# **ME - 18**

# A COMPARISON OF STUDENTS SELF-BELIEF AND MATHEMATICS ACHIEVEMENT IN THE ASIAN COUNTRIES: FINDING FROM THE THIRD INTERNATIONAL MATHEMATICS AND SCIENCE STUDY (TIMSS)

## Desi Rahmatina

Universitas Maritim Raja Ali Haji. Tanjungpinang, desirahmatina@gmail.com

#### Abstract.

The Trends in Mathematics and Science Study (TIMSS) is an international assessment of fourth and eighth grade students achievement in mathematics and science. The purpose of this study was examine the compares of student self- belief and mathematics in Asian countries using data from the Third International Mathematics and Science Study 2011. The analysis is conducted through a Multivariate Analysis of Variance (MANOVA) model with random effects for each country. East Asian countries Korea, Singapore, and Chinese Taipei Hong Kong SAR and Japan were the top-performing countries at the eighth grade to lead the world in mathematics achievement. The null hypotheses used in this study there are no statistically significant difference in self belief and mathematics achievement between Asian students.

Keywords. Self-belief, mathematics achievement, TIMSS.

#### INTRODUCTION

Self belief in mathematics can be defined as the individual's personal judgement in relation to his/her abilities in mathematical process. During the last twenty years the research area about self beliefs and mathematics achievement, and many different countries have been included in the research, for example Rao, Moely and Sachs (2000, in House J Daniel,2006) noted that self concept of mathematics ability was a significant predictor of subsequent achievement. According to Richardson (1996), beliefs are "psychologically held understandings, premises, or propositions about the world that are felt to be true" and Raymond (1997) defined mathematics beliefs as personal judgments about mathematics formulated from experiences in mathematics, including beliefs about the nature of mathematics, learning mathematics, and teaching mathematics

The purpose of this study was to investigate compares of eighth grades student's selfbelief and mathematics achievement using data from the Trends in International Mathematics and Science Study (TIMSS) 2011 in Asian countries.

#### DATA SOURCE

Data from the Trends in International Mathematics and Science Study (TIMSS) 2011. TIMSS contains International results in Mathematics presents extensive information on student performance in mathematics. TIMSS was originally conducted in 1995 and continue every four years, in 1999,2003,2007 and most recently in 2011.

The TIMSS 2011 database contains achievement data and student, home, teacher and school background data collection in the 63 countries and 14 benchmarking participants including three Canadian provinces, nine US State and two emirates from the United Arab Emirates. Fifty-two countries and seven benchmarking participants administered the fourth

grade assessment and 45 countries and 14 benchmarking participants administered the eighth grade assessment.

In each county, representative samples of approximately 4000 students from 150-200 schools participated in TIMSS 2011 at each grade assessed. In total, more than 300,000 students participated in the TIMSS 2011 fourth grade assessment and a further 300,000 in the eighth grades assessment. For this study, the following database from TIMSS 2011 for eighth grade were used: self belief and student math achievement.

| No | Country name   | Average Score |        |         |          |        |  |  |
|----|----------------|---------------|--------|---------|----------|--------|--|--|
|    |                | Overall       | Number | Algebra | Geometry | Data   |  |  |
|    |                | Mathematics   |        |         |          | and    |  |  |
|    |                |               |        |         |          | Chance |  |  |
| 1  | Korea, Rep.of  | 613           | 618    | 617     | 612      | 616    |  |  |
| 2  | Singapore      | 611           | 611    | 614     | 609      | 607    |  |  |
| 3  | Chinese Taipei | 609           | 598    | 628     | 625      | 584    |  |  |
| 4  | Hongkong       | 586           | 588    | 583     | 597      | 581    |  |  |
| 5  | Japan          | 570           | 557    | 570     | 586      | 579    |  |  |

## PARTICIPANT

At the grade level has a range of 0 - 1 (although student performance typically ranges between 300 and 700). The scale center point of 500 was set to correspond to the mean of the overall mathematics achievement and 100 points on the scale was set to correspond to the standard deviation. According to the TIMSS 2011 report, mathematics assessment consisted of content and cognitive domains. There are four content domains, numbers, algebra, geometry, data and chance, whereas knowing, applying and reasoning were assessed in the cognitive domain.

Table 1. Average Score Achievement in Mathematics Cognitive Domain

| No | Country name   | Average Score |         |          |           |  |
|----|----------------|---------------|---------|----------|-----------|--|
|    |                | Overall       | Knowing | Applying | Reasoning |  |
|    |                | Mathematics   |         |          |           |  |
| 1  | Korea, Rep.of  | 613           | 616     | 617      | 612       |  |
| 2  | Singapore      | 611           | 617     | 613      | 604       |  |
| 3  | Chinese Taipei | 609           | 611     | 614      | 609       |  |
| 4  | Hongkong SAR   | 586           | 591     | 587      | 580       |  |
| 5  | Japan          | 570           | 558     | 574      | 579       |  |

Source: TIMSS 2011.

In the study, the targeted sample was top-performing countries at the eighth grade to lead the world in mathematics achievement. Those five countries in East Asian are Korea, Singapore, Chinese Taipei, Hong Kong SAR and Japan. Total the participants was 24,564 students showed in table 2.

Table 2. Summary of the Samples Included in the study

| No | Country name   | ID      | Number | Number of student |      |         |
|----|----------------|---------|--------|-------------------|------|---------|
|    |                | Country | Total  | Female            | Male | Schools |
| 1  | Korea, Rep.of  | 410     | 5166   | 2663              | 2503 | 150     |
| 2  | Singapore      | 702     | 5927   | 2934              | 2993 | 165     |
| 3  | Chinese Taipei | 158     | 5042   | 2448              | 2594 | 150     |
| 4  | Hongkong SAR   | 344     | 4015   | 1997              | 2018 | 117     |
| 5  | Japan          | 392     | 4414   | 2183              | 2231 | 138     |

Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2014, Yogyakarta State University, 18-20 May 2014

## INSTRUMENTS

The following items were selected from the TIMSS 2011 about self-belief about mathematics are:

- 1. Enjoy learning mathematics;
- 2. Wish have not to study mathematics;
- 3. Math is boring;
- 4. Learn Interesting Thing;
- 5. Like mathematics;
- 6. Important to do well in math

The item labelled BSBM14A to BSBM14F, a four point scale was used all items (1 = agree a lot, 2 = agree a little, 3 = disagree a little 4 = disagree a lot).

To assess mathematics assessment is based on a comprehensive framework developed collaboratively with the participant countries, the way to measure student's mathematics achievement on that scale in the TIMSS 2011 had five plausible variables which explained mathematics achievement, there are labelled BSMMAT01 through BSMMAT05. In this study only one out of five plausible variables, the one labelled BSMMAT01 was used to measure student's mathematics achievement.

Six Likert - scale item measure student's self belief in learning mathematics. In table 3 shows the mean and standard deviations of item for measure of students self belief.

Table 3. Means and standard deviation of items for measure of student self belief in mathematics.

|           |           | Self Belief |              |        |             |             |              |
|-----------|-----------|-------------|--------------|--------|-------------|-------------|--------------|
|           |           | Enjoy       | Wish have    | Math   | Learn       | Like        | Important to |
| Country   | Statistic | learning    | not to study | is     | Interesting | mathematics | do well in   |
|           |           | mathematics | mathematics  | boring | Thing       | mathematics | math         |
|           | Mean      | 2.6         | 2.31         | 2.43   | 2.51        | 2.69        | 1.81         |
| Korea,    | Std.dev.  | 0.875       | 0.923        | 0.862  | 0.842       | 0.901       | 0.836        |
| Rep.of    | Ν         | 5158        | 5157         | 5134   | 5154        | 5151        | 5156         |
|           | Mean      | 1.81        | 2.90         | 2.82   | 1.89        | 1.93        | 1.33         |
| Singapore | Std.dev.  | 0.870       | 1.047        | 0.974  | 0.816       | 0.913       | .605         |
|           | Ν         | 5920        | 5922         | 5897   | 5903        | 5905        | 5923         |
| Chinasa   | Mean      | 2.61        | 2.48         | 2.50   | 2.47        | 2.64        | 1.96         |
| Toinoi    | Std.dev.  | 1.003       | 1.062        | 1.019  | 0.952       | 1.019       | 0.936        |
| Talpel    | Ν         | 5027        | 5029         | 5016   | 5004        | 5020        | 5030         |
| Honghong  | Mean      | 2.15        | 2.75         | 2.56   | 2.24        | 2.26        | 1.73         |
| ROUR      | Std.dev.  | 0.980       | 1.052        | 1.003  | 0.921       | 0.990       | 0.840        |
| SAK       | Ν         | 4000        | 3996         | 3996   | 3993        | 3996        | 4000         |
|           | Mean      | 2.53        | 2.66         | 2.57   | 2.68        | 2.69        | 1.73         |
| Japan     | Std.dev.  | 0.949       | 0.949        | 0.906  | 0.877       | 0.993       | 0.812        |
|           | N         | 4410        | 4411         | 4397   | 4406        | 4404        | 4409         |

#### STATISTICAL ANALYSIS

The analysis data used by SPSS software. The analysis is conducted through a Multivariate Analysis of Variance (MANOVA). Multivariate analysis of variance is used to determine whether

there are any differences between independent groups on more than one continuous dependent variable. In the study used a one way MANOVA, consist of the self belief and mathematics achievement as dependent variables and following countries as independent variables.

| Variable         | Ν     | Missing | Total |  |  |  |  |
|------------------|-------|---------|-------|--|--|--|--|
| Self_belief      | 24564 | 29      | 24535 |  |  |  |  |
| Math_Achievement | 24564 | 0       | 24564 |  |  |  |  |

Table 4. Summary of the missing respondens

The student questionnaire seeks information about the self belief students in mathematics. From total of the 24564 students and 29 of them are missing or no response in filling the all questionnaires from BSBM14A to BSBM14F about self-belief.

Table 5. The Number of respondents missing in the self belief

| No | Country name   | Ν    | Missing | Total |
|----|----------------|------|---------|-------|
|    |                |      |         |       |
| 1  | Korea, Rep.of  | 5166 | 5       | 5161  |
| 2  | Singapore      | 5927 | 2       | 5925  |
| 3  | Chinese Taipei | 5042 | 10      | 5032  |
| 4  | Hongkong SAR   | 4015 | 11      | 4004  |
| 5  | Japan          | 4414 | 1       | 4413  |

Trend in mathematics achievement of the sample countries from 1995 through 2011 showed in figure below.



Figure 1. Trend in Mathematics Achievement

In figure 1 shows that Singapore country has the highest score in 1995 year, but in 2011 the highest score achieved by the Korea, Rep of. While Chinese Taipei country began as articipating in TIMSS was in 1999 and showed an increasing trend from 1999 to 2011.

# RESULTS

Table 6 shows descriptive statistics for each self belief and for mathematics achievement test scores for five countries. Estimates of the sample mean, ,standard deviation and number of students for each countries. Japanese student's showed higher self belief of

| Â                      | -              |         |                           | Std.      |       |
|------------------------|----------------|---------|---------------------------|-----------|-------|
|                        | *COUNTRY       | / ID*   | Mean                      | Deviation | Ν     |
| Self_belief            | Chinese Tair   | pei     | 2.4428                    | .38538    | 5032  |
|                        | Hong Kong      | SAR     | 2.2817                    | .43408    | 4004  |
|                        | Japan          |         | 2.4748                    | .45543    | 4413  |
|                        | Korea,Rep.o    | f       | 2.3901                    | .34271    | 5161  |
|                        | Singapore      |         | 2.1136                    | .31579    | 5925  |
|                        | Total          |         | 2.3317                    | .40756    | 24535 |
| Math_Achievement       | Chinese Tair   | pei     | 612.3158                  | 104.15084 | 5032  |
|                        | Hong Kong      | SAR     | 586.1075                  | 83.35167  | 4004  |
|                        | Japan          |         | 570.1066                  | 84.34675  | 4413  |
|                        | Korea,Rep.o    | f       | 612.8784                  | 88.99403  | 5161  |
|                        | Singapore      |         | 606.2293                  | 83.20299  | 5925  |
|                        | Total          |         | 599.0953                  | 90.78232  | 24535 |
| Table 7. Box's Test of | Equality of Co | ovariar | nce Matrices <sup>a</sup> |           |       |
| Box's M                | M 1860         |         |                           |           |       |
| F                      |                | 155.0   | 11                        |           |       |
| df1                    |                | 12      |                           |           |       |

| other countries. For mathematics achievement | the student's Korea, Rep of who showed higher |
|----------------------------------------------|-----------------------------------------------|
| achievement score.                           |                                               |

| Table 6. Descriptive | Statistics of the | self belief and r | nathematics achievement |
|----------------------|-------------------|-------------------|-------------------------|

a. Design: Intercept + IDCNTRY

Box test was used to test the assumptions of MANOVA requires that the variance matrix of the self belief and mathematics achievement variables is not different. Box's M score is 1860.462, and F test score is 156.011 and significant level is 0.000 less than 0.05, so test the null hypothesis that the observed covariance matrices of the self belief and mathematics achievement variables are different across country.

3.618E9

.000

In table 8 shows the analysis of MANOVA using the Wilk's Lambda test, using an alpha level of 0.05, the test is significant, Wilk's lambda = 0.853, F(8,49058) = 507.71 and significant on 0.000 (p < 0.05). This significant F indicates that there are significant differences among the country (IDCNTRY) groups on a linear combination of the self belief and mathematics achievement.

| Effect    |                    | Value   | F                        | Hypothesis df | Error df  | Sig. |
|-----------|--------------------|---------|--------------------------|---------------|-----------|------|
| Intercept | Pillai's Trace     | .992    | 1441020.576 <sup>a</sup> | 2.000         | 24529.000 | .000 |
|           | Wilks' Lambda      | .008    | 1441020.576 <sup>a</sup> | 2.000         | 24529.000 | .000 |
|           | Hotelling's Trace  | 117.495 | 1441020.576 <sup>a</sup> | 2.000         | 24529.000 | .000 |
|           | Roy's Largest Root | 117.495 | 1441020.576 <sup>a</sup> | 2.000         | 24529.000 | .000 |
| IDCNTR    | Pillai's Trace     | .151    | 500.419                  | 8.000         | 49060.000 | .000 |
| Y         | Wilks' Lambda      | .853    | 507.708 <sup>a</sup>     | 8.000         | 49058.000 | .000 |
|           | Hotelling's Trace  | .168    | 515.004                  | 8.000         | 49056.000 | .000 |
|           | Roy's Largest Root | .135    | 826.869 <sup>b</sup>     | 4.000         | 24530.000 | .000 |

 Table 8. Multivariate Tests<sup>c</sup>

df2

Sig.

| Effect    |                    | Value   | F                        | Hypothesis df | Error df  | Sig. |
|-----------|--------------------|---------|--------------------------|---------------|-----------|------|
| Intercept | Pillai's Trace     | .992    | 1441020.576 <sup>a</sup> | 2.000         | 24529.000 | .000 |
|           | Wilks' Lambda      | .008    | 1441020.576 <sup>a</sup> | 2.000         | 24529.000 | .000 |
|           | Hotelling's Trace  | 117.495 | 1441020.576 <sup>a</sup> | 2.000         | 24529.000 | .000 |
|           | Roy's Largest Root | 117.495 | 1441020.576 <sup>a</sup> | 2.000         | 24529.000 | .000 |
| IDCNTR    | Pillai's Trace     | .151    | 500.419                  | 8.000         | 49060.000 | .000 |
| Y         | Wilks' Lambda      | .853    | 507.708 <sup>a</sup>     | 8.000         | 49058.000 | .000 |
|           | Hotelling's Trace  | .168    | 515.004                  | 8.000         | 49056.000 | .000 |
|           | Roy's Largest Root | .135    | 826.869 <sup>b</sup>     | 4.000         | 24530.000 | .000 |

#### Table 8. Multivariate Tests<sup>c</sup>

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept + IDCNTRY

The Levene's test of equality of error variances tests the assumption of MANOVA that the variances of self belief and mathematics achievement variables are equal across the countries. As can be seen in Table 9 that self belief variable and mathematics achievement are significant (sig = 0.00 < 0.05), the indicates that tests the null hypothesis that the error variance of the self belief and mathematics achievement variables is no equal across countries, whereas MANOVA is robust so next analysis can be continue.

Table 9. Levene's Test of Equality of Error Variances<sup>a</sup>

|                  | F      | df1 | df2   | Sig. |  |  |  |
|------------------|--------|-----|-------|------|--|--|--|
| Self_belief      | 92.946 | 4   | 24530 | .000 |  |  |  |
| Math_Achievement | 86.762 | 4   | 24530 | .000 |  |  |  |
|                  |        |     |       |      |  |  |  |

a. Design: Intercept + IDCNTRY

Test of between subject effects to determine how the dependent variables differ for the independent variable, in table 10 shows test of between subject effects that countries (IDCNTRY) has a statistically effect on both self belief (F(4,2453) = 783.98, sig value = 0.000 < 0.05) and mathematics achievement (F(4,2453) = 205.16, sig value = 0.000 < 0.05). The indicates that there are difference self belief and mathematics achievement between countries categories. The following is significant the univariate ANOVA (Analysis of Variance) with Tukey's HSD post-hoc test, as shown in the Multiple Comparison table. In table 11 shows that for mean scores for self belief were significantly different between each countries ( sig value = 0.000 < 0.05). Mean mathematics achievement score were statistically significantly different between Chinese Taipei and Hong Kong SAR, Japan and Singapore (sig value = 0.000), Hong Kong SAR and Japan, Korea Rep. of and Singapore ( sig value = 0.000) , Japan and Korea Rep.of, Singapore (sig value = 0.000), and Korea. Rep.of and Singapore (Sig = 0.001) but not different between Chinese Taipei and Korea. Rep.of (sig = 0.998).

## Table 10. Tests of Between-Subjects Effects

| Source             | Dependent Variable              | Type III Sum<br>of Squares               | df     | Mean<br>Square         | F                  | Sig.         |
|--------------------|---------------------------------|------------------------------------------|--------|------------------------|--------------------|--------------|
| Corrected<br>Model | Self_belief<br>Math_Achievement | 461.937 <sup>a</sup><br>6545329.887<br>b | 4<br>4 | 115.484<br>1636332.472 | 783.983<br>205.158 | .000<br>.000 |
| Intercept          | Self_belief                     | 131994.299                               | 1      | 131994.299             | 896063.952         | .000         |

Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2014, Yogyakarta State University, 18-20 May 2014

|                 | _                | _           |       |             | <u>.</u>    | _    |
|-----------------|------------------|-------------|-------|-------------|-------------|------|
|                 | Math_Achievement | 8.602E9     | 1     | 8.602E9     | 1078539.116 | .000 |
| IDCNTRY         | Self_belief      | 461.937     | 4     | 115.484     | 783.983     | .000 |
|                 | Math_Achievement | 6545329.887 | 4     | 1636332.472 | 205.158     | .000 |
| Error           | Self_belief      | 3613.381    | 24530 | .147        |             |      |
|                 | Math_Achievement | 1.956E8     | 24530 | 7975.944    |             |      |
| Total           | Self_belief      | 137464.741  | 24535 |             |             |      |
|                 | Math_Achievement | 9.008E9     | 24535 |             |             |      |
| Corrected Total | Self_belief      | 4075.318    | 24534 |             |             |      |
|                 | Math_Achievement | 2.022E8     | 24534 |             |             |      |

a. R Squared = .113 (Adjusted R Squared = .113)

b. R Squared = .032 (Adjusted R Squared = .032)

# Table 11. Multiple ComparisonsTukey HSD

|                 |                | -                |                |            |      | 95%      | Confidence |
|-----------------|----------------|------------------|----------------|------------|------|----------|------------|
|                 |                |                  | Mean           |            |      | Interval | 1          |
| Dependent       | (I) *COUNTRY   |                  | Difference (I- |            |      | Lower    | Upper      |
| Variable        | ID*            | (J) *COUNTRY ID* | J)             | Std. Error | Sig. | Bound    | Bound      |
| Self_belief     | Chinese Taipei | Hong Kong SAR    | .1610          | .00813     | .000 | .1389    | .1832      |
|                 |                | Japan            | 0321*          | .00792     | .000 | 0536     | 0105       |
|                 |                | Korea,Rep.of     | .0527*         | .00760     | .000 | .0320    | .0735      |
|                 |                | Singapore        | .3292*         | .00736     | .000 | .3091    | .3493      |
|                 | Hong Kong SAR  | Chinese Taipei   | 1610*          | .00813     | .000 | 1832     | 1389       |
|                 |                | Japan            | 1931*          | .00838     | .000 | 2159     | 1702       |
|                 |                | Korea,Rep.of     | 1083*          | .00808     | .000 | 1304     | 0863       |
|                 |                | Singapore        | .1682*         | .00785     | .000 | .1467    | .1896      |
|                 | Japan          | Chinese Taipei   | .0321*         | .00792     | .000 | .0105    | .0536      |
|                 |                | Hong Kong SAR    | .1931*         | .00838     | .000 | .1702    | .2159      |
|                 |                | Korea,Rep.of     | $.0848^{*}$    | .00787     | .000 | .0633    | .1062      |
|                 |                | Singapore        | .3612*         | .00763     | .000 | .3404    | .3821      |
|                 | Korea,Rep.of   | Chinese Taipei   | 0527*          | .00760     | .000 | 0735     | 0320       |
|                 |                | Hong Kong SAR    | .1083*         | .00808     | .000 | .0863    | .1304      |
|                 |                | Japan            | 0848*          | .00787     | .000 | 1062     | 0633       |
|                 |                | Singapore        | .2765*         | .00731     | .000 | .2565    | .2964      |
|                 | Singapore      | Chinese Taipei   | 3292*          | .00736     | .000 | 3493     | 3091       |
|                 |                | Hong Kong SAR    | 1682*          | .00785     | .000 | 1896     | 1467       |
|                 |                | Japan            | 3612*          | .00763     | .000 | 3821     | 3404       |
|                 |                | Korea,Rep.of     | 2765*          | .00731     | .000 | 2964     | 2565       |
| Math_Achievemen | Chinese Taipei | Hong Kong SAR    | $26.2082^{*}$  | 1.89131    | .000 | 21.0488  | 31.3677    |
| t               |                | Japan            | 42.2091*       | 1.84185    | .000 | 37.1846  | 47.2336    |
|                 |                | Korea,Rep.of     | 5626           | 1.76931    | .998 | -5.3893  | 4.2640     |
|                 |                | Singapore        | $6.0865^{*}$   | 1.71207    | .003 | 1.4160   | 10.7570    |
|                 | Hong Kong SAR  | Chinese Taipei   | -26.2082*      | 1.89131    | .000 | -31.3677 | -21.0488   |
|                 |                | Japan            | $16.0009^{*}$  | 1.94920    | .000 | 10.6835  | 21.3182    |
|                 |                | Korea,Rep.of     | $-26.7709^*$   | 1.88080    | .000 | -31.9017 | -21.6401   |
|                 |                | Singapore        | -20.1218*      | 1.82706    | .000 | -25.1059 | -15.1376   |
|                 | Japan          | Chinese Taipei   | -42.2091*      | 1.84185    | .000 | -47.2336 | -37.1846   |

ISBN.978-979-99314-8-1

|              | Hong Kong SAR  | $-16.0009^{*}$ | 1.94920 | .000 | -21.3182 | -10.6835 |
|--------------|----------------|----------------|---------|------|----------|----------|
|              | Korea,Rep.of   | $-42.7718^{*}$ | 1.83107 | .000 | -47.7669 | -37.7766 |
|              | Singapore      | -36.1226*      | 1.77582 | .000 | -40.9670 | -31.2783 |
| Korea,Rep.of | Chinese Taipei | .5626          | 1.76931 | .998 | -4.2640  | 5.3893   |
|              | Hong Kong SAR  | $26.7709^{*}$  | 1.88080 | .000 | 21.6401  | 31.9017  |
|              | Japan          | $42.7718^{*}$  | 1.83107 | .000 | 37.7766  | 47.7669  |
|              | Singapore      | 6.6491*        | 1.70046 | .001 | 2.0103   | 11.2879  |
| Singapore    | Chinese Taipei | $-6.0865^{*}$  | 1.71207 | .003 | -10.7570 | -1.4160  |
|              | Hong Kong SAR  | $20.1218^{*}$  | 1.82706 | .000 | 15.1376  | 25.1059  |
|              | Japan          | 36.1226*       | 1.77582 | .000 | 31.2783  | 40.9670  |
|              | Korea, Rep. of | -6.6491*       | 1.70046 | .001 | -11.2879 | -2.0103  |

Based on observed means.

The error term is Mean Square(Error) = 7975.944.

 $\ast.$  The mean difference is significant at the .05 level.

## CONCLUSION

Data analysis indicated that self belief are significantly related to the countries, and there are several mathematics achievement are not significantly related to the countries. Mean scores for self belief were significantly different between Chinese Taipei, Hong Kong SAR, Japan, Korea Rep and Singapore. Mean mathematics achievement score were statistically significantly different between Chinese Taipei, Hong Kong SAR, Japan and Singapore, between Hong Kong SAR, Japan, Korea Rep. of and Singapore, between Japan, Korea Rep.of and Singapore, and last between Korea. Rep.of and Singapore but not different between Chinese Taipei and Korea. Rep.of.

## REFERENCES

- Abu-Hilal, M. M. (2000). A structural model of attitudes toward school subjects, academic aspirations, and achievement. Educational Psychology, 20, 75–84.
- Beaton, A. E. (1998). Comparing cross-national student performance on TIMSS using different test items. International Journal of Educational Research, 29, 529-542.
- House, J Daniel (2006). Mathematics Beliefs and Achievement of Elementary School Students in Japan and the United States: Result From the Third International Mathematics and Science Study. The Journal of Genetic Psychology, 167(1),31-45
- Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher's mathematics beliefs and teaching practice. Journal for Research in Mathematics Education, 28(5), 550–576.
- Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In: J.Sikula (Ed), Handbook of Research on Teacher Education. (pp 102 – 119) New York: Macmillan.
- Ozgen, K. & Bindak, R. (2011). Determination of self-efficacy beliefs of high school students towards math literacy. Educational Sciences: Theory & Practice, 11(2), 1073-1089.
- TIMSS. (2011). User Guide for the International Database. International Association for the Evaluation of Education Achievement. http://timss.bc.edu/timss2011/international-database.html
- TIMSS. (2011). Assessment Frameworks . International Association for the Evaluation of Education Achievement.. http://timss.bc.edu/timss2011/frameworks.html