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Supplementary Figures
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Fig. 1. Comparison of posterior means and 95% CIs for exp (vi), for constrained and unconstrained
gravity models with exponential decay distance function. Dark Grey = Constrained gravity model,
Light Grey = Unconstrained gravity model
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Prior constraints for distance-based function F4; f (dij ;θ) = (1 + α2 + dij)
−α1

The unknown parameters in function F4 (see Section 3.2 of main manuscript), α1 and α2,
are difficult to identify without imposing constraints. To resolve this issue, the constraint
α1 > α2 was applied and was motivated as follows. Setting δ = α2/α1 with δ ∈ (0, 1), one
can write,

f (dij ;θ) = (1 + δα1 + dij)
−α1

such that, as δ → 1, f(dij ; θ) → (1 + α1 + dij)
−α1 . Conversely, as δ → 0 corresponding to

small α2, f(dij ; θ) → (1 + dij)
−α1 . Therefore, this function can be viewed as a generalisation

of distance-based function F2, reducing to the latter as α2 → 0.
In contrast, the behaviour of f (dij ;θ) under the constraint α1 < α2 is less desirable.

This is explored by setting δ∗ = α1/α2 with δ∗ ∈ (0, 1), to give,

f (dij ;θ) = (1 + α2 + dij)
−α2/δ

∗

. (1)

In this case, as δ∗ → 0 in line with small α1, f (dij ;θ) → 0 and therefore, does not reduce to
a function of a single parameter. Furthermore, this constraint is no longer a generalisation
of function F2, since α1 will tend to zero before α2.
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Table 1. Posterior means and 95% credible intervals (CIs) for model variance components (σ2, σ2
v, σ

2
s),

for each stated choice of prior distribution. For each prior distribution, the corresponding posterior contri-
bution of each variance component to total variation is also compared. Prior distributions marked with an
asterisk denote distributions assumed for the variance in place of the standard deviation.

Model Prior distribution Parameter Posterior estimate % of total variation

Mean 95% CI
(

σ2, σ2
v, σ

2
s

)

Constrained F1 Inverse Gamma∗ σ2 0.87 (0.72,1.04) 44
σ2
v 0.44 (0.15,1.10) 22

σ2
s 0.69 (0.32,1.27) 34

Left-truncated Normal σ2 0.87 (0.72,1.04) 40
σ2
v 0.60 (0.19,1.54) 28

σ2
s 0.69 (0.33,1.25) 32

Uniform σ2 0.87 (0.72,1.05) 39
σ2
v 0.67 (0.21,1.90) 30

σ2
s 0.69 (0.33,1.26) 31

Sensitivity analysis

In light of the relevance of the random effects estimates to the objectives of this study,
a sensitivity analysis was performed on the prior distributions assumed for the variance
components,

(

σ2, σ2
v , σ

2
s

)

. Specifically, three choices of prior distribution were considered:
the original U (0, 100) distribution, a left-truncated Normal distribution N (0, 1)

+
and a

proper Inverse Gamma distribution, IG (1, 0.01). The first two prior distributions were
assumed for the standard deviation, whereas the third prior was placed on the variance.
For the sake of brevity, the presentation of results is restricted to each choice of prior
distribution, when it is assumed to be the same for all three variance components.

Table 1 summarises the posterior distribution of each variance component and its per-
centage contribution to total residual variation, for each choice of prior distribution. In this
case, the greatest sensitivity concerned the variance associated with the clinic level random
effects. In particular, under the IG (1, 0.01) prior, a percentage reduction of 6− 8% in the
contribution of σ2

v to total variation was observed in conjunction with a relatively narrow
credible interval. These changes were also observed, albeit to a much lesser extent, for σ2

s .

Differences in the posterior distributions for σ2
v indicated that the Inverse Gamma prior

resulted in an unwanted level of shrinkage in random effects estimates, which in turn could
possibly affect inferences related to excess participation. To explore this further, posterior
estimates for each vi and their uncertainty were compared under each prior distribution
against an independent prior distribution, namely vi ∼ N (0, 1000), i = 1, . . . , L. These
results are summarised in Figure 2. For each prior distribution assumed for σ2

v , the per-
centage change in estimates of exp (vi) is taken to be relative to the same estimate under
the independent prior distribution. The absolute value of this change is used as a measure
of hierarchical shrinkage towards zero.

Following on from the results of Table 1, the greatest differences in random effects
estimates were seen under the Inverse Gamma prior, with larger levels of shrinkage observed
across all available clinics. For the remaining two prior distribution (left-truncated Normal
and Uniform), results were generally consistent, with moderate shrinkage towards zero,
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Fig. 2. Comparison of three prior distributions with respect to hierarchical shrinkage. In each plot,
the absolute value of the percentage change in the posterior mean of each exp (vi) relative to the
estimate of excess participation under the independent prior vi ∼ N (0, 1000) is provided. Higher
values indicate greater shrinkage towards zero.
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which was seen to range between 5 and 13%.
Despite these discrepancies, inferences at the clinic level with respect to excess partici-

pation and the corresponding ranking of clinics were largely unaffected. This was confirmed
in Table 2, where each clinic is summarised in terms of its rank distribution (also see Section
4.4 of main manuscript) and posterior probability of its associated random effect exceeding
zero. Given our primary interest in inferences of this nature, as indicated in the objectives
of the case study, it was concluded that they were generally robust to the choice of prior
distribution.



Predicting health program participation 7

Table 2. Posterior summary of clinic level random effects under the constrained gravity model with
exponential decay function (F1), for different choices of prior distribution. For each clinic, the distribution
of ranks (smallest to largest vi) are described by the proportion of MCMC iterations that the estimated
random effect falls into each quantile (see Section 4.4). The posterior probability of each random
effect exceeding zero, as a measure of excess over-participation, is also provided. Inverse Gamma:
IG (1, 0.01); Left-truncated Normal: N (0, 1)+; Uniform: U(0, 100); Independent: fixed σ2

v = 1000. Prior
distributions marked with an asterisk denote distributions assumed for the variance in place of the
standard deviation.
Clinic Prior distribution Distribution of ranks Pr (vl > 0|y)

0− 25% 26− 50% 51− 75% 76− 100%

1 Inverse Gamma∗ 0.00 0.00 0.08 0.92 0.99
Left-truncated Normal 0.00 0.00 0.05 0.95 1.00

Uniform 0.00 0.00 0.06 0.94 1.00
Independent 0.00 0.00 0.03 0.97 1.00

2 Inverse Gamma∗ 0.00 0.01 0.19 0.80 0.98
Left-truncated Normal 0.00 0.00 0.14 0.86 1.00

Uniform 0 0.01 0.15 0.84 0.99
Independent 0.00 0.01 0.07 0.92 0.99

3 Inverse Gamma∗ 0.00 0.15 0.79 0.06 0.81
Left-truncated Normal 0.00 0.14 0.81 0.05 0.83

Uniform 0.00 0.13 0.81 0.05 0.83
Independent 0.00 0.10 0.86 0.04 0.87

4 Inverse Gamma∗ 0.05 0.50 0.44 0.01 0.44
Left-truncated Normal 0.04 0.48 0.48 0.01 0.49

Uniform 0.05 0.47 0.46 0.01 0.50
Independent 0.03 0.34 0.62 0.01 0.59

5 Inverse Gamma∗ 0.28 0.70 0.02 0.00 0.01
Left-truncated Normal 0.25 0.73 0.02 0.00 0.00

Uniform 0.25 0.73 0.02 0.00 0.01
Independent 0.20 0.79 0.01 0.00 0.00

6 Inverse Gamma∗ 0.99 0.01 0.00 0.00 0.00
Left-truncated Normal 1.00 0.00 0.00 0.00 0.00

Uniform 1.00 0.00 0.00 0.00 0.00
Independent 1.00 0.00 0.00 0.00 0.00

7 Inverse Gamma∗ 0.76 0.22 0.01 0.01 0.01
Left-truncated Normal 0.80 0.20 0.00 0.00 0.00

Uniform 0.79 0.20 0.01 0.00 0.00
Independent 0.87 0.12 0.01 0.00 0.00

8 Inverse Gamma∗ 0.90 0.10 0.00 0.00 0.00
Left-truncated Normal 0.90 0.10 0.00 0.00 0.00

Uniform 0.90 0.10 0.00 0.00 0.00
Independent 0.88 0.12 0.00 0.00 0.00

9 Inverse Gamma∗ 0.00 0.00 0.00 1.00 1.00
Left-truncated Normal 0.00 0.00 0.01 0.99 1.00

Uniform 0.00 0.00 0.01 0.99 1.00
Independent 0.00 0.00 0.02 0.98 1.00

10 Inverse Gamma∗ 0.01 0.31 0.47 0.21 0.69
Left-truncated Normal 0.01 0.35 0.50 0.14 0.63

Uniform 0.01 0.35 0.47 0.17 0.60
Independent 0.02 0.52 0.38 0.08 0.47


