Sustainable life-cycles of natural-precursor-derived nano-carbons

Kateryna Bazaka1,2,3, Mohan V Jacob2, and Kostya (Ken) Ostrikov1,3,4,\ast

1 Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia

2 Electronics Materials Lab, College of Science, Technology and Engineering, James Cook University, Townsville, QLD 4811, Australia

3 Plasma Nanoscience Laboratories, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, New South Wales 2070, Australia

4 School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia

\ast Email: kostya.ostrikov@qut.edu.au

DOI: 10.1021/acs.chemrev.5b00566

Publication Date (Web): December 30, 2015
Abstract

Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on non-equilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This Review discusses the distinctive effects of non-equilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed — from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially re-usable by-products.
Author biographies

Kateryna Bazaka is an ARC DECRA Fellow with Health and Biomedical Technologies, Queensland University of Technology, Australia. Kateryna is a recipient of the Australian Institute of Nuclear Science and Engineering Postgraduate Award, the Queensland Government Smart Women Smart State Award, the Science and Innovation Awards for Young People in Agriculture Fisheries and Forestry, two Endeavour Research Fellowships, the Inaugural Advanced Manufacturing Cooperative Research Centre Student Prize, an AINSE Gold Medal, and an author of 1 monograph and 45 refereed journal papers. Her research focuses on nanoscale processing of materials and living matter for biomedical and electronic applications.

Mohan Jacob is currently an Associate Professor and the Associate Dean Research Education for the College of Science, Technology and Engineering, James Cook University. University of Delhi awarded him PhD in 1999 in Electronic Science. He published over 150 peer reviewed articles. He developed methods to precisely characterize the dielectric properties of materials at cryogenic temperatures and microwave frequencies. His main research interests also includes the development of polymer thin films and graphene from sustainable sources using plasma enhanced chemical vapor deposition, environmentally friendly biomaterials and electronic and biomedical devices.

Kostya (Ken) Ostrikov is a Science Leader of the Office of Chief Executive with CSIRO, and a Professor with Queensland University of Technology, Australia. His achievements include Pawsey (2008) medal of Australian Academy of Sciences, Walter Boas (2010) medal of Australian Institute of Physics, Building Future Award (2012), NSW Science and Engineering Award (2014), election to the Academy of Europe (2015), 6 prestigious fellowships in 6 countries, several patents, 3 monographs, and 470 journal papers. His research on nanoscale control of energy and matter contributes to the solution of the grand challenge of directing energy and matter at nanoscales, to develop renewable energy and energy-efficient technologies for a sustainable future.
Table of contents

1 Introduction

1.1 Article scope, rationale, focus and organization

2 Salient features of plasma processing

2.1 Green chemistry attributes

2.2 Chemical reactivity

3 Plasma-enabled fast processing: the case of carbon nanodots

4 Plasma-enabled reduced-temperature graphene synthesis

5 Plasma-enabled process-driven synthesis: the case of graphenes

5.1 Continuous substrate- and catalyst-free synthesis of free-standing graphenes

5.2 Non-precursor-specific synthesis of surface-supported graphenes

5.3 Intentional defect creation and functionalization

6 Synthesis of 3D and hybrid nanostructures

7 Controlling surface organization of nanostructures: case of CNTs

8 Effect of precursor chemistry on CNT synthesis

9 CNT synthesis using raw materials

10 Natural product-derived catalysts and supports

11 Precursor-driven synthesis: organic polymers and small molecules

11.1 Natural semiconducting and electrode materials

11.2 Low-cost synthetic semiconductors

11.3 Dielectric, encapsulation and substrate materials

12 Plasma-enabled precursor-driven synthesis: plasma polymerization

13 Naturally degradable devices
14 Natural degradation of 1D, 2D and hybrid nanostructures
15 Plasma-enabled degradation of materials
16 Conclusion and perspectives
1. Introduction

Recent times have seen a significant penetration of nanotechnology, including nanofabrication, nanoscale processing and nanomaterials, leading to substantial advances in diverse fields spanning from health care and medicine to agriculture and manufacturing. Nanomaterials and nanoscale processing have become the cornerstone of modern low-cost high-tech devices and a key enabler for device miniaturization and the ever increasing scale of integration, where novel materials synthesis, inspection and metrology capabilities, and device patterning techniques advance device scaling. Indeed, presently available silicon electronics offers a good combination of performance, stability in applications and low cost.\(^1\) Some of these devices consume less energy than their predecessors and can be used to produce energy in more environmentally-friendly manner.

However, operating at nanoscale comes at a cost. Properties that arise at nanoscale are sensitive to the presence of defects, be it chemical impurities within the material, thickness variation or presence of pin holes across the thin film, or the quality of the interface between the device layers.\(^2\) Such precision requires large energy expenditure and the use of highly-purified, often toxic precursors. Using exceedingly integrated nanoscale materials also makes traditional recycling virtually impossible, as more complex, expensive and resource-consuming processes are required to decompose or extract specific chemicals and/or components. Designed to maintain stability over time and under varied environmental conditions, most nanomaterials and nanodevices do not degrade readily in the landfill or require post-processing to initiate their decomposition.

Yet in nature, abundant, renewable carbon-based molecules can be organized into highly-complex, efficient molecular and nanoscale assemblies that amply perform their designated function and then
naturally degrade into basic units that can be reorganized into a new structure. While at this stage it may not be possible to match the natural world in sophistication, it is nonetheless reasonable to attempt to imitate its guiding principles – i) the cyclic approach to resource utilization; ii) energy and material efficiency across the product life-cycle; iii) sustainability, whereby present and future needs are met with minimal harm to the environment or human health. The principles of green chemistry and green engineering broadly reflect these ideas and provide practical guidance on how nature-inspired sustainable life-cycles may be integrated into modern technology.

Defined by Anastas and Warner, the 12 principles of green chemistry focus on atom economy, safer chemical syntheses and chemicals, preferably through utilization of raw, renewable material sources, energy and process efficiency, and waste prevention by minimizing unnecessary derivatization and by designing inherently degradable materials. These concepts have also been at the foundation of a transformational United Nations’ 2030 Agenda for Sustainable Development adopted in September 2015, where one of the key goals and targets is to protect the planet from degradation while ensuring prosperity. Implied in the Agenda is the necessity to drastically change the way in which companies do business, with an emphasis on respectful treatment of nature and shared responsibility. Central to this approach is corporate transformation led by the integration of ecological, social and economic values into every strategy, product development or business model. Indeed, the Agenda explicitly points to integral thinking as the principle enabler for global sustainable development, which echoes the holistic approach to product design discussed in this review. Even more specifically, the Agenda places an important emphasis on green energy, pollution reduction, use of renewable resources, and biological degradability of goods sold to the consumer. While sustainability thinking that permeates through the corporate value chain may necessitate significant innovation in each stage of product lifecycle and some investment, the costs are likely to be off-set by new product and market opportunities, and financial gains from more efficient operation models.
Figure 1 conceptualizes potential application of green chemistry principles and sustainable resource utilization in high-tech devices, with communication devices and energy harvesting taken as representative examples. Readily-available low-value materials are converted into functional nanomaterials using facile chemical processes that use and generate minimal amount of hazardous substances. Energy- and atom-efficient processing is then used to assemble and integrate these natural-product-based nanomaterials into electronic devices. At the end of their operational lifespan, the devices are either programmed to decompose *in situ*, naturally degrade in landfill, or can be disintegrated into useful precursors and recycled.

![Figure 1](image)

Figure 1. Sustainable life-cycles of carbon-based devices for electronics and energy applications.

In practice, identifying *materials* that would enable the development of electronic devices that are high-performing, affordable, and sustainable at every stage of their lifecycle remains a significant challenge. Currently available high-performance silicon-based electronic devices use a wide variety of expensive,
potentially hazardous, highly-purified, non-renewable materials, such as rare earth elements, indium, tantalum and precursor gases, such as flammable toxic silane \((\text{SiH}_4)\), that are derived as a result of a complex, multi-stage and multi-environment processing. The processing and assembly of device components typically require specific production environments (e.g., high temperature and/or low pressure), significant material (as precursors, catalysts and auxiliary substances), water and energy input (to drive the reaction and/or maintain the processing environment), and the use of hazardous auxiliary substances, such as organic solvents and catalysts.9-10

Carbon-based nanomaterials, such as organic polymer films, carbon nanotubes and graphene, have been actively researched as a more sustainable alternative to inorganic materials and nanostructures.11 Abundant and chemically diverse, carbon precursors can generally be converted into functional nanomaterials using less energy and at lower cost, with the energy required to produce a high-quality plastic being up to six orders of magnitude smaller than that needed to manufacture similar-quality inorganic structures.9 Post-use, many types of carbon-based materials break down naturally or can be processed to become more readily degradable;12-15 they can also be reformed into lower-value products16-17 or become a source of energy.18

In terms of their utility in miniaturized devices, carbon-based materials can reversibly withstand extreme mechanical deformation (due to relatively weak bonding between organic molecules), have very low-weight and large-area coverage.19-20 These attributes make carbon-based sensors, lighting, displays and photovoltaics well suited to the development of soft robots, where amenities for sensing and actuation, data storage, processing and communication, and power generation and storage need to be integrated in the soft materials with compliance that is similar to that of soft biological tissues.21 The shape-shifting behavior of soft robots prevents the use of most conventional sensing devices; encoders, metal or
semiconductor strain gauges, inertial measurement units, and even commercially-available piezoelectric-polymer-based bendable sensors fail to meet the requirement of being both bendable and stretchable. Examples of electronic skin, textiles and surface conforming foils are presented in Figure 2. These devices can be fabricated at low cost using most high-throughput industrial methods, such as inkjet or offset printing, as well as conventional semiconducting processing techniques.
Figure 2. Examples of carbon-based devices, such as stretchable light emitting diodes, displays, and organic solar cells for use in soft robotics.

A. Flexible, all-graphene-based field-effect light emitting diode (LED) on a polyethylene terephthalate (PET) substrate has a bright spectrally tunable electroluminescence from blue (~450 nm) to red (~750 nm). LED size is 100 × 100 μm, bending radius is ~8 mm.

B. A highly-sensitive, pressure-responsive organic field-effect transistor array enabling both...
rapidly and slowly adapting mechanoreceptors in electronic skin is fabricated from easily deformable,
mechano-electrically coupled, microstructured poly(vinylidenefluoride-trifluoroethylene) ferroelectric
gate dielectrics and an pentacene semiconductor channel.
C. LED based on single-walled carbon
nanotube-polymer composite electrodes can be linearly stretched up to 45% strain.
D. Free-standing ultrathin polymer LED continue operating as they become crumpled (simultaneously compressed and
twisted by 90°.
E. Thin large-area active-matrix sensor platform (12 × 12 tactile pixels) that is extremely lightweight (3 g m⁻²) and ultraflexible.
F. All-solution-processed elastomeric polymer LED continues to emit light at strains of 120%, e.g. when bended over a sheet of cardboard.
G. Ultra-lightweight sub-2 µm-thick organic solar cell with specific weight of 10 W/g.
However, many of the currently produced carbon-based materials are non-degradable under mild
conditions, presenting a significant waste management and ecological issue. The performance of devices
assembled from minimally-processed carbon materials using high-throughput methods is lower compared
to silicon-based electronics. Conversely, high-quality carbon-based materials are typically produced by
multi-step processing and/or derivatization of non-renewable, e.g., petrochemical resources using methods
that are complex, energy-demanding, as well as consume and produce hazardous substances. Furthermore,
the quantities of electronics-grade carbon nanomaterials that can be produced at present are low. Although
significant efforts are devoted to this area of research, it is unlikely that in the near future carbon
electronics will achieve the necessary performance or scale to represent a competitive disruptive technology compared to silicon-based electronics; rather, it may be useful for some niche electronic applications.

There are a number of promising processing environments and chemistries that have the potential to enable simpler, greener synthesis and assembly of carbon materials with the desired properties and level of quality on an industrially-relevant scale. Some examples include Leidenfrost drop synthesis for synthesis of porous nanostructures,32 reversible addition-fragmentation chain-transfer polymerization,33-34 enzymatic polymer synthesis,35 low-temperature hydrothermal treatment for synthesis of nanodots,36-37 biosynthesis of nanoparticles,38 and many others.

These methods offer a variety of notable benefits over conventional methods of synthesis. However, they are often restrictive with regard to the chemistry and the physical state of the carbon source. Yet, most raw carbon materials are composed of multiple chemistries with the relative compositions that may vary from batch to batch. Process- and environment-driven synthesis routes, where the nature of the process (more so than precursor chemistry) governs the inherent features of the nanomaterials produced may be more appropriate for the conversion of raw mixed carbon sources.

Low-temperature non-equilibrium plasmas have been demonstrated to afford the level of chemical reactivity and precision necessary to convert organic precursors of different chemical composition and state into diverse nanomaterials. The plasma environment acts as a catalyst by enabling the new and accelerating the existing reactions or by lowering the energy thresholds (e.g., process temperature) required to initiate and maintain the reactions in both gas and liquid phases.39-42 Although plasma catalysis is outside the scope of this review, further information about the underlying mechanisms governing the
use of plasma as a catalyst in conversion, reforming, synthesis and degradation of materials can be found in a recent review by Neyts and colleagues, and other relevant works.41, 43-44

The plasma processing environment is flexible, and can facilitate a range of synthesis mechanisms, from \textit{precursor-driven} synthesis to \textit{process-driven} synthesis. At lower energy doses per precursor molecule, the conditions are more conducive to the survival of the original monomer structure in the final product (Figure 3.A).45-47 This can best be observed in lower-power plasmas operated in a pulsed mode, where short (few µs) plasma discharges deliver sufficient energy to generate radicals that can then recombine into a polymer via chemical radical chain reactions during ms-long plasma-free periods.48-50 The resultant materials retain some of the properties of the monomer, such as desirable chemical or biological activity, electrical and optical characteristics, yet acquire new attributes due to the plasma-driven polymerization. Here, the original chemistry of the precursor largely determines the synthesis pathways and the chemistry of the final nanostructures. Table 1 shows experimentally determined bond enthalpies for a range of organic and inorganic materials.51 While typical enthalpy values range from 60 to 130 kcal mol-1, the bond enthalpy can be affected considerably by the cleavage of ancillary bonds within the molecule, such as the case in reactions where multiple bonds are broken.

Table 1. Molecular bond dissociation energies for RH \rightarrow R + H: experimental bond enthalpies and radical heats of formation at 298 K.51 Reprinted with permission from ref.. Copyright 2003 American Chemical Society.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>DH_{298} (kcal mol-1)</th>
<th>ΔH_{298}(R) (kcal mol-1)</th>
<th>Molecule</th>
<th>DH_{298} (kcal mol-1)</th>
<th>ΔH_{298}(R) (kcal mol-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H\textsubscript{2}</td>
<td>104.2 ± 0.0</td>
<td>52.1 ± 0.0</td>
<td>OH- \rightarrow O- + H</td>
<td>110.2 ± 0.1</td>
<td>−33.2 ± 0.1</td>
</tr>
<tr>
<td>HF</td>
<td>136.3 ± 0.0</td>
<td>18.8 ± 0.2</td>
<td>OH+ \rightarrow O + H+</td>
<td>115.2 ± 0.1</td>
<td>59.6 ± 0.0</td>
</tr>
<tr>
<td>Molecule</td>
<td>Value</td>
<td>Error</td>
<td>Molecule</td>
<td>Value</td>
<td>Error</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>--------</td>
<td>------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>HCl</td>
<td>103.2 ± 0.0</td>
<td>29.0 ± 0.0</td>
<td>H₂S</td>
<td>91.2 ± 0.1</td>
<td>34.2 ± 0.2</td>
</tr>
<tr>
<td>HBr</td>
<td>87.5 ± 0.1</td>
<td>28.6 ± 0.1</td>
<td>SH</td>
<td>84.1 ± 0.2</td>
<td>66.2 ± 0.3</td>
</tr>
<tr>
<td>HI</td>
<td>71.3 ± 0.1</td>
<td>26.0 ± 0.1</td>
<td>H−NO</td>
<td>49.5 ± 0.7</td>
<td>21.8 ± 0.1</td>
</tr>
<tr>
<td>H−CN</td>
<td>126.3 ± 0.2</td>
<td>105.0 ± 0.7</td>
<td>H−ONO (trans)</td>
<td>79.1 ± 0.2</td>
<td>8.2 ± 0.1</td>
</tr>
<tr>
<td>NH₃</td>
<td>107.6 ± 0.1</td>
<td>44.5 ± 0.1</td>
<td>H−ONO₂</td>
<td>101.7 ± 0.4</td>
<td>17.6 ± 0.3</td>
</tr>
<tr>
<td>H₂O</td>
<td>118.8 ± 0.1</td>
<td>8.9 ± 0.1</td>
<td>SiH₄</td>
<td>91.7 ± 0.5</td>
<td>47.9 ± 0.6</td>
</tr>
<tr>
<td>OH</td>
<td>101.8 ± 0.1</td>
<td>59.6 ± 0.0</td>
<td>GeH₄</td>
<td>83.0 ± 2.0</td>
<td>53.0 ± 2.0</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>105.0 ± 0.0</td>
<td>35.1 ± 0.1</td>
<td>CH₂CH−H</td>
<td>110.7 ± 0.6</td>
<td>71.1 ± 0.7</td>
</tr>
<tr>
<td>CH₃</td>
<td>110.4 ± 0.2</td>
<td>93.3 ± 0.2</td>
<td>HCC−H</td>
<td>133.3 ± 0.1</td>
<td>135.6 ± 0.2</td>
</tr>
<tr>
<td>CH₂</td>
<td>101.3 ± 0.3</td>
<td>142.5 ± 0.2</td>
<td>C₆H₅−H</td>
<td>112.9 ± 0.5</td>
<td>80.5 ± 0.5</td>
</tr>
<tr>
<td>CH</td>
<td>80.9 ± 0.2</td>
<td>171.3 ± 0.1</td>
<td>C₆H₅ → o-C₆H₄+H</td>
<td>78.0 ± 3.0</td>
<td>106.0 ± 3.0</td>
</tr>
<tr>
<td>CH₃CH₂−H</td>
<td>101.1 ± 0.4</td>
<td>29.0 ± 0.4</td>
<td>C₆H₅ → m-C₆H₄+H</td>
<td>94.0 ± 3.0</td>
<td>122.0 ± 3.0</td>
</tr>
<tr>
<td>(CH₃)₂CH−H</td>
<td>98.6 ± 0.4</td>
<td>21.5 ± 0.4</td>
<td>C₆H₅ → p-C₆H₄+H</td>
<td>109.0 ± 3.0</td>
<td>138.0 ± 3.0</td>
</tr>
<tr>
<td>CH₃CH₂(CH₃)CH−H</td>
<td>98.2 ± 0.5</td>
<td>16.1 ± 0.5</td>
<td>CH₂CHCH₂−H</td>
<td>88.8 ± 0.4</td>
<td>41.4 ± 0.4</td>
</tr>
<tr>
<td>(CH₃)₃C−H</td>
<td>96.5 ± 0.4</td>
<td>12.3 ± 0.4</td>
<td>C₆H₅CH₂−H</td>
<td>89.8 ± 0.6</td>
<td>49.7 ± 0.6</td>
</tr>
<tr>
<td>Alcohols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H−CH₂OH</td>
<td>96.1 ± 0.2</td>
<td>−4.08 ± 0.2</td>
<td>CH₃CH₂O−H</td>
<td>104.7 ± 0.8</td>
<td>−3.6 ± 0.8</td>
</tr>
<tr>
<td>CH₃O−H</td>
<td>104.6 ± 0.7</td>
<td>4.3 ± 0.7</td>
<td>(CH₃)₂CHO−H</td>
<td>105.7 ± 0.7</td>
<td>−11.5 ± 0.7</td>
</tr>
<tr>
<td>CH₃S−H</td>
<td>87.4 ± 0.5</td>
<td>29.8 ± 0.4</td>
<td>(CH₃)₃CO−H</td>
<td>106.3 ± 0.7</td>
<td>−20.5 ± 0.7</td>
</tr>
<tr>
<td>H−CH₂SH</td>
<td>94.0 ± 2.0</td>
<td>36.0 ± 2.0</td>
<td>C₆H₅O−H</td>
<td>90.0 ± 3.0</td>
<td>−58.0 ± 3.0</td>
</tr>
<tr>
<td>Peroxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOO−H</td>
<td>87.8 ± 0.5</td>
<td>3.2 ± 0.5</td>
<td>CH₃CH₂OO−H</td>
<td>85.0 ± 2.0</td>
<td>−6.8 ± 2.3</td>
</tr>
<tr>
<td>CH₃OO−H</td>
<td>88.0 ± 1.0</td>
<td>4.8 ± 1.2</td>
<td>(CH₃)₃COO−H</td>
<td>84.0 ± 2.0</td>
<td>−25.2 ± 2.3</td>
</tr>
<tr>
<td>Carbonyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H−CHO</td>
<td>88.1 ± 0.0</td>
<td>10.1 ± 0.1</td>
<td>H−COOH is ≥</td>
<td>96.0 ± 1.0</td>
<td>−46.5 ± 0.7</td>
</tr>
<tr>
<td>CH₃C(O)−H</td>
<td>89.4 ± 0.3</td>
<td>−2.4 ± 0.3</td>
<td>CH₃COO−H</td>
<td>112.0 ± 3.0</td>
<td>−43.0 ± 3.0</td>
</tr>
<tr>
<td>H−CH₂CHO</td>
<td>94.0 ± 2.0</td>
<td>2.5 ± 2.2</td>
<td>C₆H₅COO−H</td>
<td>111.0 ± 4.0</td>
<td>−12.0 ± 4.0</td>
</tr>
<tr>
<td>HCOO−H</td>
<td>112.0 ± 3.0</td>
<td>−30.0 ± 3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Plasma synthesis outcomes are directly affected by the amount of energy that is transferred from the plasma to the precursor and the residence time of the precursor in the plasma.42, 46, 52 A. Under low-power conditions (10W), RF plasma processing of natural essential oil results in the formation of a polymer structure that retains some of the original chemistry and biological activity of terpinen-4-ol. Increasing the power delivered to the reactor from 10W to 25W results in a complete loss of antibacterial activity characteristic of the monomer.46, 52 B-C. Increasing input RF energy to 500 W results in the breakdown of the precursor into smaller molecular, radical and atomic fragments and its rebuilding into vertically oriented graphene, as confirmed by SEM (B) and TEM (C) microscopy.42 Panel A reprinted with permission from ref. 23. Copyright 2010 American Chemical Society. Panel A insets reprinted with permission from ref. 21b. Copyright 2011 Acta Materialia Inc. Published by Elsevier Ltd. Panels B-C reprinted with permission from ref. 20d. Copyright 2015 American Chemical Society.
When the energy transferred from the plasma greatly exceeds the energy required to dissociate specific bonds in the precursor molecule, even brief exposure of the precursor to the plasma, i.e. very short residence time results in almost complete monomer dissociation and fragmentation into atoms and smaller molecular and radical fragments. The dissociation is made possible by the comparatively high energy density of plasmas, i.e. high concentration of energy, which leads to highly-reactive chemistries, such as energetic charged species and neutral species in excited and metastable states. These fragments and atoms are then re-build in a guided fashion into nanostructures that are physico-chemically and functionally distinct from the original precursor (Figure 3.B). Both the degree of dissociation and subsequent re-assembly and organization of the newly created structure are guided by the attributes of the processing environment. Vertically oriented graphene sheets fabricated from different monomers using low-temperature plasmas demonstrate very similar chemical and physical characteristics regardless of the chemistry of the carbon precursor. Here, the processing parameters more so than the chemistry/state of the carbon source define the properties of the final nanostructure, hence the synthesis outcome is largely process-driven.

1.1 Article scope, rationale, focus and organization

The aim of this article is to critically review recent developments in green nanofabrication that have the potential to facilitate sustainable life-cycles of carbon-based electronics and energy devices, focusing specifically on three aspects of the cycle: (i) low and negative value materials; (ii) green synthesis; and (iii) degradation pathways.
Focus on zero-, one- and two-dimensional carbon nanomaterials. Carbon forms a basis for the chemistry of life and is abundant in all living systems. For thousands of years, humanity has benefited from a wide range of carbon-based materials, transforming them into a variety of useful products. Carbon itself can take many forms via its different degrees of hybridization (sp, sp2, and sp3), giving rise to many allotropes, each with unique and useful set of properties. While the applications for graphite, diamond, and amorphous carbon are well-established, relatively newly discovered buckminsterfullerenes, graphene, nanotubes, nanobuds, nanofibers, lonsdaleite, glassy carbon, carbon nanofoam, carbine and some others are yet to reach their full potential in materials science, electronics, and nanotechnology. However, since these materials hold promise in the development of sustainable advanced technologies, their green synthesis will be a focus of this paper.

Focus on process-driven synthesis. As briefly discussed in section 1, one of the major challenges in integrating these carbon materials into commercially viable products is the cost–quality trade-off: for nanostructures to display their unique and valuable features reliably, they need to be fabricated from high-quality (chemically pure, homogenous, extensively processed and often modified) input materials using complex, time- and energy-consuming processing techniques. A closely related issue is the quality–quantity trade-off: nanomaterials produced at the industrially-relevant level of throughput do not always display the same level of quality of their lab-scale counterparts because it is difficult to retain the same level of structural quality upon scale-up.
Figure 4. Examples of different morphologies of carbon nanostructures produced from various carbon sources. A. Tree-like structures from camphor. B. Helical fibers from 1,3-butadiene. C. Spheres from toluene. D. Tubes and fibers from polypropylene. E. Aligned CNTs from palm oil. F. Tripod-like carbon nanofibers from trichloroethylene. Panel A reprinted with permission from ref. 31a. Copyright 2009 Elsevier Ltd. Panel B reprinted with permission from ref. 31b. Copyright 2000 Elsevier Ltd. Panel C reprinted with permission from ref. 31c. Copyright 2005 Elsevier Ltd. Panel D reprinted with permission from ref. 31d. Copyright 2010 Elsevier Ltd. Panel E reprinted with permission from ref. 31e. Copyright 2009 Elsevier Ltd. Panel F reprinted with permission from ref. 31f. Copyright 2012 Elsevier Ltd.
The cost–quality trade-off is a key issue in using raw and waste products because their chemical composition is both complex and difficult to control. While a wide range of synthetic and natural products, e.g. hydrocarbons (saturated, unsaturated, substituted, etc.), polymers (polyethylene, polypropylene, etc.) and natural products (oils, plant fibers) can be successfully converted into a range of carbon nanostructure morphologies (Figure 4), the process of conversion and the resultant product may be more controllable and predictable in the case of simple hydrocarbon sources. The C/H ratio, chemical functionality, structure and physical attributes of the carbon precursor significantly affect the chemistry and morphology of the resultant nanomaterials. Indeed, in the vast majority of cases the chemistry of the monomer determines both the synthesis method used and the properties of the nanostructures produced (precursor-driven synthesis). Table 2 shows that even when chemically-homogenous monomers are used, the yield and morphology of nanostructures is affected by the monomer chemistry.

Table 2. Effect of chemistry of carbon source on nanostructure yield and morphology. Adapted from Shaikjee and Coville. Reprinted with permission from ref. 32. Copyright 2012 Elsevier Ltd.

<table>
<thead>
<tr>
<th>Alkynes</th>
<th>Yield (%)</th>
<th>Morphology</th>
<th>Type of fiber</th>
<th>Growth mode</th>
<th>Diameter (mm)</th>
<th>SEM image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>20</td>
<td>Helical</td>
<td>Bidirectional</td>
<td>Helices: 50–100, straight fiber: 100–150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butyne</td>
<td>12</td>
<td>Helical, straight, amorphous</td>
<td>Bidirectional, tip growth</td>
<td>Helices: 100–150, straight fibers: 100–200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>N</td>
<td>Description</td>
<td>Growth Direction</td>
<td>Length (nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>--</td>
<td>----------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Pentyne</td>
<td>7</td>
<td>Small length fibers, and larger more ordered fibers</td>
<td>Tip growth (smaller fibers), bidirectional and 100–200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Pentyne</td>
<td>4</td>
<td>Small length, amorphous-like fibers</td>
<td>Tip growth</td>
<td>30–50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Hexyne</td>
<td>9</td>
<td>Straight fibers</td>
<td>Bidirectional</td>
<td>100–150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexyne</td>
<td>2</td>
<td>Stubby fibers, with some amorphous carbon deposits</td>
<td>Tip growth</td>
<td>15–35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hexyne</td>
<td><1</td>
<td>Amorphous carbon deposits</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Heptyne</td>
<td>11</td>
<td>Straight fibers, stacked-like, roughened edges</td>
<td>Bidirectional, tip growth</td>
<td>100–150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Octyne</td>
<td><1</td>
<td>No fiber growth, catalyst covered with carbon deposits</td>
<td>– Variable</td>
<td>20–250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Chloroprop-1-yne</td>
<td>13</td>
<td>Solid carbon fibers, with roughened edges</td>
<td>Bidirectional</td>
<td>150–220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Quantity</td>
<td>Shape Description</td>
<td>Growth Direction</td>
<td>Length Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Propyne-3-ol</td>
<td>5</td>
<td>Striated fibers, with tapered ends</td>
<td>Bidirectional</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop-2-yn-1-amine</td>
<td>2</td>
<td>Stubby fibers</td>
<td>Tip growth</td>
<td>40–80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Bromoprop-1-yne</td>
<td><1</td>
<td>Fibers, spheres and encapsulated catalyst particles</td>
<td>Tip growth</td>
<td>Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethynyl thiophene<sup>a</sup>, acetylene</td>
<td>9</td>
<td>Straight fibers</td>
<td>Bidirectional</td>
<td>100–150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethynyl aniline<sup>a</sup>, acetylene</td>
<td>4</td>
<td>Rough, unstructured carbon fibers</td>
<td>Tip growth</td>
<td>70–150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethylsilyl acetylene<sup>a</sup>, acetylene</td>
<td>8</td>
<td>Helical, straight, Y-shaped (dominant) fibers</td>
<td>Bidirectional and tri-directional growth</td>
<td>50–150 and 350–500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl prop-2-ynoate</td>
<td>13</td>
<td>Striated fibers</td>
<td>Bidirectional</td>
<td>200–400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a used for pre-treatment of catalyst only; fibers grown for acetylene after pre-treatment.

While this approach may work well for the synthesis of structures where the chemistry of the carbon source is desirable and to be retained, such as in the case of conducting and semiconducting pigment-based and insulating DNA-based films, it may not suit large-scale reforming of mixed carbon waste into
Focus on plasma-enabled process-driven synthesis. Reactive plasmas is a process environment that can be controlled to deliver a variety of synthesis outcomes: from largely precursor-driven plasma-enhanced polymerization to virtually precursor-independent process-driven synthesis of graphene-based nanomaterials. Plasma processing also gives rise to unique features that may not be attainable using other methods. This ‘indiscriminative’ nature of some plasma environments with respect to precursor chemistry may help address the cost–quality challenge of green nanofabrication. When used alone or in conjunction with other processes, the catalytic effect of plasmas may also deliver significant environmental and economic benefits, potentially moving towards a solution for the quality–quantity challenge. Hence, this review will use focused examples of the role of the synergy between unique non-equilibrium plasma-enabled chemistry and minimally-processed renewable resources in the development of carbon-based devices. We will also discuss how these synergies can help realizing the sustainable product life cycle of the carbon-based nanomaterials.

Article organization. This article is divided into two parts. The first part opens with section 2, where a brief summary of the plasma attributes and plasma-specific chemical and physical effects that are particularly relevant to sustainable material synthesis and assembly is provided. Sections 3-12 are dedicated to the synthesis of nanomaterials from environmentally-sustainable carbon-based precursors, including renewable products, unprocessed fossil fuels, and waste carbon materials. Each section is centers on a particular attribute of natural product conversion, and is discussed as a case study focused on
specific materials and their microstructure. Cases for precursor-driven and process-driven processes are presented.

Each case begins with a brief description of the nanomaterial, its most desirable attributes and applications, and green processes and precursors most frequently used in the synthesis. The effects of precursor chemistry and state on the properties, assembly and yield of these materials are emphasized. Potential advantages stemming from the use of plasma-enhanced or plasma-enabled processing in controlled reforming of natural resources into materials intended for electronics and energy applications are then discussed.

The second part of this paper (sections 13-15) introduces potential degradation pathways for carbon-based nanomaterials individually and when integrated into complex devices. This part first gives examples of materials and devices that have been designed to undergo natural degradation under mild degradation conditions into benign degradation products. The section then discusses some mechanisms of natural degradation of one- and two-dimensional carbon nanostructures, and how the knowledge of these mechanisms may be used to design more readily degradable carbon nanomaterials. The plasma environment is discussed as the means to facilitate natural degradation (via modification during the material synthesis stage or post-use treatment) or to decompose the materials into useful building blocks for the synthesis of other functional nanomaterials.

Section 16 concludes the review with the summary of the guiding principles of sustainable product lifecycle, and the implications of these principles for enabling technologies used to realize these products. While this paper emphasizes the unique and attractive features of low-temperature plasma environments as the enabling chemistry for the conversion of minimally-processed renewable resources into functional
nanomaterials, there are other reactive chemistries that can lead to distinct process-driven (largely precursor-independent) synthesis processes. There are also other non-carbon-based minimally-processed abundant low-cost resources that comply with the general principles of the sustainable product life cycle.

A brief outlook for the future research in this field concludes this review.

Scope. This article provides a broad coverage of the types of nanomaterials that can be produced from carbon-based resources, with a focus on using minimally processed, non-toxic carbon precursors that are abundant and easily isolated from the environment. However, given the very large number of examples of natural precursors and the dielectric, semiconducting, and conducting nanomaterials in all dimensionalities that can be produced from these precursors, only a relatively small number of focused examples are presented. Similarly, even though there is a vast number of diverse reactive chemistries and synthesis techniques, this review focuses on reactive plasma chemistry in its capacity as a stand-alone unique synthesis process and as a catalyst for the established synthesis reactions.

2. **Salient features of plasma processing**

Without trying to give an exhaustive review of properties and attributes of plasma environments and plasma-enabled processing, this section will explain how plasmas can help facilitate low-cost and green synthesis of functional carbon nanostructures from environmentally-sustainable carbon-based precursors. It will begin with a statement of the plasma attributes, plasma-specific chemical and physical effects, and process controls that are particularly relevant to sustainable material synthesis and assembly. This will be followed by a more in-depth look at the plasma reactivity as an enabler in the synthesis of nano-carbon materials.
2.1 Green chemistry attributes

Plasma processing can be used to process and reform matter in liquid, gaseous and solid states regardless of the chemistry of the material and whether it is chemically pure or a mixed source.46, 55-56, 71 This makes plasma processing a promising route for conversion of \textit{low-value raw and waste} carbon-containing materials into value-added industrially-viable products. The ability to directly use minimally-processed materials \textit{reduces derivatization} and work-up chemistry and limits the use of associated auxiliary substances, such as solvents and separation agents, typically associated with other methods of nanoscale synthesis and processing.71-72

Plasma processing is one of the cornerstones of silicon semiconductor microfabrication, where it is used for controlled deposition and removal of material.53, 73-74 Being a mature technology, plasma systems are \textit{economically-feasible}, easy to scale-up and integrate into existing manufacturing workflow.75

Plasma environments are rich in energetic and chemically-reactive species that uniquely contribute to dissociation, reforming and organization of materials.53 These include electrons, charged species, i.e. ions, photons, and neutral species, i.e. reactive radicals, unfragmented molecules, as well as metastable and excited species.76 The temperature and chemical reactivity of the plasma species can be very different from one species to another, and dense fluxes of the desired species can be delivered in a controlled manner.

The energetic electrons in the plasma can induce the dissociation of the precursor and the creation of a large number of radical species, which would be very difficult to achieve under normal ground-state conditions.55-56 Enhanced chemical reactivity of the plasma-generated species compared to species in the
gas phase enables similar chemical processes to take place at notably lower temperatures, in many cases eliminating the need for external heating and/or catalyst. Thus, plasma processing directly addresses the requirement for lower energy consumption of green synthesis. However, when estimating the energy efficiency of plasma-enabled processes, it is important to adequately account for the energy required to initiate and maintain the plasmas. Indeed, certain types of plasmas, such as non-equilibrium nanosecond repetitive pulsed discharges are significantly more energy-efficient per atom incorporated than their continuous-mode counterparts. Here, the relatively short on periods (~ ns) are sufficient to generate the reactive species; the reaction is then allowed to proceed for µs to ms during off-periods in the absence of continuous energy supply. This leads to a considerably lower estimated energy per atom incorporated compared to pure thermal and continuous plasma-enhanced or plasma-enabled syntheses.

Furthermore, plasmas are not simply an alternative means for gas heating. The state-of-the-art in plasma research is to create reactive species through non-thermal mechanisms that are different to conventional thermal process. Of particular interest are non-thermal plasmas, for which the mean electron energy $<e>$ is significantly higher than the energy of neutral gas particles at atmospheric pressure. Here, relevant building blocks can be produced without the need to heat the entire volume of the gas. Generated plasma chemical species, namely electrons, ions, excited neutral species, and radicals can serve as vehicles for the specific transfer of energy towards growth processes. These chemical species are typically not found in pure chemical or pure thermal synthesis environments. By utilizing a combination of thermal and non-thermal mechanisms to drive the reaction, energy savings may be achieved.

Non-equilibrium nature of many plasmas is at the core of plasma selectivity. Selectivity of plasma-enabled processes is related to thermal and non-thermal mechanisms of chemical reactions, where heat and chemical species trigger and sustain these reactions. In a typical purely thermal process, energy (as heat) is
delivered to the entire volume of the reactor, resulting in uniform gas heating. In non-equilibrium plasmas which are the focus of this review, energy can be delivered to electrons, without activation of all molecules. As such, the gas in the plasma chamber is of lower temperature than that in an otherwise equivalent thermal process where it is extremely difficult, if not impossible, to avoid uniform gas heating. Excited first, the energetic electrons can excite the molecules in a useful way – specifically, molecules and fragments can be made to rotate, vibrate and stretch without moving faster. Hence, higher reactivity can be achieved; the reactivity may be sufficient to maintain sufficiently high rates of strongly endothermic reactions at substantially lower temperatures that those required under purely thermal reaction conditions.

Another aspect of plasma selectivity and energy-efficiency is associated with plasma effects localized to surfaces and nanoparticles. Depending on the fluxes and energies of plasma-generated species, these effects can lead to sputtering, etching, heating and formation of hot spots, surface charging, deposition, implantation, and photon irradiation. The bombardment by charge carriers, photons, metastable, excited and fast ground-state neutrals, heat released from exothermic surface reactions, and locally intense electric fields resulting from the strong local curvature of the nanoparticles provide substantial heating which is localized to the surface of the substrate. Such localized heating reduces and may even eliminate the need for external heating and significantly lower the overall temperature and energy requirements of the process.

Lower processing temperatures not only make plasma-assisted synthesis and processing more energy-efficient, they also reduce the amount of material being lost or wasted. At higher temperatures, material deposition is competing against heat-driven evaporation and desorption. Lower temperatures of the plasma processing reduce the rates of material loss from the substrate surface, making the synthesis more matter-
efficient. This aligns well with the requirement for green synthesis to minimize waste and maximize incorporation of all materials used in the process into the final product.

The reactivity of the plasma environment also positively contributes to the rates of nanostructure nucleation and growth, leading to more time-efficient processing. For instance, compared with similar thermal processes in the same gases and under similar conditions, plasma environment usually increases the growth rates of many common nanostructures, such as single wall carbon nanotubes (SWCNTs). Here, plasma-produced carbon atoms reach the catalyst and incorporate into the nanotube walls much faster under the plasma conditions compared to the plasma-free environment. Reactive hydrogen species produced in the plasma are effective in etching amorphous carbon; the etching helps maintain catalytic activity of catalyst nanoparticles longer, resulting in taller SWCNTs.

The ambient temperature and ambient pressure processing of atmospheric pressure plasmas is considered to be even more energy efficient and environment-benign. Furthermore, low-pressure and most atmospheric-pressure plasma systems employ a closed reactor configuration which facilitates the containment of the plasma generated species within the reactor, making it more human-health-friendly to operate.

The attributes of the plasma fit well within the framework of sustainable materials synthesis and nanoscale assembly, which require the process to be low-cost, simple, energy- and material-efficient, and safe to humans and the environment. The preference is given to one-step, room-temperature, and atmospheric-pressure processes, provided that the properties and performance of the nanomaterials meet the requirements of the envisaged applications.
2.2 Chemical reactivity of plasma environment

Chemical reactivity and stability of plasma discharges depend on the balance of species and energy. Electrons drive the dissociation, ionization and excitation, and are directly linked to chemical reactivity of the plasma. Ions interact with the surfaces within the plasma environment, and if they are energetic enough, can cause breaking of the chemical bonds, material sputtering or substantial heating of the substrate. In low-temperature, weakly-ionized plasmas, the temperatures of ions and neutral species are much lower than the electron temperature. In thermal plasmas, the temperatures of all species are the same. The heating of the substrate can also be caused by photons; the latter can initiate photochemical reactions, such as chain scission in the plasma-produced polymers. Neutral species contribute to deposition, modification or etching of the material being processed.

Low-temperature, non-equilibrium plasmas are typically sustained at low pressure and can be generated by electromagnetic energy spanning from direct current (DC) plasmas to radiofrequency (RF) and microwave frequency plasmas. Low-temperature plasmas can also be generated at atmospheric pressures. Examples of atmospheric-pressure non-thermal plasmas include plasma jets and dielectric barrier discharges.

Low-temperature plasmas are well suited for materials synthesis where preservation of the original chemistry of the precursor is desired, such as synthesis of polymer thin films (Figure 5) or functionalization of carbon nanostructures. Such plasmas can catalyze the reaction, or can enhance activation of a solid catalyst if one is used. The chemistry of the process is versatile, while the properties of the final material can be tuned from smooth, defect- and pinhole-free, and chemically homogenous to rough, porous, and chemically graded structures. This can be achieved by controlling the type of building
units (via precursor chemical composition) and the characteristics of the plasma (e.g., power, gas pressure, gas flow, temperature, reactor geometry, etc.). Numerous oxidative, reductive, and noble gases and their mixtures can be used as precursors/feedstock.

Figure 5. Synthesis of polyoxazolines from oxazoline monomers is typically carried out via a complex cationic ring opening polymerization method, the cost of which limits industrial applications. A. Polyoxazoline thin films can be synthesized in a plasma discharge in a single-step process. B-C: The chemical composition and surface properties of plasma-polymerized polyoxazoline thin films are controlled by the flow rate (B: 2×10^{-1} mbar; C: 1.1×10^{-1} mbar) and input power. Reprinted with permission from ref. 37. Copyright 2015 Royal Society of Chemistry.

These gases can also serve as a source of elements for the controlled introduction of elemental impurities and structural defects as a means of fine tuning the properties of the material, e.g. doping of carbon nanotubes with nitrogen using ammonia gas. Incorporation of impurities, e.g. nitrogen, can induce the
formation of vertically-aligned carbon nanostructures without the use of catalysts, such as the synthesis of carbon nanorods under RF plasma-enhanced CVD conditions. The type of incorporated carbon–nitrogen bonds, in particular isonitrile functional group bonded to isolated or fused aromatic rings, is crucial for the formation and vertical alignment of the nanorods. Being connected to the graphitic ring through N atom rather than C, the nitrogen atom in this functional group will have a positive charge while C will be negatively charged. The electric field generated by RF plasma in the direction perpendicular to the substrate surface induces aligned deposition and stacking of these polarized bonds which lead to the formation of vertically-aligned carbon nanorods containing nitrogen.

Low-pressure plasmas are used extensively for anisotropic, highly-selective etching under mild conditions (low temperature, low voltage), which minimizes undesirable heat-related and ion impact-related damage to materials structure. The anisotropic nature of plasma etching can support high-fidelity transfer of microscopic patterns onto a variety of substrates of mesoscale and larger dimensions. The electric field drives reactive species, e.g. ions, down to the substrate, where they bond with the unmasked atoms, forming volatile compounds that can be extracted (e.g., pumped out) from the etch reactor. The resultant features can have controlled morphologies, ordering, and high aspect ratios and can be used in sensors, energy storage, and optoelectronic devices. Even smaller, closely spaced features can be etched using plasmas; the reactive ions in a plasma have sufficient mobility, high energy, and transport directionality to penetrate deep into the trenches and effectively remove substrate material without substantially damaging the walls of the features. Self-organized arrays of nanostructures can be effectively fabricated at low temperatures over large areas without the use of masks (Figure 6). By treating a layer of polymer photoresist with the plasma in the absence of a mask, polymer nanowires with a diameter of < 50 nm and an aspect ratio greater than 20:1 were produced.
Figure 6. Oxygen plasma etching enables maskless synthesis of polymer nanowires.89 A-C. Scanning electron microscope (SEM) images of the self-patterned polymer nanowire structures created by etching of NR-7 (A), SU-8 (B) and PMMA (C) films in oxygen plasma for 420 s. The scale bar in each image indicates 1 μm. D-E. Geometric parameters of the nanowire structures as a function of the etching time.89 Reprinted with permission from ref. 42. Copyright 2014 IOP Publishing.

In non-thermal plasmas, the difference in the electron and ion velocities leads to the formation of the plasma sheath, a thin region which separates the substrate surface from the plasma bulk. The thickness of the sheath depends on the plasma density, electron temperature and other factors, and can be used to
control the deposition process. The sheath is the result of a large flux of highly-mobile electrons arriving to the surface of the substrate well ahead of slower-travelling ions. To balance the negative charge on the substrate surface, the sheath is formed. Electron-depleted ionized atoms and molecules are accelerated towards the surface as they traverse the sheath.\(^9\) For materials synthesis, it is important to balance the speed with which ions arrive at the surface, so as to maximize the speed of materials formation yet minimize excessive ion bombardment which may cause formation of defects or etch newly formed deposits. The electrons play a key role in the generation of radical species in the plasma bulk, within the sheath and on the substrate surface, whereas plasma-produced ions, atoms and radicals interact with the surface to induce heating, deposition, etching, recombination, and other processes.

For the growth of nanowires and nanotubes, plasma-enhanced chemical vapor deposition (PECVD) improves the selectivity and lowers the synthesis temperature, allowing deposition of less dense, thinner and preferentially-ordered nanostructures. In addition to being exploited for the quasi-deterministic assembly of zero-, one-, two- and three-dimensional (0D, 1D, 2D and 3D, respectively) nanostructures onto a variety of substrates, including pre-patterned substrates,\(^9\) thermal and chemical effects of non-equilibrium plasmas enable synthesis and functionalization of nanoparticles in liquids, where plasmas accelerate electrochemical reactions.\(^92-93\)

Thermal plasmas are typically created at high pressures by DC or RF arcs, and by inductively coupled torches. High-pressure discharges are characterized by high plasma densities, up to \(10^{17} \text{ cm}^{-3}\) in arcs, and very high rates of collisions. The flow rates of matter and energy are very high in thermal plasmas, making these plasmas ideally suited for the destruction of materials, e.g. for treatment of hazardous waste, or material synthesis where effective atomization of the original precursor is desired, e.g. synthesis of
carbon nanotubes. High nanostructure nucleation and growth rates make thermal plasmas attractive for large-scale production of nanomaterials, including carbon nanoparticles.

It is important to note that many currently-available plasma processes lack sufficient selectivity and are difficult to control to the extent necessary to produce high-quality carbon nanostructures from natural resources. There still remains a knowledge gap regarding the precise mechanisms and controls that govern the generation and chemical reactivity of species in plasmas. Leading research groups are currently trying to bridge this gap by developing novel plasma systems and complimentary instrumentation that can effectively and accurately probe these plasmas. Understanding the nature of selectivity that can arise from a multitude of plasma effects is required to meet the expectations.

The next step is to review the most relevant examples of natural resource-to-nanomaterial conversions and how plasma-specific effects can be used to control them.

3. Plasma-enabled fast processing: the case of carbon nanodots

This section will examine the ability of plasmas to significantly reduce the time required for the synthesis of carbon quantum dots (QDs). Carbon QDs (also known as C-dots) are gaining interest as chemically inert and less toxic alternatives to heavy metal-based semiconducting QDs. C-dots have been widely reported to possess photobleaching-free stable photoluminescence (PL) and excitation energy-dependent emission spectra,94-96 with potential applications in optoelectronics, e.g. in light-emitting diodes (LEDs), bioimaging and biolabeling. C-dot size, presence of defects, oxygen content, and surface termination are key determinants of photoluminescence and photostability of these nanostructures. It is important to note
that the issue of photobleaching in C-dots remains controversial, with reports of fluorescence bleaching caused by photochemical processes.

Figure 7. Photoluminescent C-dots, their synthesis, and application in LEDs. A. Incorporation of 1% C-dots into poly(2-methoxy-5-(2-ethylhexyloxy)-1,4phenylenevinylene) polymer increases LED brightness. B. TEM image and diameter distribution (inset) of C-dots used in the LED device. C. Schematic representation of various processing stages involved in the preparation of photoluminescent graphene QDs (GQDs) from MWCNTs by electrochemical approach. D. Synthetic scheme of C-dots from eggshell membrane through a microwave-assisted process. Panels A-B reprinted with permission from ref. 46a. Copyright 2011 American Chemical Society. Panel C reprinted with permission from ref. 46b. Copyright 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Panel D reprinted with permission from ref. 46c. Copyright 2012 Royal Society of Chemistry.
High-quality C-dots are typically synthesized in a top-down approach, e.g. by hydrothermal (chemical) cutting of oxidized graphene sheets, hydrazine hydrate reduction of graphene oxide, electrochemical processing of multiwalled carbon nanotubes (Figure 7.C), laser ablation and nitric acid oxidation of graphite, or in a bottom-up approach, from a variety of chemical precursors, such as ethylenediaminetetraacetic acid salts and citric acid.

Several reports exist on the preparation of C-dots from low-cost natural precursors, e.g. poly(ethylene glycol), saccharides (e.g. glucose, fructose, etc.), amino acids, ginger juice, paper ash, capsicum, watermelon peel, hair, potatoes, guava, peas, tea, spinach, waste frying oil, oilseed press-cake, shrimp eggs, and others. Waste materials, such as used plastic bags, candle soot and tire soot have also been used as low-cost alternatives to conventional carbon precursors. The common synthesis routes include microwave-mediated pyrolysis, Maillard reaction, hydrothermal carbonization and wet chemistry.

Although some of these methods, i.e. Maillard reaction, enable the production of C-dots with bright PL, quantum yield of up to 69 % and ultrahigh photostability, the typical quantum yields are much lower. Furthermore, these methods rely on either prolonged external heating, e.g. 2–5 h in the case of hydrothermal processing, specific processing environment, e.g. nitrogen atmosphere, potentially toxic solvents, e.g. sulfuric and nitric acid, as well as catalysts, e.g. (N-(2-aminoethyl)-3-aminopropyl)tris-(2-ethoxy) silane, to drive the reaction.

Recently, amphiphilic C-dots were produced by treating yolk and white fractions of chicken eggs using atmospheric-pressure dielectric barrier discharges (DBDs). The generation of C-dots was a rapid (< 3 min) single-step process, where the plasma generated reactive species and plasma-induced heating were
driving the reaction (Figure 8.A). In this case, the reactive plasma environment served to reform abundant, unprocessed carbon precursor (chicken egg) into relevant hydrocarbon building units under ambient conditions (vacuum-, solvent-, and external heating-free).

Figure 8. Plasma-assisted generation of C-dots from protein.71 \textbf{A.} The proposed mechanism involves plasma-generated heating and chemical reactions with the activated species in the plasma, leading to protein denaturation via the breakage of hydrogen bonds and uncoiling of polypeptide chains, partial carbonization and oxidization of the sample. Continued plasma processing causes the long and short chains of the peptides to break down into shorter chains, and eventually C-dots formation. \textbf{B-C.} Evolution of PL emission of C-dots produced from egg white (\textit{B}) and yolk (\textit{C}) aqueous solution as a function of the plasma exposure time. Longer plasma exposures produce more significant etching effects which lead to higher PL intensities. \textbf{D.} Effect of precursor chemistry on PL emission spectra of the aqueous solutions of C-dots produced using atmospheric-pressure plasmas. Insets are digital photos under daylight (left) and UV light (right), solution concentration is 1 wt %.71 Reprinted with permission from ref. 70. Copyright 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structurally, plasma-produced C-dots are nanocrystalline, being composed of sp^2 hybridized carbon with sp^3 carbon defects. The surfaces of the C-dots produced from egg precursor materials are abundant in oxygen-containing groups, namely $-OH$, $-O-C$, and $=O$. The crystallinity of the C-dots produced from yolk is higher compared to white-derived structures. This was attributed to the differences in lipid content (33% in yolk, 0.01% in white) and the higher density and viscosity of the yolk. This factors were suggested to enhance electron-ion recombination processes on the surface and thus promote crystallization.\(^7\) With intense blue fluorescence, these nanostructures may be used as fluorescent carbon inks for multicolor luminescent inkjet and screen printing, and in a variety of medical applications.\(^7\) The average life-time (~6.3 ns), quantum yield (~6−8%) and photostability of plasma-produced egg-based nanodots are comparable to that of luminescent C-dots produced by other methods, e.g. wet chemistry. Furthermore, plasma-processed C-dots are amphiphilic and can be easily dispersed in water and most organic solvents.

The in-plasma passivation of C-dot surfaces can be controlled by changing the rates of reactive species generated in the plasma.\(^{128-129}\) The degree of C-dot passivation is important, since the emission from unpassivated C-dots is greatly reduced due to the link between the photoluminescence and the presence of energy-trapping sites on the C-dot surface.\(^{130}\) While passivation of C-dots with polymers can significantly increase the quantum yield,\(^{131}\) such modification also affects the surface energy and hydrophobicity of the material.

Other types of natural precursors can serve as a carbon precursor in place of egg for the synthesis. The composition of the starting material and the processing conditions determine the properties of C-dots (Figure 8.D). Glucose, other simple carbohydrates, and their solutions are easily carbonized and oxidized
under the same plasma environment to yield nanodots with PL emission peak centering at ~450 nm. The properties of the plasma-fabricated glucose-based C-dots are similar to those prepared electrochemically from multiwalled carbon nanotubes. Low molecular weight precursors containing nitrogen functionalities, such as acrylamide, amino acids and ethylenediamine-tetraacetic acid disodium salt (EDTA-disodium) can also be reformed into luminescent structures using plasma treatment.

However, when polymers, namely poly(methyl methacrylate), polyvinyl pyrrolidone, polyacrylamide, poly(vinyl chloride), sodium alginate poly(vinyl alcohol), polystyrene photonic crystals, and poly(ethylene glycol) were subjected to the above treatment conditions, they failed to generate C-dots. Given the high bonding energy in the molecular chains of the solid polymers, higher-energy and/or longer plasma exposure may be necessary to achieve the effect. Interestingly, luminescent C-dots were successfully formed in aqueous solution of polyacrylamide (~3 wt %), suggesting that the liquid state may be conducive to nanodot formation. These results indicate that the mechanisms of C-dot formation in atmospheric-pressure plasmas differ with chemical composition and state of precursor materials, and can thus be precursor-driven. Further in-depth investigations are necessary to elucidate these mechanisms and validate the above conclusion.

The ability of plasma to accelerate the rate of synthesis can be demonstrated for other carbon nanostructures, e.g., graphene, as discussed below.

4. Plasma-enabled reduced-temperature graphene synthesis

This section presents the use of the reactive plasma chemistry to reduce the temperatures for nucleation, growth and formation of graphene films. Graphene, the two-dimensional atomic carbon crystal, uniquely
combines attractive mechanical, electronic and thermal properties and catalytic activity. Properties and applications of graphene have been reviewed extensively by others. Briefly, graphene and its bilayer are characterized by extremely low electron-phonon scattering and as such room-temperature electron mobility of $2.5 \times 10^5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. A free-standing monolayer graphene membranes display a Young’s modulus of 1 TPa and intrinsic strength of 130 GPa, making it the strongest material ever measured. The very high thermal conductivity of above 3,000 W mK$^{-1}$ of graphene make this material suitable for thermal management of electronics, where heat removal has become a critical miniaturization-related issue. Due to its unique electronic structure, graphene absorbs a significant fraction of incident white light and can sustain very high densities of electric current. Graphene sheets can be further functionalized to enhance the catalytic activity. Graphene and graphene oxide have been proposed for use as advanced green catalysts.

Large sheets of graphene can be grown by a variety of chemical and physical vapor deposition methods, confined controlled sublimation, and others. Confinement controlled sublimation of silicon carbide, where at sufficiently high temperatures silicon sublimes from the surface and the carbon rich surface layer transforms to graphene can yield very high quality, large sheets of graphene, however the cost of this type of process is relatively high. In vapor deposition methods, metal substrates, such as copper, nickel, iron, cobalt, platinum, and others are typically used to catalyze the formation of mono-, bi-, tri- or multilayer graphene, with the quality and properties of graphene being intimately linked to the catalyst used in its synthesis (Figure 9). The use of catalyst adds significantly to the overall cost of graphene production. Polycrystalline substrates are more attractive due to their lower cost; however the uniformity of graphene layer on these surfaces remains an issue. Re-usable substrates comprising of silicon wafer topped with a hydrogen-terminated germanium buffer layer have also been proposed, where the weak interaction between graphene and germanium surface enabled the facile etch-free dry transfer of graphene.
and the recycling of the germanium substrate for the continual graphene growth.154 Anisotropic twofold symmetry of Ge(110) surface allows unidirectional alignment of multiple graphene seeds, which then join to produce uniform single-crystal graphene with predefined orientation.

Figure 9. Synthesis temperature and nature of the substrate have a significant effect on the growth rate (A), nucleation point (B) and crystallinity (C) of graphene grown under otherwise identical CVD conditions.155 Lowest temperature required to initiate graphene formation was above 1000 °C, which is typical of purely thermal synthesis methods. Reprinted with permission from ref. 81. Copyright 2015 Nature Publishing Group.

As a source of carbon, a variety of gaseous and solid materials, e.g. methane, acetylene, polystyrene or poly(methyl methacrylate) are used. Large aromatic hydrocarbons, such as benzene and hexachlorobenzene can be used to lower the temperature of CVD synthesis of monolayer graphene flakes to as low as 300 °C.151, 156 However, toxicity of these highly-volatile compounds remains an issue.
Synthetic nano-graphenes can be used as building blocks for bottom-up assembly of transparent thin films.157-158 Molecules of giant polycyclic aromatic hydrocarbons, such as a superphenalene derivative, have both a large aromatic core and flexible side chains to ensure good solubility for simple solution processing. The molecules are thermally fused together to form larger sheets with properties that enable their use as hole-collecting electrodes in organic solar cells. The efficiency of cells containing poly(3-hexyl)thiophene:phenyl-C$\text{$_6$}$-butyric acid methyl ester and fused graphene sheets as anode was comparable to the highest external quantum efficiency value of 47% for a reference device fabricated with ITO as the anode. In addition to solar cells, these graphene films can be used in the fabrication of flat-panel displays, organic light-emitting diodes, and other modern optoelectronic devices.

Low-temperature plasmas provide a suitable environment for the synthesis of graphene and graphene-based hybrid structures. The advantages of using plasmas for graphene synthesis include controlled, selective production of desired reactive species, reduced energy and material consumption, enhanced catalyst activation or catalyst-free synthesis, shortened operation time and decreased environmental pollution.90 These factors satisfy the requirements for quality graphene synthesis as well as time-, energy- and cost-efficiency. The major challenge for the plasma-assisted growth of graphene is the difficulty to simultaneously deliver small amounts of material to the surface and to enable rapid and uniform monolayer nucleation across the entire surface area without suffering damage to the hexagonal structure from ion bombardment.53 Remote plasma configurations can provide the means to lower the amount of material delivered to the surface and prevent excessive ion bombardment of the growing carbon structure.159 At the same time, remote plasmas allow to maintain relatively low synthesis temperatures, which are typically a couple of hundred degrees lower compared to conventional chemical vapor deposition.
Plasma environment also provides effective means for graphene doping by incorporation of other elements which modulates the charge transfer properties of the material. For example, exposure to NH$_3$ plasmas during synthesis enables fast nitrogen doping of up to 1.5×10^{13} cm$^{-2}$ that can be effectively controlled by tuning the time of exposure and the proportion of NH$_3$ in the atmosphere.160 Nitrogen-containing radicals covalently bind to the carbon lattice and maintain stability during post-annealing.161 Plasma doping can also take place post-deposition, providing extra processing flexibility and saving on time and cost associated with multi-environment processes.162 Oxygen plasma treatment has been shown to significantly alter the bandgap of graphene sheets, driving the transition from semimetallic to semiconducting behavior.163 Exposure to oxygen plasmas was successfully used to induce strong photoluminescence in single-layer graphene that was spatially uniform across the flakes.164 A quite similar treatment of graphene multilayers resulted in selective conversion of the topmost layer into photoluminescent material.

On the other hand, exposure to low-density (of 3.5×10^8 cm$^{-3}$) Ar plasmas can be used to remove impurities from the surface of graphene with minimal damage to the carbon network.165 Treatment of silicon-supported graphene sheets with remote hydrogen plasmas revealed strong monolayer selectivity for reactions with the plasma species.166 In monolayers, isotropic hole formation in the basal plane and etching from the sheet edges were observed, whereas hexagonal pits of uniform size were etched in bilayer or thicker sheets. The etch rate was independent of the substrate morphology, with similar phenomena observed on both silicon and much smoother mica substrates, yet was sensitive to temperature. Faster hydrogenation of bi- and multi-layer over monolayer graphene and highly-anisotropic etching along specific crystallographic directions were also confirmed.167-169

Treatment of graphene with oxygen plasmas is an effective way to convert it to graphene oxide (GO). Conversely, certain plasmas, e.g. remote methane plasma, can be used to reduce the graphene oxide by
lowering its oxygen content, which also decreases the bandgap of the material. Plasma-enabled reduction of GO to graphene is facilitated by significant defect healing, which positively contributes to the quality of the resultant material.170 Presence of highly-reactive hydrogen atoms and ions reduces the time and temperature required to convert GO to graphene, from >1000 °C for annealing in alcohol vapor or vacuum to < 580 °C for methane plasmas.170 The temperature is even lower for treatments with atmospheric-pressure plasmas, where sheet resistance of \(\approx 4.8 \times 10^4\ \Omega/\text{square}\) was obtained in Ar+H\(_2\) plasmas at only 70 °C.171 Furthermore, plasma-enabled reduction does not require the use of strong and hazardous chemicals, which limits the environmental impact of the processing, as well as minimizes the incidence of impurities or defects being incorporated into the carbon structure.
Figure 10. Schematic of the direct conversion of a Ni nanobar to a graphene nanoribbon by rapid-heating plasma CVD performed using a mixture of methane and hydrogen gases.172 A-D. The substrate is rapidly heated to \(~900\ ^\circ\text{C}\) for 1 min and plasma CVD is performed. Nucleation of graphene preferentially starts from the Ni nanobar structure during the cooling process, and a graphene nanoribbon is formed. E-F. Typical SEM image of patterned Ni electrodes and the Ni nanobar before the plasma exposure (E) and graphene nanoribbon converted from 50 nm width Ni nanobars (F). G. Typical electrical transport properties of graphene nanoribbons. Current−voltage characteristics (I_{ds}−V_{gs} curves) of a 23-nm-wide graphene nanoribbon device at 300 K confirm ambipolar transport characteristics with an on/off ratio of \(~16\). At 13 K, the on/off ratio increased to 1.5×10^4. No hysteresis in the curves indicate the clean surfaces of as-grown graphene nanoribbons and/or the suspended structures.172 Reprinted with permission from ref. 95. Copyright 2012 Nature Publishing Group.

Higher-density plasmas can be employed to unzip carbon nanotubes and thus produce carbon nanoribbons (CNRs),173 which hold promising applications in molecular electronics as semiconducting materials.174-175 Nanoribbons combine the unique electronic and spin properties of graphene with a transport gap that arises from quantum confinement and edge effects, making CNRs a promising candidate for the channels of next-generation transistors. Although CNRs can be produced by a variety of methods, control over their surface organization within the device remains a challenge. Rapid-heating plasma CVD of CH$_4$ and H$_2$ was used to directly convert nickel nanobars into 23 nm-wide graphene nanoribbons (Figure 10).172 It was possible to grow CNRs directly between the source and drain electrodes of a field-effect transistor (FET), yielding the FET devices with a clear bandgap of 58.5 meV, a high on/off ratio of above 10^4, and no hysteresis (Figure 10.G). Certain deposition conditions facilitated synthesis of complex architectures, e.g. parallel and radial arrays of supported and suspended ribbons.
Currently, methane (CH₄) precursor is commonly used in a purified form, and data about its purity are rarely present in the original reports. Although no reports are currently available, graphene synthesis from minimally processed methane is possible in principle. This may affect the level of defects present in the graphene sheets. The relationship between the chemistry of carbon source and the graphene defect levels will be discussed in more detail in section 5.3.

5. Plasma-enabled process-driven synthesis: the case of graphenes

Although the majority of commonly used carbon sources represent highly-purified chemicals, there is growing interest in graphene synthesis from low or negatively valued (waste) raw carbon sources used without purification. Sucrose (table sugar) was successfully converted into single-layer graphene by depositing sucrose powder onto Cu substrate followed by heat treatment at 800 °C under H₂/Ar atmosphere.¹⁷⁶ Sucrose was also used as a carbon source for microwave-assisted synthesis of graphene on sepiolite substrate (Figure 11).¹⁷⁷ Under microwave-assisted heating, sucrose is first converted into caramel, which can then be transformed into graphene with subsequent heating in the absence of oxygen. Using the same method but replacing a carbohydrate with protein, nitrogen doped graphene can be obtained. Nitrogen doping of graphene can also be attained by pyrolysis of a mixture of sugar and urea ¹⁷⁸. A wide range of free-standing monolayers and multilayer graphene structures were obtained by calcination of glucose, where layered graphic carbon nitride served as a sacrificial template and a source of nitrogen dopant.¹⁷⁹ A thermolytic treatment at 750 °C is then used to liberate graphene from the carbon nitride support.
Figure 11. Cost-efficient graphene-related materials from natural resources.177 \textbf{A.} Schematic routes showing the preparation of graphene supported on the fibrous clay sepiolite prepared from sucrose and gelatin. In the “sweet” way, sucrose is first transformed into caramel in the presence of sepiolite, while the “jelly” way starts with the spontaneous assembly of gelatin into the fibrous silicate. Thermal treatment of both nanocomposites at 800 °C in an N\textsubscript{2} atmosphere results in carbon–clay materials with graphene layers (N-doped when derived from the protein) supported on the silicate. \textbf{B.} Raman spectrum and TEM image (inset, \textit{i}) of carbon–sepiolite sample prepared from sucrose confirm a graphene-related layer on a silica substrate. Even with a large percentage of insulating mass (the silicate component), silica-graphene low-density monolith (inset, \textit{ii}) exhibits relatively high electrical conductivity. \textbf{C.} Raman spectra and TEM (inset, \textit{i}) of graphene deposited from gelatin over sepiolite fibers. SEM image (inset, \textit{i}) of macroporous conducting foam obtained from the carbonization of gelatin-sepiolite colloid after freeze drying.177

Reprinted with permission from ref. 99. Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mixed material sources, including food products, e.g. cookies and chocolate, insect fragments, and waste products, e.g. animal feces, were converted into monolayer graphene.180 The unpurified carbon materials were placed on the surface of suspended Cu foil and then annealed at 1050 °C for 15 min under vacuum and Ar/H\textsubscript{2} flow (Figure 12). As the solid carbon decomposed and carbon atoms diffused across the Cu foil, a layer of graphene formed on the backside of the foil, whereas the original side of the foil retained the elemental residue. Regardless of the carbon source, graphene was of high purity, had few defects and \(\sim 97\%\) transparency. Even though precursors were rich in other elements, e.g. oxygen, nitrogen, iron, sulfur, and phosphorus, atoms of other elements were absent from the structure of the graphene, which consisted only of carbon. Used polypropylene plastics were converted into graphene flakes (GFs) with high yield via catalytic carbonization and organically modified montmorillonite catalyst. This catalyst promoted dissociation of waste plastic into light hydrocarbons and aromatics and acted as a catalytic template for carbonization of the light hydrocarbons and aromatics into GFs.181
Figure 12. Graphene synthesis from mixed carbon sources using a thermochemical approach. A. Experimental set-up. Cu foil is slightly bent within the quartz boat to contain the carbon precursors. B. Photograph demonstrating complete transformation of a roach leg into a thin film. C. TEM images of the edge of monolayer graphene derived from a cookie. D. Raman spectra of graphene fabricated from three different sources show very similar quality of graphene. E. UV–vis spectra of graphene were similar, independent of the carbon sources. The absorbance of each monolayer graphene film at 550 nm is approximately $2.4 \pm 0.1\%$. Insets show photographs of the monolayer graphene film of $\sim 1 \text{ cm} \times 1 \text{ cm}$ in size (dashed line) after transfer onto a 1 mm thick quartz slide. Reprinted with permission from ref. 102. Copyright 2011 American Chemical Society.
Another extreme example that demonstrates reforming of complex carbon compounds into graphene involves human fingerprint (Figure 13). A fingerprint consists of a wide array of proteins, amino acids, and lipids, which are distributed non-uniformly across the surface on which the print is made. Nevertheless, annealing of the sample at ~1000 K for several hours under ultra-high vacuum yielded graphene which was very similar to that fabricated using pure synthetic precursor carefully distributed onto the surface via liquid precursor deposition. \textit{Ex situ} liquid precursor deposition is an attractive method of delivering carbon precursors where the substrate has too small or even vanishing sticking coefficients for precursor molecules delivered from the gas phase.
Figure 13. Liquid precursor deposition is used to produce graphene on a transition metal surface (e.g., Rh or Ir) from synthetic precursors (e.g., acetone, acetaldehyde) and mixed carbon sources (e.g., human fingerprint). A-B. The schematics of the synthesis routes for (A) acetone and (B) fingerprint. Synthesis requires temperatures of ~ 1000 K and ultrahigh vacuum. C-D. XPS data (Al-Kα excitation, $h\omega = 1486.6$ eV, normal emission) after graphene formation on a Rh(111) surface from (C) acetaldehyde and (D) fingerprint and degassing. Insets: high-resolution C-1s and O-1s spectra after deposition and degassing of the precursor (blue) and after graphene formation (red). E-F. Fermi surface maps by angle-resolved ultraviolet photoelectron spectroscopy of graphene from (E) acetone and (F) fingerprint are very similar and display distinct spots at the K points characteristic of graphene. Reprinted with permission from ref. 104. Copyright 2014 American Chemical Society.

From these examples it is evident that precursor-chemistry-independent graphene synthesis (process-driven synthesis) is achieved under high-temperature processing (>1000 K) and vacuum conditions are necessary. In section 5.2, we will discuss several examples that suggest that under plasma conditions it is possible to achieve process-driven, precursor-independent synthesis at much lower temperatures and much higher pressures.

5.1 Continuous substrate- and catalyst-free synthesis of free-standing graphenes

Free-standing graphene has been created without the use of substrates or graphite through gas-phase microwave synthesis at atmospheric pressure, providing a potential avenue for the large-scale, continuous synthesis of graphene. Aerosols consisting of liquid ethanol droplets and Ar gas were introduced directly into argon plasmas, where the droplets rapidly ($\sim 10^{-1}$ s) evaporated and dissociated. Graphene formed in the gas-phase exhibited a highly-ordered, oxygen-free structure (Figure 14) that was
independent of the applied microwave power. The production rate increased from 2 mg min\(^{-1}\) at 250 W to 6 mg min\(^{-1}\) at 1050 W. This suggests that while dissociation of ethanol took place in the plasma glow region and was enhanced at higher power, the formation and growth of graphitic materials occurred in the plasma afterglow where the neutral gas temperature is only moderately affected by the increased microwave power from 3000 K at 350 W to 3400K at 1100W.

Decreasing the plasma gas flow rate from 3.4 to 1.7 liters per minute resulted in the production of 3D graphite sheets and large bulk graphite structures along with graphene sheets.\(^{184}\) The formation of bulk structures was attributed to the growth, collision and stacking of individual graphene layers during the prolonged residence time in the reactor, whereas the formation of graphitic particles arose as a result of the curving and closure of graphite sheets. At longer residence times, an increased number of collisions between the aromatic nuclei created via the dissociation of ethanol may have led to the formation of carbonaceous clusters, which underwent subsequent growth by coagulation and surface reactions and rapid-cooling-induced graphitization in the post-plasma region.

Under equivalent synthesis conditions, changing the carbon precursor from ethanol to liquid methanol failed to yield solid matter, whereas liquid isopropyl alcohol resulted in dark, spherical carbonaceous particles of <100 nm in diameter. These particles were fused together into large aggregates, and consisted of randomly oriented stacks of graphene planes and amorphous domains. It is possible that an adjustment in the residence time, specifically increased plasma gas flow rate in the case of isopropyl alcohol and decreased rate for methanol, may enable or substantially improve the quality of graphene produced. Similarly, the approach can be extended to other natural organic, synthetic and mixed sources in liquid or gas state. We emphasize that the examples considered above are precursor-driven even at relatively high input power and process pressure. In the following, we will present examples of precursor-independent, process-driven synthesis of graphene from a variety of natural precursors.

5.2 Non-precursor-specific synthesis of surface-supported graphenes

A single-step, plasma-enabled, catalyst-free synthesis was demonstrated to convert a range of pure and mixed natural precursors, including milk, honey, butter, sugar and methane, into a few-layer vertical graphenes directly onto Si/SiO2 substrates. Also known as carbon/graphene nanowalls, nanosheets, nanoflakes, and nanoflowers, vertically-oriented graphene structures (VGSs) are a class of
nanomaterials where ‘graphitic’ platelets are arranged into typically vertically-oriented networks on a substrate. The vertical and lateral dimensions of individual nanosheets typically range from 0.1 to tens of micrometers, with nanosheet thickness of a few nanometers or less. Structurally, TEM studies have shown each nanosheet to consist of few-layer (1–10 layers) graphene with an interlayer spacing of 0.34—0.37 nm. When produced in the presence of plasmas, these VGS networks typically display vertical orientation in relation to the substrate, non-agglomerated three-dimensional inter-networked morphology, controlled inter-sheet connectivity, and exposed ultra-thin and ultra-long edges.

Although for some electronics applications, pristine, continuous, defect free, and reasonably large area films of single layer graphene are required to attain the desired superior physical, chemical, electrical, and thermal properties of graphene, the unique morphological and structural features of vertically-oriented graphene flakes, e.g. readily accessible large surface areas and surface functionalization may be of advantage for emerging energy, environmental and catalysis applications, such as energy storage and conversion, and sensing. It is important to note that the structure of vertically-aligned graphenes is quite different from planar graphenes especially near the point of contact/integration with the substrate and near the exposed edges which can be closed (terminated) or open. The structure of planar graphenes is more reliant on the substrate surface properties such as surface roughness compared to their vertically-aligned counterparts. Plasma-enhanced fabrication of planar graphene may potentially be achieved by means of remote plasma, the use of which may eliminate the effects of the plasma electrical field and the ion bombardment on the orientation of the grown graphene films.

Whereas conventional methods of graphene synthesis are mostly precursor-specific, using reactive Ar + H₂ plasmas, very similar structures were obtained irrespective of the state of the precursor, i.e. gaseous, liquid, or solid, or its chemical make-up, i.e. sugar, fat, or protein. Importantly, an equivalent
thermal process (gas composition, temperature) failed to produce graphene nanosheets, generating carbon fibers or porous carbon at 450 °C or amorphous carbon at 900 °C.

Plasma-assisted synthesis was also rapid, with the transformation of honey into fundamental building blocks and the formation of VGSs triggered between 1 and 3 min into the plasma treatment (Figure 15). After 5 min of the plasma processing, well-defined VGSs were formed. Longer processing (> 9 min) yielded VGSs that were thinner, as reflected by I_{2D}/I_G ratio of 1.4 which was significantly higher than that obtained after 3 min, and had the best defined morphology of all samples produced. The reduction in graphene thickness was attributed to higher substrate temperature (up to 450 °C) and the reactive plasma etching due to ion and radical bombardment. Excessive bombardment of the graphitic structures by energetic argon, hydrogen, and oxygen radicals and ions may also generate defects in the structure.

Figure 15. Plasma-enabled synthesis is rapid, taking less than 9 min to convert raw honey into vertically aligned graphene sheets.72 SEM images and Raman spectra show the evolution of graphene structure with plasma exposure time: from 3 min (A, D) to 5 min (B, E), to 9 min (C, F).72 Reprinted with permission from ref. 107a. Copyright 2013 Elsevier Ltd.
The morphology of VGSs produced from honey, sugar, milk, butter and methane was similar. VGSs from table sugar had the highest edge density of more than 1.7 km cm\(^{-2}\), whereas the average length of an edge (415 nm) was the highest for methane-derived VGSs. A similar behavior was observed when VGSs were fabricated on a porous Ni foam substrate, with VGSs from methane precursor having a significantly lower density of thin edge planes compared to those derived from butter. The capacitance of methane-derived VGSs was also lower compared to butter-derived graphenes, the latter exhibiting specific capacitances of up to 230 F g\(^{-1}\) at a scan rate of 10 mV s\(^{-1}\) and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density. These results suggest that fatty substances such as butter may be suitable carbon sources for the synthesis of high-performance electrode materials for energy storage devices.

In addition to being shorter and simpler compared to other methods, plasma-enabled synthesis is more energy-efficient and hence cheaper than similar thermal processes. By using minimally processed, commercially available low-cost produce as a carbon source, further savings can be made. Given that honey is an abundant and renewable resource, this method of synthesis of VGSs is also more sustainable compared to thermal processes that rely on purified gaseous precursors.

The mechanism of plasma-assisted conversion into graphenes and the role of natural resource chemistry are yet to be fully elucidated. Plasmas represent a highly complex and dynamic environment. An Ar/H\(_2\) plasma is rich in ionic species, including Ar\(^+\), ArH\(^+\), H\(^+\), H\(_2\)+, H\(_3\)+, and others. Water vapors that are released from the organic matter, e.g. honey or milk, as a result of the plasma heating may also undergo ionization and dissociation in the plasma bulk to produce a range of species, including H\(^+\), OH\(^-\), etc., resulting in an even wider range of species.
Collectively, these ionic and radical species may interact with the dehydrated components of the organic precursor to produce carbon atoms that will reform into graphene sheets on the surface of the substrate. The chemistry of the dehydrated components varies with the source material; for example, honey dehydrates to monosaccharides (sucrose and fructose). Dehydration and heating may also convert some of the fructose into hydroxymethylfurfural, a molecule that contains a furan ring as well as aldehyde and alcohol side groups. Plasma-generated species interact with these dehydrated molecules to produce carbon building units from which graphenes are formed.

The properties of VGSs can be controlled by hydrogen concentration and processing pressure. In the case of Ar/H₂ plasma-assisted conversion of honey, hydrogen concentrations outside the range of 30–60 % resulted in the amorphous carbon layers rather than VGSs. In the process of butter conversion, a better graphitic ordering in VGSs was obtained at H₂ concentration of 80%. For graphene-based supercapacitor electrodes, VGSs with the \(sp^2 \) graphitic structure are preferred due to their enhanced charge storage capability. Even though \(sp^3 \)-bonded carbon increases the charge transfer resistance, they also provide the structural disorder required for the electrochemically active materials, by producing a higher surface area for ion adsorption.

H₂ concentration plays an important role in the nucleation and growth of many carbon-based nanostructures. In the plasma-assisted CVD, carbon building units are first extracted from the natural source and then re-form into the hexagonal carbon rings of the graphene nanosheets. At a low pressure, H₂ can promote the nucleation and growth of VGS by enhancing the movement of these carbon building units towards the surface. Thus, increasing H₂ concentrations promotes graphitization of VGSs. At a certain concentration point, however, the etching effect of hydrogen species becomes more prominent, leading to the formation of defects and reduction in the VGS growth and graphitic ordering.
5.3 Intentional defect creation and functionalization

This section demonstrates that intentional *in situ* introduction of defects, pore creation and functionalization are very useful and promising ways to attain desirable properties in the synthesized material, and discusses examples of the use of plasmas to achieve these objectives. Graphenes produced using plasma synthesis from natural resources are characterized by the presence of the long reactive edges, typically at ~1 km per cm²,⁵⁶ that should enhance chemical reactivity of these structures and facilitate graphene functionalization.¹⁸⁷ Ions and reactive radicals generated in the plasma are responsible for the formation of line and point defects in the graphene layers, and the decreasing thickness of the reactive edge as a function of exposure time.⁵³

Natural precursors may provide an additional source of desirable defects. For instance, calcium, magnesium, phosphorous, and other elements present in natural honey were retained in the resultant VG structures. Plasmas also provide the means for *in situ* doping of carbon nanostructures by varying the composition of the gas mixture. By adding N₂ to Ar+H₂+CH₄ plasmas it was possible to control structural properties of the VGSs. Increasing concentration of N₂ to 50% resulted in the loss of crystalline structure (presented by diminishing 2D Raman peaks), increased degree of disorder (indicated by a broader G-peak), and incomplete graphene coverage of the substrate surface.¹⁸⁸

We stress that plasma-enhanced synthesis of carbon nanostructures involves concomitant deposition and removal of carbon species from the surface, both of which are controlled by the nature of the species present in the plasma. Nitrogen radicals that form in the plasma as a result of the addition of N₂ to the gas mixture may interact with the substrate, forming a barrier that prevents carbon species from bonding to the
surface. Cyanide species that are produced from the reaction between nitrogen and hydrocarbon species can act as an etching agent for graphitic structures, leading to the formation of thinner VGSs. Collectively, these processes affect the growth and structure and thus the properties of the VGSs.

Figure 16. Plasma-enabled graphene nanopetals fabricated from methane, and graphene nanoflakes produced from butter, honey and milk feature a significant number of intentionally introduced defects which lead to ferromagnetic properties.189 \textbf{A.} SEM of graphene nanopetals reveals ultra-long reactive edges. \textbf{B.} Proposed atomic structures of the graphene nanopetal with intentionally introduced hydrogen chemisorptions, edge, and lattice vacancy defects.189 \textbf{C.} Raman spectrum of the graphenes produced from butter shows presence of a significant number of defects and hydrogenation of the graphene structure. \textbf{D.} Temperature-dependent magnetic hysteresis loops for graphenes from butter (a), honey (b) and milk (c) suggest that ferromagnetic behavior of vertically-oriented graphenes can be controlled by changing the chemistry of the precursor material.190 Panels A-C reprinted with permission from ref. 110. Copyright
Similar plasma environments can be used to produce graphene nanopetals with ultra-long defective edges of up to 10^5 m/g and ultra-dense lattice vacancies that show robust ferromagnetism with saturation magnetization of up to 2 emu/g at 5 K and 1.2 emu/g at room temperatures (Figure 16). The lattice vacancies can generate localized electronic states and magnetic moments due to the hybridization of p_z orbitals in the π-band, and also induce ferromagnetic ordering and states where sublattice symmetry is broken. Furthermore, exposing the substrate surfaces to hydrogen plasma at high temperature facilitates adsorption of H atoms on graphene surface, inducing the formation hydrogen absorption defects on edges and vacancies not just at the surface but also at interlayers. The adsorbed H atoms can generate spontaneous magnetism in graphene via formation of C–H bonds and unpaired electrons. As the stability of the magnetic configurations depends on the distance between H adatoms and the strength of exchange couplings between the defect-induced magnetic moments, strong long-range coupling between local magnetic moments at the same sublattice of graphene petals can maintain room-temperature ferromagnetic ordering against thermal fluctuations. Further, the zigzag edges that along with armchair edges are present in graphene petals can be magnetic due to spin-polarized edge states, where the net spin moment depends on the shape of the petal due to topological frustration of the π-bonds. The chemisorption of H atoms at the ultra-long edges of the petals gives rise to the formation of a spin-polarized band at the Fermi level and passivation of the σ dangling bonds, leaving the π orbitals unsaturated and carrying the magnetic moments.

Importantly, ferromagnetic properties of plasma-produced graphenes can be tuned by controlling chemical composition of the carbon source, e.g. by using precursors with a wide range of carbon/oxygen (C/O)
Sucrose present in honey has C/O ratio of ~1:1, whereas palmitic and oleic acids in butter have 8:1 C/O ratios. Graphene nanoflakes produced from butter, milk and honey were hydrogenated and contained a significant amount of defects: vacancy-type due to ion bombardment and boundary-type due to the presence of the edge plane. However, their magnetic properties differed significantly. Vertical graphenes produced from a precursor with low oxygen content (butter) had saturation magnetic moment of 8 emu g$^{-1}$ at 3 kOe and 300 K, with a small ferromagnetic moment, whereas those made from oxygen rich honey and milk had lower saturation magnetic moment of 2.1 and 1.0 emu g$^{-1}$ (at 3 kOe), respectively. Honey-based graphenes had the highest ferromagnetic coercivity at 300 K of all graphene types. In a simple lipid chain, the oxygen is contained mostly as a side chain, leading to the formation of vertical graphenes with zero oxygen content, and hence high saturation magnetic moment and uniform but small ferromagnetic coercivity. On the other hand, oxygen in sucrose is held as a part of the aromatic ring, generating graphenes with moderate graphene oxide content and thus smaller magnetic moments and larger ferromagnetic coercivity.

For many applications, 3D and composite/hybrid structures provide better functionality. Several hybrid structures comprising graphene sheets and another electrochemically active materials, such as metal oxides, conductive polymers or CNTs, have been proposed to overcome limitations or further enhance the properties of surface-supported carbon nanostructures such as nanotubes and vertically-aligned graphene flakes.

6. Synthesis of 3D and hybrid nanostructures

Non-destructive chemical functionalization of graphene with other carbon nanostructures is important for applications in sensors and transducers. For instance, heterostructures comprised of single-layer graphenes
and carbon nano-membranes decorated with functional amino groups form the active layer of the field effect transistor.200 For biochemical and biomedical uses, these hybrid structures offer a favorable combination of physico-chemical, mechanical and optical properties, enabling selective entrapment of various chemical and biological agents while maintaining their activity. Dense forests of long, vertically-aligned multiwall carbon nanotubes grown on activated graphite-like carbon film supports provide the means for immobilization of enzymatic biocatalysts while protecting the attached enzymes from shear forces and microbial attacks present in bioreactors.126 In this case, the enzymes preferentially covalently attach to the underlying carbon film, whereas the layer of CNTs serves as a physical barrier that prevents flow detachment and bacterial colonization of the film surface. For this type of applications, plasma-assisted synthesis can not only be used to lower the cost of synthesis of such well-aligned structures, but also for post-synthesis chemical functionalization of the carbon-based device platforms.

Surface and self-supported 3D all-carbon scaffolds hold potential for applications in the areas of energy storage, electronics, supercapacitors, photovoltaic cells, field emission devices, smart sensors and medical devices. These scaffolds can comprise a range of nanostructures organized in a patterned or random manner, such as pristine aligned or entangled CNTs, or CNTs and graphene201-202, as well as hierarchical and ordered porous carbon nanomaterials203. These materials can be produced from a variety of carbon-rich precursors, including polymers, copolymers, biomass-derived polymers, and gaseous precursors.

Currently available methods offer only limited control over the formation of covalent bonds between carbon nanostructures within the scaffold, thus limiting their structural integrity, stability, and electrical conductivity. Addition of a doping agent, e.g. boron, during CVD of CNTs can induce the desirable localized and topological defects, leading to the formation of covalent bonds between the CNTs, as well as CNT functionalization.204 Using benzoyl peroxide, MWCNTs can be transformed into all-carbon
macroscopic scaffold with the bulk electrical conductivity of 2×10^{-1} S cm$^{-1}$, which is comparable or higher than that of thin films of CNTs or graphene with large networks of sp2 carbon atoms, and scattered regions of sp3 carbon atoms.205

Figure 17. Hemp-derived interconnected carbon nanosheets for ultrafast supercapacitors.206 A. The synthesis process was strongly influenced by the three different structural layers of the fiber. B-D. The interconnected, porous and partially ordered structure of the hemp-derived nanosheets was confirmed by SEM (B) and TEM (C, high-resolution D). E. Devices fabricated using hemp-derived nanosheets as compared against commercial batteries and supercapacitors (B1: Panasonic NiHD. B2: Sanyo Li-ion. B3: Bolder Pd-acid. S1: Maxwell BCAP3000 and BCAP0310. S2: Panasonic 800F. S3: Superfarad 250 F. S4: Saft Gen2 and Gen3; data for hemp-based device is for 20–100 °C temperature range; data for other devices is the maximum energy and power densities).206 Reprinted with permission from ref. 122. Copyright 2013 American Chemical Society.
Natural materials with complex multilayered structure, such as that of a hemp bast fiber (a waste by-product of hemp processing) may facilitate the development of 3D structures with interesting architectures and multi-scale morphologies (Figure 17). Partially graphitic porous carbon nanosheets prepared from a hemp bast fiber via carbonization, activation and thermal treatment at 700–800 °C had electrical conductivity of 211–226 S m$^{-1}$ and promising power–energy characteristics. Consequently, the nanosheets are well suited for ionic-liquid-based supercapacitor applications.206 The interconnected two-dimensional nanosheets were 10–30 nm, contained high levels of mesoporosity (~58%), and high specific surface area of up to 2287 m2 g$^{-1}$. The maximum energy density of the assembled supercapacitor device is 12 Wh kg$^{-1}$, which is higher compared to some commercially available analogues. Carbon nanosheets were also successfully prepared from a mixture of waste plastics, such as polypropylene, polyethylene, polystyrene, poly(ethylene terephthalate), and polyvinyl chloride on organically modified montmorillonite.207 Although promising, the above discussed examples required multi-step processing (e.g., synthesis of hemp-based nanosheets involved 2 activation steps, carbonization, filtration, 2 washing and drying steps, grinding, annealing, etc.), which was lengthy (for the same example, 24 h of carbonization and 12 h oven drying alone) and required the use of acids (e.g., sulfuric acid) and strong bases (e.g., potassium hydroxide). As such, they were less adequately aligned with such principles of green chemistry as energy and process efficiency, and use of safer chemicals. For comparison, plasma-assisted methods for conversion of raw carbon sources into VGSs discussed earlier were single-step, lasted for seconds to minutes, and did not employ hazardous chemicals.$^{42, 55-56, 72, 185}$

Other examples of synthesis of 3D nanostructures include electrically conductive hybrid compounds derived from a mixture of sucrose, a fibrous magnesium silicate, and water, using microwave and conventional heating.208 The resultant graphene-like–clay nanocomposites were characterized by room
temperature conductivity of 10^{-2} S cm$^{-1}$ and the relatively high specific surface area, making them well suited for use as electrode and sensor materials.209 Other sugars, such as glucose, xylose, maltose, sucrose, amylopectin, and starch210 can be hydrothermally converted into a range of carbon materials, with the precursor type playing a significant role in deciding the properties of the final material. Interestingly, all of the tested hexose sugars, regardless of their complexity, first converted into hydroxymethyl furfural, and then condensed to form a carbon-like material of similar morphology, and chemical and structural composition. Xylose on the other hand converted into furfural, reacting further to produce a material similar to that synthesized from pure furfural. In addition to pure carbohydrates, proteins and complex biomass sources can also be transformed into useful functionalized and hybrid carbon materials.211 However, in all of these examples, both the process chemistry and the state of the precursor play a decisive role in defining the properties of the resultant material.
Figure 18. A. Ground powder of dead plant leaves of *Azadirachta indica* (dry waste, inset) is converted into functional microporous conducting carbon by single-step pyrolysis without any activation. B. HR-TEM images of the carbon derived from dead plant leaves show a highly porous network morphology, with pore size of < 2 nm and onion-like n-layer graphitic character. C. The synthesized functional carbon exhibits specific capacitance of 88 F g\(^{-1}\) at a current density of 2 A g\(^{-1}\) in organic electrolyte. The areal capacitance value is 32 μF cm\(^{-2}\).\(^{212}\) Reprinted with permission from ref. 128. Copyright 2013 Royal Society of Chemistry.

Single-step pyrolysis of raw and waste materials into functional nanomaterials have also been reported (Table 3), however the synthesis was precursor-driven, depending on both the chemistry and the state of the carbon source material.\(^{213}\) Carbonization of proteins, such as oxygen-rich seaweed-derived sodium
alginate, results in a material with a low specific surface area, high electrical conductivity and capacitance values due to the oxygen present in the carbon network participating in pseudo-faradaic charge-transfer reactions. Waste *Azadirachta indica* leaves have also been successfully reformed into conductive microporous carbon with a high surface area of about 1230 m² g⁻¹, specific capacitance of 400 F g⁻¹ and an energy density of 55 W h kg⁻¹ (at 0.5 A g⁻¹ in aqueous 1 M H₂SO₄) (Figure 18), using single-step pyrolysis. Naturally present in the leaves in trace amounts, metals facilitated chemical activation of the carbons during carbonization; the composition and the constitution (fresh vs. dead leaves) of the carbon source affected the conductivity and microporosity properties of the resultant carbonaceous materials, even though high temperatures (up to 1000 °C for 5 h in Ar atmosphere) were used.

Table 3. Comparative assessment of the characteristics of waste-derived carbon nanomaterials for their use in supercapacitors. Partially adapted from and reproduced with permission from ref. 128. Copyright 2013 Royal Society of Chemistry.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Activating agent</th>
<th>BET surface area (m² g⁻¹)</th>
<th>Maximum capacitance (F g⁻¹)</th>
<th>Measured at</th>
<th>Electrolyte</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice husk</td>
<td>NaOH</td>
<td>1886</td>
<td>210</td>
<td>0.2 mA g⁻¹</td>
<td>3 M KCl</td>
<td>215</td>
</tr>
<tr>
<td>Coconut shell</td>
<td>ZnCl₂</td>
<td>1874</td>
<td>268</td>
<td>1 A g⁻¹</td>
<td>6 M KOH</td>
<td>216</td>
</tr>
<tr>
<td>Fir wood</td>
<td>H₂O</td>
<td>1131</td>
<td>140</td>
<td>25 mV s⁻¹</td>
<td>0.5 M H₂SO₄</td>
<td>217</td>
</tr>
<tr>
<td>Pistachio shell</td>
<td>KOH</td>
<td>1096</td>
<td>120</td>
<td>10 mV s⁻¹</td>
<td>0.5 M H₂SO₄</td>
<td>218</td>
</tr>
<tr>
<td>Fir wood</td>
<td>KOH</td>
<td>1064</td>
<td>180</td>
<td>10 mV s⁻¹</td>
<td>0.5 M H₂SO₄</td>
<td>218</td>
</tr>
<tr>
<td>Poplar wood</td>
<td>HNO₃</td>
<td>467</td>
<td>234</td>
<td>10 mA cm⁻²</td>
<td>2 M KOH</td>
<td>219</td>
</tr>
<tr>
<td>Bamboo</td>
<td>KOH</td>
<td>1251</td>
<td>260</td>
<td>1 mA cm⁻²</td>
<td>30 wt%</td>
<td>220</td>
</tr>
<tr>
<td>Material</td>
<td>Electrolyte</td>
<td>Current Density</td>
<td>Current Efficiency</td>
<td>Electrolyte Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana fibers</td>
<td>ZnCl₂</td>
<td>1097</td>
<td>74</td>
<td>500 mA g⁻¹, 1 M Na₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn grains</td>
<td>KOH</td>
<td>3199</td>
<td>257</td>
<td>1 mA g⁻¹, 6 M KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste coffee beans</td>
<td>ZnCl₂</td>
<td>1019</td>
<td>368</td>
<td>50 mA g⁻¹, 1 M H₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste newspaper</td>
<td>KOH</td>
<td>416</td>
<td>180</td>
<td>1 mA cm⁻², 6 M KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste office paper</td>
<td></td>
<td>542</td>
<td></td>
<td>5 mA s⁻¹, 0.1 M KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recycled filter paper</td>
<td>ZnCl₂</td>
<td>2170</td>
<td>302</td>
<td>1 A g⁻¹, 6 M KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seaweeds</td>
<td>No</td>
<td>746</td>
<td>264</td>
<td>200 mA g⁻¹, 1 M H₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar-cane bagasse</td>
<td>ZnCl₂</td>
<td>1788</td>
<td>300</td>
<td>250 mA g⁻¹, 1 M H₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassava peel waste</td>
<td>KOH</td>
<td>1352</td>
<td>264</td>
<td>—, 0.5 M H₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunflower seed shell</td>
<td>KOH</td>
<td>2509</td>
<td>311</td>
<td>250 mA g⁻¹, 30 wt% KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argan seed shell</td>
<td>KOH/melamine</td>
<td>2062</td>
<td>355</td>
<td>125 mA g⁻¹, 1 M H₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platanus fruit</td>
<td>KOH</td>
<td>1215</td>
<td>216</td>
<td>1 A g⁻¹, 1 M H₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neem dead leaves</td>
<td>No</td>
<td>1230</td>
<td>400</td>
<td>500 mA g⁻¹, 1 M H₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loofah sponge</td>
<td>KOH</td>
<td>1733</td>
<td>304</td>
<td>1 A g⁻¹, 6 M KOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown seaweed</td>
<td></td>
<td>1080</td>
<td>188</td>
<td>200 mA g⁻¹, KOH, Na₂SO₄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enteromorpha sea lettuce</td>
<td>ZnCl₂</td>
<td>1651</td>
<td>103</td>
<td>400 mA g⁻¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reactive plasma environment provides a pathway for the synthesis of synergistically integrated natural-resource-based vertically-oriented graphene nanosheets (VGNSs) and CNTs on different current collectors with a low contact resistance, such as flexible graphite paper. Following the process for the conversion of commercially available low-cost natural precursors, such as butter and honey, VGNSs can be formed on the surface of graphite paper without the need for external heating or catalyst, yielding materials properties that are largely independent of the chemistry and state of the precursor.55-56, 72, 188 Strong plasma–surface interactions in the plasma sheath drive the nucleation, formation and vertical orientation of the VGNSs as opposed to amorphous carbon produced by thermal heating alone. A thermal CVD process is then used to directly grow CNTs on Mo/Co catalyst-loaded VGNSs.185 The VGNS/CNT hybrid electrode fabricated in this manner possesses a high specific capacitance of 278 F g−1 at 10 mV s−1 in a low-concentration aqueous electrolyte, and capacitance retention of \textgreater{}99 \% after 8000 charge/discharge cycles. Although currently there are no reports on this matter, it may in principle be possible to use a natural precursor inherently rich in the mineral necessary to catalyze the subsequent growth of CNTs. A similar approach is discussed in section 10.
Figure 19. Plasma-enabled fusion of VGNSs and CNTs for high-performance supercapacitor electrodes.185 A. Schematic for the direct growth of CNTs onto VGNSs. B. Rate capabilities of pristine VGNS (black), VGNS/CNTs hybrid structures (red) and pure CNT (green); cycle stability of the VGNS and VGNS/CNTs hybrid structures at 5 A g-1 for 1000 cycles. C. SEM micrograph of pristine VGNS prior to CNT growth and (D) the final hybrid VGNS/CNTs nano-architecture in which the graphene nanosheets were decorated with a high density of CNTs. E. Cross-sectional SEM images of the VGNS/CNTs hybrid structure.185 Reprinted with permission from ref.107b. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
7. Controlling surface organization of nanostructures: case of CNTs

We have already established that there are numerous natural, abundant and low-cost materials that can replace highly-purified carbon precursors, and minimize the number of processing steps used to prepare the catalyst-loaded support. At the same time, in the vast majority of the examples that did not use plasmas, high-temperature, lengthy processing and a variety of processing gases were necessary to enable the synthesis of the carbon nanostructures of suitable quality. In most instances, the structure and surface organization of nanostructures grown using natural materials were difficult to control, particularly under relatively benign processing conditions prescribed by the principles of green synthesis. Surface organization refers to location, orientation/alignment, density, and inter-tube spacing of CNTs. However, in order to fully realize their potential as materials in microelectronics, sensors, or thermal management surfaces, the production of nanomaterials should not only be low-cost, reliable, and environmentally-friendly, but yield structures with properties that address the stringent requirements imposed by the envisaged applications. For example, if CNTs are to outperform Cu-based interconnects, they need to be grown on conductive supports in the form of high-density vertically aligned forests, in patterned structures (e.g., using pre-delineated patterns made of particles or holes), and at a maximum tolerance temperature of microelectronic devices which is approximately 450 °C.236

In this section, plasma-enabled in situ surface organization of CNTs will be discussed. CNTs offer a favorable combination of high thermal conductivity, mechanical strength, and tunable electrical properties. Electronic transport in metallic SWCNTs and MWCNTs occurs without scattering along the length of the tube, which allows them to carry high currents with minimal heating.237 Their conductivity, electrical and mechanical stability and high accessible surface area make CNTs a valuable electrode material for energy storage devices and flexible touchscreens, as their use can enable mechanical
flexibility, higher power densities, faster charge/discharge rates and prolong device lifespan. The high electrical conductivity and accessible surface area allows nanotube-graphene composite materials to achieve high electrical double layer capacitances, which can be further enhanced by pseudocapacitance arising from surface functionalization and using pseudocapacitive materials.238 If produced at lower cost, using more energy-efficient processes and non-toxic precursors, supercapacitors based on carbon nanostructures may provide an attractive environment-friendly means for energy storage, particularly for applications where frequent charge and discharge cycles at high current and short duration are required.

For the majority of applications in nanoelectronics and energy devices, CNTs must be organized on the surface, e.g., as horizontally or vertically aligned arrays. For instance, vertically aligned carbon nanotubes are effective solar absorbers, combining high-temperature stability in vacuum, thermal conductivity and their nearly ideal absorptance of >0.99, the characteristics required for absorbing highly concentrated irradiance at elevated emitter-to-absorber area ratios. With currently reported efficiencies of 3.2\%, solar thermophotovoltaic (TPV) devices based on CNT array absorbers may become a viable avenue for energy generation by harnessing the entire solar spectrum, being scalable, compact, and able to store energy in thermal or chemical form (Figure 20).239 Where spectral selectivity is desired, e.g. when CNTs are used as a solar selective coating, this can be achieved by varying the properties of the CNTs, particularly their length, the density of the CNT array, and by using a suitable tandem absorber beneath the CNT layer.240
Figure 20. Vertically-aligned CNTs as effective absorbers for energy harvesting technologies including TPV. A. Operating principle of TPV devices fabricated using vertically-oriented CNTs forests as absorbers. Optical image (B) and operating characteristics (C) of CNT-based TPV. D. SEM image of the oriented dense CNT forest used as an absorber.239 Reprinted with permission from ref. 155. Copyright 2014 Nature Publishing Group.

In electronics, semiconducting CNTs are promising channel materials for extending complementary metal-oxide-semiconductor (CMOS) device performance in very large scale integration (VLSI) technologies.241-242 Vertically-aligned MWCNTs are promising microelectronic interconnects capable of effectively dissipating heat from sensitive active devices, owing to the low resistance to electron current mostly arising from the contact between the nanotube and the contact material such as the growth substrate.243 Vertically-aligned CNTs are well-suited as electron emitting sources in low-voltage field
emission displays due to their high aspect ratios.244 Narrow single-walled nanotubes have been used as flexible and stretchable nanoscale transistor elements,245-247 with a rather simple prototype computer built entirely using CNT-based transistors already reported.248 In future, digital circuits based on CNT transistors can exceed the energy efficiency (energy–delay product) of silicon-based devices. However, issues associated with CNT fabrication and integration, namely CNT separation, energy cost of CNT production, etc. that affect the cost of the devices rather than the energy efficiency of operation of these devices should be carefully addressed for this technology to become viable.

It is evident that \textit{in situ} surface organization of the CNTs may be advantageous, by reducing the number of steps required in the production of aligned (or otherwise-organized) nanostructures. However, the challenge of surface organization is not the only challenge in the field of CNT synthesis that requires addressing. Firstly, to be commercially-relevant, CNTs should be produced at low cost and at large scale without compromising their quality. Secondly, CNTs need to be synthesized with the necessary level of selectivity with regard to their chemical structure, morphology and electronic properties,249 which is directly linked to the third challenge of understanding (and hence the ability to control) the mechanisms of CNT assembly and organization. Electrical properties of single-walled carbon nanotubes vary between metallic and small-gap semiconducting depending on the way the sheet of graphene is wrapped (represented by n, m indices),250 which in turn determine the nanotube diameter and chirality (Figure 21). Hence, to enable economically-viable large-scale production of future electronics and energy devices that employ highly-organized arrays of CNTs, the synthesis at scale may need to rely on cheap and efficient bulk-growth methods coupled with CNT self-assembly or alternatively controlled growth directly on the substrate of choice.
Properties of CNTs depend on the nature of the carbon precursor and the catalyst, the synthesis temperature and the synthesis method used. A. In bottom-up synthesis, organic templates can be used to induce specific (n, m) chirality in SWCNTs, which in turn will determine whether the SWCNTs are metallic or semiconducting.251 B. Arrhenius plots for CNT growth rates on different catalysts. C$_2$H$_2$ diluted in NH$_3$ is used as a carbon source. The dotted line is the growth rate variation for Ni thermal CVD.252 Panel A reprinted with permission from ref. 164. Copyright 2015 IOP Publishing Ltd. Panel B reprinted with permission from ref. 165. Copyright 2005 American Physical Society.

Popular methods to produce CNTs include arc discharge method, laser vaporization, chemical vapor deposition, and spray pyrolysis. In the former, graphite electrodes are evaporated in electric arcs at very high temperatures (~4000°C) to form well crystallized, yet impurity-containing CNTs. In laser ablation processes, high-purity graphite (99.99%) targets are evaporated by high-power, expensive lasers in a high-temperature environment, forming CNTs of good purity and temperature-dependent tube diameter. Catalytic CVD is considered as one of the most scalable, low-cost and efficient process to produce CNTs,
with milder synthesis conditions compared to arc discharge or laser ablation. However, the temperatures are still high to be considered green synthesis.

Plasma environment is known to strongly influence dissociation and recombination processes in the gas phase and at the surface, and thus the kinetics of nucleation, growth, self-organization and self-assembly of surface-supported nanostructures.253 In conventional thermal CVD, dissociation of carbon precursors is purely thermal, requiring temperatures above 800 °C. In plasmas, on the other hand, in addition to thermal processes, electron-impact dissociation of precursors in the gas phase is supplemented with ion-assisted dissociation at the catalyst nanoparticle (CNP) surface. Surface recombination of ionic and radical species leads to localized CNP heating, which allows CNP to reach high temperatures without the need for external heating of the substrate. By minimizing or avoiding external substrate heating, CNTs can be produced in a more energy-efficient manner, which aligns well with the energy conservation guiding principle of green synthesis. Furthermore, lower overall temperature of the substrate reduces the rate of evaporation and desorption of building units, leading to better material-efficiency of the plasma-assisted processing. The formation of the graphene monolayer from which single-walled nanotubes form also occurs faster in the plasma environment, as it is primarily driven by surface diffusion of carbon on CNP surface, and not bulk diffusion characteristic of thermal processes.53 Reactive hydrogen species produced in plasmas help maintaining catalytic activity of the CNPs by etching amorphous material and preventing catalyst from surface oxidation. Other beneficial contributions of plasmas include ion-enhanced surface mobility and solubility of carbon atoms in CNPs,254 and prevention of CNP agglomeration.53

For controlled growth of CNTs directly on the substrate of choice, plasma environments uniquely combine the ability to drive surface organization with the high chemical reactivity that enables catalyst-free synthesis of carbon nanostructures directly on support materials, such as Si. When thin linear features
written on a Si wafer are directly exposed to non-uniform methane-based plasmas in the absence of external heating or catalyst, linear and dot arrays of vertically aligned CNTs are produced at high rate. Under similar thermal CVD or remote plasma conditions, the CNT growth is not observed, suggesting that direct exposure of the Si features to the plasma is required. Plasma exposure makes Si catalytic by carbonizing small Si features to produce a segregated SiC nanophase at the tip of the Si nanostructure, which acts as a catalyst for CNT nucleation. This plasma-specific effect makes oxide and metal catalysts redundant, facilitating direct, catalyst-free integration of surface-organized CNTs into Si-based nanodevices. The turn-on field E_o of these vertically aligned CNTs is $\approx 4.2 \, \text{V} \, \mu\text{m}^{-1}$, indicating the absence of current-blocking oxide layer between the CNTs and the substrate nanofeatures.

In addition to uniform growth of surface-aligned CNTs (Figure 22.A), a variety of morphological and structural gradients can be achieved by controlling the lengths and orientations of the linear features with respect to the center of the spatially localized plasma discharge. For example, when the substrate was oriented so as to align the linear features with the direction of the plasma density gradient, CNTs arrays with gradually decreasing lengths away from the plasma were observed (Figure 22.B). The field emission properties of the CNT arrays were comparable to those of bulk CNT forests deposited directly on a metal cathode. Although further efforts are required to lower the temperatures of the plasma-enabled CNT syntheses to the temperatures appropriate for processing of heat-sensitive thin film or polymer devices, considerable efforts in this area of research yield promising results for green chemistry.
Figure 22. Plasma-enabled, morphologically graded catalyst-free CNT arrays growth directly on linear Si features.255 A-B. The effect of relative positioning of the substrate and the plasma on the synthesis of uniform (a) and length-graded (b) arrays; no nucleation takes place in remote plasmas. Si NF, N, and N-F denote Si nanofeatures, nucleated CNTs, and nucleation-free areas, respectively. C. SEM image of a length-graded CNT array. D. Field-emission current density of the CNTs, which were integrated in a standard field-emission device configuration; the calculated field-emission enhancement factor β is shown in the inset.255 Reprinted with permission from ref. 168. Copyright 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

8. Effect of precursor chemistry on CNT synthesis

In section 7, we already briefly mentioned that even though CNT synthesis involves extensive decomposition of precursor into carbon atoms and very small fragments, and subsequent re-assembly of
the carbon-bearing species, the chemical structure, morphology, deposition rate and yield of the carbon nanostructures is in many cases determined by the chemistry of the precursor. For most synthesis methods, the processing environment (i.e. temperature, pressure, processing gas, substrate, catalyst)256-258 is determined by the reactivity of the carbon source under these conditions, namely its binding affinity to the catalyst and prevailing dissociation mechanisms.259-261 While it may complicate high-volume conversion of minimally processed raw and waste materials, the diversity of the natural chemistries suggests that it may be possible to selectively target low-cost, largely-homogenous natural precursors for specific applications. Several reports have highlighted the role of precursor-derived intermediates in the formation of carbon nanotubes and nanofibres.262 Hence, it may be possible to find precursors that decompose into fragments that can be directly incorporated into the growing CNT structures, and potentially lower the temperature and time required for the synthesis. In this section, we will consider the examples of precursors, which, when broken down, generate structures that can be directly used in the assembly of CNTs.

Let us first consider the effect of degree of unsaturation in the conventional thermal synthesis of CNTs. In the study by Hernadi et al,263 hydrocarbons containing unsaturated bonds in their structures were found to be more reactive toward CNT synthesis than saturated counterparts, and precursors with isolated triple bonds were more reactive than those with isolated double bonds or aromatic structure. Polycyclic molecules, such as naphthalene and anthracene, are more unstable than aromatic compounds, e.g. benzene, and thus the critical temperature for SWNT conversion for these precursors is lower (by \textasciitilde100 °C) to that for benzene.259 A difference in a single methyl group, e.g. that between methylacetylene and acetylene, was found to induce significant variations in the yield and the structure of CNTs formed at 720 °C.264
Low-temperature (~600 °C) pyrolytic decomposition of xylene, benzene, toluene, and naphthalene resulted in the formation of carbon spheres; although structurally very similar, the spheres fabricated from different precursors differed significantly with regard to their size.265 An interesting link was found between sp hybridization of the precursors and gas flow rates, where higher flow rates increased the carbon formation from acetylene yet decreased nanostructure synthesis for ethane over a Ni mesh catalyst at 750 °C.266 Upon heating, acetylene is broken down into H, C$_2$H or CH, whereas ethane is decomposed into C$_2$H$_5$ and H radicals. C$_2$H$_5$ from ethane was found to desorb more readily from the surface of the substrate, leaving it rich in hydrogen and thus not conducive to carbon nanostructure nucleation and growth. On the other hand, C$_2$H or CH from acetylene were demonstrated to desorb slower than H, with the surface favoring carbon nanostructure growth.

It has already been discussed that synthesis of CNTs at lower temperatures is highly desirable in terms of both minimizing the energy input during the synthesis and enabling direct assembly of the CNTs on the substrates with relatively low temperature tolerance. Remote heating, where the temperature of the precursor delivered to the synthesis chamber is notably (e.g., by 250 °C) higher than the substrate temperature may help contribute to their integration into microelectronic devices. By controlling the preheating temperatures of the precursor and the substrate, and by varying the chemistry of the remotely-heated precursor gas, a transition from amorphous carbon nanofibers to crystalline CNTs can be induced.267 \textit{Ex situ} gas chromatography of the exhaust gas (Figure 23.A) confirmed increasing concentrations of specific volatile organic compounds and polycyclic aromatic hydrocarbons during the structural transition. Direct delivery of these molecules in the CVD process may enable selective nanofiber or CNT formation and control of crystallinity at low substrate temperatures, which is a promising development for electronics fabrication.
Hetero-atoms (Cl, Br, OH and NH₂) that may be present in the precursor can impact carbon nanostructure growth and structure,⁶⁹,²⁶⁸ which is particularly relevant for processing of mixed carbon resources. For example, the reactivity of trichloroethylene was higher than that of ethylene, and increased even further with temperature, whereas the reactivity of ethylene declines under higher temperature processing.²⁶⁸ However, the carbon nanomaterials from ethylene were more structured, forming as hollow fibers, whilst trichloroethylene produced less ordered solid fibers with bamboo-like features. The dynamic relationship between carbon precursor and catalyst morphology also requires consideration. For instance, trichloroethylene precursor can actively engage with the catalyst leading to catalyst restructure into tetrahedral particles capable of supporting the growth of tripod-like carbon fibers.⁶⁸,²⁶⁸

From the above examples, it is evident that the presence of specific chemistries may render the carbon more conducive to the efficient low-temperature synthesis. Let us now consider the role of precursor-derived intermediates in the formation of carbon nanotubes and nanofibers in more detail. Polyaromatic hydrocarbon and free radical condensates, i.e. agglomerations of carbon species with varying hydrogen content, undergo rapid rearrangement at high temperatures, thus serving as building blocks for carbon materials.²⁶² The nature of the carbon material produced in this process is related to the manner in which hydrogen is abstracted from these intermediate species in the course of radical recombination, with catalyst particles playing a role of a template for nanostructure growth. Another proposed mechanism assumes precursor adsorption onto the surface of the catalyst, where it is dissociated into smaller fragments – the building blocks for the formation of carbon nanostructures (Figure 23). Surface-adsorbed benzene was shown to decompose into dimers and trimers on the Fe−Co/γ-Al₂O₃ catalyst surface, subsequently reforming into CNTs.²⁶⁹-²⁷⁰ Dehydrogenated benzene have also been suggested to directly aggregate into graphitic sheets.²⁶⁹
Figure 23. Effect of precursor chemistry on the precursor dissociation and carbon nanostructure reassembly. A. Ex situ gas chromatography of the exhaust gas. Increasing concentrations of specific volatile organic compounds and polycyclic aromatic hydrocarbons are correlated with the structural transition from synthesis of carbon nanofibers to crystalline CNTs.267 B. Proposed mechanisms for the C\textsubscript{6}-based growth mechanism of CNTs with benzene precursor as analyzed by in situ thermal analysis coupled with mass spectroscopy.270 Benzene molecules adsorbed on catalyst surface are dehydrogenated and aggregate to form graphene sheets on the catalyst surface. CNTs develop through sequential incorporation of the h-C\textsubscript{6} into the graphene layers through surface diffusion. Thermogravimetry-differential scanning calorimetry profiles of the preparation process (C) and the change of the ion currents for certain atomic mass units during the experimental period (D) confirm the reduction of the oxide species of the catalyst, resulting in the formation of H\textsubscript{2}O (18 amu) and CO\textsubscript{2} (44 amu) species.269 Panel A reprinted with permission from ref. 176. Copyright 2011 Elsevier Ltd. Panel B reprinted with permission from ref. 178b. Copyright 2003 American Chemical Society.
These mechanisms suggest that in order to produce carbon nanostructures it may not be necessary to break the precursor down into individual atoms. Further elucidation of these mechanisms and identification of fundamental building blocks may provide an opportunity to selectively produce these building blocks by matching the unique chemistries of the conventional and exotic precursors with appropriate catalyst and temperature to selectively dissociate the carbon–hydrogen bonds, while retaining the carbon–carbon bonds. This may provide alternative pathways for the low-cost, high-volume precursor-driven synthesis of carbon nanostructures.

9. CNT synthesis using raw materials

In this section, we will continue our examination of how the choice of processing conditions, carbon feedstock and catalyst determines the morphology (wall number, diameter, length, defect formation and chirality), functionalization, alignment and surface organization of CNTs. While CNT production typically relies on high-purity methane, ethylene, acetylene, benzene, xylene and other purified gases as a source of carbon, the cost of production and work-up chemistry may be lowered by employing diverse carbon sources. We will now discuss the properties that arise when CNTs are synthesized using coal, natural gas, petroleum, and waste materials as the carbon source, focusing on specific advantages and challenges that may arise from the use of chemically-heterogeneous precursors in nanostructure synthesis.²⁷¹

Coal. Coal is a cheap and abundant natural source of carbon that can be used for synthesis of carbon nanotubes and SiC nanowires by arc discharge in helium atmosphere.²⁷² In one example, graphite anode packed with a mixture of coal and CuO was used to produce branched CNTs with Y-type junction.²⁷³ Branched structures stemming from the straight nanotube alter the electronic and mechanical properties of
the CNTs. The coal-modified graphite anode carbon source was able to yield CNTs in large quantities with a purity of 70%. Interestingly, the yield from high-purity graphite powder-filled anode was significantly lower, suggesting that the macromolecular structure of coal may present certain advantages for branched CNTs (BCNTs) synthesis.

Indeed, the non-pure nature of coal as a carbon source leads to some interesting features that cannot be attained from pure graphite under the same conditions. When graphite is subjected to arc discharge plasmas, it is decomposed into atomic and diatomic carbons, which then reform into fullerenes or CNTs. On the other hand, coal is rich in weakly cross-linked irregular polymerized aromatic hydrocarbon units, such as alkyne and aromatic species that are easily released upon exposure to the arc plasma environment. The temperature distribution in arc discharge plasmas varied greatly between the hot (> 5000 °C) center and much cooler edge regions. Carbon precursors in the hot region are fully atomized, whereas in the low-temperature fringe regions, the released active carbon species can exist as clusters. These clusters interact with catalyst nanoparticles and give rise to BCNTs, where most of the C–C bonds are distorted from pure sp² bond to partial sp³ bond. The process kinetics resembles gas-phase catalytic pyrolysis in hydrogen arc. In the same manner and using Fe catalyst nanoparticles, double-walled CNTs (DWCNTs) with an outer diameter of 1–5 nm and an interlayer spacing of ~0.41 nm can be synthesized.274

Table 4. Chemical composition of raw coal and coal-derived anode.274 Reprinted with permission from ref. 182. Copyright 2007 Elsevier Ltd.
The formation of both BCNTs and DWCNTs is further promoted by organosulfur compounds naturally present in the coal, natural gas, and petroleum (Table 4). Sulfur species can selectively bond to the active sites of the catalyst nanoparticles, suppressing the formation of graphite layers, promoting such features as branching and stabilizing large-diameter nanotubes. The formation of metal–sulfur eutectic potentially leads to higher CNT yields. However, since the yield and the structure of the nanostructures produced are affected by the type of coal used, this presents a potential challenge for the large-scale production of CNTs where reproducibility of quality and yield are paramount. Furthermore, the product is likely to have a significant fraction of impurities, e.g., hollow and fullerene-like NPs, carbons with disordered structures, etc.

Natural gas. Natural gas, which is a mixture of methane, carbon dioxide, ethane, propane, n-butane, isobutene, and dimethyl sulfide, has been suggested as a lower-cost carbon source for CVD processing. Using thermally oxidized garnet powder (as a low-cost catalyst and support) and natural gas as a carbon precursor, pure and highly crystalline relatively well-ordered multi-walled CNTs (MWCNTs) (diameters of 20–50 nm) were grown using CVD at 800°C. The high density of garnet powder enabled easy separation of the CNTs and garnet sand by means of sonication in a water solution. A number of impurities (e.g., N₂, CO₂, and H₂O) that are present in the natural gas may influence the synthesis process.

In the example of natural gas, hydrogen gas was required during the process to activate the catalyst and control the formation of the nanostructures. The use of hydrogen can be avoided when using low-cost, unpurified liquid petroleum gas (LPG) as the carbon source. The CNT forests formed from LPG in the
floating catalyst process showed thinner tubes and lower growth rates compared to the synthesis using conventional carbon sources276. Similar to the coal and natural gas cases, the effect was attributed to the presence of organosulfur species. Indeed, as sulfur is an essential element to life, fossil fuels and other biomass-derived products will contain a fraction of organosulfur compounds. It is possible that effect of sulfur content on the synthesis of CNTs is more profound than the influence of the types of hydrocarbons that constitute the organic precursors. The morphology and alignment of the CNTs grown from LPG was similar to that of CNTs deposited from purified propene, and the purity was high regardless of the catalyst used.277-278

\textit{Deoiled asphalt}. Another gaseous precursor is deoiled asphalt (DOA), which is a by-product of the refinement of petroleum. In DOA, carbon is present in the forms of saturated hydrocarbons, partially hydrogenated polycyclic aromatic compounds, high molecular weight phenols, carboxylic acids, and heterocyclic compounds, with the naphthene and polar aromatics being the dominant components. DOA also contains organosulfur compounds, nickel and vanadium. Carbon fibers produced from the pyrolysis of DOA and ferrocene were of high-purity, with a diameter of 150–200 nm and a maximum length of 10–40 μm.279 Ferrocene-catalyzed thermal decomposition of maltene and asphaltene fractions derived from natural-mined Indonesian asphalt at $>1100^\circ C$ resulted in the formation of CNTs with a yield between 11 and 26\% CNTs.280

\textit{Carbon from biomass}. In an alternative approach to using fossil fuels, CNTs can be synthesized directly from renewable natural materials, such as leaves, grasses, and oils. The micro- and nanoscale morphological features of natural surfaces, such as regularly distributed dumbbell shaped idioblasts, prickle hairs and arrays of papillaes, may be used to control surface organization and alignment of carbon nanostructures.281 For example, in addition to serving as a source of carbon, the structural and
compositional (e.g. Al content) differences between the top and bottom surfaces of the bamboo leaf were used as a template to control the shape (branched and bamboo-shaped on the top and bottom surfaces, respectively), density and surface organization of the nanowires.282 The use of raw agricultural material as the carbon source, catalyst support and source of catalyst significantly reduced the work-up processing energy and time.

Botanical volatile hydrocarbons can replace traditional gaseous carbon precursors. For example, camphor was used as a carbon precursor to grow SWCNTs and vertically aligned MWCNTs on quartz and silicon plates, and zeolite supports.283-289 Extracted from the latex of cinnamomum camphora tree, camphor is low-cost and abundant; it is used extensively in aromatherapy and is non-toxic. The ability of camphor to sublimate at room temperature makes it well-suited to catalytic CVD processing. On Fe-Co-impregnated zeolite catalyst support at atmospheric pressure and temperature of 650 °C, the use of camphor precursor yielded MWCNTs with 88% purity and high growth rate of ~50\% 283, which is attractive for the large-volume synthesis.

The aforementioned examples of nanostructure synthesis were precursor-driven, with the structure and morphology of CNTs depending strongly on the type of the plant oil precursor. Spray pyrolysis of neem oil resulted in bundles of well-aligned tightly-packed MWCNTs.290 Similar treatment of eucalyptus and turpentine oils yielded SWCNTs with diameters of 0.79–1.71 nm.291-292 CNTs grown from turpentine oil for 60 min at 700 °C were two orders of magnitude shorter than those grown from eucalyptus oil. However, turpentine-grown CNTs had higher degree of graphitization, better resolved concentric shells and fewer defects compared to eucalyptus-grown structures, and as such, notably higher current density and field emission.293
Just as the case with nanotube synthesis using conventional carbon sources, doping agents can be used to introduce defects into the structure of the CNTs and thus modify their electrical and sensing properties.294 Nitrogen-doped CNTs fabricated from castor oil–ferrocene with ammonia solution by means of spray pyrolysis were characterized by wavy tube morphology and bamboo-shaped structure, with a diameter of 50–80 nm.295 The specific morphology and structure was attributed to pentagonal (pyridine-like) and heptagonal defects that are introduced into the hexagonal structure.

Carbon from non-gaseous carbon sources, such as grass, can be converted into MWCNTs if sufficient heat and oxygen are provided.296 Grass is rich in carbohydrates, i.e. cellulose, hemicellulose and lignin, which are present in vast quantities as vascular bundles. Unlike conventional mechanism of CNT formation, where heat is used to release active carbon atomic species and drive CNT assembly, a rapid heat treatment (at about 600 °C) of tubular cellulose in grass leads to the dehydration of vascular bundles and their transformation into MWCNTs with the diameters of 30–50 nm.

Annealing simple precursors, such as sucrose carbon with boron at 2200–2400 °C also produce MWCNTs.297 In this case, pentagons present in graphite sheets of sucrose carbon are the defects that allow the sheets to curl up and form nuclei for nanotube or nanoparticle growth. Since the ratio of pentagons to hexagons varies depending on the source of carbon, the efficiency of conversion of these disordered carbons into graphitic nanotubes and nanoparticles would also differ between carbon sources and processing environments. Sucrose can also be converted into close-ended MWCNTs by a pyrolytic technique using mesoporous molecular sieve silicate templates without transition metal catalysts.298 The dissolution required to remove the silicate substrate may be detrimental to the quality of the tubes. Furthermore, the use of sulfuric acid as a catalyst for the sucrose conversion is not environmentally friendly.
Waste materials. The use of waste cooking oils as a carbon precursor not only serves as a low-cost carbon source for industrially-useful materials, but also alleviates the need for the disposal of these oils into the environment. Used non-purified mustard, soybean, sesame and castor oils were converted into carbon nanowhiskers (CNWs) with a diameter of 98–191 nm and length of under 2 μm via a high-temperature catalytic reaction in a closed system under self-generated pressure.299 The CNWs consisted of carbon spirals with spacing between two adjacent layers at ~ 3.1 nm and were arranged perpendicular to the whisker axis. Full conversion of the natural oils to CNWs was obtained at 850 °C for 10 h. The aspect ratio was highest for waste mustard oil (13:1).

In addition to CNWs, other carbon-based products, e.g. carbon spheres or carbon-coated nanocrystals, can be produced by varying the chemistry of the carbon source and the processing conditions. For example, in the absence of metallic catalyst, waste oils were converted into 4–6 μm diameter chiseled carbon microspheres. Similarly, a substitution of the waste cooking oil with engine oil yielded ~4 μm diameter carbon microspheres even in the presence of catalyst. While waste oils are rich in fatty acids, i.e. oleic, linolenic, linoleic, palmitic, and stearic acids, engine oil consists purely of hydrocarbons. The gaseous pressure from the decomposition of the fatty acids is proposed to be the critical parameter to the formation of the semi-graphitic filamentous structures.

A mixture of single and multi-walled vertically aligned CNTs were produced via floating-catalyst thermal chemical vapor deposition of waste cooking palm oil.300 The presence of fats and hydrocarbons leached into the oil during its use did not significantly alter the properties of fabricated CNTs. Electron field emission properties from cathodes of vertically aligned CNTs included field enhancement (β) of 2740,
turn on and threshold electric fields of 2.25 V/µm and 3.00 V/µm, respectively, and maximum current densities of 6 mA/cm².

Using a high-temperature high-pressure catalytic process, used plastic bags and bottles, such as those made of low-density and high-density polyethylene and polystyrene, were converted into MWCNTs. Pellets fabricated from polyethylene-derived MWCNTs were characterized by conductivities of 43 S m⁻¹ and 72 S m⁻¹ at room temperature and 60 °C, respectively. A minimum of 20 wt% CoAc catalyst was required for complete conversion of polyethylene into MWCNTs, while lower catalyst concentrations led to the formation of a mixture of MWCNTs and carbon spheres. Catalyst-free heating of waste polyethylene terephthalate generated mechanically robust, paramagnetic, conducting carbon microspheres with diameters of 2–10 μm. Polypropylene, polyethylene, and polyvinyl chloride plastic bottles were converted into vertically aligned CNT arrays by a coupled process of pyrolysis and chemical vapor deposition.

10. Natural product-derived catalysts and supports

Catalysts contribute greatly to the cost of CNT production. In catalytic CVD, catalyst drives the decomposition of the carbon source and controls the growth kinetics of the tubes/fibers, and typically is a transition metal (e.g., Fe, Co, Ni, Au, Pd, Ag, Pb, Mn, Cr, Ru, Mo, Cu). Catalyst particles are immobilized on a catalyst support, typically MgO, Al₂O₃, SiO₂ that provides high surface area for catalytic CVD reaction. Successful CNT synthesis have been reported with non-metal catalysts, such as SiO₂, Si, SiC, Ge, Al₂O₃, ZrO₂, ZnO, C₆₀, nanodiamond, and CNT. However, finding a lower-cost alternative to metal particles that is suitable for catalytic CVD is not trivial. Consequently, large-volume synthesis of high-quality CNTs at low cost remains a significant challenge.
In this section we consider natural, abundant materials that can be used to replace both the chemically-processed catalysts and the support, significantly reducing the costs of pre-synthesis processing. The first example concerns the use of unprocessed volcanic lavas both as support and as catalyst for CNT synthesis. Lava and tephra materials are abundant, with estimated 1×10^7 m3 of lava produced during 2002–2003 volcanic eruptions alone. Lavas are naturally rich with iron oxide particles (up to 11 wt % Fe$_2$O$_3$), distributed among silicate phases, which alleviates the need for any wet-chemical processing of the support. Once reduced to metallic Fe by H$_2$ treatment at 700°C, crushed lava rocks were used to catalyze the decomposition of carbon precursor gas and formation of CNTs with an inner wall diameter of less than 10 nm. Given that a large number of natural minerals, clays, and soils contain iron oxides, they may also be used as a low-cost catalyst/support system.

When selecting a natural catalyst support, it is important to ensure that metal catalyst sources within this material are likely to produce similarly structured and organized nanostructures. For instance, when natural bentonite mineral, where Fe is present as siderite and armalcolite, was used for production of MWCNTs, there was a significant variation in the wall thickness and outer diameter (6–40 nm) of the formed nanotubes. This was attributed to the differences in physical and chemical environments that these two sources presented for nucleation and growth of the nanostructures. Using a fluidized bed reactor, SWCNTs of high quality, few defects and a high aspect ratio ($>10^4$) were grown on natural sepiolite mineral, with good control over the chirality and diameter distribution. Used in the industrial production of many chemicals and materials, fluidized bed reactors enable the mixing of gas or liquid with powdered catalysts where the catalyst behaves like a fluid, maximizing uniform particle mixing and thus chemical interactions, and maintaining uniform temperature distribution; this system supports continuous
withdrawal of the material, enabling high-quantity material synthesis. By using planar surfaces, such as soaked fibrous wollastonite substrates, aligned, highly pure CNT arrays can be produced.309

Figure 24. Pyrolysis of bamboo produces a range of surface chemistries and morphologies.310 **A-D.** SEM images of bamboo samples pyrolyzed at 1200, 1300, 1400, and 1500 °C, respectively, with insets showing respective energy-dispersive X-ray (EDX) spectra. **E-G.** SEM images of CNTs grown on bamboo charcoals pyrolyzed at 1200, 1300, and 1400 °C, respectively, in the presence of ethanol vapor. Bamboo sample pyrolyzed at 1500 °C did not produce CNTs. **H.** XRD spectra of bamboo samples pyrolyzed at (a) 1000, (b) 1200, (c) 1300, and (d) 1400 °C. 1: K$_2$SO$_4$, 2: MgSiO$_3$, 3: CaSO$_4$, 4: SiC, 5: SiO$_2$, 6: CaO, 7:
MgO. The nucleation and growth of MWCNTs at 1200–1400 °C was primarily attributed to Mg$_2$SiO$_4$ and calcium silicate.310 Reprinted with permission from ref. 210. Copyright 2012 Elsevier Ltd.

Table 5. Mineral composition of bamboo charcoal pyrolyzed at 1000 °C. 310 Reprinted with permission from ref. 210. Copyright 2012 Elsevier Ltd.

<table>
<thead>
<tr>
<th>Elements</th>
<th>K</th>
<th>Mg</th>
<th>P</th>
<th>S</th>
<th>Si</th>
<th>Ca</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>g kg$^{-1}$</td>
<td>19.6</td>
<td>10.3</td>
<td>8.5</td>
<td>8</td>
<td>7.9</td>
<td>7.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Iron is also an essential element for living organisms; it forms complexes with molecular oxygen in hemoglobin and myoglobin in vertebrates, and is an important constituent of many redox enzymes in plants and animals. It is therefore possible that the ash derived from biomass would contain iron in quantities sufficient to support catalytic synthesis of CNTs. Iron-rich activated carbon (AC) prepared from agricultural waste, namely palm kernel shell, coconut and wheat straw, supported CVD growth of carbon nanofibers from ethylene and hydrogen mixture.311 Naturally formed magnesium and calcium silicates in bamboo charcoals were responsible for the nucleation and growth of ethanol-derived MWCNTs (Figure 24, Table 5).310 In both examples, carbon support was prepared by heating the waste at temperatures of 1000-1500 °C for at least 1h, followed by the heat-enabled deposition stage at similar temperatures. Pressure-less spark plasma sintering where pulsed DC current induces high-rate joule heating was shown to reduce the processing time during AC fabrication and nanostructure synthesis and favor the formation of highly-porous AC supports from biological waste materials.312

Although the idea of using iron-oxide containing minerals reduces the costs associated with producing catalyst and catalyst supports, CNTs still need to be removed from the support, e.g. by washing with acid.
Water dissolvable catalyst supports, such as those based on silicate, carbonate, or chloride can provide a more environmentally-friendly and low-cost alternative. In one example, a catalyst support consisting of CaCl$_2$ (matrix), citric acid (foaming agent) and Co(NO$_3$)$_2$ (catalyst) was used to prepare MWCNTs with 30−150 nm diameter and structures comparable to nanotubes prepared using conventional methods. Interestingly, the synthesis yield was > 1500% with respect to catalyst weight, which is higher compared to conventional catalytic CVD. The fabricated nanotubes were 94% MWCNTs, with ~5% of metallic impurity, which is on a par with commercially prepared samples.

11. Precursor-driven synthesis: organic polymers and small molecules

To this point in the article, the chemistry of the precursor has been discussed largely as an influencing factor in the breakdown into smaller fragments, reforming and surface organization of nano-carbon materials. However, there is an equally strong interest in research and industry communities globally in the development of organic polymer materials, where the chemistry of the precursor is crucial to the performance of the polymer. Indeed, organic polymers and small-molecule materials are being actively researched for a variety of electronic applications owing to their potential to build devices with mechanical flexibility and stretchability, low toxicity towards biological systems and low cost. Within the device, polymers can perform a role of a substrate, an electrode, an active (semiconducting) layer, a dielectric layer, or an encapsulating layer.

In additional to thermo-chemical polymerization, chemical and physical vapor deposition, and other conventional methods used for precursor-centered material synthesis, plasma environments can be optimized to facilitate the preservation of some of the original chemistry of the precursor in the end material. For example, as demonstrated in Figure 3.A in section 1, lower power densities (i.e. energy
doses per precursor molecule) achieved under low-power, pulse-mode plasmas favor the survival of the original monomer structure since the energy delivered to the molecules is insufficient for dissociating certain atomic bonds.45-50

This section provides a number of examples that use natural or low-cost precursors to fabricate materials for electronics, with the examples being presented according to their potential function in electronic devices.

11.1 Natural semiconducting and electrode materials

Animal and plant-derived pigments and dyes that have for centuries been used for textile, cosmetic and food coloring are now being investigated as sustainable semiconducting materials in organic electronics (Figure 25). Indigoids, such as indigo and Tyrian purple, are amongst the most widely produced dyes worldwide, in part due to their exceptional degradation stability unlike most other natural-origin dyes.318 Indigo is synthesized via oxidation from indoxyl extracted from plants of the Indigofera and Isatis genus, whereas the precursor for Tyrian purple is tyrindoxyl sulfate, a molecule produced by the hypobranchial glands of sea snails of the family Muricidae. Among other natural pigments being investigated are carotenoids, melanin, and pigments extracted from the leaves of teak (Tectona grandis), tamarind (Tamarindus indica), eucalyptus (Eucalyptus globulus), and the flower of crimson bottle brush (Callistemon citrinus).317, 319-322

Protonic and electronic charge carrier transport was demonstrated in hydrated eumelanin thin films.323 The electrical response of hydrated eumelanin films is dominated by ionic conduction (10^{-4}–10^{-3} S cm^{-1}), largely attributable to protons, and electrochemical processes. Melanin has also been used as a cathode in
secondary Mg$^{2+}$ batteries (Figure 25.B), where divalent ions improve the volumetric charge storage capacities of electrochemical storage systems compared to those that use monovalent ions.$^{324-325}$

Organic dyes, such as indigo, Tyrian purple, and epindolidione are ambipolar organic semiconductors with good charge transport properties.326 The dyes can be evaporated to form thin films characterized by a high degree of crystallinity. The ordering of the molecules within the film depends on the nature of the substrate. For instance, the use of aliphatic nonpolar substrate, e.g. low-density polyethylene or tetratetracontane, yields a vertical orientation of the molecules in the film. The long-range ordering and absence of obvious amorphous domains is likely a result of strong intermolecular hydrogen bonding, van der Waals forces, and π−π interactions. The hydrogen bonding-reinforced π stacking ensures high mobility and high relative permittivity values of indigoids, at 4.3 and 6.2 for indigo and Tyrian purple, respectively.327 Indeed, the π-stacking parallel to the substrate is favorable for the effective charge transport in organic field effect transistor (OFET) devices.
Figure 25. Natural semiconductors with good charge transport properties. A. Chemical structure of promising semiconducting dyes. B. Natural melanin used as a cathode in Mg ion battery. State 1 and 3 represent reversible insertion (coordinated coupling) and extraction (redox) of Mg$^{2+}$ during charging and discharging. C. Photoluminescence and excitation spectra for epindolidione, a hydrogen-bonded pigment. Epindolidione is a remarkably stable organic solid, with strong low-energy optical emission originating from excimeric states, which coexists with higher-energy fluorescence. D. Transfer characteristics for low-voltage OFETs fabricated with epindolidione: p-channel with Au source-drain electrodes, and n-channel with Al source-drain electrodes. Epindolidione-based OFETs operate reliably under repeated cyclic tests in different ionic solutions within the pH range 3–10 without degradation. Panel B reprinted with permission from ref. 218b. Panels C-D reprinted with permission from ref. 221. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Organic semiconductors can be used as an active layer in ambipolar OFETs (Figure 26.D). The ambipolar behavior is related to the reversible oxidation and reduction electrochemistry. When operated in air, the n-type operation of indigo-containing devices is lost due to the high-lying lowest unoccupied molecular orbital (LUMO) level (3.8 eV) and oxygen acting as an acceptor. Interestingly, the ambipolar operation can be regained when the device is operated in the inert environment, even after prolonged exposure to air. In the case of devices with Tyrian purple layer, the ambipolar operation in air can be maintained for at least 30 min, likely due to the lower lying LUMO level (4 eV) of Tyrian purple. The repeated cycling in air results in a drop in the electron mobility by a factor of 2.

Molecular heterojunction solar cells fabricated using isoindigo/oligothiophene exhibited a power conversion efficiency up to 1.76% with the open circuit voltage V_{oc} of 0.74 V, short-circuit current I_{sc} of
6.3 mA/cm² and fill factor FF of 0.38. Solar cells based on terthiophene/isoindigo alternating copolymer and PC$_{71}$BM demonstrated a photoconversion efficiency of 6.3%.334

The ambipolarity of indigoids can be favorably exploited in the fabrication of complementary-type circuits. An organic alternative to silicon-based metal-oxide-semiconductor (MOS) integrated circuits typically involves either the use of n- and p-type materials on neighboring transistors or the use of a composite of materials with dominant hole- and electron transport. From the fabrication point of view, it would be beneficial to use a single ambipolar material, with a small enough bandgap to facilitate the injection of both types of charge carriers from a single electrode material. Indigoids, particularly Tyrian purple, satisfy these requirements, with demonstrated performance of a simple NOT-logic voltage inverter being on a par with the best-performing single materials reported in the literature.

11.2 Low-cost synthetic semiconductors

One of the key issues with using natural pigments is that at present they are not produced in sufficiently large quantities. On the other hand, synthetic pigments, such as perylene diimides, Vat Yellow and Vat Orange, and quinarcdione, are both abundant and low cost. Furthermore, they are relatively environmentally benign during use and degradation, being used for decades in industrial applications. Low toxicity and natural degradability of these semiconductors make them suitable for compostable and biodegradable devices. Unlike natural pigments, however, these semiconductors are not renewable, and their synthesis requires considerable amounts of synthetic and inorganic substances and energy.

Diketopyrrolopyrrole (DPP)-based pigments have been widely used in inks, paints, and plastics for over 4 decades, and are currently being explored as building blocks for organic semiconducting polymers and
small molecules.$^{340-341}$ These pigments are synthesized from furfural and dialkylsuccinate (Figure 26). Furfural is derived from biomass and is commercially available in large quantities at low cost. Succinic acid is also cheap and abundant. However, at present it is largely sourced from petrochemical resources, with only limited portion derived from renewable materials.342 The alkylating agent used to convert furan-substituted diketopyrrolopyrrole to DPP is also a low-cost and readily available material. One of the key issues with these pigments is balancing the ratio of semiconducting backbone to solubilizing chain. Solubilization of conjugated polymers typically requires branched chains that are both expensive and require high-temperature synthesis. More environmentally friendly alternatives may involve the use of biomass-derived alcohols.

The energy levels of DPP-based pigments can be easily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly-efficient charge transport properties for OFETs (Figure 26).$^{325, 343}$ Furthermore, many of the DPP derivatives especially those flanked by furan rings, have favorable energy levels and bandgaps, as well as sufficiently high hole mobility to be used as donor materials for OPVs.344

![Figure 26. Diketopyrrolopyrrole-based pigments are promising low-cost building blocks for organic semiconducting polymers.342](image)

A. Furan-substituted DPP unit alkylated with a farnesol derivative derives...
94% of its molecular weight from biomass. All atoms except those labeled in red are derived from natural materials. By the incorporation of only one nitrile group with the electron-withdrawing function in the vinyl link of the DPP-based copolymer, a dramatic inversion of the majority of charge carriers from holes to electrons is achieved. Panel A reprinted with permission from ref. 228. Copyright 2013 Royal Society of Chemistry. Panel B reprinted with permission from ref. 229b. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

11.3 Dielectric, encapsulation and substrate materials

In addition to conducting and semiconducting elements, organic electronic devices require the use of dielectric, encapsulating and substrate materials. For many future device applications, these materials are subject to the same requirements including low cost, large scale, reproducibility, environmental friendliness, uniformity of surface organization, flexibility (both bending and stretching), stability in air, and some others. In this section, we present several examples of natural molecules that either display or can be converted into materials that possess the characteristics desirable for dielectric, encapsulating and substrate materials in OFETs.

There are a number of natural and low-cost minimally-processed synthetic materials that can be used as substrates to support the electronics. These include shellac, proteins, such as collagen gelatin and silk, polysaccharides, such as chitin, chitosan, alginate, dextran, etc. Silk is one of the most popular materials, as it is strong and biocompatible. Its chemical and mechanical properties and degradation kinetics can be easily modified for the desired application. Furthermore, for biological applications, it can be impregnated with chemical and biological agents that can then undergo controlled release under in vivo or environmental conditions. In addition to therapeutic agents, silk can be loaded with various enzymes
that, once released, become active and promote material dissociation. In addition to being used as a substrate/encapsulating layer, silk has been reformed into naturally degradable optical elements. For example, silk was used to prepare free-standing refractive or diffractive devices, with elements that range from microlens arrays and white-light holograms to diffraction gratings and planar photonic crystals with the minimum feature sizes of less than 20 nm.

Gelatin is another natural material that can be readily processed into a variety of shapes. It is biocompatible, and its flexible chemistry allows for fine tuning of its properties. A natural polyester produced by beetles, shellac resin is readily processed from ethanol solution to form smooth (root mean square (rms) roughness < 1 nm) substrates of any shape. Another non-toxic natural material is leather; it is naturally degradable and widely available. It is also highly chemically and mechanically heterogeneous. Paper is also a cheap and abundant substrate for electronic devices. Paper is solution-processed from wood, rag or grass cellulose fibers, and can be readily shaped into very large, flexible thin sheets. Unlike polymer substrates, the surface of paper is rough and porous. Even though paper manufacturing involves multiple steps, it is still regarded as an attractive material for high-throughput fabrication. Smoothing agents may be applied to achieve surface morphology and chemistry required for device assembly. Naturally degradable shape memory thermoplastics that can change their shape or size after implantation is an interesting alternative for implantable electronics applications, where smaller size/simple shape may facilitate less invasive implant placement.

There are many natural proteins that can potentially be used as gate dielectric layers in organic electronic devices (Table 6). Albumen separated directly from fresh chicken egg can be converted into insulating thin films that are flexible and biocompatible. The dielectric layer is produced by the thermal crosslinking. Flexible pentacene and C₆₀-based OFETs fabricated with albumen dielectrics
demonstrated output currents significantly higher compared to the equivalent devices with poly(methyl methacrylate) (PMMA) dielectric. Pentacene-based OFETs with silk fibroin gate dielectric also exhibited a high field-effect mobility value of 23.2 cm2 V$^{-1}$ s$^{-1}$ and a low operating voltage of −3 V.359 Dielectric layers based on DNA and nucleobases were also tested as they offer an attractive combination of high dielectric breakdown strength and low dielectric losses and leakage currents.315, 360-363 Tetratetracontane, a waxy oligoethylene found in tropical plants, can be vacuum processed into thin dielectric films with aliphatic surfaces.314, 327 These surfaces are well suited for deposition of indigo and other H-bonded natural semiconductors where orientation anisotropy is critical to semiconducting performance.

Table 6. Electrical properties of several promising natural dielectric materials.315 Adapted from and reprinted with permission from ref. 214b. Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

<table>
<thead>
<tr>
<th>Material</th>
<th>Dielectric Constant (at 1 kHz)</th>
<th>Breakdown Field [MV cm$^{-1}$]</th>
<th>Loss Tangent (at 100 mHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenine</td>
<td>\sim3.85</td>
<td>\sim1.5</td>
<td>\sim4 \times 10$^{-5}$</td>
</tr>
<tr>
<td>Guanine</td>
<td>\sim4.35</td>
<td>\sim3.5</td>
<td>\sim7 \times 10$^{-5}$</td>
</tr>
<tr>
<td>Glucose</td>
<td>\sim6.35</td>
<td>\sim1.5</td>
<td>\sim5 \times 10$^{-2}$</td>
</tr>
<tr>
<td>Lactose</td>
<td>\sim6.55</td>
<td>\sim4.5</td>
<td>\sim2 \times 10$^{-2}$</td>
</tr>
<tr>
<td>Sucrose</td>
<td>N/A</td>
<td>\sim3</td>
<td>\sim8 \times 10$^{-2}$</td>
</tr>
<tr>
<td>Caffeine</td>
<td>\sim4.1</td>
<td>\sim2</td>
<td>\sim9 \times 10$^{-2}$</td>
</tr>
</tbody>
</table>
For organic electronic and energy devices, it is highly desirable for the insulating layer to be very thin, defect-free and generally with a high dielectric constant for operating at low voltages. Thin polymer films with a high degree of cross-linking and surface-organized, densely packed self-assembled monolayers are suitable as ultrathin dielectric materials. It is important that the synthesis method used to deposit the dielectric does not undermine the integrity and material properties of the underlying layers, e.g., through the use of excessive temperature or aggressive solvents. We have already mentioned that non-equilibrium environments provide the necessary conditions for low-temperature, substrate-sparing deposition of highly cross-linked, ultrathin, defect-free films. Thermally non-equilibrium plasma environments can also be used for gentle etching of surface features of the substrate, without damaging the integrity of the material, as well as surface functionalization and controlled deposition of surface-organized nanoscale features. These functional groups and nanoscale features can then be used to guide the assembly of ultrathin dielectric monolayers. Surface functionalization can also be used on the dielectric layer itself as the means to enhance device performance. The surface properties, i.e. surface chemistry and morphology of the insulating layer affect the charge carrier transport in transistor devices, as most of the charge carriers in the active layer are confined to within ~ 5 nm of the semiconductor layer adjacent to the semiconductor/dielectric interface.364 Thus, the chemical and physical characteristics of the dielectric surface have a significant effect on the charge carrier transport.

12. Plasma-enabled precursor-driven synthesis: organic polymer films

This section will review several examples where the plasma environment was or could potentially be used for synthesis or surface organization of organic polymers. The chemical structure of the organic precursor is important when low-temperature synthesis of polymer and surface functionalization is concerned. This is particularly so for depositions at low power, where only limited dissociation of the original precursor
molecule takes place. As power delivered to the reactor increases, stronger monomer fragmentation leads to a major loss of the original precursor chemistry and formation of a highly cross-linked material that is dominated by carbon and hydrogen.365

In low-pressure non-thermal plasmas, a large number of mechanisms of plasma polymerization exist.366 Radical chain growth polymerization is quite similar to conventional polymerization, where linear or regularly-structured branched polymers are formed. In this process, radicals that are produced as a result of monomer (M) interactions with the plasma species \([M + \text{plasma} \rightarrow R\bullet]\) interact with unfragmented monomer units to form polymer fragments \([M + R\bullet \rightarrow R\text{--}M\bullet \ldots \rightarrow R\text{--}M\bullet + M \rightarrow P\bullet]\). Two polymer fragments can then combine to form a polymer chain \([P\bullet + P\bullet \rightarrow P\text{--}P]\). Linear and branched polymers can also form as a result of ionic chain growth polymerization.

Randomly and irregularly structured materials that bear little resemblance to conventional polymers result from monomer fragmentation-poly-recombination process. These materials typically form under continuous plasma regime, and involve plasma-induced fragmentation of the monomer into multiple fragment types, and subsequent random reformation of these fragments into irregular structures. Other processes of interest include ion-molecule reactions, transformation of the monomer into polymer-forming intermediates, fragmentation and recombination reactions involving two or more monomers (in either structured or random manner), and chemical functionalization of surface via grafting. More details on the chemistry of these mechanisms can be found elsewhere.76

Precursor structure influences the mechanism of polymer formation, namely through the relative effects of ion and neutral fluxes in the polymer synthesis.367 For saturated monomers, the deposition rate is directly related to ion flux to the substrate, whereas for unsaturated monomers, the flux of neutral species also
contributes to the formation of the polymer. The contribution of the neutral flux decreases as the power of deposition is increased.367 The material properties of the resultant polymer structures are inherently linked to the chemistry of the precursor, with polymers deposited from saturated monomers characterized by higher elastic moduli, lower solubility, and lower density compared to polymers grown from unsaturated precursors.

Figure 27. Pulsed plasma deposition allows for the synthesis of polymers that consist of more chemically-regular products than those fabricated by means of continuous plasma deposition, where predominantly random radical recombination occurs.76 Reprinted with permission from ref. 245. Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

The retention of precursor functionality can be further enhanced by using pulsed plasma deposition (Figure 27), where monomer activation and generation of reactive site on the surface occur only during the...
on-periods (typically microseconds) whereas polymerization takes place during the off-periods (usually milliseconds) in the absence of UV-, ion-, or electron-induced damage to the growing film. Unlike polymers fabricated under continuous low-power plasmas, pulsed plasma-produced polymers show good stability and covalent attachment of the grown film to the substrate at the free radical sites generated during the on-period. Chemical structure, surface morphology and chemistry of the resultant polymer can be readily tuned by varying the input power, pulsing frequency and pulse duration. The functional units that can be successfully incorporated into polymers using pulsed plasmas include pyridine, anhydride, amine, ester, hydroxyl, sulfonic acid, carboxylic acid, cyano, epoxide, halide, thiol, furan and many others.

The use of plasma chemistry in assembly of thin films from naturally occurring semiconductors, such as pigments and dyes is largely unexplored. Given the ability of plasmas to guide the self-organization and control the structure formation of thin solid film, it may be possible to influence the long-range ordering of dye molecules on a variety of substrates, a behavior currently limited to aliphatic nonpolar substrates. The dependence of mobility on the substrate has been demonstrated in indigoid-containing planar sandwich diodes, where the substrate-induced differences in current-voltage (I–V) characteristics reached several orders of magnitude (Figure 28). Since the hopping between the crystallites within the film structure is the mobility-limiting factor, controlling the crystallinity of the growing film is essential.
Figure 28. Effect of morphology of the semiconductor films deposited on different dielectrics on the performance of OFETs. Atomic Force Microscopy (AFM) images of indigo thin films thermally evaporated on paraffin wax (A) and polyvinyl alcohol (B) underlayer dielectrics. Transfer characteristics of indigo-based OFETs (C) fabricated using paraffin wax (D) and polyvinyl alcohol (E) as underlayer dielectrics.387 Reprinted with permission from ref. 251. Copyright 2014 Royal Society of Chemistry.

Low-temperature, weakly-ionized plasmas would be appropriate to guide the assembly while preserving the original chemical structure of the monomer. Plasma-assisted etching and modification of the substrate prior to organic semiconductor deposition can also be used, changing the surface chemistry and/or morphology, and thus the surface energy of the material. The micro- and nano-scale patterning of the substrate surface has been demonstrated to influence the growth kinetics of the active layer.388-390 Plasma environments may be used to tune the chemistry of the thin film during or post deposition by introducing co-polymers or feeder gases, with the intent to further lower the LUMO level of the dye and thus improve the n-type operation of the devices.
Plasma polymerization is well suited for the fabrication of dielectric layers from organic precursors. Typical plasma-produced polymers are amorphous and insulating, with good uniformity and adhesion to substrate. Highly cross-linked and branched, plasma-produced polymers are chemically and thermally stable. They are typically fabricated using chemical vapor deposition (CVD) and a gaseous carbon precursor, such as methane, styrene, ethylene, methacrylate and pyridine. Plasma-produced polymers with a wide variety of other chemical functionalities can be fabricated by using more complex monomer units and/or inorganic gases. Among natural products, essential oils and their constituents represent suitable sources for plasma-enhanced chemical vapor deposition. Essential oils are volatile at room temperature, and thus can be easily delivered to the deposition chamber without the need for additional evaporation. Oils of lavender (*Lavandula angustifolia*), tea tree (*Melaleuca alternifolia*), eucalyptus (*Eucalyptus globulus*), lemongrass (*Cymbopogon nardus*), and their individual components have been successfully polymerized using plasma-enhanced CVD. The synthesis of essential oil-based thin films was plasma-enabled, since no polymer formation was observed under similar conditions in the absence of plasma.
Figure 29. Structure and performance of OLEDs with the essential oil-derived dielectric layer.

Experimental set-up and device structure (A) Al/C$_{60}$/Alq$_3$/polyterpenol/IZO, and (B) Al/Alq$_3$/polyterpenol/IZO. C. Observed electromagnetic radiation as a result of electron-hole recombination in the Alq$_3$ layer. Reprinted with permission from ref. 254. Copyright 2012 Elsevier Ltd.

One of the most well studied essential oil-derived monomers is terpinene-4-ol, a major component of tea tree oil and many other oils. Originally investigated for their biocompatibility, controlled degradation in vivo, and ability to retard bacterial adhesion and biofilm formation, plasma-produced polymers of terpinene-4-ol (polyterpenol) were found to improve the performance of pentacene-based OFET when used as a dielectric interlayer. Incorporation of polyterpenol into OFET shifted the threshold voltage from +20 V to −3 V, enhanced the effective mobility from 0.012 to 0.021 cm2/Vs, and improved the switching property. Visualization of the carriers within C$_{60}$- and pentacene-based devices using electric field induced optical second harmonic generation revealed the inherent electron blocking hole transport property of polyterpenol. This rectifying behavior of polyterpenol is very promising and can be utilized in the fabrication of many organic devices, such as OLEDs (Figure 30). The selective carrier transport in polyterpenol was confirmed using electroluminescent Al/C$_{60}$/tris(8- hydroxyquinoline) aluminium (Alq$_3}$/polyterpenol/indium zinc oxide (IZO) and Al/Alq$_3$/polyterpenol/IZO structures. Interestingly, polymers from linalyl acetate showed hole- and electron-blocking behavior in the same devices. Given that both polyterpenol and poly(linalyl acetate) were produced under the same conditions, the differences in electrical properties of these polymers arise from the variations in monomer chemistry.

Essential oil-based plasma-produced polymers were mechanically flexible and adhered well to the substrate, further substantiating their potential as protective barriers to prevents oxygen and water vapor
from diffusing into organic electronic devices.401 Untimely degradation of performance due to degradation of active layers, corrosion of electrodes and layer delamination is a major issue with most of the currently available organic electronic devices. Unlike many other polymers synthesized with the aid of plasmas, polyterpenol was optically transparent despite being highly cross-linked, even when annealed up to \(\sim 200 \, ^\circ\text{C}. 402-403 \) Similar optical properties and thermal stability were also observed for polymers from linalyl acetate, cineol, \(\gamma \)-terpinene, cis-\(\beta \)-ocimene, and linalool produced under similar plasma conditions.394-395, 404-405

Given their chemical and photo-stability and optical transparency, essential oil-based plasma-produced polymers are suitable for the encapsulation of organic photovoltaic devices.406 Encapsulation of the poly\([2,6-(4,4\text{-bis}(2\text{-ethylhexyl})-4\text{H}-\text{cyclopenta}[2,1-b;3,4-b']\text{dithiophene})-\text{alt}-4,7-(2,1,3\text{-benzothiadiazole})]:\text{phenyl C}_{71}\text{-butyric acid methyl ester (PCPDTBT:PC}_{70}\text{BM)} solar cells with \(\gamma \)-terpinene plasma-produced polymer resulted in a significantly improved performance stability, with the device efficiency slowly decreasing from 3.34 \% to 2.03 \% over 80 days. For comparison, the efficiency of the reference device without the encapsulating layer decreased to 1.07 \% after only 29 days. The short circuit current density, open circuit voltage and fill factor followed a similar trend, falling markedly in the case of the reference device.

Essential oil-based plasma-produced polymers are smooth and wettable by many solvents used in solution-based semiconductor processing.407-408 Surface chemistry and morphology of dielectric layer is known to influence the optical and morphological characteristics, crystallinity and charge transport of the semiconducting layers grown on them.409 Thin films of the n-type, organic semiconductor \(\text{N,N'-bis(n-octyl),1,6-\text{dicyanoperylene-3,4:9,10- bis(dicarboximide (PDI-8CN}_{2})} \) thermally evaporated on \(\text{SiO}_{2} \) and a linalyl acetate plasma-produced polymer showed variations in morphological and optical properties of the
Given the flexibility of the plasma enhanced deposition and a wide variety of chemistries offered by natural volatile compounds, the process can be optimized to produce thin layers with the desirable attributes.

13. Naturally degradable devices

Section 1 discussed the potential benefits of electronic devices that on one hand can fulfill the needs of conventional, physically stable electronic devices, and on the other hand, degrade under natural or easy-to-control artificial conditions. We have so far considered numerous examples of precursor- and process-driven synthesis of functional nanomaterials for electronic and energy devices, particularly focusing on the areas where salient features of plasmas can give rise to specific benefits, e.g., higher process efficiency, lower cost, and lower environmental impact of the synthesis, as well better control over the properties and surface organization of carbon nanostructures. This section opens the discussion on the potential degradation pathways for carbon-based nanomaterials individually and when integrated into complex devices.

In addition to minimizing electronics-associated toxic waste, naturally degradable electronics may enable the development of novel applications, such as non-retrievable environmental and temporary implantable sensors. Irrespective of the selected application, there are some general requirements these devices need to address. First and foremost, the performance of these devices should be reliable, even after extended storage. Second, the cost of fabrication should be comparable to or be lower compared to currently available technologies, as it would otherwise impede the market penetration of these devices. Third, their disposal should not involve complicated, energy- or labor-intensive processes. Fourth, the decomposition products that are released from the materials or are formed as a result of chemical reactions between the
released species and their environment should not harm the environment. Other desirable properties include mechanical flexibility, light weight, small size, favorable biological activity, and some others.411

The major challenge in designing naturally degradable devices is to ensure that the by-products of this degradation process are non-toxic in the own right or when reacted with other chemical substances within and/or outside of the device. Nor should these degradation products accumulate in tissues and organs of humans or other living organisms. Natural degradation is relatively easy to achieve with thin metal layers or soft polymers. Thin metals oxidize readily when exposed to water, and their large surface to volume ratio ensures relatively quick decomposition. In a similar manner, soft polymers and small molecules degrade readily when exposed to water and light. Currently, very few examples of fully naturally degradable electronic devices exist in the literature (Figure 30). Furthermore, their current performance, and in particular their stability is far from the level required for real-world applications. The majority of such examples focus on biomedical applications, as this is the area where most immediate gains are expected.
Figure 30. Examples of fully-degradable devices.412-413

A. An OFET device utilizing all natural materials. The substrate is shellac foil, produced by drop casting from ethanol solution. An electrochemically-grown Al₂O₃ layer passivated with the natural oligoethylene tetraoctacontane serves as the gate dielectric. The semiconductor material is indigo. The image on the right shows an array of OFETs on a shellac substrate. These devices showed necessary stability and balanced electron and hole mobilities of 0.01 cm²/Vs.412

B. Demonstration platform for transient electronics, where transistors, diodes, inductors, capacitors, resistors, interconnects, interlayer dielectrics, and silk substrate undergo dissolution in deionized water.413

C. By using materials of different type and thickness, circuits can be programmed to undergo functional transformation by separation into individual constituent components and also by conversion into equivalent systems but with different operation. In this example, dissolution of Mg alloy segments of the interconnect structure (area marked with dash line) transforms complementary metal-oxide-semiconductor (CMOS)-based NAND and NOR logic gates into inverters.414 Panel A reprinted with permission from ref.
Magnesium is frequently used for fabrication of conducting elements in naturally degradable devices, with magnesium oxide and silk used as a dielectric material and a substrate/encapsulating layer, respectively.347 For electrodes and interconnects, in addition to magnesium, other degradable metals, such as iron and zinc, and their alloys are also used.415 These metals corrode gradually when exposed to humid conditions, dissolving completely into minimally toxic by-products, many of which are essential to many living systems.416 Figure 30.C shows a more sophisticated platform that uses Mg conductors, MgO or SiO\textsubscript{2} dielectrics, monocrystalline Si nanomembranes as semiconductors, and silk as substrate/packaging for fabrication of bioresorbable inductors, capacitors, resistors, diodes, transistors, interconnects, and crossovers.413 When exposed to deionized water, Mg, MgO and silk undergo hydrolysis at room temperature, with the rate dependent on the physico-chemical properties of the encapsulation layer. Silicon oxides and nitrides also completely dissolve in a controlled fashion with programmable rates that depend on the pH, temperatures and chemical composition of the solution, as well as the specific morphology and chemistry of the films.417 By using a mix of Fe and Mg conductors, the different dissolution rates of Fe and Mg alloy enables a timed sequence of functional transformations initiated by immersion in water.414 For example, rapid dissolution of Mg can transform the function from that of CMOS logic gates to CMOS inverters. Sequential degradation can also be achieved by specific patterning of the encapsulation layer.

When developing degradable electronics, it is important to consider potential sources of energy that will power these devices for the intended period of use. Eumelanin pigments derived from \textit{Sepia officinalis} in
combination with λ-MnO$_2$ cathodes, aqueous electrolytes, and sodium ions can be used to fabricate naturally degradable power supplies.324 The lifetime of a melanin/λ-MnO$_2$ full cell was estimated to be 5 h when operating at discharge rates of 10 μA. Higher energy density of these devices can be obtained by tuning the chemical functionality of protomolecules and enhancing the contact area of the electrode to increase the specific sodium-ion loading capacity. Water-activated primary batteries fabricated from Mg foil anodes, Fe, W or Mo cathodes, phosphate buffered saline electrolyte and polyanhydrides packaging can be multi-packed to achieve energy output sufficient to power LEDs and radio transmitters (Figure 31).418

Figure 31. Fully-degradable, trigger-activated current sources can be used to power temporary electronic devices.418 A. A degradable current source consists of flexible composite electrodes and a sodium ion electrochemical cell. The monomers used in this device include glycerol, sebacic acid, cinnamic acid, and
α-truxillic acid. The device is packaged into a degradable capsule for storage and to permit programmable activation. B. Upon dissolution of the packaging capsule, hydration activates the device by inducing expansion of poly(glycerol-co-sebacate)-cinnamate–silver nanowire (PGScin–AgNW) composite electrodes through reduction of elasticity in mechanically compliant PGScin substrates. Hydration also initiates current flow from the wet electrochemical cell. C. Supplied current and a total charge delivery gradually decay over time of deployment. D. Electrochemical potential performance of the current source under a withdrawal current of 10 μA.418 Reprinted with permission from ref. 271. Copyright 2013 Royal Society of Chemistry.

14. Natural degradation of 1D, 2D and hybrid nanostructures

The physicochemical properties of nanocarbon materials are the key determinants of their potential environmental fate, affecting their ability to agglomerate, disperse in aqueous media, photo-oxidize, undergo microbial oxidation, and react with natural organic and mineral matter. However, under real-world environmental conditions, the movement and degradation of carbon nanomaterials is difficult to assess or predict. For example, in water, unmodified C₆₀ spontaneously aggregates into ~25–500 nm nanostructures, driven by the hydrophobicity and van der Waals interactions. These nanostructures are stable over a wide range of conditions, and are readily oxidized by water-dissolved ozone to possess carbonyl, vinyl ether, and hydroxyl groups,419-420 rendering them more water soluble and susceptible to photo-oxidation.421

Figure 32 shows an example of environmental fate of a fullerene as it is oxidized by ozone to fullerol. Widely used to improve specific properties of nanomaterials, surface modifications (functionalization, coating, etc), derivatization and complexation may considerably increase solubility of these particles in
water, affecting their ability to penetrate membranes, accumulate and degrade in living organisms and in the environment.422 The degradation of carbon nanomaterials also depends on the immediate environment. Soil or water pH, organic carbon and clay content, mineralogy, and cation exchange capacity have all been shown to affect the sorption, degradation, and cell/organism uptake of carbon nanomaterials.12

\textbf{Figure 32.} Potential environmental fates of fullerene.423 Adapted from and reprinted with permission from ref. 275. Copyright 2009 American Chemical Society.

Since carbon nanomaterials are readily taken up by plant, microbial, animal and human cells, cell-mediated degradation is also one of the key mechanisms of environmental transformation of these materials. Many microorganisms have the capacity to decompose highly condensed aromatic hydrocarbons, such as lignin, coal and biochar.13-15, 424-428 The decay is typically facilitated by extracellular nonspecific enzymes, such as manganese peroxidase, lignin peroxidase, and laccase, which both oxidize and promote polymerization. The latter enables chemical linking of carbon nanostructures to soil and sediment organic matter. White rot basidiomycete fungi (\textit{Phlebia tremellosa} and \textit{Trametes versicolor}) have been shown to metabolize and degrade an oxygenated C\textsubscript{60} (fullerol) to CO\textsubscript{2}, incorporating minor amounts of the fullerol carbon into lipid biomass.423
The evaluation of the interactions between pristine and functionalized carbon nanomaterials with animal cells has demonstrated a wide range of possible impacts, from high cell and organism toxicity to no observable effect.419,429 In general terms, the nature of cell-nanomaterial interactions is governed by the type of organism or cell line, and surface chemistry, dimension and shape of the nanomaterial being investigated.430-435 Tangled oxidized multi-walled CNTs were observed to agglomerate into large stable complexes in the intercellular space, undergoing minimal degradation,436 whereas amino-functionalized MWCNTs underwent degradation even at early time points.437 Interestingly, unmodified, ozone-treated, and aryl-sulfonated CNTs did not degrade under these conditions, indicating that acid carboxylation both introduces carboxyl functionality and also damages the tubular graphenic backbone, providing points for subsequent oxidative attacks.438 Carboxyl-functionalized 200 nm graphene sheets also agglomerated in tissues into larger 10 \(\mu \text{m} \) structures, gradually developing structural disorder from the edges inwards.439 Furthermore, the purity of the nanomaterial may have an effect. Solvents and additives, such as dithio- and diiodooctane,440-441 polydimethylsiloxane,442 or tetrahydrofuran443 frequently used during synthesis or device assembly may be entrapped in the film or agglomerate, potentially affecting the response of the cell to the nanomaterial.342
Figure 33. Natural degradation of nano-carbon materials. A-B. 3D rendering of X-ray crystal structures for (A) horseradish peroxidase isoenzyme C and (B) human leukocyte-derived myeloperoxidase. C. Both enzymes contain an Fe(III) protoporphyrin IX heme group as active sites. D. Transmission electron microscopy evaluation of in vitro degradation of single-walled CNTs incubated with eosinophil peroxidase. E. Common pathways for chemical oxidation of carbon nanomaterials. In the presence of H$_2$SO$_4$, HNO$_3$, or
another strong oxidant, the sp^2 carbon lattice of unfunctionalized nanostructures is disrupted. Functional groups that contain oxygen are introduced into the structure, with sustained oxidation leading to unzipping and gradual decrease in length (released as CO, CO$_2$, aliphatic and polyaromatic hydrocarbon) of the CNTs. In multilayer graphene, sustained oxidation results in the formation of holes in graphene sheets. Panels A-C, D reprinted with permission from ref. 286b. Copyright 2013 Elsevier B.V. Panel D reprinted with permission from ref. 286a. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Plant peroxidases, e.g. horseradish peroxidase, and animal peroxidases, e.g. myeloperoxidase, eosinophil peroxidase (Figure 33), and lactoperoxidase have been shown to catalyze the degradation/biodegradation of carbon nanomaterials. Strong oxidative activity of horseradish peroxidase (HRP) in the presence of low concentrations of H$_2$O$_2$ is sufficient to initiate biodegradation of carboxylated but not pristine SWCNTs. The latter is degraded readily by chemical oxidants (Figure 33), such as hemin, FeCl$_3$ or hypochlorous acid. This observation points towards a heterolytic cleavage of H$_2$O$_2$ with HRP as pristine nanotubes remain intact, and a hemolytic cleavage of H$_2$O$_2$ producing free radicals that oxidize pristine SWCNTs. It is also likely that the state of agglomeration characteristic of hydrophobic pristine CNTs limits access for the enzymes, thus hindering the effective enzyme-tube interactions.

Given the relationship between the surface functionalization and CNT degradation, it is reasonable to attempt to introduce carboxyl, carbonyl, and hydroxyl groups into CNTs (e.g. by strong oxidizing agents) to make them more susceptible to degradation. As carboxyl groups are attached to the graphitic backbone by one bond, this bond is not difficult to cleave, making the carboxylated CNTs more susceptible to oxidation compared to other functionalities. In terms of degradation products, complete disintegration of CNTs would lead to the formation of CO$_2$ gas. On the other hand, partial degradation will produce a range of oxidized aromatic hydrocarbons. In the case of functionalized MWCNTs, the functional groups would
be confined to the outermost layers of the tube; once the external layer is degraded, the pristine internal layer is no longer susceptible to enzymatic oxidation.452

Enzymes can be preloaded into naturally degradable components of the device, e.g. substrate or internal encapsulant layer,453 to be released into the immediate environment of the device in concentrations sufficient for quick degradation of the nanocarbons with minimal detriment to the surrounding environment.454 While horseradish peroxidase is commonly used as a model system for enzymatic degradation of CNTs, lower-cost peroxidases from plants or those fabricated using biotechnology can fulfill the need for industrial-scale and environmental applications. Potential limitations of this approach include changes in the properties of the operating environment and premature release of the enzyme from the carrier coating. In the case of the former, introduction of antioxidants may interfere with the oxidative potential of enzymes.446 For the latter, premature release of the enzyme will alter the properties of the CNTs it comes in contact with, affecting the ability of CNTs to fulfill their purpose. At the same time, some favorable changes can also arise. Treatment of a single layer of graphitic carbon by horseradish peroxidase in the presence of low concentrations of hydrogen peroxide may result in the oxidation of graphene oxide, leading to the formation of holes in its basal plane. The materials produced as a result of the enzymatic reduction demonstrated a p-type semiconducting behavior, with a potential structure of interconnected graphene nanoribbons.455

In both enzyme-driven and conventional strong oxidant-based degradation, oxidation and subsequent loss of material from the edges (in the case of CNTs) and across the sheet (through the formation of holes in graphene) plays a central role. This opens opportunities for the use of plasmas to accelerate oxidation processes by taking advantage of plasma-specific chemical and physical effects. Furthermore, unlike the enzyme and conventional degradation that relies on wet processing, plasmas can enable high-throughput
processing of dry bulk materials, which may be advantageous for single-step decomposition of electronic and energy devices.

15. Plasma-enabled degradation of materials

With the knowledge of basic mechanisms that drive bio- and chemical degradation of carbon nanomaterials, this section will discuss the plasma environment as the means to facilitate natural degradation (via nanostructure modification at material synthesis stage of the cycle or as post-use treatment) or to decompose the materials into useful building blocks for the synthesis of other functional nanomaterials.

First, let us consider the use of plasmas for waste carbon decomposition. Plasma-assisted technology has established itself in waste management and pollutant control applications, with material recovery and energy generation uses being actively developed. The reactive species in low-temperature plasmas have been used to decompose and remove pollutant molecules, e.g. volatile organic compounds, such as toluene $C_6H_5CH_3$, trichloroethane $C_2H_3Cl_3$, n-heptane $CH_3(CH_2)_5CH_3$ and nitric oxides, and organic particulate matter, such as soot, from gases and liquids.456-457 The relative ease and speed with which low-temperature plasmas can be adjusted to fluctuating flow volumes and/or contamination levels represents a significant advantage over established methods of waste decomposition, particularly for industrial uses, where both energy efficiency and selectivity are critical. On the industrial scale, plasma-based technologies are frequently coupled with other technologies, with the plasmas primarily acting as an oxidant in the process.458 The plasma treatment of pollutant-containing gases and liquids typically takes place at ambient temperature and pressure, with dielectric barrier discharges, corona discharges and gliding arc discharges typically used as plasma sources.457 Plasma-generated reactive ions and radicals collide with molecules...
targeted for degradation, leading to their fast dissociation within 10 ns to 1 µs time range. Within milliseconds to seconds, the chemical equilibrium is typically reached. There is a potential for plasma-modified pollutants and their products to undergo further conversion to the desired chemicals by means of catalysis at significantly lower energy cost; thus, controlled selective low-temperature and low-energy material decomposition of multicomponent solid matter may be achieved.

In addition to directly destroying the waste carbon materials, the effects of the plasma exposure can be more subtle. In section 5.3, examples of the use of plasmas to intentionally introduce defects or functionalize the surface of nano-carbon materials have been discussed. During and post-synthesis, plasma-generated ions and reactive radicals can be used for controlled introduction of line and point defects and creation of pores in the graphene layers, and their chemical functionalisation. Certain structural features of materials produced in plasma, such as high accessible surface area and long reactive edges of vertically-oriented graphene sheets are more chemically reactive, and thus potentially more suited to functionalization and degradation. Using low-density plasmas, the chemical functionalities can be introduced or removed from the surface of carbon nanomaterials with minimal damage to the carbon network, the integrity of which may be required for some electronics applications. The formation of the defects may be isotropic, e.g. isotropic formation of holes in the basal plane of graphene monolayers, or anisotropic, e.g. formation of uniformly-sized hexagonal pits in bi- and multi-layer sheets of graphene.

By synergistically combining defect-inducing carbon sources, such as those containing minerals, with defect-promoting plasma conditions, such as those with dominant ion bombardment of the surface in contact with the plasma, more readily degradable carbon nanomaterials can be produced. If appropriate degree of chemical functionalization and/or formation is achieved during the synthesis of the nano-carbon
material, this would alleviate the need for post-use treatment of these structures to facilitate their breakdown. This complements the process-efficiency, energy- and material conservation and natural degradation design principles of the sustainable nanotech device lifecycle described in Figure 1.

Controlled degradation of nano-carbon materials using plasma agitation, functionalization or post-use treatment briefly discussed above is a relatively new research direction where significant progress is expected in the near future. This expectation is based on the recent progress achieved in the understanding of interactions of plasmas with such materials, and in particular, intentional introduction of defects, holes, chemically reactive sites, etc. which may be regarded as the first step towards controlled degradation under relevant natural or industrial process conditions.

16. Conclusion and perspectives

The demand for energy and resources involved in the production of silicon electronic and energy devices is expected to double in the next 40 years, with the environmental impacts of production and processing of materials with high embodied energy are rapidly becoming critical. In addition to high-quality silicon, manufacturing of modern electronic products consumes a wide variety of minerals, e.g. rare earth elements, indium, tantalum, that can both be geologically scarce and/or expensive to process, and for which it is quite difficult to find substitutes. With an annual production of 215 and 110 tons, respectively, gallium and indium are expected to last for 20 years before running out completely. In 2010, approximately 70% of globally refined indium was consumed in the fabrication of LCDs, where it is used as a transparent conductive layer. These potential shortages may have direct limiting effect on the development of thin film photovoltaic modules, where copper-indium-diselenide, cadmium-telluride, gallium-arsenide and thin film silicon are commonly used.
The concept of using minimally-processed natural and waste materials in place of conventional highly-purified, chemically modified precursors to lower the economic and environmental costs of nanomaterial fabrication is not new. While the interest in using virtually raw renewable organics, e.g., biomass, stems primarily from the desire to address the excessive energy and material consumption associated with the use of inorganic and processed organic compounds, the use of waste carbons also addresses the escalating issue of waste management. Given the ever increasing volumes and chemical diversity of waste generated globally, consumption of waste carbons, such as food supply chain waste and plastic waste, have also emerged as a significant opportunity to convert the present-day economic and environmental burden into higher-value products. The opportunity is particularly attractive for developing countries, where low-cost materials, such as biomass and coal, are abundant, whereas the opportunities for waste recycling are presently limited.

The critical challenge in enabling the convergence of the natural- and waste-derived nanocarbons and high-performance electronic and energy devices lies in finding processes that would enable controlled, reproducible conversion of minimally-processed carbon matter into functional materials in a largely process-driven manner. These processes should be supported by environmentally benign yet highly-efficient chemistries, with the sustainability considerations applied to every stage of the product life cycle: from the synthesis to applications and post-use waste management. There are many promising chemistries that can be effective at low temperatures and atmospheric pressure and rely on human-health-friendly precursor materials. However, many such chemistries are precursor-driven, which significantly limits their ability to convert chemically-heterogeneous, batch-to-batch varying carbon resources into nano-carbon materials with the degree of consistency demanded by the industry.
Given the vast diversity of green synthesis methods, it was outside of the scope of this review to provide an exhaustive account of the existing knowledge in the area of sustainable chemical synthesis. It was our intent to highlight the most interesting and promising features of the plasma-enabled synthesis and processing of carbon-based nanostructures for electronics and energy applications. The examples selected for this review suggest that low-temperature reactive plasmas can indeed be employed as a stand-alone tool for green synthesis, surface organization and post-processing of diverse nanomaterials, and for their ability to accelerate chemical reactions.

In the area of plasma-enhanced nanofabrication, multiple opportunities for further developments are continuously arising. Although plasma-aided processing is a well-established part of silicon semiconductor fabrication, the examples presented in this review mainly deal with the laboratory-scale synthesis. Furthermore, for many emerging applications, the energy consumption of the plasma processes used for the synthesis of graphene and CNTs still remain quite significant. It is our deliberate choice to focus on the sustainability aspects of the plasma processes, particularly on reducing the energy and material consumption and several other aspects. On the other hand, the opportunities and challenges associated with the scale-up, translation and adoption of the relevant technologies for industrial applications are outside the scope of this review.

Nevertheless, being an exciting, rapidly developing topic, major advances in the understanding of the underlying mechanisms and in our ability to control the processes and the outcomes are expected in the near future. Given that the plasma synthesis outcomes are determined by the synergistic contributions of chemical and physical effects, it places the discovery of these mechanisms and potential applications at the interdisciplinary interface. Industrial uptake and adoption of these technologies is an exciting avenue for future development. However, detailed technology assessment involving a multidisciplinary team of
engineers, economists, health, safety and environmental officers, as well as policy makers is warranted to develop a more overarching picture. We hope that that the points raised in this review on aspect of the plasma-enabled sustainable life-cycles of natural-precursor-derived nano-carbons will stimulate further advancement of this interesting and rapidly evolving multidisciplinary field.

The authors declare no competing financial interest.

Acknowledgements: This work was partially supported by the Australian Research Council (DE130101550 and FT100100303) and CSIRO’s Science Leadership Program.

References:

Graphical abstract

Naturally sourced, minimally processed materials

Natural degradation

Eco-friendly, non-toxic material synthesis

In situ (programmed) degradation or disposal

Recycling

Energy- and atom-efficient nanoassembly

Energy-efficient, high-performance operation

Simple, low-cost device fabrication