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Abstract 

The world is facing an energy crisis due to exponential population growth and 

limited availability of fossil fuels. Carbon, one of the most abundant materials found on 

earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have 

been proposed over the last 20 years for energy generation and storage because of their 

extraordinary properties and ease to produce. Different approaches to synthesise and 

incorporate carbon nanomaterials in organic photovoltaics and supercapacitors have 

been reviewed and discussed in this work, highlighting their benefits compared to other 

materials commonly used in these devices.  The use of carbon nanotubes, fullerenes and 

graphene in organic photovoltaics and supercapacitors is described in detail, explaining 

how their remarkable properties can enhance the efficiency of solar cells and the energy 

storage in supercapacitors. . 

Both fullerene, carbon nanotubes and graphene have been included in solar cells, 

obtaining interesting results, although a number of problems are still to be overcome in 

order to achieve high efficiency and stability. However, the flexibility and the low cost 

of these materials provide the opportunity for many applications like wearable and 

disposable electronics or mobile charging. 

The application of carbon nanotubes and graphene to supercapacitors is also 

discussed and reviewed in this work, including graphene synthetized by electrochemical 

method used as electrode in flexible solid-state supercapacitors. Carbon nanotubes in 

combination with graphene can create a more porous film with extraordinary capacitive 

performance, paving the way to many practical applications from mobile phones to 

electric cars. 
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In conclusion we show that carbon nanomaterials, developed by inexpensive 

synthesis and process methods such as printing and roll-to-roll techniques, are ideal for 

the development of flexible devices for energy generation and storage, the key to the 

portable electronic of the future. 
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1 The energy future: challenges and opportunities 

The demand for energy in the 21st century is increasing due to the increase in the 

world’s population and technological advances [1]. The worldwide population is using 

today about 17 TW (17 trillions of watt) of power with around 4 TW being consumed in 

the US alone[2] . Energy experts are predicting that we will need an additional 30 TW 

by 2050 due to the global population growth and economic development worldwide [3].  

Solving this energy demand using more efficient or clean alternative energy 

sources is not just going to save the planet from harmful effects caused by the pollution 

but could reduce disparity and create a more peaceful world [4]. Energy is just one of the 

many problems that the world is facing but it is probably the most important to be 

addressed with urgency in order to also solve other off-shoot problems. Richard E. 

Smalley, Nobel Laureate in Chemistry in 1996 for the discovery of the fullerene, 

presented in one of his last talks a list named: "Top Ten Problems of Humanity for the 

Next 50 Years" [5]. The list in order of priority is: 

1. Energy 

2. Water 

3. Food 

4. Environment 

5. Poverty 

6. Terrorism and war 

7. Disease 

8. Education 

9. Democracy 

10. Population 

The energy problem is on the top of the list because, according to Smalley, it 

directly influences the other problems and thus should be prioritized accordingly by 

governments worldwide. The first immediate solution to this problem would be to work 

on energy efficiency programs because it has been demonstrated that developed 

countries could already save 25% of energy [6].  

The majority, about 87% of energy produced in 2013, was composed of fossil 

fuels such as oil, gas and coal which represented the best choice of energy production at 

competitive costs in the 20th and 21st century (Figure 1) [7]. Unfortunately, It has been 
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proven that fossil fuels have catastrophic consequences for human health [8] and global 

warming [9] and their reserves are progressively decreasing [10].  

 

 

Figure 1: (a) Global energy consumption growth from 1965 to 2013. (b) The share of 

different energy sources for the global energy consumption in 2013 (from [7]).  

 

         Despite the fact that our technological advances are able to reduce the amount of 

kilograms of carbon emitted to the atmosphere as CO2 per year per watt of power 

(Figure 2 (a)), CO2 emissions will continue to increase due to the increase in energy 

consumption worldwide (Figure 2 (b)) [11]. For example, to stabilize the concentration 

of CO2 at 350 ppm (purple line in Figure 2 (b)), ideally, we will need to reduce the 

carbon emissions worldwide to zero by 2050 [12]. 
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Figure 2: (a) Carbon intensity of the energy mix from 1890 through 2100 (projected), i.e., 

kilograms of carbon emitted to the atmosphere as CO2 per year per watt of power produced 

from combined sources of fuel. The average in 1990 is shown as an open circle on the 

carbon intensity curve. (b) CO2 emissions versus CO2 in the atmosphere, projected through 

2100 (from [12]). 

 

It has been estimated that in order to generate about 1/3 of the prospective energy 

needed by 2050, we should build around 10,000 nuclear plants over the next 36 years 

[12]! Apart from the costs of building all of these nuclear plants, nuclear energy has risks 

and hazards associated with it. Nuclear plants are in fact very expensive to build, 

maintain and protect from terroristic attacks. Not to mention, the disposal of nuclear 

waste which has still not been resolved leaving problems for future generations to deal 

with [13]. 
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Renewable energies represent the easiest way to produce clean and safe energy 

but they represented only 10% of the resources used in 2013 (Figure 1). Unfortunately, 

the cost of producing energy from renewable sources is still high. But prices are 

decreasing, allowing these technologies to be considered in the near future when the 

prices of fossil fuels will increase due to their shortage. Among all of the renewable 

energy resources available, including hydroelectricity, geothermal energy, wind energy, 

biomass and others, solar energy probably represents the best renewable resource. In 

fact, the biggest nuclear reactor that we can even imagine is the sun which has given 

energy to the earth for over 4 billion years and provides more energy in one hour than all 

of the energy consumed on our planet in an entire year. We receive on Earth about 

170,000 TW of electromagnetic radiation. Therefore, covering 0.16% of the land on 

earth with 10% efficient solar conversion systems would provide over 20 TW of power 

[3]. However, apart from the costs of this technology at the moment ($0.20-0.50 kW/hr), 

building solar farms in remote areas is not without its own problems. In fact, the 

advantage of the oil in the last century and still today is the possibility to transport this 

form of energy across oceans without the need to build expensive infrastructures. For 

example, the price per gallon of gas includes less than 10% of the transportation cost to 

the gas station [12]. On the other hand, the cost of building solar farms is very high 

considering the realization of infrastructures to transport the electricity from remote 

desert areas to the urban centres in addition to the 25% of energy that is lost in the 

transportation [3]. Receiving incentives from the government to install photovoltaic 

systems on private property could be a viable solution to benefit immediately from the 

energy produced without the construction of any infrastructure and without any 

transportation losses. However, this could definitively create a sort of energy 

independence that not favored by major energy corporations. The energy business is the 

biggest one in the world considering companies like Exxon Mobil, which was listed 

second in the US in 2014 publicly traded companies having the greatest market 

capitalization and Saudi Aramco (an oil state owned company) that was estimated from 

$781 billion to $7 trillion [14]. 

The other major problems of solar energy are that it is diffuse (170 W/m2) and 

intermittent. This is why concentration and storage become two critical issues to solve in 

order to make this energy source cost competitive with fossil fuels. The challenge over 

the next few years will not just be to produce electricity in a safe and clean way but also 

to store the energy produced with technologies more efficient and more environmentally 
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friendly than chemical batteries [13]. Creating small-scale energy storage technologies 

with a combination of smart grid technologies could help to provide energy to each 

single house when immediately needed and with a high efficiency. 

Nanotechnology could help to solve solar energy’s obstacles and meet the energy 

expectations without compromising the environment and the population’s health by 

creating new devices that are able to generate, store and transport electricity in a clean 

more efficient way and with smaller space requirements. Specifically, the use of 

nanostructured allotrope forms of carbon and derivatives such as fullerenes, carbon 

nanotubes (CNTs) and graphene have been widely investigated over the past 10 years for 

energy generation and storage. In particular, the possibility to include these 

nanostructured materials using lightweight flexible substrates, printable inks, low 

temperature and ambient pressure fabrication tools allows for dramatic reductions in the 

production costs [15].  

Organic solar cell devices and electrochemical capacitors, also called 

supercapacitors, based on carbon nanostructures allow in the near future the fabrication 

of devices that could be more efficient and cheaper to produce than conventional silicon 

solar cells and chemical batteries [16-17]. The potential to produce these devices “in 

house” with simple tools like printers, scissors and glue makes these technologies widely 

available, including in developing countries. 
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2 Carbon nanomaterials: properties and Synthesis 

Carbon, one of the most abundant materials found on earth, can be found in 

nature in its elemental form as graphite, diamond and coal. Its production is about 9 

Gt/year for technological applications with a record production compared to other 

elements [18]. Nanostructured allotrope forms of carbon have been intensively 

investigated in the past two decades because of their unique hybridization properties and 

sensitivity to perturbation during synthesis allowing for fine manipulation of the 

properties of the material. In particular, carbon can be found in several different 

hybridization states; each one with unique properties (Figure 3). In fact, chemical, 

mechanical, thermal and electrical properties of the different allotrope forms are directly 

correlated to their structure and hybridization state opening up the possibility to use the 

same material for a wide range of applications [19]. 

Herein, the synthesis and application of fullerenes, carbon nanotubes (CNTs) and 

graphene will be discussed for energy generation and storage. 

 

 

 

Figure 3: Hybridization states of carbon-based nanomaterials [19].  

 

2.1 Fullerenes 

        Fullerenes are allotrope forms of carbon, also called buckyballs because of their 

spherical structure. Fullerenes were predicted and studied theoretically before their 

experimental discovery by Japanese [20] and Russian [21] researchers in the 1970s, but 

it was only in the mid -1980s that H. Kroto, R. Smalley and R. Curl were able to detect 

the first fullerene molecule obtained by laser vaporization of carbon from a graphite 

target using mass spectroscopy [22]. The name fullerene (C60) was dedicated to the 

architect Buckminster Fuller who was famous for designing and building geodesic 
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domes [23]. The C60 is composed of hexagonal and pentagonal faces to form a spherical 

structure similar to a soccer ball with a diameter of ~10 Å. This icosahedral symmetry 

was demonstrated experimentally only in the 1990s by nuclear magnetic resonance [24]. 

The C60 was the first 0D form of allotrope carbon discovered but it is not the only one. In 

fact, large quantities of C70, C76, C78, C84 and even large clusters, such as C240, C330, have 

also been synthetized and studied [25]. In particular, the C70 can be seen as a C60 

molecule with a belt of five hexagons around the equatorial plane and exhibits a more 

oval shape (Figure 4) [26]. 

 

 

Figure 4: Structure of most significant fullerenes, the C60 and the C70. All fullerenes exhibit 

hexagonal and pentagonal rings of carbon atoms (from [26]). 

 

The main properties of C60 are [25]: 

• Young’s modulus ~ 14 GPa  

• Electrical resistivity ~ 1014 Ω m 

• Thermal conductivity ~ 0.4 W/mK  

• Bandgap 1.7 eV 

 

The other fullerene species show similar properties to C60. Depending on the 

application, different fullerenes are chosen because of the slight difference in the 

properties. 

Historically, the first technique to synthesize fullerenes is based on using laser 

ablation of graphite targets in a He gas, but does not produce large quantities of the 

materials and so is mostly used for research studies. The common method to produce 

large quantities (several grams per day) of fullerenes was first developed by Kratschmer 

et al. [27] and consisted of an AC arc-discharge between high purity graphite rods in 

100-200 Torr of helium (He) or Argon (Ar). The temperature required for fullerene 
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formation is about 2000 °C. At this temperature, the electrodes evaporate carbon 

forming soot that contains fullerenes which then condenses on the cool walls of a reactor 

made of stainless steel or Pyrex [28]. Usually, the quantity of fullerenes found in the soot 

is about 15% (~13% C60 and ~2% C70). Several setups with different architectures have 

been proposed but the one proposed by Bezmelnitsyn et al. [29] is one of the most 

popular because of the large quantity of material produced. It uses 24 carbon strip auto-

loaded anodes that are consumed one by one during the process while the cathode 

consists of a rotating carbon wheel, which passes a scraper to remove the carbon powder 

accumulated (Figure 5). This method leads to a fullerene production of about 100-200 g 

per day.  

 

 

Figure 5: Schematic depiction of an auto-loading version of an arc-discharge apparatus used 

for fullerene production (from [29]). 

 

Another method based on the combustion of benzene in an oxygen deficient 

environment has been proposed for the formation of C60 and C70 [30-31]. Benzene 

diluted with Ar is injected along the central axis of a combustion chamber and oxygen at 

12-40 Torr being fed through a large diameter porous plate. The flame chamber is 

usually composed of a burner and a fuel injection system mounted in the bottom of the 

chamber. The chamber has viewing ports to see the process and insert the plate where 

the final material is deposited (Figure 6) [31].  
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Figure 6: Diffusion flame chamber for fullerenes production [31]. 

 

Chemical methods have also been proposed to synthetize fullerenes but the yield 

production is so low to consider these methods only for research purposes. For example, 

C60 can be produced by the pyrolysis hydrogenation of naphthalene, corannulene or 

others but it requires high energies. Dehydrohalogenation of precursors can also be a 

valid chemical method to form C60 from a chloroaromatic, for example (Figure 7) [32]. 

 

 

Figure 7: Formation of C60 through dehydrogenation/dehydrochlorination (from [32]). 

 

Fullerenes can also be modified, by putting dopants in the cage. Fullerenes with 

atoms enclosed in the cage are called “endohedral fullerenes”. The endohedral fullerenes 

are divided in two categories: the endohedral metallofullerenes where metal atoms 

(typically transitional metal atoms) are inserted into the cage during the synthesis of the 

cage itself [33]; the endohedral non-metal doped fullerenes with noble gas such as 

helium, neon, argon and xenon inserted into the cage [34]. 

Another fullerene species is the exohedral fullerenes or fullerene derivatives, 

which are molecules created by bonding a fullerene with other chemical groups. A 

typical example of a fullerene derivative is the [6,6]-phenyl-C61-butyric acid methyl 



Marco Notarianni et al.  Page 13 
 

 

13 

ester (PC61BM), which is largely used in organic solar cells. Hummelen et al. [35] were 

the first group to synthesize PC61BM by reacting diazoalcane with a C60 to reach the 

[5,6] fulleroid ester and subsequent isomerization to the [6,6]methanofullerene by 

refluxing it with o-dichlorobenzene solution or with trifluoroacetic acid (Figure 8) [36]. 

 

 

Figure 8: Synthesis of PC61BM by reaction between C60 and diazoalacane with subsequently 

refluxing with o-dichlorobenzene solution or with trifluoroacetic acid (from [26]). 

 

2.2 Carbon nanotubes 

 

Carbon nanotubes (CNTs), discovered by Ijima in 1991 [37], are another 

allotrope form of carbon with a cylindrical structure. The unique structures of CNTs 

result in many extraordinary properties. Since the discovery of CNTs, scientists have 

made great progress in the experimental and theoretical study of their mechanical, 

electrical and thermal properties. CNTs exhibit remarkable properties including: 

• Tensile strength at least 37 GPa and strain to failure at least 6% [38-39] 

• Young’s modulus ~ 0.62 to 1.25 TPa [40] 

• Electrical resistivity ~ 1 µΩ cm [41] 

• Thermal conductivity ~ 3000 W/mK [42] 

In addition to their extraordinary properties, the density of the CNTs is around 

1.33-1.4 g/cm3 [40], which is half of the density of aluminium (2.7 g/cm3) making them 

very attractive for lightweight applications. 
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CNTs are categorized as single-wall carbon nanotubes (SWNTs) and multi-wall 

carbon nanotubes (MWNTs). SWNTs are single graphene sheets rolled up to form a 

tube, while the MWNTs consist of multiple rolled layers (concentric tubes) of graphene 

(Figure 9) [43]. 

 

 

Figure 9: Graphene and carbon nanotubes as (A) single wall carbon nanotube (SWCNT) and 

(B) multi-wall carbon nanotube (MWCNT) structures (from [44]). 

 

The way that the graphene is wrapped is identified by a chiral vector, whose 

components along the base vectors are defined by indices (n, m). If m = 0 the SWNTs 

are called zig-zag; if n = m, they are armchair or otherwise chiral if n ≠ m (see Figure 10) 

[45].  

The chiral vector (Ch) identified by the index (n, m) is very important because it 

strongly affects the electronic properties of the SWNTs. For a given (n, m) nanotube, if n 

= m the nanotube is metallic; if (n-m) is a multiple of 3, the nanotube is semiconducting 

with a very small band gap, otherwise the nanotube is semiconducting [45]. It was also 

observed that the energy gap scales inversely with the tube diameter [45]. 
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Figure 10: Schematic models for SWCNTs with the nanotube axis normal to the chiral 

vector, which, in turn, is along: (a) the direction ϑ = 30° in an armchair (n, n) nanotube, (b) 

the direction ϑ = 0°  in a zig-zag (n, 0) nanotube, and (c) a general ϑ direction, in a chiral  (n, 

m) nanotube. 

 

An important feature of the CNTs is that they have a high aspect ratio (A= 1010), 

with A=l/d, where l is the length of the CNTs that varies from 20 nm to 2 mm and d is 

the diameter of the tubes (typically 0.3 - 2 nm) [46].  

There are three main methods to synthesize CNTs, each of which have 

advantages and disadvantages in terms of quality and length of the nanotubes produced 

[47] (Figure 11): 

• Arc Discharge: higher batch yields (∼ 1g/day) compared to CVD.  

• Laser Vaporization: higher batch yields (∼ 1-10g/day) compared to 

CVD.  

• Chemical Vapor Deposition (CVD): high quality, most common method 

with low batch yields (∼ 30mg/day).  
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Figure 11: Schematic representation of methods used for carbon nanotube synthesis (a) Arc 

discharge; (b) Chemical vapor deposition; (c) Laser ablation  

 

In the arc discharge method, the carbon is evaporated by helium plasma ignited 

by high currents passed through an opposing carbon anode and cathode; this method 

requires the use of a metal catalyst such as cobalt [48]. The nanotubes are typically 

bound together by strong van der Waals interactions and form tight bundles. 

The second method, the laser ablation method uses continuous wave [49] or 

pulsed [50] lasers to ablate a carbon target containing 1 % of nickel and cobalt in a 1200 

°C tube furnace. A laser beam evaporates a graphite sample containing 1% nickel and 

cobalt catalyst particles [51]; in the resulting vapor, the metal aggregates into carbon 

saturated catalyst nano-particles, which sprout the growth of CNTs [48]. These catalyst 

particles are necessary to produce SWNTs rather than MWNTs [52]. The relative 

amount of SWNTs, MWNTs, and impurities produced by these methods is dependent on 

the exact reactor conditions. Impurities include fullerenes, metal catalyst particles 

encapsulated by graphitic polyhedrons, and amorphous carbon. The majority of 

impurities can be removed by purification processes based on nitric acid [53]. In both, 

the arc discharge and laser ablation methods, bundles of MWNTs and SWNTs held 

together by Van der Waals forces are generated by the condensation of carbon atoms 

generated from the evaporation of solid carbon sources.  

The third method, chemical vapor deposition (CVD), involves flowing a 

hydrocarbon gas over a catalyst in a tube furnace. The catalyst is typically transition 

metal nanoparticles on a support such as alumina. Materials grown on the catalyst are 
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collected after cooling the furnace to room temperature. Key process parameters are the 

hydrocarbon and catalyst types as well as the operating temperature [54]. Production of 

MWNTs typically involves ethylene or acetylene feedstock with an iron, nickel or cobalt 

catalyst and operating temperatures of 550-750 °C while SWNTs are produced by using 

methane or ethane feedstock, similar catalysts, and operating temperatures of 850-1000 

°C [55]. Other CVD derivatives methods are used to produce CNTs in order to reduce 

temperature growth and increase the batch yields. These methods are: plasma enhanced 

CVD where a gas such as C2H2, CH4, C2H4, C2H6, CO is supplied to the chamber and a 

discharge at high frequency is applied at the chamber [56]; laser-assisted thermal CVD 

where a continuous wave CO2 laser with medium power,, which is perpendicularly 

directed on a substrate, pyrolyses sensitized mixtures of Fe(CO)5 vapor and acetylene in 

a flow reactor [57]; HiPco (high-pressure catalytic decomposition of carbon monoxide) 

where carbon monoxide and catalyst particles generated from the decomposition of 

Fe(CO)5 are flown in a high pressure reactor (up to 10 atm) at temperatures range from 

800 - 1200°C [58]. With the HiPco method large yields (>10g/day) and narrow tubes 

can be produced [59].  

 

 

2.3 Graphene 

 

Despite their excellent electrical, mechanical and thermal properties, CNTs are 

not the only carbon nanomaterial that could play a major role in replacing conventional 

materials for energy generation and storage devices. In particular, the discovery of the 

electronic properties of graphene, another allotrope form of carbon, by Geim, Novoselov 

and co-workers [60] opened up the potential of this interesting material being employed 

in real world applications. In fact, graphene shows similar or even better mechanical, 

thermal and electronic properties than CNTs. Moreover, from an engineering point of 

view, the production and the usage of graphene could be easier when compared to the 

CNTs. Fewer manufacturing parameters, such as chirality and nature of the tubes 

(SWNTs vs. MWNTs), need to be considered and a larger availability of synthesis 

processes make it very attractive to the material science field. 

Graphene represents the building block of other important allotropes because it 

can be stacked to form 3D - graphite, rolled to form 1D - nanotubes and wrapped to form 
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0D – fullerenes (Figure 12)[61] . It consists of a single atomic layer of carbon atoms 

bonded together in a honeycomb lattice formed by two sub-lattices, A and B, evolving 

from two carbon atoms. The graphene layer has a thickness of 0.34 nm and a carbon-

carbon distance of 0.142 nm [62].  

 

 

 
 

Figure 12: Honeycomb lattice of graphene. Graphene layers can be stacked into graphite or 

rolled up into carbon nanotubes. The formation of fullerenes requires the incorporation of 

five-membered rings (adapted from [61]). 

 

The graphene characteristics measured experimentally are very close to the 

theoretically predicted limits: high intrinsic mobility at room temperature (250,000 cm2 

V-1 s-1) [63-64], high Young’s modulus (∼ 1 TPa) with an intrinsic strength of 130 GPa 

[65-66], high thermal conductivity (over 3000 Wm-1K-1) [67] and an excellent optical 

transmittance (~  97.7  %) [68]; high theoretical specific surface area (2630 m2 g-1) [69] 

non-permeability to gases [70]; capability to carry high densities of current (a million 

times higher than copper) [71]; anomalous Quantum Hall Effect (QHE) that appears 

larger than in other materials [72-73]; zero bandgap semiconducting properties with one 

type of electrons and one type of holes [74] that can also be tuned for different electronic 

applications [75-76]. 

Most of these extraordinary properties, in particular the electrical and electronic 

ones, have to be attributed to the unique band structures that this material has and that 



Marco Notarianni et al.  Page 19 
 

 

19 

were first calculated in 1947 by P.R. Wallace [77]. The valence band, formed by 

bonding π states and the conduction band, formed by the anti-bonding π* states are 

orthogonal and they touch only at six points (Dirac points indicated as K and K’).  The 

graphene electron dispersion is linear but also very sensitive to external perturbations 

which can interact with the π-electron of the system (Figure 13) [78]. 

 

Figure 13: (a) Representation of the electronic bandstructure and Brillouin zone of graphene; 

(b) The two graphene sub-lattices (red and blue) and unit cell (from [78]). 

 

It should be mentioned that graphene is not the only 2D material today that can 

offer great performance for a wide range of applications [79]. Boron nitride and 

molybdenum disulphide are in fact examples of other 2D materials that can offer the 

possibility to tune material and device characteristics for a specific application and can 

even be used in combination with graphene [80-81]. 

As mentioned previously, the synthesis processes available today to produce 

graphene can potentially achieve a better quality material with higher batch yields than 

CNTs, resulting in a lot of interest from the industries to make this technology available 

on the market. The processes available to synthesize graphene are more than ten but only 

five can be reasonably considered in terms of quality and scalability of the material 

(Figure 14) [82]: 

• Mechanical exfoliation 

• Chemical exfoliation 

• Chemical exfoliation via graphene oxide 

• CVD 

• Synthesis on SiC 
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Figure 14: Several methods of mass-production of graphene, which allow a wide choice in 

terms of size, quality and price for any particular application (from [82]). 

 

Each of these methods has its advantages and disadvantages in terms of quality, 

yield production and applications as summarized in Error! Reference source not 

found.. In particular, the mechanical exfoliation can probably produce the best samples 

in terms of charge carrier mobility but it is probably the worst in terms of scalability. 

CVD methods instead can produce pristine graphene sheets but only in limited 

quantities. Large quantities of graphene sheets are recently being obtained with CVD 

methods using catalytic metal substrates [83-84] but associated problems such as 

complexity of the process, harsh conditions (high temperature and high vacuum), high 

costs and difficulties in transferring to different substrates have still to be resolved. Also, 

graphene flakes have irregular shapes, that require a substrate to control the orientation 

for high-tech applications [78]. 

Other methods based on the chemical exfoliation of graphite and thermal or 

chemical reduction of graphene oxide can instead produce graphene on an industrial 

scale but unfortunately with structural defects that can affect the electronic and electrical 

properties [85-86]. 
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Table 1: Properties of grapheme obtained by different methods (from [82]). 

Method Crystallite 
size (µm) Sample size (mm) 

Charge carrier mobility 
(at ambient 
temperature) (cm2V-1s-1) 

Applications 

Mechanical 
exfoliation >1,000 >1 >2×105 and >106 (at 

low temperatures) Research 

Chemical 
exfoliation ≤0.1 

Infinite as a layer 
of overlapping 
flakes 

100 (for a layer of 
overlapping flakes) 

Coatings, paint/ink, composites, 
transparent conductive layers, 
energy storage, bioapplications 

Chemical 
exfoliation 
via grapheme 
oxide 

~100 
Infinite as a layer 
of overlapping 
flakes 

1 (for a layer of 
overlapping flakes) 

Coatings, paint/ink, composites, 
transparent conductive layers, 
energy storage, bioapplications 

CVD 1,000 ~1,000 10,000 
Photonics, nanoelectronics, 
transparent conductive layers, 
sensors, bioapplications 

SiC 50 100 10,000 High-efficiency transistors and 
other electronic devices 

 

      These are the main problems that are slowing down the production of high quality 

graphene on a large scale but a possible application timeline has already appeared 

indicating when possible electronic device prototypes could be expected in the future 

(Figure 15) [82]. 

 

 

Figure15: Graphene-based display and electronic devices. Display applications are shown in 

green; electronic applications are shown in blue. Possible application timeline, based on 

projections of products requiring advanced materials such as graphene. (from [82]). 

  

 Mechanical exfoliation 

 

The mechanical exfoliation method was historically the first one adopted by 

Geim, Novoselov and co-workers to isolate single layers of graphene [87]. In this 

method, the bulk graphite can be exfoliated into individual graphene sheets by using 

scotch tape and then transferring the sheet by pressing it onto a substrate such as Si, SiO2 

or Ni [88]. Typically, the bulk graphite chosen is Highly Ordered Pyrolytic Graphite 
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(HOPG) in order to guarantee a product of high quality graphene crystallites. The main 

advantages of this method are the ability to complete this process at room temperature 

and with inexpensive equipment. But, in terms of scalability, it is probably the worst and 

so it can only be considered for research purposes.  

 

 Chemical Exfoliation 

 

It is well known that the van de Waal forces that bond together the graphene 

sheets to form graphite are particularly weak and can be broken by an external 

mechanical force. A typical example of this can be seen everyday with the usage of 

pencils or solid lubricants based on graphite. 

 Graphene can also be exfoliated from graphite by chemical methods, the 

process of which is very similar to the dispersion of polymers in particular solvents. This 

method can be explained by enthalpy and charge transfer between the graphene layers 

and the solvent molecules [89-90]. In particular, it was discovered that effective solvent 

medias are the ones with surface energies similar to graphene (∼ 40-50 mJ m-2) [89]: 

∆𝐻!"#
𝑉!"#

≈
2
𝑇!"

𝐸!,! − 𝐸!,!
!
𝜙!                               (1) 

where ∆𝐻!"# is the enthalpy of the mixing, 𝑉!"# is the volume of the mixture, 

𝑇!" is the thickness of a graphene nanosheet, 𝐸!,! and 𝐸!,!  are the surface energies of 

the solvent and graphene and 𝜙!  is the volume fraction of graphene dispersed in the 

solution. From formula (1), it is clear that the enthalpy of the mixing is minimal when 

the two surface energies are close or equivalent meaning that the exfoliation will take 

place with a mild sonication [89, 91]. Furthermore, some solvents are more suitable 

because they match the graphene surface energy such as N,N-dimethylformamide 

(DMF), benzyl benzoate, g-butyrolactone (GBL), 1-methyl-2-pyrrolidinone (NMP), N-

vinyl- 2-pyrrolidone (NVP) and N,N-dimethylacetamide (DMA) while ethanol, acetone 

and water are considered poor solvents for exfoliation [92-93].  

Other solvents, such as ionic liquids [94] and chlorosulphonic acid [95], have 

also been proposed for exfoliating graphite but the exfoliation mechanism has been 

explained differently. In fact, it has been demonstrated, in these cases, that there is a 

charge transfer between the solvent and the graphite layers allowing the exfoliation. 

Therefore, the graphene sheets could be positively or negatively charged with varying 

donor and acceptor numbers depending on the solvents. 
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Surfactants and polymers can also contribute to graphite exfoliation if mixed 

with particular solvents such as water. Specifically, they can change the wettability and 

prevent the aggregation because of electrostatic repulsion [96]. 

The main problem with the liquid-phase exfoliation method is that it can produce 

graphene for films that are not completely transparent (from 80% to 90%) with high 

sheet resistance (from 8 kΩ to 5 kΩ) [89, 91]. The increased sheet resistance is due to 

damage caused by the sonication during exfoliation.  

For these reasons, electrochemical exfoliation methods are recently being 

employed to produce better quality graphene with a faster process [97-98]. In the 

electrochemical exfoliation method, the graphite or HOPG is usually connected to an 

electrode (anode), the counter electrode (cathode) is usually a platinum (Pt) wire and the 

setup is usually placed in an acidic solution (Figure 16). The complete exfoliation takes 

place in 15-30 min with voltages varying from 4V to 10V. The final graphene flakes 

produced are usually employed to make a thin film transparent electrode with a sheet 

resistance of 210 Ω/sq at 96% transparency [97] or to make thin film supercapacitors 

with capacitance values of over 1 mF/cm2 [98].  

 

 

Figure 16: (a) Schematic illustration and photo for electrochemical exfoliation of graphite. 

(b) Photos of the graphite flakes before and after electrochemical exfoliation. (c) Photo of the 

dispersed graphene sheets in a DMF solution (from [97]). 
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Chemical or Thermal Reduction of Graphene Oxide 

 

Graphene oxide (GO) is a semiconducting material stemming from the graphene 

research and can be considered a precursor of the graphene synthesis by chemical or 

thermal reduction [85-86, 99-100]. It recently attracted a lot of interest because of the 

potential to start with this material in order to have higher yield production and 

functionalization of the graphene sheets. 

The main difference between GO and graphene is that it consists of epoxy (C–

O–C) trigonally bonded in sp2 partially sp3 configurations, hydroxyl group (C=O) in sp3 

configuration displaced above or below the graphene plane and of some carboxylic 

groups (–COOH) at the edges of the graphene plane (Figure 17) [101-103]. 

 

 

Figure 17: Chemical structure of the graphene oxide with functional groups. A: Epoxy 

bridges, B: Hydroxyl groups, C: Pairwise carboxyl groups (image from 

en.wikipedia.org/wiki/Graphite_oxide – structure from [103]). 

 

GO exhibits excellent mechanical, optical, thermal and electronic properties that 

are similar to graphene because of its specific 2D structure and the presence of various 

oxygenated functional groups. From an electronic point of view, the GO, as synthesized, 

is typically insulating and has a high sheet resistance around 10!"Ω/square [104]. This 

intrinsic insulating nature is strongly related to the amount C–O–C and C=O groups of 

this material. However, chemical and thermal treatments can help to reduce the GO in 

order to remove the oxygen groups with a resulting increase in the conductivity and a 



Marco Notarianni et al.  Page 25 
 

 

25 

tuning of the intrinsic properties from insulating to semiconducting [105]. Because of the 

presence of a large number of oxygen containing functional groups and structural 

defects, GO presents enhanced chemical activity compared with pristine graphene.  

The GO can be produced chemically from graphite oxide. The graphite oxide is a 

compound of carbon, oxygen, and hydrogen in variable ratios, obtained by treating 

graphite with strong oxidizers. The first one to synthetize the graphite oxide was 

Benjamin C. Brodie in 1859 [106], by treating graphite with a mixture of potassium 

chlorate (KClO3) and fuming nitric acid (HNO3). But, in 1957, Hummers and Offeman 

found a safer, quicker, and more efficient way, which is largely used today in the 

scientific community, based on a mixture of sulfuric acid (H2SO4), sodium nitrate 

(NaNO3), and potassium permanganate (KMnO4) [107]. Recently, Hummers modified 

methods are proposed in order to have a higher fraction of well-oxidized hydrophilic 

carbon material with a more regular structure where the basal plane of the graphite is less 

disrupted [108].  

The attractive property of the GO is that it can be reduced thermally and 

chemically to produce graphene, usually called reduced GO (rGO) [109-110]. The name 

rGO is given in order to differentiate it from the pristine graphene. In fact, residual 

functional groups and defects break the conjugate structure decreasing the carrier 

mobility and concentration. Current research in rGO is not only focused on removing the 

functional groups but also on recovering the network of the graphene lattice [111]. In 

fact, the rGO results in a much lower conductivity when compared to pristine graphene 

because of large areas of defects as demonstrated by TEM images (Figure8) [112]. 
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Figure 18: Atomic resolution, aberration-corrected TEM image of a single layer H-plasma-

reduced-GO membrane. (a) Original image and (b) with color added to highlight the 

different features; (c) atomic resolution TEM image of a non-periodic defect configuration; 

(d) partial assignment of the configurations in defective areas, the inset shows a structural 

model showing clearly the strong local deformations associated with defects. All the scale 

bars are 1 nm (from [112]). 

 

The GO and rGO can be easily distinguished just by optical observation [110]. 

The rGO usually has an increased charge carrier concentration and mobility that will 

improve the reflection of light if deposited onto a metallic substrate when compared to a 

GO film deposited on the same substrate. Instead, when immersed in a solvent such as 

DMF, the vial containing GO usually has a brown colour while the one with rGO 

appears black. The microscopic aspect of GO flakes reveals a certain wrinkling of thin 

and aggregated flakes stacked to each other. Their lateral sizes range from 100 nm to 

several µm [113](Figure 19). 
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Figure 19: (a) Low magnification and (b) high magnification SEM images of graphite oxide 

flakes (from [113]). 

Before reduction, the C/O ratio is typically 4:1-2:1 [114-115] and can be reduced 

to 12:1 [116] or even to 246:1 [100] as recently obtained. The C/O ratio is usually 

obtained by X-ray photo-electron spectroscopy (XPS) because of the possibility to easily 

identify all the species and their percentage values in the material (Figure 20) [117-118]. 

 

 

Figure 20: High resolution C1s XPS spectra: deconvoluted peaks with increasing reduction 

temperature (Tr). (a) Room temperature; (b) 200 oC; (c) 400 oC. The insert shows the C/O 

ratio as a function of T. (d) 600 oC; (e) 800 oC; (f) 1000 oC. The insert shows the C1s spectra 

for starting/precursor graphite (from [117]). 
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The thermal reduction of GO is usually carried out by annealing films or 

powders in the presence of inert or reducing gases or in vacuum. The annealing 

temperature certainly affects the properties of the rGO produced. In particular, it was 

found that the C/O ratio could increase from more than 7 to 13 if the temperature was 

increased from 500 °C to 750 °C [119]. The ratio of C/O is also directly connected to the 

conductivity. In fact, Peng et al.[110] demonstrated that the conductivity increased from 

50 S/cm to 550 S/cm for annealing temperatures of 500 °C and 1100 °C respectively, 

This result has been recently confirmed and explained in details by Chambers et al. 

[120], and related to the loss of oxygen (Figure 12). 

 

 
Figure 121: Plot of Sheet resistance against annealing temperature with a comparison 
to key carbon and oxygen ratios. It should be noted that the sheet resistance has been 
plotted on a logarithmic scale [120]. 

Wu et al. [121] used an arc-discharge system, instead of a typical furnace, to 

exfoliate and reduce the graphite. With this method, they were able to obtain graphene 

sheets with a conductivity of 2000 S/cm and a C/O ratio of ∼ 18 due to the arc-discharge 

system that reached temperatures of over 2000 °C for a short time. 

Not only the temperature but also the annealing atmosphere is very important to 

determine the quality of the rGO. Becerril et al. [104] demonstrated that at 1000 °C, the 

quality of the vacuum was critical for the quality of rGO because of the reaction with 

residual O2 molecules. For this reason, the usage of reducing gases such as H2 can help 
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to decrease the annealing temperatures to 450 °C and still give a high C/O ratio of ∼ 15 

as demonstrate by Wu and co-workers [122]. Li et al. [123] instead used a mixture of 

ammonia and argon (2 Torr NH3/Ar (10% NH3) at 500 °C to produce good quality of 

doped rGO.  

The drawbacks of thermal reduction are the high energy consumption due to 

high temperatures and time consumption, considering that the GO has to reach the 

temperatures slowly in order to prevent an explosion of the material. For these reasons, 

other heating approaches based on microwave irradiation [124] and photo-irradiation 

have been considered because of the simplicity of these systems and the reduced 

exposure time [125]. 

A cheaper and easy way to reduce the GO is by chemical reduction because it is 

usually done at room temperature or with low heating [110]. Between the many 

chemical reagents that could reduce the GO, hydrazine and its derivatives are probably 

the most used by simple addition to aqueous GO solution [126-129]. The C/O ratio can 

reach values above 10 and a conductivity of 99.6 S/cm [85, 130]. Other compounds 

based on metal hybrids such as sodium hydride and sodium borohydride have also been 

used to specifically remove the C=O species. The main problem that occurred is that 

sodium borohydride, for example, does not reduce the epoxy and carboxylic groups well 

[131] and for this reason has to be utilized after treating the GO with concentrated 

sulphuric acid at 180 °C. With this method, Gao et al. [100] were able to obtain a C/O 

ratio of 8.6 and a conductivity of about 16.6 S/cm. Unfortunately, these values are still 

low when compared to the rGO obtained from the hydrazine derivative compounds. 

Other reducing agents such as ascorbic acid (C6H8O6) and hydroiodic (HI) acid 

are recently proposed because of their potential to obtain higher quality rGO when 

compared with the product obtained from hydrazine derivative compounds. Fernandez-

Merino et al. [130] were able to obtain a rGO with a C/O ratio of 12.5 and a conductivity 

of 77 S/cm with the ascorbic acid while Moon et al. [132] obtained a rGO with a C/O 

ratio of 15 and a conductivity of 300 S/cm by HI acid. 
Derivative approaches of the chemical method have also been employed to 

reduce the GO: photocatalyst reduction where the GO mixed with TiO2 particles is 

exposed to an ultraviolet (UV) irradiation [133]; electrochemical reduction with an inert 

electrode placed in an aqueous buffer solution containing GO where cyclic voltammetry 

scannings are performed between certain voltage ranges [134]; solvothermal reduction 
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where the sealed vial containing GO in a solvent can go to high temperatures and high 

vapor pressures [135]. 

A lot of effort has been spent by the research community to make the chemical or 

thermal reduction processes of GO effective but the final product is still lacking in terms 

of quality when compared to the pristine graphene. It has to be mentioned that mildly-

oxidized GO has been recently proposed because it could preserve the conjugated 

structure with few defects [136]. 

 

Chemical Vapour Deposition (CVD)	
  

 

CVD method is commonly used to produce large area uniform graphene film 

[78, 137]. Similar to the CVD method to grow CNTs, graphene can be grown from gases 

containing C on catalytic metal surfaces or by surface segregation of C dissolved in 

metals such as Fe [138], Ni [139], Co, Pt and Pd [140]. The pioneer who discovered a 

single layer of graphite on Pt was S. Hagstrom in 1965 [141], but the first to interpret it 

as a single layer was J. W. May in 1969 [142]. The CVD and surface segregation can 

also coexist causing the carbon atoms coming from the gas source to diffuse into the 

metal. The process is very difficult to control above all in polycrystalline metals where 

the grain boundaries act as nucleation sites for multilayer growth [143]. For this reason, 

single crystal and atomically smooth metals are usually preferred for growing high 

quality monolayer graphene. Also, the choice of the metal catalytic substrate is very 

important to avoid the diffusion of the carbon atoms into the metal. For example, Cu 

surfaces are probably the best choice to have a pure CVD process with the formation of a 

monolayer graphene because the diffusion of C atoms in Cu is very low (0.001 at. % at 

1000 °C) [84, 144]. The CVD process on Cu foils can be scalable using a roll-to-roll 

technique allowing for a 30 inch graphene film for a transparent electrode (Figure22(a)) 

[83]. However, even this method does not guarantee a perfect graphene in terms of 

quality. In fact, the graphene produced is mostly polycrystalline with aperiodic 

heptagon-pentagon pairs [145] or overlapped bilayer regions [146] at the grain 

boundaries (Figure22(b)). It has also been demonstrated that the presence of grain 

boundaries can reduce the mechanical and electrical properties of the graphene 

(Figure22 (c), (d)) [145, 147]. 
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Figure 22: CVD graphene. (a) Schematic of the transfer of graphene produced on Cu using 

the roll-to-roll method; (b) Two types of graphene boundaries: aperiodic heptagon-pentagon 

pairs and overlapped bilayer regions; (c) and (d) Tears occurred along the graphene grain 

boundaries after indentation (from [137]).  

 

To polish the commercial Cu foil, generally covered with protection layers, the 

electrochemical method is commonly used, followed by a treatment in a CVD system at 

2 atm of H2 for 7 hours to reduce the defects. In this way, ∼ 2.3 mm monolayer graphene 

with mobility of ∼ 11,000 cm2 V-1 s-1 was synthesized (Figure 23) [148]. 

 

 

Figure 23: Millimeter-size graphene grains made on polished and annealed Cu foils. (a) 

Schematic of the controlled pressure CVD system; (b) Typical optical and scanning electron 

microscope (SEM) images of as-produced millimeter-sized graphene grains on pretreated Cu 

foils (from [137]). 
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Enclosure-like Cu structures have also been used by Ruoff’s group to grow large 

single crystal graphene (∼0.5 mm-2 mm) [149-150]. Specifically the Cu was 

electrochemically polished and then rolled into a tube before being placed in the furnace. 

They demonstrated that, with this method, the Cu inner surface is smoother than the 

outer one allowing the formation of millimeter-sized graphene (Figure 4).  

 

 

Figure 24: Millimeter-sized graphene grains made on the inside of enclosure-like Cu 

structures. (a) Schematic of Cu enclosures for graphene growth; (b) One SEM image of 

graphene grains grown on the inner surface of a Cu enclosure; (c) Schemes of Cu tube, 

stacked Cu foils, and Cu foil between two quartz slides; (d) Typical SEM image of one 

graphene grain grown on the inner surface of the tube-like Cu structure; (e) Suppression of 

loss of Cu by evaporation due to redeposition of Cu in a confined space; (f) Height profiles 

on the inner surface (the black curve) and the outer surface (the red curve) of a tube-like Cu 

structure after annealing (from [137]).  

 

Mohsin et al. [151] also showed that the Cu surface morphology is very 

important for the graphene nucleation. In fact, by melting and resolidifying Cu substrates 

they were able to obtain a ∼ 1 mm monolayer graphene grains because the Cu roughness 

decreased from 166 nm to 8 nm after treatment (Figure 5).  
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Figure 25: Millimeter-sized graphene grains made on resolidified Cu. (a) Schematic of 

resolidifying Cu on a tungsten substrates (left) and one optical image of millimeter-sized 

hexagonal graphene grains grown on resolidified Cu (right). AFM topographical images of 

various copper surfaces: (b) as-received and (c) resolidified (from [137]). 

 

Another approach, reported by Zhou et al. [152], is to anneal Cu foils in Ar to 

keep catalytically inactive Cu2O layer and extending the graphene growth to 48 hrs. 

With this method, they were able to achieve 5 mm monolayer graphene with a high 

carrier mobility of 16,000 cm2 V-1 s-1. Luo and Ruoff groups then adopted a similar 

strategy and they were able to produce centimeter scale of single crystal graphene [153-

154]. 

The drawbacks of the CVD process are that it is expensive because a large 

amount of energy is required, the transfer to dielectric or other substrates is not easy to 

achieve and controlling the crystallographic orientation is critical for many electronic 

applications. However, the breakthrough that would make this technology available on a 

large scale production would be to develop a CVD process at a low temperature (i.e. 

plasma enhanced-CVD) that could produce large area high quality graphene on any kind 

of substrate. 

 

Epitaxial Growth on SiC  

Graphene growth on silicon carbide (SiC) has also been extensively explored 

because it can guarantee a wafer-scale growth, and SiC can be an excellent substrate for 

electronics, avoiding the transfer to another substrate. High quality graphene with a 
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controlled thickness and a specific crystallographic orientation can in fact be grown on 

commercially available semiconducting or insulating SiC wafers.  For these reasons, this 

process is very attractive for industrial applications because it can easily be integrated 

with the conventional silicon technology. 

SiC is a semiconducting material that can be found in 250 crystalline forms 

[155]. A large family of similar crystalline forms can be catalogued in particular 

structures called polytypes that present different physical properties. 

All the polytypes show a similar local chemical environment for both the carbon 

and silicon species. Specifically, each C (or Si) atom is situated above the centre of a 

triangle of Si (or C) atoms and underneath a Si (or C) atom belonging to the next layer in 

a tetrahedral co-ordination with a distance between neighbouring silicon or carbon atom 

of ∼ 3.08 Å, while the distance between the C atom to each of the Si atoms (Si-C bond 

length) is ∼ 1.89 Å. It also exists a second type of building block that is identical but just 

rotated 180° with respect to the first (Figure 6) [156]. 

 These units are periodically repeated in closed packed layers, whose stacking sequence 

give rise to the different polytypes. 

 

 

Figure 26: The characteristic tetrahedron building block of all SiC crystals. Four carbon 

atoms are covalently bonded with a silicon atom in the center or viceversa. Two types exist. 

One is rotated 180° around the c-axis with respect to the other, as shown (from [156]). 

 

The two major polytypes are α-SiC and β-SiC. The α-SiC exhibits a hexagonal 

crystal structure (similar to Wurtzite) and is usually formed at temperatures above 1700 

°C. β-SiC exhibits a cubic crystal structure with a stacking sequence of ABCABC along 

the (111) directions, which is typical of a zinc blende crystal structure (similar to 

diamond) and is formed at temperatures below 1700 °C. The α-SiC and the β-SiC can 
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also be catalogued with the Ramsdell classification scheme where a number indicates the 

layer and a letter indicates the Bravais lattice type such as Cubic (C), Hexagonal (H) or 

Rhombohedral (R) [157]. 

For example the α-SiC can also be called 2H-, 4H- or 6H-SiC depending on the 

unit cell while β-SiC can also be called 3C-SiC because of the ABC stacking (Figure 

27). 

 

 

Figure 27: Schematic representation of the stacking sequence of hexagonal SiC bilayers for 

2H, 3C, 4H and 6H polytypes (from [158]). 

 

The formation process of graphene on SiC is also called graphitization. It 

consists of the sublimation of Si atoms from the SiC surface caused by high temperatures 

with a consequent rearrangement of the carbon atoms on the surface to form a graphene 

lattice [159-161]. Graphene can be grown on both terminated C- or Si-faces but Si 

allows for better control over the number of graphene layers and gives a uniform 

coverage with an azimuthal orientation that is determined by the crystal structure [162].   

Hexagonal polytypes of SiC such as 6H and 4H with orientation (0001) are 

preferred because of the lattice structure that matches graphene lattice. However, 3C 

polytypes structure have also been used on (111) oriented surfaces in order to maintain a 

good match with the hexagonal lattice of the graphene [163-164]. 

The SiC is usually pre-cleaned in ultra-high vacuum (UHV) or in other 

environments with different techniques in order to increase the graphene quality during 
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graphitization. The three most common techniques are: heating the sample ex-situ by 

hydrogen (H2) etching for 30 min at 950 °C; preparing a silicon rich phase (3×3) in a Si 

flux and then heating the sample for 30 min at 1000 °C; heating the sample at around 

1000 °C under Si flux to remove the native oxide and to avoid silicon depletion of the 

surface [165]. 

 Graphene growth occurs at temperatures of 1200-1350 °C in UHV [166-167] 

even if graphitic bonds start to appear at temperatures around 1000 °C [168]. Graphene 

can also be grown at temperatures of 1400-1600 °C in other environments like in inert 

gas atmospheres [169-170] or in an excess of Si in the gas phase [171] in order to reduce 

the sublimation rate with the positive pressure. The growth temperature is a very 

important parameter because it influences the number of graphene layers grown and it is 

directly related to the Si diffusion (Figure 28) [172],. 

 

Figure 28: Number of graphene layers grown by annealing  3C-SiC for 10’ in UHV as a 

function of T (from [166]). 

The graphene can also be grown on a C face. The advantages are the absence of a 

buffer layer and the possibility to easily grow multi layer graphene (MLG) in all 

directions on the SiC surface (Figure 29(a)) [173]. The different graphene layers are not 

stacked in the same direction and are usually rotated about 23° with respect to each other 

(Figure 29 (b), (c)). It has been demonstrated that the rotationally stacked graphene has a 

van Hove singularity, which generates peaks in the density of the states. This property 

could be useful to tune the electronic properties of graphene. 
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Figure 29: TEM images of MLG on the C-face. (a) The cross-sectional TEM image. (b) The 

low-magnification TEM image of graphene exfoliated from the SiC substrate. (c) The FFT 

pattern from the area in (b) (from [173]).  

One potential application of the graphene grown on SiC is in high frequency 

transistors. A pioneering work was completed in 2006 by Berger et al. [174] by 

fabricating a field-effect transistor (FET). They were able to show the Dirac nature and 

the high mobility (25,000 cm2 V-1 s-1) of graphene grown on SiC. An IBM research 

group recently reached a 300 GHz cut off frequency of a graphene FET grown on SiC 

and showed the stable operation of an integrated circuit containing graphene (Figure 30) 

[175-176]. 
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Figure 30: High frequency graphene transistor. (a) and (b) Structure of graphene FET for an 

analogue radio frequency device. (c) Current gain as a function of frequency, showing a 

cutoff frequency of 300 GHz for epitaxial graphene on SiC (from [175]).  

 

The two major drawbacks of this graphene synthesis process are the high costs of 

the SiC wafers and the high temperatures involved that are not suitable for the Si 

technology [82]. The first drawback is being solved by growing thin layers (100-300 

nm) of SiC on top of Si substrates but still further development is required to have a 

uniform deposition on a large diameter wafer with a low roughness and elimination of 

the terraces in order to guarantee high quality monolayer graphene. The second 

drawback could be solved, as in the CVD process, by reducing the growth temperatures 

with the use of PE-CVD equipment. Industries and research groups worldwide are 

deeply looking at solving this problem because it could contribute to the launch of 

graphene into the electronic market.  
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3 Organic Photovoltaics 

Over the past twenty years, organic photovoltaics improved rapidly because of 

the potential to obtain a manufacturing process that is faster, less expensive and with 

higher production volumes when compared to the silicon technology [177-180]. Figure 

31 shows the best solar cell efficiencies reported by the National Renewable Energy 

Laboratory (NREL) in the United States in the last 40 years. It is noticeable that the 

organic solar cell efficiencies increased from 4% to 12 % (record established by Heliatek 

in 2013 for a tandem organic solar cell) in just a little over ten years [181]. 

 

 

Figure 31: Record solar cell efficiencies worldwide reported by NREL in 2014 (from [182]). 

 

Three problems still have to be solved in order to make this technology 

competitive with others already present on the market: the power conversion efficiency 

(PCE) [183], the device lifetime [184] and the large scale production [185].  

The common structure of an organic solar cell consists of two electrodes (in 

which one of the two has to be transparent) and an active layer between them where the 

generation of free charge carriers will occur. A buffer layer is usually included between 

each electrode and the active layer in order to prevent the charge recombination, which 

reduces the efficiency of the device. The active layer can be a double layer [one has a 
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stronger affinity for electrons (donor) and the other has a stronger affinity for holes 

(acceptor)] or a bulk heterojunction (mixture of a donor and acceptor material in bulk). 

The bulk heterojunction (BHJ) provides a larger volume of paths for the transport of free 

carriers and more efficient charge separation in comparison to the other structures [186-

188]. The first kind of BHJ architecture was originally proposed by Sariciftci et al. [189] 

and is based on an active blend of a conducting polymer (electron donor material) mixed 

with fullerenes derivatives (electron acceptor material) [190].  

The generation of a photocurrent due to light incident upon an organic solar cell 

device consists of three steps (Figure 32) [191-192]: 

1. Photon absorption in the conducting polymer (donor material).  

2. Creation of an exciton. An exciton is a bound state of an electron and a hole 

which are attracted to each other by the electrostatic Coulomb force. Its diffusion 

length is about 10 nm. 

3. Exciton separation at the interface between the donor and the acceptor. Because 

of the built-in electric field at the interface, the electron is transferred to the 

acceptor and the hole to the donor (creation of the photocurrent).  

 

 

Figure 32: Photocurrent generation steps in an organic solar cell. Step 1: photon absorption 

in the conducting polymer (donor material). Step 2: creation of an exciton. Step 3: exciton 

separation at the interface of the heterojunction (interface between the donor and the 

acceptor). 

 

   

1 2 3 
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One problem is the short lifetime of excitons generated by the light. Considering 

that their recombination distance is between 4 nm and 20 nm [193-194], the active layer 

morphology is an important parameter for the performance of the device [195-197]. 

 

3.1 Fullerene derivatives in organic solar cells 

At present, the most studied BHJ solar cells are based on fullerene derivative [6,6]-

phenyl-C61-butyric acid methyl ester (PC61BM) as the acceptor material and conducting 

polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) as the donor material [198-200].  Both 

materials are commercially available and guarantee stable devices. In the regular 

structure, Indium Tin Oxide (ITO) is typically used as the transparent conducting anode 

and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the 

electron blocking layer. The blend of PCBM and P3HT is the active layer, onto which a 

thin layer of lithium fluoride (LiF), used to block holes, and a layer of aluminium as 

cathode are coated respectively. (Figure 33 (a)) [201-202]).  

The specific choice of these materials is due to the fact that the exciton separation 

at the interface acceptor/donor and the transport of the charges across the device is 

strongly affected by the energy band alignment. Figure  shows how, in a regular 

structure, the electrons and holes can easily move from the donor/acceptor interface to 

the respective electrodes because the energy values of the lowest unoccupied molecular 

orbital (LUMO) and the highest occupied molecular orbital (HOMO) of each material 

are very similar [26]. 

 

 

Figure 33: (a) Electron transfer from P3HT to PCBM after generation of the exciton at the 

interface of the two materials. (b) HOMO and LUMO of the different materials in an organic 

solar cell structure ITO/PEDOT:PSS/P3HT:PC61BM/LiF/Al (from [26]). 
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An organic solar cell device can also have a reversed structure by inserting a hole 

blocking layer between the transparent electrode and the active layer in order to collect 

electrons and an electron blocking layer on the metallic electrode in order to collect 

holes. Figure 34 (b) shows a typical inverted structure composed of ITO as the cathode, 

zinc oxide (ZnO) as the hole blocking layer, PC61BM:P3HT as the active layer, the 

PEDOT:PSS as the electron blocking layer and gold (Au) as the anode [203].  

 

 

Figure 34: (a) Schematic of a regular organic solar cell structure; (b) Schematic of an 

inverted organic solar cell structure (from [204]). 

 

In order to characterize the performance of an organic solar cell, the electrical 

current (I) and the voltage potential (V) across the device are measured and plotted on y 

and x axis, respectively, under a standard illumination (Figure 36). The current produced 

by a solar cell is the combination of the current (ID) of the solar cell diode in the dark 

with the light-generated current (IL) (Figure 35). 

 

 

Figure 35: Simple equivalent circuit for a solar cell 
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The total current calculated from the circuit in Figure 35 is [205]: 

I = I! exp
qV
nKT − 1 − I!                        (2) 

 

The I-V curve of a solar cell is the superposition of the I-V curve of the solar cell 

diode in the dark described by the Shockley diode equation with the light-generated 

current. The light has the effect of shifting the I-V curve down into the fourth quadrant 

where power can be extracted (Figure 36). 

 

Figure 36: I-V curves of a solar cell. IL indicates the current under illumination. Voc and Isc 

represent the open circuit voltage and the short circuit current respectively, while Vmp and Imp 

indicate the maximum power point. 

 

Typical resistive effects are unfortunately present and they contribute to reduce 

the performance of the device. The most common parasitic resistances are series 

resistance (RS) and shunt resistance (RSH). RS and RSH have to be included in a more 

complicated equivalent circuit model (Figure 37). 

 

Figure 37: Detailed equivalent circuit for a solar cell  
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The efficiency η of a solar cell can be calculated from the I-V curves in Figure 36 

[205]: 

η =
V!"I!"FF
P!"

                        (3) 

where Voc is the open circuit voltage, Isc the short circuit current and FF is the fill 

factor that indicates the “squareness” of the I-V curve. The FF can also be calculated 

from Figure 36 [205]: 

FF =
V!"I!"
V!"I!"

                        (4) 

where Vmp and Imp correspond to the maximum power point on the I-V curves. 

 

 

The remarkable properties of the carbon nanomaterials described previously 

make them very attractive for use in organic photovoltaics [16]. 

Fullerenes (C60) were the first to be proposed because they have a response 

typical of n-type semiconductors and are able to accept electrons coming from the photo-

excitation of the conducting polymer [206]. The first heterojunction based on C60 was 

realized in 1993 [207]. Unfortunately, the performance of the device was still limited by 

the fact that the C60 could not disperse well and penetrate into the conducting polymer. 

For this reason, C60 derivatives were proposed because of their ability to diffuse into the 

polymer film and to form an intermixed layer. In particular, the 1-(3-

methoxycarbonyl)propyl-1-phenyl[6,6]methanofullerene or [6,6]-phenyl C61-buyric acid 

methyl ester (PC61BM) derivative is more soluble in organic solvents than pristine C60 

[35]. Currently, many stable devices are prepared with a mixture of different conducting 

polymers and PC61BM achieving a stable PCE of about 4% [208]. 

 Because the PC61BM has small absorption peaks, other fullerene derivatives 

such as phenyl-C71-butyric acid methyl ester (PC71BM), have recently been used to 

guarantee a better absorption in the visible spectra [209] boosting the PCEs to values 

higher than 7% (Figure 38) [210].  
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Figure 38: UV/Vis spectra of PC71BM and PC61BM, both in toluene. To illustrate the 

contribution of MDMO-PPV to the absorption, the (normalized) spectra of 

PC71BM:MDMO-PPV and PC61BM:MDMO-PPV, also in toluene, are represented. The inset 

shows the structure of poly(2-methoxy-5-[3’,7’-dimethyloctyloxy]-p-phenylene vinylene) 

(MDMO-PPV) (from [209]). 

 

Other fullerene derivatives and C60 functionalized macromolecules have also 

been proposed for the preparation of all polymer type solar cells but the performances 

had always been very low due to the presence of large solubilizing groups that decrease 

the charge transport [211]. 

 

3.2 Carbon nanotubes in solar cells 

CNTs have also been used in organic solar cells to replace fullerenes as acceptor 

material. Because of their high aspect ratio, electrical conductivity, tuneable optical and 

electronic properties, the quantity of CNTs introduced into the device could be 

significantly lower when compared to the amount of PCBM [212]. In fact, the ratio of 

PCBM and P3HT in the blend is usually 1:1. However, for CNTs, it could be much 

lower (~ 3% in weight of the P3HT) [213]. CNTs have been replacing either partially 

[214] or completely [213] the PCBM compounds in organic solar cells. For example, 

when they are mixed with P3HT, the polymer chains tend to wrap the CNTs with an 

electron transfer between the CNTs and the P3HT as demonstrated by Figure 39 [215-

216] and experimentally observed by SEM and TEM images (Figure 40) [217-218]. 

This interaction is usually stronger if the SWNTs are semiconducting instead of metallic 
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[219-220]. Heterojunctions between SWCNTs and P3HT molecules that have been 

studied by means of scanning tunnelling microscopy and computer simulation open 

possibilities for making novel solar cells [221-222].  Devices were made by blending 

CNTs with the P3HT, with the maximum efficiency of 3.36% [223].  However, by 

blending the N-doped MWCNTs into a mixture of PTB7 and PC71BM, the device 

reaches a high efficiency of 8.6%. It was concluded that the incorporation of N-

MWCNTs leads to not only increased nanocrystallite sizes but also smaller phase-

seperated domain sizes of both PTB7 copolymers and PC71BM. N-MWCNTs serve as 

both exciton dissociation centers and charge transfer channels.  

p-type SWCNTs can be easily obtained by chemical doping. A common method 

is the nitric acid treatment of CNTs, which introduces nitrogen dopants as well as 

increases the electrical conductivity [224-225]. The PEDOT:PSS can cause a 

degradation of the active layer and of the ITO electrode because of its hygroscopicity 

and acidity which results in a decrease in the lifetime of the solar cell device [226].  

Hence, the network film of p-type SWCNTs has been used to replace the PEDOT:PSS 

buffer layer in organic solar cells, with a device structure of 

ITO/SWCNTs/P3HT:PCBM/Al [227-228]. Using SWCNT film as the hole transport 

layer, the energy conversion efficiency of the organic solar cell is equivalent to that of 

the component device with PEDOT:PSS.  

 

 

 

Figure 39: (a) Molecular dynamics simulations of the P3HT wrapped around a SWNT (15,0) 

(from [216]). (b) Helices form on (15,0) and (10,4) SWNTs during the folding of P3HT with 

orthogonal initialization. The chirality may affect the pitch distance to some extent (from 

[215]).  



Marco Notarianni et al.  Page 47 
 

 

47 

 

Figure 40: (a) and (b) TEM images of P3HT wrapping a SWNT (7,6) (images taken at QUT, 

not yet published). (c) and (d) SEM images of P3HT wrapping bundles of SWNTs (7,6) 

(images taken at QUT, not yet published). (e) STM image and schematic of P3HT wrapping 

a SWNT (15,0) (from [229]). 

 

Efforts have also been paid to the development of hybrid solar cells with the 

structure of p-CNT/n-Si. By coating a transparent p-type SWCNT network film onto a Si 

substrate, the solar cell is formed and the energy conversion efficiency can be >11% 

[230]. By coating a layer of MoOx onto the CNT film, the efficiency reaches 17 % [231].  
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In fact, CNTs can be grown directly on the ITO substrate [232-233]. In device 

fabrication, the mixture of P3HT and PCBM is coated onto the substrate, and CNTs are 

used as 3D electrodes to collect charges from the active media. The problem is that 

MWCNTs grown at relatively low temperatures onto the ITO glass are tens of 

nanometers thick and have low areal density. With such a substrate the energy 

conversion efficiency of organic solar cell is lower than 1%. The best result so far, 2.1% 

energy conversion efficiency, was obtained in 2013 by growing CNTs onto fluorine 

doped tin oxide (FTO) glass, which is more resistant to high temperature than ITO [234].      

Other research groups are focusing their work on replacing the ITO, which is 

expensive and brittle, with a carpet of CNTs in bundles because of their optical 

transparency, high conductivity properties and the potential to be deposited onto a 

flexible substrate [235-236]. 

 

3.3 Graphene in solar cells 

More recently, graphene and its derivatives have also been proposed for organic 

solar cells. In particular, pristine graphene can be used as a transparent electrode similar 

to the CNTs carpet (Figure 41) [237-239]. 

 

 

Figure 41: Schematic of an organic solar cell with a transparent graphene electrode (from 

[239]). 

 

 Graphene can hardly be found in the active or buffer layers, because of its zero 

band gap structure, but the introduction of functional groups could open up more 

possibilities of graphene integration into different layers of an organic solar cell device. 

On the other hand, GO can easily be integrated into organic solar cells because of its 
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semiconducting behaviour that can be finely tuned as a function of the degree of 

oxidation.  

GO has been employed in the active layer for the effective exciton charge 

separation and charge transport when mixed with a conducting polymer, such as P3HT, 

because of the large surface interface area acceptor/donor and continuous pathway 

similar to CNTs [240-242]. In order to increase the solubility in typical organic solvents 

(e.g. dichlorobenzene), used to disperse the conducting polymers, the GO can be 

functionalized with other compounds such as phenyl isothiocyanate (PITC) (Figure 42) 

[241]. 

 

 

Figure 42: (a) Schematic of a photovoltaic device with P3HT:GO- PITC thin film as the 

active layer and the structure ITO/ PEDOT:PSS(30 nm)/P3HT:GO-PITC(110 nm)/Al(80 

nm). (b) Experimental J-V curves of the photovoltaic devices based on P3HT (red curve) and 

P3HT:GO-PITC composites (blue curve, 10 wt %; black curve, 20 wt %) after post 

fabrication thermal annealing at 160 °C for 20 min (from [241]). 

 

GO has been largely used in the organic solar cell field for the buffer layers. 

Specifically, it could be a valid candidate to replace the PEDOT:PSS as the electron 

blocking layer because it presents values of work function very similar to the 

PEDOT:PSS (4.6-4.8 eV) (Figure 43) [243-246].  
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Figure 43: (a) Schematic illustration of a device structure with GO as the buffer layer. (b) 

Energy level diagrams of the bottom electrode ITO, interlayer materials (PEDOT:PSS, GO), 

P3HT (donor), and PCBM (acceptor), and the top electrode Al. (c) An AFM height image of 

a GO thin film with a thickness of approximately 2 nm. (d) Current density-voltage (J-V) 

characteristics of the devices with no HEL, with 30 nm PEDOT:PSS film, and with 2 nm GO 

film. (e) J-V characteristics of the ITO/GO/P3HT:PCBM/Al devices with the GO layer of 

different thicknesses (from [245]).  

 

If chemically modified with specific dopants, such as caesium (Cs) atoms, it 

could also be used as an electron-blocking layer because its work function can be 

reduced to 3.9-4.1 eV (Figure 44) [243, 246].  
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Figure 44: Device structures (a) and energy level diagrams (b) of the normal device and the 

inverted device with GO as the hole-extraction layer and GO-Cs as the electron-extraction 

layer (from [243]). 

 

Because of the high sheet resistance of the GO, the addition of some SWNTs in 

the blend can decrease the through-thickness resistance of the GO film by an order of 

magnitude if used as a buffer layer (Figure 45) [247]. 

 

 

Figure 45: Addition of a small amount of SWCNTs into the GO buffer layer can increase the 

FF and JSC of devices with GO (from [247]). 

Bernardi et al. [248] were the first to demonstrate the possibility to have a solar 

cell with the presence of only carbon nanomaterials in the active layer without the use of 

any conducting polymer. In their work the active layer was composed of only PC71BM, 

semiconducting SWNTs, and reduced GO, achieving a PCE of 1.3%. They also used ab 

initio calculations to demonstrate efficiency limits of up to 13% for this device, which is 

comparable to those predicted for polymer solar cells (Figure 46).  
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Figure 46: (a) Structure of carbon solar cells where TFB and PEDOT:PSS are the electron-

blocking and hole-conducting layer , respectively, deposited on top of the ITO. For the best-

efficiency device, a blend of rGO, PC71BM, and s-SWCNT with a diameter of 1.2-1.7 nm is 

used as the active layer, which is denoted by “carbon nanomaterials”. (b) Current-voltage 

curves in the dark and under simulated sunlight illumination of the device. (c) Interface of 

PC71BM/rGO sheet/s-SWCNT. Hole carriers photogenerated within PCBM are transferred to 

rGO due to a large Schottky barrier for electrons, as shown by pink arrows, and then to s-

SWCNT (from [248]).  

 

In 2011, a research group at Stanford University proposed for the first time a 

solar cell based entirely on carbon nanomaterials in two architectures, one vertical and 

one horizontal (Figure 47) [249]. 
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Figure 47: Schematic of the two basic solar cell device structures: (a) a typical vertical 

structure. An inverted vertical structure is also possible, where the conductive cathode will 

be in contact with the substrate; (b) A horizontal structure that will take advantage of aligned 

SWNTs or aligned C60 microribbons (from [249]). 

 

 In 2012, the same group was able to fabricate and test a complete carbon based 

solar cell device achieving a PCE of only 5.7 x 10-3 % but they were the first worldwide 

to demonstrate an efficiency from a device composed solely of carbon nanomaterials 

[250]. A transparent electrode based on rGO was used as the anode and n-type-doped 

SWNTs as the cathode. Sunlight was absorbed by the semiconducting SWNTs to 

generate excitons that were split in the active layer composed by SWNTs and PC61BM 

[250]. 

Despite the use of new compounds in the active layer or novel carbon 

nanomaterials, such as fullerene derivatives and SWCNTs, and the implementation of 

new architectures, the PCE is still limited by the low photon absorption of the active 

layer. Though carbon nanomaterials are strong light absorbers, their percentage in the 

active layer is optimized to achieve the maximum PCE; Also thickness of the active 

layer is usually below 1 µm because adding the thickness is unfavourable for exciton 

extraction.  At present, tandem organic solar cells based on the combination of  a high 

band gap and a low bandgap polymer represent a reliable way to achieve a maximum 

spectral range for the photoabsorption in the device but do not provide a valid 

mechanism to trap the most incoming photons in terms of light-electrons conversion 

[251].  

       Graphene has also been involved in solar cells other than the organic ones. By 

coating CVD graphene onto a n-type Si, Schottky junction solar cells with efficiencies 

up to 1.5 % were made by Li et al [252]. The efficiency of such type of solar cell was 

increased to 8.6 % under AM 1.5 illumination by chemically doping the graphene sheets 

with  bis(trifluoromethanesulfonyl)amide[((CF3SO2)2NH)] [253]. By doping the CVD 

graphene film coated onto n-Si with HNO3 and subsequently spin coating a layer of 

colloidal TiO2 antireflection film, Shi et al improved the solar cell efficiency to 14.5 % 

under standard illumination [254]. Graphene films in dye-sensitized solar cells are 

mainly used as counter electrodes, which outperform platinum electrodes in some cases 

[255-258].   
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4 Supercapacitors  

Electrochemical capacitors (ECs) have been known by different names such as 

“ultracapacitors” or “power capacitors” but the most recognized name today is 

“supercapacitors”. The term supercapacitor was introduced by NEC because it was the 

first company to commercialize a device with the name SuperCapacitorTM in 1971 [259].  

Supercapacitors have been developed since 1957 when Becker [260] first used 

carbon flooded with a sulphuric acid electrolyte to develop a charge storage at the 

interface between these two materials. But, it took until 1969 for the company SOHIO 

[261] to launch this technology into the market. The real success of supercapacitors 

started in the nineties when government programs in the US began giving funds for this 

technology to be incorporated into hybrid vehicles for providing necessary power for 

acceleration [262]  

Supercapacitors can provide a higher power density but a smaller energy density 

compared to traditional chemical batteries, which make them very attractive for 

applications where instantaneous power is required. The other key characteristics of 

supercapacitors are: ability to charge-discharge within seconds; a long lifetime of more 

than 106 cycles; environmentally friendly; stable operation at different temperatures. 

Figure 48 shows a typical energy density vs. power density plot, also called Ragone plot, 

that compares different energy storage devices. It can be noticed that supercapacitors fill 

the gap between capacitors and batteries [263]. 

 

 

Figure 48: Energy density vs. Power density (Ragone plot) for various energy-storing 

devices (from [263]). 
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Today several companies such as Maxwell, FastCap Systems, NEC, Panasonic, 

Tokin and even car companies such as Volvo are investing further in developing this 

technology because of the possibility to have a large amount of energy in a small 

component that can be easily integrated into a device. Volvo for example is working at 

reducing the weight and increase the space in an hybrid vehicle by incorporating 

supercapacitors in the frame of the car (Error! Reference source not found.) [264].  

 

Supercapacitors are typically divided in two categories: electric double-layer 

capacitors (EDLCs) and pseudo-capacitors. A subcategory called hybrid capacitors can 

be identified if the EDLCs and the pseudo-capacitors are combined together into a single 

device (Figure 49) [259]. 

 

Figure 49: Hierarchical classification of supercapacitors and related types (from [265]). 

 

EDLC stores the energy typically at the electrode/electrolyte interface as shown 

in Figure 50. During the charging phase, an external electric field applied to the device 

moves the ions at the electrode/electrolyte interface [259]. 
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Figure 50: Charge and Discharge of an EDLC (from [259]). 

 

Positive and negative ions are accumulated at this interface, typically in the order 

of 5-10 Å [266]. The conventional formula that defines the capacitance is: 

  C = ε!ε!   
A
d                         (8)  

where ε! is the permittivity of the vacuum, ε! is the permittivity of the electrolyte and d 

is the thickness of the double layer with surface area A. The thickness (d) of the interface 

is very small (order of Å), as discussed previously, while the surface area (A) of the 

electrode is usually very high owing to the porous structures with a large internal surface 

area, which are usually chosen for supercapacitor applications. In this way, the 

capacitance can reach a high value (>10 µF/cm2).  

The model described to store the charges at the interface electrode/electrolyte 

was designed for the first time by Helmholtz [267] in the 19th century. But only in 

around 1910 Gouy [268] and Chapman [269] were able to expand the model considering 

the thermal motion of the electrolyte ions that leads to a diffuse layer. Stern [270], in 

1924, combined the two theories in order to identify an inner plane, inner Helmholtz 

plane (IHP),  and an outer plane, outer Helmholtz plane (OHP). The ions of the IHP are 

strongly bonded to the IHP resulting in a strong electric field in that area (Figure 51) 

[271]. The capacitance established at one electrode will be given by the sum of a 

compact double layer capacitance (CH) and diffusion region capacitance (Cdiff): 
1
C =

1
C!

+
1
C!"##

                        (9) 
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Figure 51: Models of the electrical double layer at a positively charged surface: (a) the 

Helmholtz model, (b) the Gouy-Chapman model, and (c) the Stern model, showing the inner 

Helmholtz plane (IHP) and outer Helmholtz plane (OHP). The IHP refers to the distance of 

closest approach of specifically adsorbed ions (generally anions) and OHP refers to that of 

the non-specifically adsorbed ions. The OHP is also the plane where the diffuse layer begins. 

d is the double layer distance described by the Helmholtz model. Ψ0 and Ψ are the potentials 

at the electrode surface and the electrode/electrolyte interface, respectively (from [271]). 

 

The ideal total capacitance in an EDLC is given by the sum of the capacitances 

established at the two electrode/electrolyte interfaces [272]: 
1
C =

1
C!
+
1
C!
                        (10) 

Unfortunately, other parameters have to be considered in a simple equivalent 

circuit of an EDLC such as the insulation resistances (R1, R2), the electrodes resistances 

(Re1, Re2) and the interelectrode resistance (RS) [259] (Figure 52). 

 

 

Figure 52: Simple equivalent circuit 

In contrast, pseudo-capacitors are devices where the charge is not stored 

electrostatically but electrochemically similar to what happens in conventional lithium 

ion batteries. The materials that compose the electrode are subjected to a faradaic 
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oxidation/reduction reaction at specific potentials during charging and discharging 

processes involving absorption or intercalation with the electrolyte. Pseudocapacitive 

materials such as conducting polymer (e.g. polyanaline (PANI) [273]) or metal oxides 

(e.g. ruthenium oxide (RuO2) [274]) can have 10-100 times larger capacitance than 

EDLCs but they suffer from poor stability, short lifetime and are expensive to 

synthesize. Because of these drawbacks, they are usually combined with carbon 

materials creating hybrid supercapacitors. The capacitance for a pseudocapacitor is 

calculated using the following formula [259]: 

C
Q =

F
RT exp ∆E F

RT

1+ exp ∆E F
RT

!                         (11) 

By using the Nernst equation that describes the general oxidation/reduction 

phenomenon. E represents the equilibrium potential for the reaction and E− E! = ΔE, 

F is the Faraday constant defined as the number of coulombs per mole of electrons and 

Q describes the charge related to the materials subjected to oxidation or reduction. 

Pseudocapacitors are not explored in this work because of the drawbacks 

described previously and of the uncertainty on whether they should be categorized in the 

supercapacitor or in the battery family. In fact, their operating mechanism is more 

similar to a chemical battery than to a supercapacitor. 

In order to characterize the electrical properties of a supercapacitor, three 

electrochemical measurement techniques are usually performed: cyclic voltammetry 

(CV), galvanostatic charging/discharging and electrochemical impedance. 

The CV technique consists of applying a potential sweep rate dV/dt from a lower 

limit to an upper limit and vice-versa in order to measure the reversibility of the process 

and the stability of the device. The characteristic of the CV curve depends on the rate of 

the electron transfer reactions, the chemical reactivity of the electrode/electrolyte and 

the voltage scan rate [275]. The CV measurement is usually plot as Voltage (V) vs. 

Current (I) with an ideal supercapacitor presenting a rectangular CV curve when the 

capacitance (C) is constant across the different potential scan range (Figure 53). The 

capacitance (C) can be calculated by measuring the current (I) from the CV curves and 

knowing the potential sweep rate (dV/dt) applied from the formula: 

I = C
dV
dt                         (12) 
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Figure 53: CV curve of an ideal supercapacitor 

 

Most of the real CV curves for an EDLC show deviations from the ideal shape 

because of the electrolyte and electrode resistance and unwanted Faradaic reactions. For 

example, Figure 54 shows a simulation of CV curves with increasing internal resistance 

at a fixed scan rate [276].  

 

Figure 54: Simulation of CV curves with increasing internal resistance (1, 5, 10, 25 and 50 

Ω) at 20mV/s scan rate with C= 1F and voltage range from 0 to 1V (from [276]). 

 

The galvanostatic charge/discharge measurement is instead obtained by 

charging/discharging the supercapacitor at a certain defined current (I) within a certain 

voltage window. The galvanostatic charge/discharge measurement is plotted Time (s) vs. 

Voltage (V) (Figure 55). Capacitance and the internal resistance of the device can be 

extracted from this measurement technique. The capacitance is calculated from the slope 

of the charge or discharge curve with the formula [259]: 

C = I/(−∆V/∆t)                        (13) 
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 The effective series resistance (RESR) is calculated from the voltage drop (Vdrop) 

that occurs at the initial portion of the discharge with the formula [259]: 

R!"# = V!"#$/2I                        (14) 

 

 

Figure 55: Simulation of the charge/discharge curves with increasing internal resistance (0, 

1, 5, 10 and 25 Ω) at I = 10 mA. The smallest Vdrop can be achieved with the smallest internal 

resistance. The largest total time of charging is also achieved with the smallest internal 

resistance (from [276]). 

 

It can be noticed in Figure 55 that the total time of charging to a specific voltage 

limit decreases with increasing the internal resistance. This occurs because the electrode 

has a smaller effective charge capacity within a specific voltage window [276]. 

Another useful measurement technique to reveal the properties of a 

supercapacitor is the Electrochemical Impedance Spectroscopy (EIS) that measures the 

impedance (Z) of a device over a range of frequencies. The data obtained are usually 

graphed as the real part of the impedance (Zreal) vs. the imaginary part of the impedance 

(Zimag), also called the Nyquist plot. Figure 56 shows the Nyquist plot of an ideal and a 

simplified supercapacitor. The ideal capacitor exhibits just a vertical line while a real one 

usually starts with a 45° line and then approaches a vertical line at higher frequencies. 

The 45° region, also called the Warburg region, is governed by the distributed 

resistance/capacitance in a porous electrode and by the electrolyte conductivity [259]. 

The effective series resistance (RESR) and the equivalent distributed resistance (REDR) can 

also be extracted from the Nyquist plot as shown in Figure 56 [272]. 
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Figure 56: Schematic representation of the Nyquist impedance plot of an ideal capacitor 

(vertical thin line) and a supercapacitor with porous electrodes (thick line) (from [272]). 

 

To determine the supercapacitor performance another two important factors, 

apart from the capacitance, need to be considered. One is the energy density that 

corresponds to the amount of energy stored per unit volume or mass and the other one is 

the power density that combines energy density with the speed that energy can be drawn 

out of a device. 

The energy density per unit volume, expressed in Wh/cm3, is defined by the 

formula [259]: 

E =
1
2C!"#$%

(ΔV)!

3600                         (15) 

  

where C!"#$% = C/V is the volumetric stack capacitance expressed in F/cm3 and 

ΔV is the operating voltage window of the device.  

The power density per unit volume, expressed in W/cm3 is defined by the 

formula [259]: 

P =
(ΔV)!

4R!"#Ad
                                      (16)  

Where A is the area of the electrodes, d is the distance between the electrodes, 

ΔV is the operating voltage window of the device and R!"#  is the total effective 

resistance of the device that can be extracted from the galvanostatic charge/discharge 

curves. 
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The maximum energy and power densities are achieved at the maximum voltage 

applied to the device which is usually determined by the maximum voltage that the 

electrolyte can tolerate before decomposition and breakdown of the electrode material. 

Using formula (15), the easiest way to increase the energy density is to increase 

the capacitance (C) of the device but it is not the only way. The energy density can  also 

be improved by increasing the voltage window of the electrolyte  (ΔV), which follows a 

quadratic law. Organic electrolytes can achieve higher voltages compared to aqueous 

electrolytes allowing a dramatic increase in energy density. Unfortunately, they also 

show an effective series resistance (R!"#) of at least 20 times larger than the aqueous 

ones which reduces the power density (formula (16)) [272].  

 

In summary, several important characteristics of an EDLC have to be considered 

to maximize the performance of the device [259]: 

• The specific surface area of the electrodes to increase the capacitance 

• The conductivity of the electrodes to reduce the power density losses 

• The resistance to any oxidation/reduction on the surface of the electrode 

to maintain good stability and performance 

• Controlled distribution size of the pores that should match the size of the 

electrolyte ions 

• Electrochemical stability of the electrolyte in the voltage operating 

window of the device 

• Low interconnected resistance of the electrolyte 

• Good wettability of the electrolyte on the electrode 
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4.1 The use of carbon nanotubes and graphene in supercapacitors 

 

Activated carbons (ACs) are the most commonly used materials for commercial 

electrodes in supercapacitors because of their stable electrical properties, large surface 

area and low cost. ACs can be produced by thermal and/or chemical activation of 

various types of materials containing carbon such as wood, coal etc. For thermal 

activation, high temperatures are usually employed (from 700 °C to 1200 °C) in the 

presence of oxidising gases. For chemical activation the temperatures are lower (from 

400 °C to 700 °C) and require activating agents such as phosphoric acid, sodium 

hydroxide and others [271]. These two processes allow the production of a material with 

a high surface area (3000 m2/g) but with a wide pore size distribution consisting of 

macropores (> 50 nm), mesopores (2-50 nm) and micropores (< 2 nm) [277-278]. Even 

with such a high surface area, the experimental capacitance obtained with these materials 

is lower (<10 µF/cm2) when compared to the theoretical calculations [266]. This 

difference indicates that not all of the pores are contributing to the charge storage 

mechanism and that the specific surface area is not the only parameter to be considered 

in a supercapacitor [279]. Pore shape and structure, pore size distribution, electrical 

conductivity and wettability of the electrode are other important parameters that 

contribute to the performance of the device as discussed previously. Pore size 

distribution in ACs is still a problem that has to be addressed [271]. 

Carbon nanomaterials like CNTs and graphene are excellent candidates to 

replace ACs as electrode materials in supercapacitors because of their large specific 

surface area, remarkable chemical stability, and high electric conductivity[280-281]. 

Commercial supercapacitors contain metal foils as current collectors such as Al, Cu, and 

stainless steel, whicht require special techniques to passivate the metal surface to avoid 

corrosion effects due to the use of alkali or acidic electrolyte [282]. Because of the high 

conductivity of CNTs and graphene, they can function as the capacitor electrode and the 

current collector leading to a more simple and lightweight device. 

 CNTs in forms of either arrays grown on a substrate [283-284] or network films 

processed from a suspension [285] have been employed in supercapacitors by using. 

CNTs show a specific capacitance of 15-200 F/g [286] with a high power capability but 

a low energy density due to a small specific surface area (<500 m2g-1) caused by the 

entangled arrangement of the CNTs with only the outermost tubes of the bundles 

exposed to the electrolyte (Figure 57) [287].  
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Figure 57: Schematic illustration of the spaces in a carbon nanotube bundle for the storage of 

electrolyte ions (from [287]). 

 

CNTs grown on a substrate can be very useful for high power applications when 

compared to ACs. In fact, the schematic in Figure 58 shows that if the CNTs are all 

aligned on a current collector, the resistance can be low because the path for ions and 

electrons is much simpler than in the typical ACs electrode [287]. 

 

 

Figure 58: Comparison on conducting paths for electron and electrolyte ion in aligned carbon 

nanotubes and granular activated carbon (from [287]). 

 

MWNTs were the first to be proposed as an electrode for an EDLC, showing a 

capacitance of ~100 F/g, a low surface area of ~400 m2/g and a low power density value 

of 8 kW/kg [288]. However, apart from their high volumetric capacitance values [289] 

obtained by optimizing the growth process, SWNTs are preferred because they exhibit a 

higher surface area and consequently better overall performance [290].  
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Many strategies have been proposed to increase the surface area of SWNTs such 

as oxidizing methods, pyrolysis methods or by the use of liquids’ zipping effects [285, 

291-292]. The electrochemical oxidation in KOH can increase the capacitance by three 

times because it can facilitate the opening of some tubes which increases the surface 

area. A “super growth” method has also been beneficial to increase the surface area to 

1000 m2/g when compared to the 400-800 m2/g for commercial CNTs, proving that this 

material can have better capacitive performance than ACs [292].  

A combination of the “super growth” and oxidation methods has also been 

proposed in order to further increase the surface area to over 2000 m2/g with an energy 

density and power density of 24.7 Wh/kg and 98.9 kW/kg, respectively [293]. 

Vertical SWNTs with high purity and high density have also been grown by 

CVD and then removed from the substrate as a single unit, uniformly densified and 

engineered into different shapes by the zipping effects of liquid. The surface tension of 

the liquids and the strong van der Waals interactions can zip the SWNTs together to 

near-ideal graphitic spacing. With this method, no insulating binders were needed with a 

conductivity 20 times larger than ACs and a higher capacitive performance than in the 

conventional SWNTs forest (Figure ) [294]. 
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Figure 59: CV curves of the EDLC using the SWNT solid sheet (red) and as-grown forest 

(black) as electrodes comparing the capacitance per weight (a) and capacitance per volume 

(b). (c) Change in the capacitance per volume using the SWNT solid sheet (red) and as-

grown forest (black). (d) Schematic model comparing the ion diffusion for activated carbon 

and the SWNT solid material. (e) Capacitance versus discharge current density comparing 

SWNT solid (red) and activated carbon (blue) for 0.1 and 0.5 mm electrode thicknesses 

(dashed and solid lines, respectively). (f) Potential drop associated with an increase in 

internal resistance (IR drop) for SWNT solid (red) and activated carbon (blue) for 0.1 and 

0.5 mm electrode thicknesses (dashed and solid lines, respectively) (from [294]). 

 

Another alternative, a mixture of CNTs and carbon aerogel, has been proposed to 

increase the surface area to 1059 m2/g, obtaining a specific capacitance of 524 F/g 

(Figure ) [295]. 
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Figure 60: SEM images of CNTs- carbon aerogel nanocomposites (from [295]). 

 

Recently, graphene and graphene derivatives have been considered for 

supercapacitor electrodes, not only for their exceptional electrical, thermal and 

mechanical properties described previously, but also for two other main reasons: the 

theoretical high surface area (2630 m2/g) [69] and the inexpensive methods of 

production [82]. In fact, for supercapacitor applications, methods like the chemical 

exfoliation of graphite or the thermal reduction of GO are probably the most used 

because of the straight forward large quantity production of quality materials for 

electrodes. The addition of certain functional groups can also help to disperse the 

material in different solvents [296].  

Stoller et al. [69] were the first group to explore the possibility of using 

chemically modified graphene, specifically reducing GO with hydrazine hydrate for 

EDLCs obtaining specific capacitance values of 135 F/g and 99 F/g for aqueous and 

organic electrolytes, respectively, even with a low surface area of 705 m2/g (Figure ).  



Marco Notarianni et al.  Page 68 
 

 

68 

 

Figure 61: Graphene based EDLCs utilizing chemically modified graphene as electrode 

materials. (a) Scanning electron microscopy (SEM) image of the material. (b) Transmission 

electron microscopy (TEM) image showing individual graphene sheets. (c) Low- and high- 

(inset) magnification SEM images of the electrode. (d) Schematic of test cell assembly (from 

[69]).  

 

In order to maximize the performance by increasing the surface area, Wang et al. 

[297] proposed to reduce the GO in a gas-solid reduction process (Figure ). In this way, 

they were able to obtain a capacitance of 205 F/g with a power density and energy 

density of 10 kW/kg and 28.5 Wh/kg, respectively.  

 

 

Figure 62: Morphology of graphene oxide and graphene-based materials. (a) Tapping-mode 

AFM image of graphene oxide and height profile plot. (b) and (c) SEM images at lower and 
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higher magnification respectively of the graphene oxide reduced by a gas-solid reduction 

process (from [297]).  

 

Others, like Chen et al. [298], proposed to mildly reduce the GO with 

hydrobromic acid in order to maintain some oxygen-functional groups that could 

promote the wettability of the electrode and avoid restack of the graphene sheets 

allowing a better penetration of the electrolyte ions through the film. With this method, 

they were able to achieve a very high capacitance value of 348 F/g. 

An exfoliation process of GO was also explored as a method to fabricate EDLCs 

electrodes. In particular, Lv et al. [299] showed that low temperature exfoliation of GO 

(200 °C) led to graphene based electrodes with 264 F/g and 122 F/g in aqueous and 

organic electrolytes, respectively.  

Zhu et al. [124], instead, proposed a very inexpensive way to reduce the GO for 

EDLCs electrodes. They reduced the material in a conventional microwave oven 

obtaining a surface area of 463 m2/g with a specific capacitance of 191 F/g [124]. 

Certainly, these are not the highest values reported but the ability to use a simple 

microwave creates a pathway for a scalable and inexpensive process to fabricate 

electrodes for supercapacitors. 

A similar concept was proposed in 2012 by Kady et al. [300] using  a standard 

LightScribe DVD optical drive to reduce GO and employing a gel electrolyte based on 

poly(vinyl alcohol) (PVA)-H3PO4 to fabricate flexible devices (Figure ). The material 

showed a high surface area of 1520 m2/g and a specific capacitance of 265 F/g.  
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Figure 63: (a-d) Schematic illustration of the process to make laser-scribed graphene-based 

electrochemical capacitors. A GO film supported on a flexible substrate is placed on top of a 

LightScribe-enabled DVD media disc, and a computer image is then laser-irradiated on the 

GO film in a computerized LightScribe DVD drive. (e) As shown in the photograph, the GO 

film changes from golden brown color to black as it reduced to laser-scribed graphene. The 

low-power infrared laser changes the stacked GO sheets immediately into well-exfoliated 

few-layered laser scribed film, as shown in the cross-sectional SEM images. (f) A symmetric 

supercapacitor is constructed from two identical laser scribed electrodes, an ion-porous 

separator, and an electrolyte. (g) A schematic diagram of the all-solid-state device illustrates 

that the gelled electrolyte can serve as both the electrolyte and separator. The inset is a 

digital photograph showing the flexibility of the device. (h) CV curves collected at a scan 

rate of 1000 mV/s when the device was bent with different angles. (i) Galvanostatic charge-

discharge curves for four devices connected in series. The inset image shows the glow of an 

LED light power by the four devices in series (from [300]). 

   

In 2013, Kady et al. [301] were able to further develop this technique by 

fabricating more than 100 micro-supercapacitors on a single DVD disc in 30 minutes. 

The devices were built on flexible substrates to integrate them with MEMS or CMOS 

technologies into a single chip (Figure ). These micro-supercapacitors demonstrated a 

very high power density of 200 W/cm3. 
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Figure 64: (a-c) Schematic diagram showing the fabrication process for a laser scribe 

graphene micro-supercapacitor. A GO film supported on a PET sheet is placed on a DVD 

media disc. The disc is inserted into a LightScribe DVD drive and a computer-designed 

circuit is etched onto the film. The laser inside the drive converts the golden-brown GO into 

black laser scribe graphene at precise locations to produce interdigitated graphene circuits 

(a). Copper tape is applied along the edges to improve the electrical contacts, and the 

interdigitated area is defined by polyimide (Kapton) tape (b). An electrolyte overcoat is then 

added to create a planar micro-supercapacitor (c). This technique has the potential for the 

direct writing of micro-devices with a high areal density (d,e). More than 100 micro-devices 

can be produced on a single run. The micro-devices are completely flexible and can be 

produced on virtually any substrate (from [301]). 

 

Other graphene structures have been proposed to further boost the performance 

of EDLCs because planar structures have limited capacitance values due to the 

restacking of the graphene sheets which reduces the surface area. Porous 3D graphene 

networks have been synthetized by freezing and drying a chemically reduced GO 

dispersion [302-303] or by CVD on nickel foam [304-305] to overcome the limitations 

of planar structures.  

Xu et al. [302] prepared a 3D porous reduced GO hydrogel with a capacitance of 

186 F/g and a capacitance decay of only 8.4 % after 10,000 charge/discharge cycles in a 

PVA-H3PO4 gel polymer electrolyte (Figure ). Even with such a high capacitance, the 

power density is limited to 0.5-5 kW/kg indicating that the porous structure has a large 

internal resistance and needs to be combined with an Au current collector. An electrode 

that also functions as a bendable high efficient current collector is usually preferred for 

supercapacitor applications in order to maintain a high power density value [306]. 
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Figure 65: (a) SEM image of the interior microstructure of a graphene hydrogel. (b) 

Photograph of the flexible solid-state supercapacitor based on the graphene hydrogel film. 

(c) Photograph of a green LED powered by the three supercapacitors in series. (d) CV curves 

of the flexible solid-state device at 10 mV/s for different bending angles (from [302]).  

 

Hybrid structures of CNTs and graphene electrodes have also been proposed for 

supercapacitors in order to combine the properties of both materials boosting the 

capacitance and the energy density of the devices [307-311]. In fact, the idea is to 

increase the surface area and have a defined architecture for the electric transport by 

using graphene to store the charges and CNTs as an efficient charge transport. Jha et al. 

[309] demonstrated that a device made of reduced GO mixed in a proportion of 1:1 with 

SWNTs achieved a specific capacitance of 222 F/g and with an energy density of 94 

Wh/kg in an ionic liquid electrolyte (Figure ). 

 

 

Figure 66: (a) Schematic illustration of a supercapacitor cell fabricated from reduced 

graphite oxide (rGO) and single-walled carbon nanotubes (SWCNTs). (b) CV curves of the 
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materials at 10 mV/s. (c) SEM images of the hybrid material consisting of rGO and SWNTs 

in a 1:1 weight ratio. (d) TEM image of the hybrid material showing few-layer graphene 

sheets covering a network of SWNTs (from [309]). 

 

Flexible supercapacitors have been integrated into organic solar cells in order to 

eliminate the energy loss in the wiring between the energy conversion device and the 

storage device. Wee et al. [312] demonstrated that it is possible to integrate both devices 

in one printable all-solid device. The supercapacitor was charged by a polymer solar cell 

and the discharge was achieved by connecting it to a resistor (Figure ). The capacitance 

obtained from the discharge was only 28 F/g but the possibility to combine both devices 

onto a flexible and printable surface opens up the avenue to a scalable and cheap process 

to have a generation and storage device simultaneously. 

 

 

 

Figure 67: (a) and (b) Schematic and equivalent circuit illustration for a polymer solar cell 

and a supercapacitor during charging and discharging, respectively. The voltage and current 

profiles versus time for the charging (c) and discharging (d) process (from [312]). 
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5 Conclusions 

The energy demand is increasing rapidly due to dramatic population growth and 

technological advances worldwide. Conventional energy sources are limited and are 

polluting the environment. Photovoltaics represent a viable solution to produce clean 

energy but their costs are still high due to materials and process techniques involved. 

Moreover, an efficient energy storage system is required to make it independent from the 

grid, because the sun is an intermittent energy source. Carbon, one of the most abundant 

materials found on earth, can be a valid material for both energy generation and storage, 

as it can be employed in real world devices like organic solar cells and supercapacitors in 

one or more of its allotrope forms (Graphene, Carbon Nanotubes, Fullerene), with 

inexpensive synthesis and process methods based on printing and roll-to-roll techniques. 

In this paper, different approaches to synthesize and use carbon nanomaterials for energy 

generation and storage applications have been explored.  

Carbon nanomaterials have been reviewed for organic solar cells. Graphene produced by 

electrochemical exfoliation could be a viable solution to produce a large quantity of 

transparent electrodes for organic solar cell. Achieving high quality material at a large 

scale still remains an issue in order to compete with conventional conducting transparent 

electrodes such as ITO. However, its potential of being used on flexible substrates, 

makes it very appealing for the organic solar cell field where roll-to roll techniques have 

been recently employed to increase the production volume. 

Also, fullerene derivatives, CNTs and graphene oxide could help to boost the 

performance of organic solar cell devices if employed in the active or buffer layers. In 

fact, their semiconducting properties can be tuned by doping them with other materials 

or by changing their physical structure in order to absorb a broader range of solar 

spectrum wavelengths. 

Carbon nanomaterials, in particular graphene, have also been proven to be very efficient 

and reliable materials for energy storage. The high specific surface area and conductivity 

of graphene are two key features for employing this material in supercapacitors. The 

ability to use a solid-state electrolyte composed of graphene oxide or a gel polymer 

electrolyte can lead to printable flexible devices that do not require any encapsulation. 

Even if carbon nanotubes present a low specific surface area, they can still be employed 

in combination with graphene to increase the conductivity of the electrode or the surface 
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roughness of the film to increase the number of ions stored at the interface 

electrode/electrolyte.  

Carbon is still surprising researchers for its properties. Completely new carbon structures 

have been synthesized over the last 20 years, from 0D fullerenes to 1D nanotubes and 

2D graphene, amazing the scientific community. The low cost of this element, the sixth 

most abundant on earth, makes it as an attractive choice to replace conventional 

materials for energy generation and storage applications.  
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