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Abstract 
 

When the goal of a study is to assess and compare the evolution of old 
mortality, the researchers often face with problems of defects in data, such 
as loss of accuracy and numerical inconsistency of information. In the 
present work, an adaptive procedure for the issue of survival estimations is 
proposed as a combination of several methods: spline interpolation to split 
grouped data into age-specific quantities; use of mortality models for 
estimating the risk of death at advanced ages; methods for choosing the 
fitting age range based on the analysis of life-table aging rates. The 
procedure is applied to Emilia-Romagna data in order to construct 
complete period life tables corresponding to the occurrence of each 
population census from 1871 to 2001, and, finally, to compare the 
measures of old-age mortality by time and sex. 
 
Keywords: old mortality; complete life tables; mortality models; spline 
interpolation method. 
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1. Introduction 

The development of human longevity is certainly a relevant and 
widespread topic that has drawn the attention of researchers and 
demographers in the last years. The growing interest in the matter is 
mainly due to the great increase of octogenarians and centenarians 
occurred during the last decades, as until recently they were unusual or 
even rare. 

The main aim of this work is the study of old mortality in a long 
historical perspective, in order to assess the path and the evolution of great 
longevity from the past up to now. Our attention focuses on elderly people 
of a specific Italian region, namely Emilia-Romagna, in the period from 
1871 to 2001. Actually, calendar years corresponding to population 
censuses within such period are considered in order to draw a picture of 
mortality every about 10 years. Comparisons among year-specific old 
mortality are made by referring to corresponding probabilities of dying at 
each age, whose estimates become more difficult as age increases. Once 
properly estimated, such quantities are arranged into period life tables for 
women and men separately and together. 

The problem of survival estimations in old ages is mainly due to a 
couple of  reasons. Firstly, the accuracy of age information decreases as 
age increases and we often face with cases of age heaping and age 
overstatements. Secondly, at very high ages the number of deaths becomes 
numerically  inconsistent in order to estimate a risk of death representing 
the true value in the population. If it is the case, strong fluctuations in the 
estimates would be observed depending on the variations between the 
numerator and the denominator in the specific death rates. Analogously, 
this internal inconsistency is revealed by implausible developments of 
probabilities of dying. 

Especially in historical periods when life expectancy is low and the 
number of survivors decreases consistently after 65 or 70 years of age, the 
estimation problems described above become stronger, so that a more 
careful assessment is needed.  

In the present work, the Kannisto model of mortality (1994) is used in 
order to estimate probability of dying at highest ages and then supplement 
the final construction of life tables. 
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Another question concerns availability of data. Especially for earliest 
periods and sometimes just for elderly people, official statistics on deaths 
and population are published only into age grouped data, usually 5-year 
age groups. As a consequence, a method splitting such data into single year 
quantities is needed. Here the cubic spline interpolation method is used to 
split both death and population counts for all ages below (and sometimes 
also over) the last open age interval given by the official statistics. 

 

2. Notation and main definitions 

Quantities firstly considered in this work are data on mortality, namely 
death counts and population numbers by sex and single year of age for 
each census year, and annual counts of live births by sex. They are here 
denoted by tDx, tPx, and tB, respectively, were x represents the age and t the 
calendar year. Their original availability from official statistics is described 
in detail in the next section. 

There are three main quantities actively involved in the old mortality 
estimation process: 
• central death rate at age x and year t, denoted by tmx; 
• force of mortality (or instantaneous death rate or hazard rate) at age x 

and year t, denoted by tμx; 
• probability of dying within 12 month of reaching age x in year t, 

denoted by tqx. 
These quantities are very closely related to each other and generally the 

choice among them is uniquely a matter of convenience depending on the 
nature of the problem and on the available data. Fortunately there are 
simple approximations which easily enable to estimate any one of them 
from any other. Computational details on these approximations will be 
introduced during the development of this document. 

In the present investigation, we are firstly interested in probabilities of 
dying, tqx, and corresponding estimation to be arranged in period life tables 
and then compared among census years. In other words, estimation of age-
specific probabilities of dying is our final objective. 

On the other hand, central death rates, tmx, are the first quantities which 
can be computed from data on deaths and individuals. So they represent 
our first step toward probabilities of dying. 
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Finally, forces of mortality, tμx, are involved in the fitted mortality 
model, namely the Kannisto model, which, as most of the theoretical 
models, is expressed as regards to the force of mortality. 
 

3. Description of original data 

The sources of the data we consider are official statistics published by 
the Italian institutional agency for statistical data collection, formerly 
named DIRSTAT and then ISTAT, and by the regional authorized agency 
of Emilia-Romagna. 

As we introduced above, the data consist at first of numbers of deaths 
by sex and age for calendar years centred around the date of population 
censuses from 1871 to 2001. The availability of detailed death counts 
changes during the period. From 1930 on, all deaths are classified by 
single year of age; for previous years only deaths on 5-year age groups are 
provided. Centenarian deaths are tabulated in detail only from 1950 on. In 
1901 they are nested into the last open age interval 90+. Otherwise, the 
deaths at age 100 and over are given as a lump sum.  

Furthermore, census data on present population by sex and age are 
considered. The age classification of population as published by official 
agencies changes during the census years. In 1871 and 1931 all individuals 
are classified by single year of age up to age 99. From 1881 to 1921, only 
population by 5-year age groups is available up to the last open interval 
90+ in 1901 and 100+, otherwise. In 1936 and 1951, a part of elderly 
people are collapsed into 5-year age groups (from age 75 and over in 1936 
and from age 80 in 1951). Finally, from 1961 on, individuals are classified 
by single year of age (up to age 109 in the last two censuses and up to age 
99, otherwise). In all the cases, except for 1901, 1991 and 2001 censuses, 
centenarians are given as a lump sum. 

For ages from 0 to 4 both death and population counts are always 
provided by single year of age. 

Table 1 summarizes the structure of available data on number of deaths 
and individuals by sex as regards age classification for each census year 
occurred form 1871 to 2001. 
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Census 
Year Deaths Population 

1871 5-year age groups from age 5 
up to 100+ single year of age up to 100+ 

1881 5-year age groups from age 5 
up to 100+ 

5-year age groups from age 10 
up to 100+ 

1901 5-year age groups from age 5 
up to 90+ 

5-year age groups from age 5 
up to 90+ 

1911 5-year age groups from age 5 
up to 100+ 

5-year age groups from age 15 
up to 100+ 

1921 5-year age groups from age 5 
up to 100+ 

5-year age groups from age 20 
up to 100+ 

1931 single year of age up to 100+ single year of age up to 100+ 

1936 single year of age up to 100+ 5-year age groups from age 75 
up to 100+ 

1951 single year of age up to 103 5-year age groups from age 80 
up to 100+ 

1961 single year of age up to 107 single year of age up to 100+ 

1971 single year of age up to 109 single year of age up to 100+ 

1981 single year of age up to 108 single year of age up to 100+ 

1991 single year of age up to 111 single year of age up to 109 

2001 single year of age up to 114 single year of age up to 109 

 
Table 1: Number of deaths and present population by available age 

classification in censuses from 1871 to 2001. 
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In order to estimate infant mortality into a complete life table, annual 
counts of live births by sex are also collected for the census calendar year 
(t), the next one (t+1) and the two previous years (t-2, t-1). 

 

4. Steps for computing probabilities of dying and period life tables 

There are 7 steps involved in computing probabilities of dying and 
period life tables for each census year. A part of them are taken up and 
discussed in detail in the later sections. If not specified, all subsequent 
calculations are made by sex separately. 

 
1. Distributing death and population counts of unknown age. First of all, 

observations (both deaths and population counts) where age is 
unknown are distributed proportionately across the age range. The 
problem of unknown ages more often occurs for past years where the 
quality of data is generally lower. On the other hand, in the last period 
death and population numbers where age is unknown become rare. 
 

2. Centring deaths around census date. Deaths counts are generally 
collected for more calendar years and then summarized by the 
arithmetic mean in order to centre such information around the census 
date. For example, 1961 census occurred in October, so the death 
numbers for 1960, 1961 and 1962 years are gathered and then 
summarized. The resulting age-specific death count is denoted by 

x
t D , were t indicates we centred the numbers of deaths around the 
date when census at year t occurred. 
 

3. Splitting 5-year age grouped data on deaths and population. Death and 
population counts are often available only in 5x1 configuration, so 
they are split into finer age categories, namely single year of age. The 
spline method is here used to split these observations for all ages 
below the open age interval. The main advantage of this method lies in 
the fact that it requires only that the data include counts for the first 
year of life and for the first five years of life. Other than these two 
restrictions, it does not matter whether the data are strictly in five-year 
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age groups (after age five) or in some other configuration. Moreover, 
there can be an open age interval above 90, 100, or some other age. 
Details of the computational methods are given in the later section. 
 

4. Computing central death rates. For each age x, death rate consists of 
death counts divided by the number of person years. In our case, for 
one-year age group x and a single census year t (i.e., a 1x1 period 
death rate), we have the following formula: 

x
t

x
t

x
t

P
D

m =    (1) 

 
5. Estimating central death rates at high ages. The problem of old 

mortality estimation and its generating reasons have been already 
introduced at the beginning of this document. This question is here 
specified in terms of death rate estimation. At older ages where the 
randomness of mortality process is most noticeable, death rates are 
usually smoothed by fitting a mathematical function in order to obtain 
an improved representation of the underlying mortality profile. By this 
way, one takes into account for both numerical inconsistence of deaths 
and individuals at risk and loss of data quality which could occur at 
higher ages especially in past years1. Thus, we begin by smoothing 
observed death rates at older ages by fitting a logistic function based 
on ages 70 and above, for males and females separately. Indeed, the 
mortality model described by Kannisto (Kannisto et al., 1994) as a 
special case of logistic function is applied. The main features of the 
Kannisto model and comparisons with other mortality functions are 
well described in the next sections. Once the parameters characterizing 
the logistic function have been estimated, fitted death rates can be 
computed. Then, they replace observed death rates for all ages at or 
above x*, where x* is defined as the lowest age where there are fewer 
than 100 deaths, but is constrained to 80 ≤ x* ≤ 95. 
 

                                                 
1 A great improvement in the data quality is certainly represented by the collection of 
individual data by ‘year of birth’, rather than simply the age, introduced at regional level 
only in the first years after the second world war. 
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6. Converting into probabilities of dying. After obtaining smoothed age- 
and census-specific death rates for males and females, they are 
converted into probabilities of dying, tqx, by a standard method. Let ax 
be the average number of years lived within the age interval [x, x + 1) 
for people dying at that age. We assume that ax=1/2 for all single-year 
ages except age 0. Then we compute tqx from tmx and ax according to 
the formula, 

x
t

x
t

x
t

x

x
t

x
t

m
m

ma
m

q
+
⋅

=
⋅−+

=
2
2

)1(1
   (2) 

for x=1,2,…,120. 
Several methods for converting central death rates into probabilities of 
dying are available from demographic literature (e.g. the exponential 
approximation exploited in the seminal work of Kannisto et al. (1994), 
where ( )x

t
x

t mq −−= exp1 ), but they generally produce the same 
results2. 
For infants, we adopt a different method for computing probability of 
death. At first the infant death rate is obtained as the ratio of deaths at 
age 0 and a weighted average of live births in the last two years. 
Indeed, we calculate this quantity for each census year t and the 
previous and next one, t-1 and t+1, respectively, that is 

BbBb
D

m jj

j
j

1
0

0 ''' −⋅+⋅
=    (3) 

for j=t-1,t,t+1. The weights, b’ and b’’, represent the proportion of 
deaths at age 0 in the study year and the previous one, respectively. 
Indeed, they change over the historical period depending on the infant 
mortality level (Livi Bacci, 1999). Table 2 resumes the values of b’ 
and b’’ employed for each census year. 

                                                 
2 Another matter is when age grouped death rates must be converted into probabilities. 
Indeed, when the values of death rates are high the available methods usually give different 
results and the exponential approximation as firstly introduced by Reed and Merrell is 
shown to be preferable (Livi Bacci, 1999; Pressat, 1969). 
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Census Year b’ b’’ 

1871 0.6 0.4 

1881 0.6 0.4 

1901 0.61 0.39 

1911 0.667 0.333 

1921 0.667 0.333 

1931 0.75 0.25 

1936 0.75 0.25 

1951 0.8 0.2 

1961 0.85 0.15 

1971 0.85 0.15 

1981 0.95 0.05 

1991 0.98 0.02 

2001 0.98 0.02 

 
Table 2: Proportions of deaths at age 0 in the study year (b’) and in the 

previous one (b’’) 
 

Finally, a general estimate of infant probability of dying for each 
census year t is obtained by averaging the three death rates at age 0, 
that is 

( )0
1

00
1

0 3
1 mmmq tttt +− ++= .   (4) 

 
7. Arranging period life tables. The series of probabilities of dying by sex 

and age for each census year t are used to compute the other sex- and 
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age- specific quantities involved in life tables, namely the number of 
survivors and deaths, lx and dx, respectively, the probability of 
surviving, px, the person-years lived by the life-table population, Lx, 
the person-years remaining, Tx, and the life expectancy, ex. The period 
life tables with sexes combined are then obtained as a weighted 
average of male and female probabilities of dying at each age x. Finest 
details are given in the specific section. 

 

5. Splitting 5-year age grouped data by using spline interpolation 

As we introduced above, nx1 death and population counts are split into 
a 1x1 format using cubic splines fitted to the cumulative distribution of 
data within each census year. In our case these aggregated data are always 
configured into 5-year age groups (n=5). 

Let Yx the cumulative number of death or individuals within census year 
t up to age x, that is 

∑
−

=

=
1

0

x

u
u

t
x DY  or .   (5) ∑

−

=

=
1

0

x

u
u

t
x PY

A cubic spline to Yx can be expressed in the following form (McNeil et 
al, 1977; Wilmoth et al., 2007) 

∑
=

≥−++++=
n

i
iiix kxIkxxxxY

1

33
3

2
210 )()(βαααα  (6) 

where α0, α1, α2, α3, β1, β2, … , βn are the n+4 parameters that must be 
estimated; I(⋅) is an indicator function which equals one if the logical 
statement within brackets is true and zero if it is false; k1, k2, … , kn are 
commonly named knots and they are those values of age x for which Yx is 
known from the data. Actually, this interpolation method requires that      
k1 = 1 and k2 = 5, that is deaths and population counts for the first year of 
life and for the first five years of life must be known from the data. Finally, 
kn equals the lower limit of the last open age interval and there are no 
restrictions about it. The lower and upper boundaries are denoted by a and 
b, respectively, and we always have a = 0 and b = ω, where ω is set 
arbitrarily to the maximum age of  kn + 5. Thus, we have n+2 equations 
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from the n+2 known values of Yx, but  n + 4 unknown parameters that 
must be estimated. 

In order to compute the coefficients involved into the spline function, 
two constraints specifying as many additional equations are needed. 
Typical solutions involve constraining the slope of the function at the 
boundaries. In other words, two equations based on the first derivative of 
Yx at (or close to) the boundaries are usually considered. For a cubic spline 
the first derivative of Yx is  

∑
=

≥−+++=
n

i
iiix kxIkxxxY

1

22
321 )()(332' βααα .  (7) 

Then, from the definitions of Yx and first derivative it follows that 

x
t

x DY ≈'  or, analogously, .   (8) x
t

x PY ≈'
Before to go on, a brief digression on the relationship between 

constraints and degrees of the spline function is needed. The number of 
constraints actually influences the choice of the degree. This is the main 
reason why in practice the constraints are firstly specified as desirable 
conditions for having a particular trend of the spline function. Then, the 
degree of the spline is directly drawn out. For example, in the seminal 
work on spline interpolation of demographic data, McNeil et al. showed 
that in order to find a smooth curve of an age-specific fertility schedule for 
which the only data available were average fertility rates by standard five-
year age groups, four restrictions are needed. In fact, it is desirable that the 
cumulated fertility rates (i.e., the spline function) have zero derivative at 
the boundaries and also that for the age-specific fertility schedule to have 
zero derivative at its extremes, so that it reaches zero smoothly at ages 15 
and 50. As a consequence, a spline of degree at least 5 is required. In 
general, the choice of the degree of the spline is arbitrary and the smallest 
value consistent with the number of restrictions is usually chosen. Then, if 
this value produces results which are unacceptable (e.g., negative values), 
a higher number of degrees is involved. 

In the present case, at the upper boundary, the slope is constrained to be 
zero for both death and population numbers. Indeed, this choice is 
consistent with the usual tapering of the distribution of deaths and 
individuals at the oldest ages: there are no survivors and, as a consequence, 
no deaths at the maximum age ω. On the other hand, the same constraint at 
the lower boundary would not be appropriate: deaths are highly 
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concentrated at age 0 and annual live births are (fortunately!) different 
from zero. Actually, another constraint is needed in order to fit at least a 
cubic spline. As a consequence, since for ages from 0 to 4 we always have 
both death and population counts by single year of age, we constrain the 
slope of the function at age 1 to equal deaths or, analogously, individuals 
at age 13. Therefore, our constraints yield the following additional 
equations 

Y’ω = 0     (9) 
and 

11' DY t=  or .    (10) 11' PY t=
These two restrictions are shown to provide good estimates and, especially, 
to avoid the drawback of having negative death or population counts along 
the age x-axis. Therefore, we think there is no needing to increase the 
degree of the spline function. 

Then, fitting the cubic spline function consists of solving a system of 
n+4 linear equations, which can be written in matrix form as follows 

yA =θ     (11) 
where 
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3 An exception is made for 1871, when population counts at age 1 were proved to be wrong. 
In this case, the constraint is made by using individual counts at age 2. 
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The parameters in the spline are thus given by 

yA 1−=θ .    (15) 
In other words, the problem of fitting the spline reduces to the problem of 
inverting matrix A. 

Once the vector of coefficients θ is obtained by this method, the 
estimated equation is used to find the series of fitted values . Then, 
deaths and individuals by single years of age are estimated by differencing 
successive fitted values: 

xŶ

xxx
t YYD ˆˆˆ

1 −= +  or    (16) xxx
t YYP ˆˆˆ

1 −= +

for x=0,1,2, …kn-1. 
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Moreover, the estimated spline function is used to split death and 
population counts in the last open age interval, up to the age corresponding 
to reliable values (i.e. x

t D̂ > 0, > 0 and x
t P̂ x

t D̂ ≤ 4
x

t P̂ ). 
The spline interpolation method is shown to work very well, at least on 

our data. As an example, Figure 1 proves the good fitting of spline curve 
when both observed and estimated values are compared. This refers to 
male population counts in 1936, when single age quantities are available 
up to age 74 and then the spline interpolation method is used to split 5-year 
age groups up to 100+. 
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Figure 1: Observed VS estimated values by using spline interpolation: 
1936, Male population. 

 
                                                 
4 If these constraints are not complied then the splitting procedure stops at the previous age 
interval. 
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Moreover, the spline method is shown to work well also when the 
observed data are aggregated into 5-year age groups even from age 5 on 
(Figure 2 and Figure 3). 
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Figure 2: Cumulative deaths distribution (observed VS estimated by 
cubic spline method): 1871, Females. 
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1871 - Females
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Figure 3: Spline interpolation method: 1871, Female deaths. 
 

Once the procedure has been applied to all aggregated data, deaths and 
individual counts expressed in a 1x1 format are obtained into the age 
intervals summarized in Table 3. 
 

Census Year Male Female 

from 1871 to 1971  0-99 0-99 

1981 0-104 0-102 

1991 – 2001 0-109 0-109 

 
Table 3: Age intervals with data expressed in a 1x1 format after the 

spline method. 
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6. Models of old-age mortality 

Mortality models generally attempt to find the function that summarizes 
the way in which the probability of dying depends on age. Literature gives 
them many potential and operative applications. As well as in the 
construction of life tables, these models are also useful in the projection of 
population numbers, such as the extrapolation of probabilities of dying at 
extreme ages, or in the validation of  biological theories about the nature of 
the ageing process. 

The earliest and still one of the most applied model is the “law of 
mortality” discovered by Gompertz (1825). By studying the survival 
curves in the life tables he found empirically that the force of mortality, μx, 
increases constantly with age at a steady exponential rate. Thus the model 
can be written as 

)exp( xx βαμ ⋅=     (17) 
where α represents the base level of mortality and β is the relative increase 
in the force of mortality, which is thus supposed to be constant over ages. 
Although this model works very well over much of the age range, it shows 
some problems when applied to infancy, youth and very old ages. 

Several other functions of mortality have been discovered by various 
authors during the following years. A first attempt to improve Gompertz’s 
law was made by Makeham (1860). He added a constant term δ, which 
includes the risk of death from all causes which do not depend on age, so 
that: 

δβαμ +⋅= )exp( xx .   (18) 
At high ages the constant δ is shown to be very small, so the difference 
between the Gompertz and Makeham laws is negligible. 

In 1932 Perks found empirically that the values of μx in a life table 
which he was examining could be fitted by a logistic function. The 
resulting logistic mortality model is then expressed as 

)exp(1
)exp(
x

x
x βγ

βαμ
⋅+

⋅
= .   (19) 
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We can note that this models includes Gompertz’s law as the special 
case when γ=0. 

Another mortality model was proposed by Weibull (1951). This would 
imply that the force of mortality is proportional to a power of age, that is 

βαμ xx ⋅= .    (20) 
Up to now, the described models of mortality are explanatory, 

suggesting a possible mechanism which may help to explain why the 
formula works. Usually the supposed mechanism is supported by 
biological theories on aging process. So, for example, most modern 
attempts to explain the Gompertz’s law are linked to steady bodily 
deterioration, due to the accumulation of molecular and cellular damage, 
over the age ranges concerned. 

Indeed, other models are descriptive. They give a function which 
simply fits the data in a particular range of ages, but no reason explains 
why this should be so, and hence nothing guarantees that the formula will 
continue to work in other circumstances. 

The model proposed by Heligman & Pollard (1980), which is 
intermediate between the Weibull and logistic models, is a descriptive 
model with eight parameters and it can be formulated as follows: 

xCBx

x

x GHFxEDA
p
q

+−−⋅+= + ))ln(lnexp( 2)( .  (21) 

However, above age 50 the first two terms can be neglected and their 
expression reduces to 

x

x

x GH
p
q

= .    (22) 

Another descriptive model was proposed by Coale & Kisker (1990) for 
the purpose of interpolating μx in the range of ages from 85 to 110. Their 
idea was that ln (μx) can be fitted by a quadratic function of age x, that is 

2)ln( cxbxax ++=μ    (23) 
where c is negative. 

In a chronological order the last model was proposed by Kannisto et al. 
(1994). It is an explanatory model and it is proved to be one of the best and 
simultaneously simplest functions for the approximation of probability of 
dying at high ages. Kannisto noted that a easier case of the logistic model 
worked well at least on modern data. He did not propose a general law, but 
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simply observed an empirical finding. The basic idea is again that the 
relative increase in the force of mortality decreases at old ages (generally 
from 75-80 years of age on), instead of being constant as in Gompertz 
formula. Kannisto and his scholars started from the most general logistic 
model which has four independent parameters and can be expressed as 

δ
βα
βακμ +

⋅+
⋅⋅

=
)exp(1
)exp(

x
x

x .   (24) 

They firstly showed that this general model is not very useful in 
practice since a simpler version with only three parameter is more robust 
and that the fitted parameter κ tends to be near 1 (Thatcher et al., 1998; 
Thatcher, 1999). As a consequence the three-parameter model follows 

δ
βα

βαμ +
⋅+

⋅
=

)exp(1
)exp(
x

x
x .   (25) 

Such model was fitted by Thatcher (1999) to some data from the 
mediaeval period to the present and at all adult ages (from age 30 on), not 
just high ages. He proved the model fits data rather well and the estimated 
parameters can be interpreted revealing a long-term development of adult 
mortality. 

Secondly, two important properties have been pointed out. At ages up 
to 70 or so, that is when α⋅exp(βx)/[1+α⋅exp(βx)] is small, the three-
parameter model (25) is the law (18) proposed by Makeham. The second 
property, already introduced above, is that at high ages in historical periods 
and at almost all ages today the parameter δ  is small compared to  
α⋅exp(βx)/[1+α⋅exp(βx)]. Indeed, Thatcher (1999) observed a wide fall 
during the long-historical period in the values of δ , becoming slight in the 
recent years. This pattern on δ reflects the gradual elimination of infection 
diseases, which were major cause of child and adult deaths, but negligible 
at high ages. As a consequence, the relevant formula for the old mortality 
model proposed by Kannisto et al. (1994) can be simply expressed as 

)exp(1
)exp(
x

x
x βα

βαμ
⋅+

⋅
= .   (26) 

As we introduced above, a recent study concluded that Kannisto 
formula fits the mortality pattern at old ages usually better than other 
mortality models (Thatcher et al., 1998). This is the main reason why we 
use it to fit our data on mortality to estimate death rates at high ages. 
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Moreover, if the Kannisto model is shown to work well in estimation of 
probabilities of dying at high ages on modern data, here we attempt to 
apply it even on less recent years. 

 

7. Fitting the Kannisto model 

7.1. Choosing the fitting age range 

The Kannisto mortality model is not fitted to the data at the whole of 
the age range. Indeed, such model involves old ages, namely when the 
relative increase in the force of mortality starts to decrease. In modern 
data, it happens generally from 75-80 years of age, as for less recent 
periods it would be investigated. Therefore, we firstly analyze the trend of 
relative increases in the death rates, or analogously in the force of 
mortality, within each census year t. We do that to avoid the risk of 
misspecification of the age interval for the model fitting, which can 
generate biased estimates in death rates at highest ages. Actually, in our 
case this choice is reduced to the lower age limit, since the upper one is 
given by the highest age corresponding to the last death rate available from 
the data expressed in a 1x1 format. Besides, it is preferable to choose a 
single fitting age range. By this way, the same age reference for the whole 
of the period from 1871 to 2001 ensures reasonable comparisons in the 
mortality trend at old ages. 

The relative mortality increase by advancing age is usually measured by 
a rate parameter, k(x), defined by Horiuchi and Cole as the relative 
derivative of μx (Horiuchi and Coale, 1990; Kannisto, 1996; Horiuchi and 
Wilmoth, 1998): 

dx
ddxd

k x

x

x
x

)ln(/ μ
μ

μ
== .   (27) 

This measure, called life-table aging rate, has proved to be a powerful 
tool for detecting variations in mortality, as considerable accelerations and 
decelerations in the mortality pattern can escape a visual inspection such as 
simply plotting μx in logarithmic scale. An age-related increase in k(x) 
implies an acceleration in the age pattern of mortality, conversely, a 
decrease corresponds to a deceleration (Horiuchi and Wilmoth, 1998). 
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For the Gompertz law of mortality we find that k(x) = β, according to 
the idea of constant increase of mortality at all ages introduced above. 
Conversely, for the Kannisto model we have k(x) = β⋅(1− μx), that is the 
relative increase equals β  at lower ages when the force of mortality μx is 
small, then falls tending to zero as age increases (Kannisto, 1996). 

In practice, measuring accurately k(x) is not easy, as there are 
fluctuations in μx especially at high ages. A typical solution lies in taking 
5-year of age groups and then estimating aging rate as follows: 

5
)ln()ln(

)(ˆ ,55, xxxx mm
xk −+ −

=   (28) 

where mx,x+5 and mx-5,x are successive 5-year of age death rates (Horiuchi 
and Coale, 1990; Horiuchi and Wilmoth, 1998). Then, the corresponding 
standard error can be approximated by 

xxxx
xk DD ,55,

)(ˆ
11

5
1ˆ

−+

+=σ

                                                

where Dx,x+5 and Dx-5,x are the number of deaths in the age intervals from x 
to x+5 and from x-5 to x, respectively (Wilmoth, 1995; Horiuchi and 
Wilmoth, 1998). 

In Table 4 the estimates of k(x) derived from the 5-year age groups of 
mx through formula (28) and corresponding confidence intervals5 are given 
for data here considered at each census year t and at ages from 60 to 95. 

 

)(ˆ xk

5 The confidence intervals’ width corresponds to two times the standard errors estimated 

through formula (29) to . 

   (29) 



 
 

1871 
 

1881 1901 1911 

Males         
k(60) 0.045 (0.030 - 0.061) 0.061 (0.046 - 0.075) 0.098 (0.083 - 0.114) 0.090 (0.074 - 0.106) 
k(65) 0.098 (0.084 - 0.113) 0.113 (0.099 - 0.127) 0.102 (0.089 - 0.116) 0.093 (0.079 - 0.106) 
k(70) 0.080 (0.066 - 0.094) 0.075 (0.062 - 0.088) 0.108 (0.096 - 0.120) 0.112 (0.099 - 0.124) 
k(75) 0.099 (0.084 - 0.114) 0.079 (0.065 - 0.093) 0.090 (0.078 - 0.103) 0.105 (0.093 - 0.117) 
k(80) 0.048 (0.030 - 0.067) 0.053 (0.034 - 0.072) 0.083 (0.068 - 0.097) 0.082 (0.068 - 0.096) 
k(85) 0.048 (0.020 - 0.076) 0.011 (-0.019 - 0.042) 0.080 (0.056 - 0.104) 0.074 (0.053 - 0.095) 
k(90) 0.043 (-0.011 - 0.097) 0.071 (0.009 - 0.133) 0.051 (0.006 - 0.096) 0.020 (-0.025 - 0.064) 
k(95) 0.073 (-0.041 - 0.187) -0.024 (-0.169 - 0.121) -    0.042 (-0.106 - 0.189) 

              
Females                     

k(60) 0.065 (0.048 - 0.082) 0.062 (0.046 - 0.078  0.100 (0.083 - 0.116) 0.100 (0.082 - 0.118) 
k(65) 0.108 (0.093 - 0.123)  0.125 (0.110 - 0.140  0.103 (0.089 - 0.117) 0.107 (0.092 - 0.121) 
k(70) 0.072 (0.057 - 0.087) 0.069 (0.055 - 0.083  0.109 (0.096 - 0.122) 0.106 (0.093 - 0.120) 
k(75) 0.101 (0.084 - 0.117) 0.092 (0.077 - 0.107  0.090 (0.077 - 0.103)  0.097 (0.084 - 0.110) 
k(80) 0.035 (0.016 - 0.054)  0.049 (0.030 - 0.069  0.075 (0.060 - 0.091) 0.095 (0.080 - 0.110) 
k(85) 0.056 (0.028 - 0.085) 0.052 (0.021 - 0.083  0.065 (0.041 - 0.089)  0.057 (0.037 - 0.078) 
k(90) -0.025 (-0.084 - 0.034) -0.008 (-0.066 - 0.050  0.028 (-0.015 - 0.071) 0.067 (0.026 - 0.108) 
k(95) 0.070 (-0.050 - 0.190) -0.072 (-0.223 - 0.078  -    -0.013 (-0.122 - 0.097) 

 
Table 4: Estimates of k(x) (CI) in the period 1871-2001. 
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1921 
 

1931 1936 1951 

Males         
k(60) 0.097 (0.082 - 0.113) 0.084 (0.068 - 0.099) 0.086 (0.070 - 0.101) 0.076 (0.060 - 0.091) 
k(65) 0.094 (0.080 - 0.107) 0.095 (0.082 - 0.108) 0.093 (0.080 - 0.107) 0.093 (0.079 - 0.106) 
k(70) 0.106 (0.094 - 0.118) 0.091 (0.079 - 0.103) 0.096 (0.084 - 0.108) 0.111 (0.099 - 0.123) 
k(75) 0.095 (0.084 - 0.107) 0.102 (0.090 - 0.114) 0.101 (0.090 - 0.112) 0.101 (0.090 - 0.113) 
k(80) 0.102 (0.089 - 0.116) 0.089 (0.076 - 0.103) 0.097 (0.084 - 0.109) 0.103 (0.091 - 0.115) 
k(85) 0.064 (0.044 - 0.084) 0.078 (0.059 - 0.097) 0.073 (0.056 - 0.091) 0.088 (0.074 - 0.103) 
k(90) 0.053 (0.014 - 0.092) 0.053 (0.013 - 0.093) 0.070 (0.036 - 0.103) 0.063 (0.037 - 0.090) 
k(95) 0.009 (-0.100 - 0.118) 0.077 (-0.045 - 0.198) 0.080 (-0.014 - 0.175) -0.010 (-0.093 - 0.072) 

               
Females                     

k(60) 0.097 (0.079 - 0.114) 0.083 (0.065 - 0.101) 0.090 (0.072 - 0.108) 0.084 (0.066 - 0.103) 
k(65) 0.118 (0.103 - 0.133) 0.103 (0.088 - 0.119) 0.099 (0.084 - 0.115) 0.123 (0.107 - 0.138) 
k(70) 0.106 (0.092 - 0.119) 0.113 (0.100 - 0.126) 0.109 (0.096 - 0.122) 0.119 (0.105 - 0.132) 
k(75) 0.103 (0.091 - 0.116) 0.106 (0.093 - 0.118) 0.101 (0.090 - 0.113) 0.117 (0.105 - 0.129) 
k(80) 0.088 (0.074 - 0.101) 0.090 (0.077 - 0.103) 0.097 (0.084 - 0.110) 0.099 (0.087 - 0.110) 
k(85) 0.062 (0.043 - 0.082) 0.089 (0.072 - 0.107) 0.086 (0.069 - 0.102) 0.087 (0.074 - 0.101) 
k(90) 0.049 (0.013 - 0.085) 0.066 (0.031 - 0.100) 0.077 (0.048 - 0.105) 0.082 (0.060 - 0.104) 
k(95) 0.011 (-0.067 - 0.089) 0.057 (-0.028 - 0.141) 0.107 (0.037 - 0.178) 0.028 (-0.024 - 0.080) 

 
Table 4: (Continued) 
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1961 
 

1971 1981 1991 2001 

Males            
k(60) 0.086 (0.072 - 0.100) 0.095 (0.082 - 0.108) 0.085 (0.072 - 0.099) 0.104 (0.089 - 0.119) 0.087 (0.070 - 0.104) 
k(65) 0.085 (0.073 - 0.097) 0.087 (0.077 - 0.098) 0.084 (0.073 - 0.096) 0.091 (0.079 - 0.103) 0.102 (0.088 - 0.116) 
k(70) 0.088 (0.077 - 0.100) 0.095 (0.084 - 0.105) 0.096 (0.087 - 0.106) 0.078 (0.067 - 0.088) 0.102 (0.090 - 0.113) 
k(75) 0.089 (0.079 - 0.100) 0.096 (0.086 - 0.106) 0.099 (0.090 - 0.108) 0.102 (0.092 - 0.112) 0.105 (0.096 - 0.115) 
k(80) 0.108 (0.097 - 0.119) 0.079 (0.069 - 0.090) 0.092 (0.082 - 0.101) 0.094 (0.085 - 0.102) 0.091 (0.082 - 0.100) 
k(85) 0.074 (0.060 - 0.088) 0.090 (0.077 - 0.102) 0.085 (0.073 - 0.097) 0.095 (0.085 - 0.106) 0.115 (0.106 - 0.125) 
k(90) 0.076 (0.052 - 0.099) 0.069 (0.049 - 0.089) 0.080 (0.063 - 0.098) 0.101 (0.085 - 0.116) 0.084 (0.073 - 0.096) 
k(95) -0.014 (-0.068 - 0.040) -0.038 (-0.084 - 0.008) 0.067 (0.029 - 0.104) 0.072 (0.042 - 0.101) 0.074 (0.052 - 0.095) 

             
Females                      

k(60) 0.095 (0.076 - 0.114) 0.086 (0.069 - 0.104) 0.100 (0.081 - 0.119) 0.089 (0.068 - 0.109) 0.062 (0.038 - 0.085) 
k(65) 0.116 (0.101 - 0.132) 0.097 (0.082 - 0.112) 0.088 (0.071 - 0.104) 0.090 (0.073 - 0.106) 0.093 (0.074 - 0.113) 
k(70) 0.115 (0.102 - 0.128) 0.123 (0.111 - 0.136) 0.118 (0.105 - 0.130) 0.104 (0.090 - 0.118) 0.112 (0.096 - 0.127) 
k(75) 0.115 (0.104 - 0.126) 0.129 (0.118 - 0.139) 0.131 (0.121 - 0.142) 0.126 (0.114 - 0.137) 0.124 (0.113 - 0.136) 
k(80) 0.114 (0.103 - 0.125) 0.119 (0.109 - 0.128) 0.125 (0.116 - 0.135) 0.124 (0.115 - 0.133) 0.119 (0.109 - 0.129) 
k(85) 0.085 (0.072 - 0.098) 0.097 (0.086 - 0.107) 0.111 (0.101 - 0.120) 0.130 (0.121 - 0.138) 0.143 (0.135 - 0.152) 
k(90) 0.080 (0.061 - 0.100) 0.086 (0.071 - 0.102) 0.100 (0.088 - 0.112) 0.117 (0.107 - 0.127) 0.107 (0.099 - 0.115) 
k(95) 0.049 (0.010 - 0.088) 0.037 (0.005 - 0.069) 0.064 (0.040 - 0.087) 0.081 (0.064 - 0.099) 0.102 (0.090 - 0.114) 

 
Table 4: (Continued) 



Several issues can be discussed by observing the results summarized in 
Table 4. Indeed, they will be remarked in detail in the last section. For 
now, we aim only to detect the lower age limit of the fitting range, namely 
the age at which the estimate of k(x) falls off. Under this perspective, we 
can note as the estimate of k(x) starts to decrease at ages varying from 70 
to 95. This critical age seems to gradually increase over the period here 
considered: in the post-war era it always goes over or at least equals 85 
years of age, as in the less recent years it touches lower values, up to the 
minimum of 70 years of age in 1881. As a consequence, we choose to fit 
the mortality model to the range from 70 years of age to the maximum age 
available from data (or from the splitting procedure) depending on year for 
the whole period here considered. 

 
7.2. Parameter estimation 

As we showed above, the mortality model for old ages proposed by 
Kannisto involves the force of mortality μx, which is proved to be quite 
close to the central death rate mx. Indeed, an approximate relationship 
among these quantities can be expressed as follows (Pollard, 1973): 

xx m≅+ 5.0μ .    (30) 
This relationship is exploited in order to smooth observed (and if it is 

the case split) death rates tmx by single year of age within the census year t. 
We do that by fitting the Kannisto model 
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with an asymptote equal to one and where we require the parameters α and 
β  to be positive or at least equal to zero. 

Parameter estimates α̂  and  are derived by using the maximum 
likelihood method. More specifically, we assume that 

β̂

x
t D is distributed 

like a Poisson with parameter λ = . Thus, the log-likelihood 
function is derived as follows: 
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Substituting the Kannisto function of μx+0.5 into the log-likelihood 
equation and then maximizing respect to the parameters α and β we 
eventually derive the parameter estimates α̂  and . β̂

 
7.3. Replacing observed with fitted death rates 

Smoothed death rates are easily obtained by substituting the 
estimates 

x
t m̂

α̂  and into the Kannisto equation and by exploiting the 
approximate relationship among force of mortality and death rates. Fitted 
death rates replace observed death rates for all ages at or above the greater 
of 80 or above the lowest age where there are fewer than 100 deaths, and 
for all ages at or above age 95 regardless of the number of deaths. The 
values corresponding to 100 deaths is fixed to take into account for 
consistency of the data and corresponding estimate of death risk. This 
problem typically concern male deaths which are fewer than female deaths 
at older ages, especially for recent years when differences between sexes 
become larger. 

β̂

Furthermore, the fitted Kannisto model and corresponding smoothed 
death rates are also used in order to produce extrapolations up to age 110 
for every census year within the period 1871-2001. 

 
7.4. Comparisons with some other mortality models 

Before going on, it is noteworthy to see how the Kannisto model 
compares with the Gompertz’s law of mortality (17) and the three-
parameter model (25) proposed by Thatcher (Thatcher, 1999). We will do 
that by showing the results obtained only for two years: 1991 and 1901. 
The first one represents modern data and the second one belongs to the 
historical era. 

Parameter estimates are derived again by using the maximum 
likelihood method and by assuming x

t D  are distributed like a Poisson 
with parameter λ = . The fitting age range considered for the 
Gompertz formula is the same as employed for the Kannisto model (i.e., 
from age 70 on). Conversely, the Thatcher model is fitted to the data from 
age 30 on, according to the seminal work (Thatcher, 1999). 

5.0+⋅ xx
t P μ
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Figures 4 and 5 show as the relationship among the Gompertz’s law of 
mortality and the Kannisto and Tacher models is the same as reported into 
the reference works on mortality models (Kannisto, 1994; Thatcher, 1998 
and 1999). Indeed, the plotted probabilities of dying start to significantly 
diverge at nearly 95 years of age independently on which particular 
historical data set is used to fit the models. In fact, the divergence is 
inevitable, since in the Gompertz model the force of mortality increases 
exponentially with age, as in the Kannisto and Thatcher models, it tends to 
a constant. The same structure is naturally reflected into the patterns of the 
probabilities of dying. 
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Figure 4: Probabilities of dying estimated by the Gompertz, Thatcher 
and Kannisto models: 1901, Males. 

 
When the Kannisto and Thatcher equations are compared, the features 

firstly discussed by Thatcher (1999) can be observed even for our data. In 
fact, the parameter γ becomes negligible over time (from 0.0048 in 1901 to 
0.0008 in 1991), reflecting the gradual elimination of death causes due to 
infectious diseases. Secondly, there are no significantly differences among 
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the two corresponding curves at high ages (Figures 4 and 5), which proves 
the substantial equivalence of the two models for estimating old mortality. 
Therefore, this can account for our decisive choice of fitting the Kannisto 
model. 
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Figure 5: Probabilities of dying estimated by the Gompertz, Thatcher 
and Kannisto models: 1991, Males. 

 

8. Period life tables 

Once the series of central death rates are converted into probabilities of 
dying, they are employed to arrange complete period life tables, separately 
by sex and together. Indeed, the set of quantities involved in the life tables 
represent  the first tools in order to compare the pattern of mortality by sex 
and by time. 

Starting from age- and year- specific probabilities of dying, tqx, the 
quantities of a generic life table can be defined as following: 
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• the probability of surviving from age x to x +1, denoted by tpx, is 
tpx = 1- tqx    (33) 

 
• the number of survivors at age x equals 

∏
−

=

⋅=
1

0
0

x

i
i

tt
x

t pll     (34) 

 
where tl0 equals to 100,000, namely the radix of the table; 
 

• the distribution of deaths by age x is 
tdx = tlx ⋅tqx;    (35) 

 
• the person-years lived by the life-table population from age x to x +1 

are 
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with tL0 = b’’⋅ tl0 + b’⋅ tl1
6; 

 
• the person-years remaining for individuals of age x equal 
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• remaining life expectancy at age x is 

x
t

x
t

x
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e = .    (38) 

 
The period life tables for women and men together are built by 

combining the sex-specific probabilities of dying at each age x through a 
sort of weighted average. The method is described in detail in the 
following list: 

 

                                                 
6 b’ and b’’ are the same proportions as employed for computing m0. 
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1. Male probabilities of dying, denoted by tqx
M, are employed to compute 

a new distribution of deaths and survivors, denoted by tdx
M* and tlx

M*, 
respectively, based on a new radix of the table, namely tl0

M* = 106,000. 
 

2. The series of these new male deaths and survivors is added to the 
series of female deaths and survivors in corresponding life tables at 
each age x, that is 

tdx
T* =  tdx

M* + tdx
F   (33) 

tlx
T* =  tlx

M* + tlx
F   (34) 

where superscripts T, F, and M represent total, female, and male, 
respectively. 
 

3. The ratio of these quantities provides the total probability of dying at 
age x 

*

*

T
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t

l
d

q = .    (35) 

 
4. Finally, to complete the life table calculation with sexes combined, the 

other quantities (tdx
T, tlx

T, tpx
T, tLx

T, tTx
T and tex

T) are computed through 
the same formulas as defined previously separately by sex. 

 

9. Discussion 

Once the construction of the Emilia-Romagna’s period life tables 
separately by sex and together7 has been completed for all the census years 
t from 1871 to 2001, they can be employed in several ways in order to 
make historical comparisons as regards to the old mortality development in 
Emilia-Romagna. Moreover, a set of additional demographic indicators 
can be built ad hoc and then compared (e.g., modal age at death). In other 
words, the construction of period life tables actually only represents the 
starting point towards a critical analysis of mortality under a long historical 
perspective. Indeed, this is a widespread and complex subject, that need to 
be developed and will be discussed in detail into a separate work. For now, 

                                                 
7 The set of such period life tables is available upon request to the author. 
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we would simply introduce some fundamental issues concerning these 
results based on some quantities computed during the construction. 
Finally, a brief comparison among the competing procedures employed by 
ISTAT and by Wilmoth et al. for the Human Mortality Database (HMD) 
will be made. The main reason is that ISTAT recently published the 
complete series of period life tables from 1974 to 2004 by sex separately 
for all the Italian regions. On the other hand, the HMD is certainly the 
fundamental worldwide source of data on old mortality and the set of life 
tables at country level provided by the analysis of these data represent the 
most influential demographic tool to document the longevity revolution of 
the modern era. Therefore, the methods protocol for the HMD (Wilmoth et 
al., 2007) represents actually our main reference document for the practical 
construction of the life tables here presented. 

Let’s start looking at the old mortality trend of the probabilities of 
dying separately by sex plotted in Figures 6 and 7. We can firstly note as 
for both sexes these probabilities generally tend to decrease over time. The 
mortality curves seem to be gradually shifted forward in the age horizontal 
axis from the past to now. Moreover, it is quite visible the decreasing gap 
from the pre- to the post-war probabilities, especially starting from 75-80 
years of age. This is mainly due to the environmental improvements given 
by public health interventions and medical researches and discoveries. 
Different features can be derived by considering the pattern of nineteenth-
century probabilities of dying. For both sexes, it can be seen that they 
assume higher values up to 80-85 years of age. Then, the slopes of the 
corresponding curves become the less steep over time. This can be also 
observed by looking at the series of the estimates of k(x) from age 80 to 95 
in Table 4: the smallest values (namely, the lowest slopes) correspond to 
the 1871 and 1881 years. All the curves, if they are extrapolated at extreme 
ages (such as 120 or 125), converge together to a constant, according to the 
inner features of the fitted mortality model. 
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Figure 6: Probabilities of dying in the period 1871-2001: Males. 
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Figure 7: Probabilities of dying in the period 1871-2001: Females. 
 

When the results are compared between sexes, for males higher values 
into probabilities of dying can be generally pointed out. This difference 
constantly increases over time, as resumed in Figures 8, 9 and 10. 
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Figure 8: Probabilities of dying: Males VS Females, 1881. 
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Figure 9: Probabilities of dying: Males VS Females, 1936. 
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Figure 10: Probabilities of dying: Males VS Females, 2001. 
 

The fact that in more recent periods at highest ages the female 
probabilities of dying (for the last part estimated by the mortality model) 
exceed the male ones (Figures 9 and 10) is closely related to the biological 
theories and to the empirical findings which the Kannisto model is based 
on. In fact, by following the frailty theory, the i-th member of a birth 
cohort is subject to a particular mortality function at each age x which 
follows the Makeham law. Then, as a cohort becomes older, those with 
high frailty are more likely to die first and there is an effect which may be 
described as survival of the fittest (Thatcher, 1999). The result is that the 
average function at a certain age changes by following a decelerating curve 
(e.g. logistic) rather than a trend with an exponential rate such as assumed 
by the Makeahm or Gompertz equations (Horiuchi and Wilmoth, 1998). In 
the study case, despite we consider period data and not cohorts, the frailty 
approach can be applied by considering the overall decreasing trend of 
mortality over time, especially for females. As a consequence, the effect of 
survival of the healthier individuals and thus the mortality deceleration is 
postponed for women compared with men. Thus, at extreme ages and for 
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modern data the female probabilities can reach larger values than those for 
males. 

The different patterns of old mortality for males and females can be 
also derived by the trend of the estimates of the k(x) in the post-war era. 
Especially from 1961 on, the female and male values starts to diverge 
revealing an increasing larger steepness in the female mortality curves. It 
means again that the women old mortality accelerates faster than that for 
men and the deceleration is delayed over age. 

Furthermore, by fixing the age, for males a near-complete immobility 
of k(x) over time can be pointed out. On the other hand, for females we can 
note an accelerating increase from decade to decade. This aggravation can 
be actually considered a consequence of their greater reduction in death 
probabilities for the relatively younger old as we observed before. 

Some other interesting features of old mortality development can be 
derived by observing the values of the estimated parameters characterizing 
the fitted mortality function. In Figures 11 and 12 the estimated values of 
parameters α̂  and , respectively, over timeβ̂ 8 and by sex, separately, are 
plotted. 

                                                 
8 We excluded from the graphical representation the values obtained for the nineteenth 
century for which a separate discussion would be needed. 
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Figure 11: Parameter estimates of α (x 104) from the Kannisto model: 
Males VS Females. 
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Figure 12: Parameter estimates of β from the Kannisto model:  
Males VS Females. 

 

For both sexes, the parameter α has fallen over time from 0.454 to 
0.081 for men and from 0.950 to 0.006 for women, bearing out the well-
known decrease of the base level of mortality. Nevertheless, the male 
pattern reveals to be more irregular with an unusual peak in 1971 (0.488) 
and a particular low value in 1951 (0.061). 

On the contrary, the parameter β has slightly risen, changing only from 
0.1071 to 0.1136 for males and from 0.0964 to 0.1382 for females. As 
discussed above, this parameter ultimately governs the rate at which the 
force of mortality increases with age. As a consequence, its relative 
stability over such period seems to support the theory of those believing 
that genetic features can determine an underlying pattern of aging process. 

Moreover, from the ratio of -ln(α) and β another important parameter, 
denoted by φ, can be introduced and discussed. This quantity is shown to 
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correspond to the age at which the logistic curve has its point of inflection 
(Thatcher, 1999). By looking at Table 5, we can note as the values of φ 
appear quite stable from 1901 to 1951 (from 93.4 to 94.6 for men and from 
96 to 97.4 for women). Then, there is a great improvement in the next 
period up to reach age 103 in 2001. Thatcher interpreted an analogous 
finding by asserting that “there was a very long period when the force of 
mortality above 90 years of age changed very little, despite the changes at 
lower ages” (Thatcher, 1999, p. 21). In our case, this period likely ended in 
1960s, when mortality rates actually started to fall.  

We can finally observe as the φ seem to converge between sexes over 
time, suggesting the existence of an upper limit to human longevity as 
some biological theories assert. This finding calls certainly for further 
checking that will be carried out in the next and more detailed analyses 
through the development of specific demographic indicators. 

 

Year Males Females 

1901 93.4 96.0 
1911 94.1 95.5 
1921 94.1 96.9 
1931 95.6 96.9 
1936 95.7 95.5 
1951 94.6 97.4 
1961 99.1 100.2 
1971 101.7 99.9 
1981 100.3 100.1 
1991 102.3 101.7 
2001 103.2 103.4 

 
Table 5: Values of φ. 

 

If we compare our results with those published by ISTAT we can note 
some significant differences. As an example, we report in Figure 13 the 
estimated probabilities of dying for males in 1981 derived by our 
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procedure and, conversely, by ISTAT. It can be clearly noted as the two 
patterns start significantly to diverge from age 95 displaying constantly 
higher values corresponding to the ISTAT procedure. The same features 
are observed for all the comparable years9 and for both sexes. 
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Figure 13: A comparison with the ISTAT life tables:  
probability of dying, 1981, Males. 

 

                                                 
9 These years are: 1981, 1991 and 2001. 
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However, our estimated probabilities can be validated by observing 
wide similarities to the procedure employed  for the HMD (Figure 14). 
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Figure 1410: A comparison with the HMD and ISTAT life tables:  
probability of dying, 1981, Males. 

 

                                                 
10 The results here reported refer to the Italian case as the HMD only considers country 
data. Therefore, our procedure has been applied to Italian data and then compared to the 
HMD and ISTAT life tables. 
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