crystalline state, due to both

chain undulations along the field direction and the intrinsic poly-

dispersity of compressible particles. The latter has been addressed

in a theoretical study of polydisperse dipolar spheres.40,41
Soft Matter, 2012, 8, 10819–10822 | 10821



Fig. 4 (A) Image of a sample at feff ¼ 0.85 and E ¼ 0.23 Vrms mm
�1

applied along the Z-direction using a 3� zoom. Objective: 63� oil

immersion. (B) Expanded sub-region highlighting small crystallites

(squares in the X–Y plane) coexisting with voids. (C) Schematic repre-

sentation of the BCT unit cell and its square base in theX–Y image plane.
Next, we probed field-induced structural ordering at ultra-high

volume fractionsfeff¼ 2.0, where as/s¼ 0.68 < 1 in the absence of an

applied field. Interestingly, we found field induced aggregates without

chain formation, and with no clear anisotropy, already at E ¼ 0.06

Vrms mm
�1 (Fig. 3, bottom row). Specifically, there is a transition

from a zero-field amorphous state (with dynamics quantified in the

ESI, Fig. S2†) to a heterogeneous disordered state at very small fields

which does not evolve significantly over experimental times. The

origin of what is likely to be a reversible field-induced arrested phase

separation is currently unknown, but is likely related to the fact that

the zero-field nearest-neighbour distance is 0.68s, i.e. much smaller

than the core diameter of the microgels (Fig. 2A, inset), resulting in

both much steeper repulsions and more complex field-induced

interactions. Similar behavior was also seen at feff ¼ 1.6 (this is

shown in the ESI, Fig. S4†).

In summary, we have experimentally characterized the phase

behavior of microgel suspensions under the application of an alter-

nating electric field at different volume fractions (Fig. 1) for the first

time. At low packing the field-induced structures are similar to those

seen in hard-sphere colloids, but even here the low threshold value for

string formation is a surprise. At high packing, we see at f ¼ 0.85, a

novel field-induced transition from an amorphous state to an ordered

solid state, and at f ¼ 2.0, a transition to a field-induced disordered

state that shows no signs of anisotropy.
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