CLUSTERING DISTRICTS BASED ON INFLUENCED FACTORS OF CHILD UNDERNUTRITION (STUNTING)

Nurul Istiqomah*, Hari Wijayanto†, Farit M. Afendi‡

Department of Statistics, Institut Pertanian Bogor
*Correspondence to: yusufistiqomah@gmail.com

Abstract

One indicator of undernutrition problems is stunting. In Indonesia, the prevalence of stunting of under 5 years children has increased from 35.6% (2010) to 37.2% (2013) and there are differences among provinces. These disparities are likely to be greater when the level is seen in smaller areas such as inter regencies/cities. The purpose of this study is to group the regencies/cities based on stunting factors.

Prevalence factors of stunting of children under 5 years have different measurement scale (numerical and categorical). Two step cluster method is a method that is designed to handle a large number of objects, especially on the objects that have the problem of continuous and categorical variables. This method also assumes independent variables involved.

Based on BIC values, it can be concluded that the optimal number of cluster is 2, with cluster quality is fair. The first cluster consists of 223 counties and cities, while the second comprises 272 ones. In addition, there are two outliers, District Ndunga and District Lanny Jaya located in the Province of Papua. The first cluster has average value greater than the national average in the socioeconomics and child diet, in the other hand, the second cluster has average value greater than the national average in mother enviromental and health care, and the outliers has an average above the national average for all variables except on expenditure per capita, the average member of the household, and calorie consumption.

Keywords: clustering, malnutrition, stunting, two step cluster method

INTRODUCTION

Background

Undernutrition causes some consequences, both short term and long term. In the short term, undernutrition will cause mortality, morbidity and disability. For the long term, it will impact on adult height, cognitive ability, economic productivity, reproductive performance, metabolic and cardiovascular diseases (Unicef, 2013). One measure of undernutrition is stunting. Stunting reflects chronic undernutrition during the most critical periods of growth and development in early life.

Globally, more than one quarter (26 per cent) of children under 5 years were stunted in 2011. But this burden is not evenly distributed around the world. Sub-Saharan Africa and South Asia are home for three fourth of the world’s stunted children. In sub-Saharan Africa, 40 per cent of children under 5 years are stunted; in South Asia, 39 per cent are stunted. In 2011, Indonesia was home to 5 percent of stunted children (Unicef, 2013).

In Indonesia, the prevalence of stunting has increased from 35.6% (2010) to 37.2% (2013) and there are differences between provinces (Kemenkes, 2014). The lowest three stunting prevalence were in Riau Island (26.3%), DI Yogyakarta (27.3%), and Jakarta (27.5%), while the highest were in NTT (51.7%), West Sulawesi (48.0%), and NTB (45.2%).

In order to decrease the number of stunted children, Indonesian government has conducted various programs. One of the Indonesian government’s policy is stratify the province based on the prevalence of stunting of children under 5 years and calorie consumption (Bappenas, 2011).
Based on the stratification, the province in the same strata would apply the same policy without looking at the factors that influence it. Programs to reduce the prevalence of stunting may be more effective if regions are grouped based on similarity of characteristics (factors that affect stunting of children under 5 years).

Formulation of The Problem

The UNICEF conceptual framework defines nutrition and captures the multifactorial causality of undernutrition (Unicef, 1990). Nutritional status is influenced by three broad factors: food, health and care. Optimal nutritional status results when children have access to affordable, diverse nutrient-rich food; appropriate maternal and child care-practices; adequate health services; and a healthy environment including safe water, sanitation and good hygiene practices. These factors directly influence nutrient intake and the presence of disease.

Figure 1. Conceptual Framework Of The Determinants Of Child Undernutrition

Some studies related with risk factors of stunting of children under 5 years has been done in Indonesia both in small and large scale. Sabaruddin (2012) stated that the factors that significantly affect the nutritional status of children under TB / U in Bogor were maternal education, medical history of the child and maternal employment status. The large scale research usually use national data such as survey “Riset Kesehatan Dasar” by the Ministry of Health and other macro data. Aditianti (2010) stated that the significant factors of stunting (p<0,05) were father’s height, mother’s height, age, gender, neighborhood, social and economic status, mother’s education, infectious diseases, personal hygiene, and environmental sanitation. Hayati (2013) showed that the highest risk of stunting found in children 0-23 months who were born with low birth weight, underweight, mothers short (145 cm), low family economic status, the density of protein intake less than 20g / 1000 kcal.

Some research also have studied differences in the prevalence of stunting among regions. Nadiyah (2013) showed that stunting risk factors of children aged 0-23 months in Bali, West Java and NTT were low birth weight, maternal height <150 cm, poor sanitation and feeding pre-
lacteals. Yuliana (2015) stated that the factors determined stunting prevalence disparity are incomplete immunization percentage, malaria prevalence, single mothers percentage, poverty level and Human Development Index. However, grouping regions based on the similarity characteristics of the prevalence of stunting factor has never been done before. Under previous studies, this study seeks to group area (district / city) in Indonesia based on the factors of the prevalence of stunting.

Factors that affect prevalence of stunting has numerical and categorical measurement scale. Two Step Cluster is a common method used in involving variables with mixed measurement scale as well as large amounts of data. This method also assumes independent variables involved (Anonimous, 2001).

Goal And Benefit Of The Research Project

Clustering districts / cities in Indonesia by using TwoStep Cluster in order to obtain the district / city with the same characteristics. The clustering results can be used in determining policy to decrease the prevalence of stunting of children under 5 years.

RESEARCH METHOD

Material / Subject

The data used in this research is secondary data: the data of Health Research (Riskesdas) and Basic Health Center 2013 data from the Ministry of Health and the National Socioeconomic Survey 2013 conducted by the BPS. The unit of analysis in this study are 497 districts / cities throughout Indonesia in 2013. The variables used in this research can be seen in the table below.

<table>
<thead>
<tr>
<th>Variable(s)</th>
<th>Inadequate dietary intake</th>
<th>Disease</th>
<th>Household food insecurity</th>
<th>Inadequate care and feeding practices</th>
<th>Unhealthy household environment</th>
<th>adequate health services</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Calorie Consumption</td>
<td></td>
<td>3 Number of Complaints of Diarrhea</td>
<td>4 Per Capita Expenditure</td>
<td>5 The Percentage of Working Mothers</td>
<td>7 The Average Number of Family Members</td>
<td>10 The Adequacy of Physician</td>
</tr>
<tr>
<td>2 Longer Breastfeeding</td>
<td></td>
<td></td>
<td></td>
<td>6 Percentage of Educated Mothers <High School</td>
<td>8 Percentage of Households With Sanitation Is Not Feasible</td>
<td>11 The Adequacy of Health Centers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9 Percentage of Households With Clean Water Source Is Not Feasible</td>
<td>12 The adequacy of Nutritionists</td>
</tr>
</tbody>
</table>
Two Step Cluster

Two step cluster method is a method that is designed to handle a large number of objects, especially on objects that have the problem of continuous and categorical variables, assuming variables involved independent. Clustering procedure with two-step cluster method has two phases namely preclustering stage, final stage (Anonimous, 2001).

The initial phase is done with the sequential approach, is the observed objects one by one based on distance measure is then determined whether the object is included in the clusters that have formed or to be formed new clusters. In this step is implemented with the formation of the cluster features (CF) Tree. Procedures CF Tree is done by selecting a random initial observation that the distance will be measured individually with other observations using a predetermined distance measure. If the magnitude of the distance lies in the reception area (threshold distance), the observations will be a member of the subclusters. If the magnitude of the distance lies outside the reception area, the observations will be entered into clusters that have been established or will be the forerunner of a new leaf entry (Șchiopu, 2010).

In the second step, the results of CF Tree clustered with hierarchical clusters analysis with agglomerative method, is starting with n clusters, each consisting of a single object, then the two closest clusters are merged and re-established a new closeness between clusters. To calculate the number of clusters can be done in two ways, the first count schwarz's Bayesian criterion (BIC) or the Akaike's Information criterion (AIC) for each cluster (Șchiopu, 2010). Cluster best solution if it has the smallest BIC, but in some cases there is value BIC increased if the number of clusters increases. If there are such cases it is necessary to identify the best solution clusters by BIC change ratio and the ratio of the distance amendment.

\[
BIC(j) = -2 \sum_{j=1}^{j} \log(\frac{\sum_{k=1}^{K^A} (\hat{\sigma}_k^2 + \hat{\sigma}_{jk}^2)}{N_j}) - \sum_{k=1}^{K^B} \log(\frac{N_{jkl}}{N_j}) - \sum_{k=1}^{K^B} \log(\frac{N_{jkl}}{N_j}) \]

\[
AIC(j) = -2 \sum_{j=1}^{j} \log(\frac{\sum_{k=1}^{K^A} (\hat{\sigma}_k^2 + \hat{\sigma}_{jk}^2)}{N_j}) - \sum_{k=1}^{K^B} \log(\frac{N_{jkl}}{N_j}) - \sum_{k=1}^{K^B} \log(\frac{N_{jkl}}{N_j}) \]

\[
N: \text{the total number of data records} \\
N_j: \text{the total number of data records in cluster } j \\
N_{jkl}: \text{the number of records in categorical variable } k \text{ that take the } l \text{ category} \\
\hat{\sigma}_k^2: \text{the estimated variance (dispersion) of the continuous variable } k \\
\hat{\sigma}_{jk}^2: \text{the estimated variance (dispersion) of the continuous variable } k \text{ in cluster } j \\
K^A: \text{total number of categorical variables} \\
K^B: \text{the number of categories for the } k \text{-th categorical variable} \\
L_k: \text{the number of categories for the } k \text{-th categorical variable} \\
R(k) = \frac{d_{v-1}}{d_v} : d_v = l_{k-1} - l_k \\
R(k) \geq 1.15 \rightarrow \text{optimum cluster} \\
l_v = (m_v \log n - BIC_v)/2 \\
v = k, k-1
\[l_V = (2m_v \log n - A[C_V]) / 2 \]

\[d_{k-1} = \text{distance if } k \text{ clusters combined with } k-1 \text{ clusters} \]

RESULT

Based on BIC values, it can be concluded that the optimal number of clusters is 2, with cluster quality is fair. The first cluster consists of 223 regions, while the second comprises 272 ones. In addition, there are two outliers, District Ndunga and District Lanny Jaya located in the Province of Papua.

DISCUSSION

The next step is to calculate the average of numerical variables for observation as a whole and of each group. Clusters with average above the overall score are marked (+), while clusters with average below the overall score are marked (-). Cluster 1 is a cluster with (+) in the percentage of educated mothers < high school, per capita expenditure, the number of complaints of diarrhea and the average length of breastfeeding, and (-) at the percentage of working mothers, the average member of the household, the percentage of households with sanitation and clean water source is not feasible, as well as the number of complaints of diarrhea. Meanwhile, cluster 2 is a cluster with (+) at the percentage of working mothers, the average member of the household, the percentage of households with sanitation and clean water source is not feasible, and the number of complaints of diarrhea and (-) at the variable percentage of educated mothers < high school, per capita expenditure, the number of complaints of diarrhea and the average length of breastfeeding. Outlier has an average above the national average for all variables except on expenditure per capita, the average member of the household and calorie consumption.

Based on the characteristics of categorical variables (health centers ratio, the ratio of doctors, nutritionists ratio), it can be said that health care in the first cluster is still need more attention than in cluster 2.

Table 2. Characteristics of The Cluster

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Educated Mothers < High School</td>
<td>1 + 2 +</td>
</tr>
<tr>
<td>The Percentage of Working Mothers</td>
<td>- + +</td>
</tr>
<tr>
<td>Per Capita Expenditure</td>
<td>+ - -</td>
</tr>
<tr>
<td>The Average Number of Family Members</td>
<td>- + -</td>
</tr>
<tr>
<td>Percentage of Households With Sanitation Is Not Feasible</td>
<td>- + +</td>
</tr>
<tr>
<td>Percentage of Households With Clean Water Source Is Not Feasible</td>
<td>- + +</td>
</tr>
<tr>
<td>Number Of Complaints of Diarrhea</td>
<td>- + +</td>
</tr>
<tr>
<td>Calorie Consumption</td>
<td>+ - -</td>
</tr>
<tr>
<td>Longer Breastfeeding</td>
<td>+ - +</td>
</tr>
<tr>
<td>The Ratio of Health Centers</td>
<td>x v x v</td>
</tr>
<tr>
<td>Ratio of Doctors</td>
<td>x v x v</td>
</tr>
<tr>
<td>Ratio Nutritionist</td>
<td>x v x v</td>
</tr>
</tbody>
</table>

CONCLUSION AND SUGGESTION

From this research on clustering districts / cities in Indonesia by using TwoStep Cluster based on influenced factor of the prevalence of stunting of under 5 years children, it can be concluded and recommended some point as follows:

1. Based on BIC values, it can be concluded optimal clusters number is 2. The first clusters consisting of 223, while the second comprises 272 counties and cities. In addition, there were two outliers, District Ndunga and District Lanny Jaya located in the Province of Papua.
2. To decrease the prevalence of stunting of under 5 years children in cluster 1, socioeconomic factors and child diet must be improved. In cluster 2, mother enviromental and health care are still need attention.

3. Two Step Cluster assuming variables involved are independent. In fact, there are correlation among varibles, so it is necessary to cluster districts / cities in Indonesia using a method that explore correlation between variables.

References

