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Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infection (UTI) in humans. For the
successful colonisation of the human urinary tract, UPEC employ a diverse collection of secreted or surface-
exposed virulence factors including toxins, iron acquisition systems and adhesins. In this study, a comparative
proteomic approach was utilised to define the UPEC pan and core surface proteome following growth in pooled
human urine. Identified proteins were investigated for subcellular origin, prevalence and homology to
characterised virulence factors. Fourteen core surface proteins were identified, as well as eleven iron uptake re-
ceptor proteins and four distinct fimbrial types, including type 1, P, F1C/S and a previously uncharacterised fim-
brial type, designatedUCA-like (UCL) fimbriae in this study. These pathogenicity island (PAI)-associated fimbriae
are related to UCA fimbriae of Proteus mirabilis, associated with UPEC and exclusively found in members of the
E. coli B2 and D phylogroup. We further demonstrated that UCL fimbriae promote significant biofilm formation
on abiotic surfaces and mediate specific attachment to exfoliated human uroepithelial cells. Combined, this
study has defined the surface proteomic profiles and core surface proteome of UPEC during growth in human
urine and identified a new type of fimbriae that may contribute to UTI.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Urinary tract infections (UTIs) are among themost common bacterial
infections affecting humans. These infections cause significantmorbidity
and mortality, with an estimated global incidence of approximately 150
million cases per year [1–3]. Symptomatic UTIs typically present as blad-
der infection (cystitis), but may also manifest as kidney infection (acute
pyelonephritis) and lead to urosepsis. It is estimated that more than half
of allwomenwill experience at least oneUTI episode in their lifetime and
one in four will undergo a recurrent infection within six months [4].
Antibiotic therapy is the first choice of treatment and as a result UTIs
represent the second predominant reason for antibiotic prescription
worldwide. However, the rapid rise in the incidence of UTIs caused by
multidrug resistant bacteria has highlighted an urgent need for the de-
velopment of novel therapeutic strategies [5–7].
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Uropathogenic Escherichia coli (UPEC) are the predominant etiolog-
ical agents of UTI, accounting for more than 80% of community acquired
and 50% of nosocomial infections [2,8]. Due to their role in pathogenesis,
UPEC surface-exposed virulence factors represent attractive targets for
the development of new diagnostic, drug and vaccine applications. As
a result of the extensive genetic and phenotypic heterogeneity that ex-
ists between individual UPEC strains, however, the development of
novel broadly protective therapeutic solutions to prevent UPEC-
mediatedUTI has been challenging [9]. Accordingly, a comparative anal-
ysis of the UPEC cell surface is paramount for the identification of ubiq-
uitous surface antigens that can serve as common targets for treatment.

Genes encoding virulence factors are typically located on horizontal-
ly acquired mobile genomic elements called pathogenicity islands
(PAIs) [10,11]. Although no single virulence gene is definitive for UPEC
pathogenesis, a complementary array of factors including iron acquisi-
tion systems, toxins and adhesins facilitate bacterial colonisation and
persistence within the human urinary tract. Adherence to uroepithelial
cells is a critical initial step in uropathogenesis as it enables UPEC to re-
sist the hydrodynamic forces of urine flow and promotes colonisation.
Inmice, UPEC adherence also leads to the invasion of superficial bladder
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Table 1
Strains and plasmids used in this study.

E. coli strain or plasmid Relevant characteristics Reference

Strain
536 Wild-type UPEC reference strain Brzuszkiewicz et al. [9]
CFT073 Wild-type UPEC reference strain Welch et al. [10]
F11 Wild-type UPEC reference strain Rasko et al. [28]
UMN026 Wild-type UPEC reference strain Touchon et al. [29]
UTI89 Wild-type UPEC reference strain Chen et al. [30]
MS428 E. coli K-12 MG1655 fim Kjaergaard et al. [47]
MS428(pSU2718) pSU2718 in MS428, Camr This study
MS428(pUCL) pUCL in MS428, Camr This study
MS428(pSU2718,pCO13) pSU2718 and pCO13 in MS428,

GFP+ Kanr Camr
This study

MS428(pUCL,pCO13) pUCL and pCO13 in MS428,
GFP+ Kanr Camr

This study

OS56 K-12 MG1655 flu, attB::bla-gfp,
GFP+ Ampr

Sherlock et al. [75]

OS56(pSU2718) pSU2718 in OS56, GFP+

Ampr Camr
This study

OS56(pUCL) pUCL in OS56, GFP+

Ampr Camr
This study

Plasmid
pSU2718 Cloning vector, Camr Martinez et al. [76]
pUCL ECP_3785–3782 (UCL536) in

pSU2718, Camr
This study

pCO13 gfp (GFPpKEN2) containing
plasmid, Kanr

Ong et al. [77]
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epithelial cells and the subsequent formation of intracellular bacterial
communities (IBCs) [12,13]. While UPEC possess a diverse array of ad-
herence factors, fimbriae of the chaperone-usher (CU) secretion path-
way such as type 1, P, F1C/S and AFA fimbriae represent the primary
mediators for colonisation of the urinary tract [13–16]. Other factors
that contribute to UPEC bladder colonisation include autotransporter
adhesins and curli (for a review refer to [17]).

The CU pathway is a highly conserved secretion pathway in Gram-
negative bacteria that facilitates the production of fimbriae. The biogen-
esis of CU fimbriae involves a dedicated periplasmic chaperone and an
integral outer membrane (OM) usher protein, which functions as an
assembly platform for the formation of the fimbrial heteropolymer
[18,19]. The bulk of the fimbrial organelle consists of approximately
500 to 3000 major subunit monomers and typically contains a
receptor-binding adhesin subunit at the distal tip [20]. The adhesin is
composed of two distinct protein domains [18]; the C-terminal domain
connects the adhesin to themainfimbrial shaft, sometimes aided by one
or more minor subunits, while the N-terminal lectin domain mediates
attachment to specific ligands, effectively determining the adhesive
phenotype of the fimbriae [21]. The structural genes encoding CU fim-
briae are almost invariably organised as polycistronic operons. Genomic
analysis of the E. coli pan-genome has identified 38 distinct CU fimbrial
types based on genomic locus position and usher phylogeny, and re-
vealed that a single strain may contain up to 17 fimbrial operons [22].

Type 1 and P fimbriae play a key role in UPEC pathogenesis by
mediating attachment to α-D-mannosylated proteins on the bladder
epithelium andα-Gal(1–4)β-Gal receptor epitopes in the upper urinary
tract, respectively [14,18,23]. Other CU fimbriae associated with UPEC
include the AFA/Dr adhesins, involved in adherence to collagen IV in
the interstitial compartments of the kidneys, and F1C/S fimbriae,
which confer binding to GalNAcβ1-4Galβ glycolipids and sialyl galacto-
side glycoproteins, both present on epithelial cells lining the bladder
and kidneys [15,24,25]. However, someUPEC strains are able tomediate
attachment to uroepithelial cells in the absence of these well-
characterised adhesins, indicating the existence of additional adherence
factors involved in uropathogenesis [26].

In this study, we applied a method involving nanoscale liquid chro-
matography tandem mass spectrometry (nanoLC–MS/MS) of EDTA
heat-induced outer membrane vesicles (OMVs) to characterise the sur-
face proteome of five reference UPEC strains during in vitro growth in
human urine. The analysis led to the identification of 173 unique pro-
teins, which were characterised for subcellular origin, prevalence and
homology to functionally characterised virulence factors. Of the predict-
ed surface proteins identified, 14 were detected in all strains. Further-
more, we observed co-expression of up to nine distinct iron uptake
systems in individual UPEC strains and four fimbrial types, including
type 1, P, F1C/S and a previously uncharacterised fimbrial type, desig-
nated UCA-like (UCL) fimbriae in this work. We demonstrate that
genes encoding UCL fimbriae are associated with UPEC strains and are
phylogenetically related to UCA (Uroepithelial Cell Adhesin) fimbriae
from Proteus mirabilis and F17/G fimbriae from E. coli. We also show
that recombinant expression of these PAI-associated fimbriae mediates
significant biofilm formation on abiotic surfaces and confer specific at-
tachment to human exfoliated uroepithelial cells, suggesting a role in
the colonisation of the human urinary tract.

2. Methods

2.1. Bacterial strains, plasmids and culture conditions

Strains and plasmids used in this study are listed in Table 1. Five ref-
erence UPEC strains whose genome sequence is available on the NCBI
database were used: 536 [9], CFT073 [27], F11 [28], UMN026 [29] and
UTI89 [30]. E. coli strains from a community acquired urosepsis collec-
tion [31] and from the E. coli Reference Collection (ECOR) [32] have
been described previously. Strains were routinely cultured at 37 °C on
solid or in liquid Lysogeny Broth (LB)medium [33] or liquidM9 glucose
minimal medium (42 mM Na2HPO4, 22 mM KH2PO4, 9 mM NaCl,
18 mM NH4Cl, 1 mM MgSO4, 0.1 mM CaCl2 and 0.2% (w/v) glucose).
Where appropriate, media were supplemented with ampicillin (Amp,
100 μg ml−1), kanamycin (Kan, 100 μg ml−1) or chloramphenicol
(Cam, 30 μg ml−1). To induce expression of UCL fimbriae from plasmid
pUCL, culture media were supplemented with 1 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG).

2.2. DNA manipulation and genetic techniques

Plasmid DNA was isolated using the QIAprep Spin Miniprep kit
(Qiagen). Chromosomal DNA was purified using the GenomicPrep cell
and tissue DNA isolation kit (GE Healthcare). General PCR reactions
were performed using Taq DNA polymerase according to the
manufacturer's instructions (Roche). For molecular cloning purposes,
DNAwas amplified using Phusion High-Fidelity DNApolymerase (Ther-
mo Fisher Scientific). Oligonucleotide primers used in this study were
purchased from Sigma-Aldrich and are listed in Table S1. The UCL fim-
briae expression plasmid pUCL was constructed by Phusion High Fidel-
ity PCR amplification of the entire 5 kb UCL gene cluster (ECP_3785–
3782) from UPEC strain 536, using primers 3383 and 3384 containing
5′ XbaI and SphI restriction sites, respectively. The PCR product was
then digested with XbaI and SphI and directionally cloned into the cor-
responding sites of cloning vector pSU2718, where expression of the ucl
fimbrial operon on pUCL is controlled by the IPTG-inducible lac promot-
er. PCR products and plasmidswere sequenced using the BigDye Termi-
nator v3.1 cycle DNA sequencing kit according to the manufacturer's
instructions (Life Technologies) at the Australian Equine Genome Re-
search Centre. Plasmid transformations were mediated by
electroporation.

2.3. Preparation of EDTA heat-induced outer membrane vesicles for mass
spectrometric analysis

Bacterial strains were grown at 37 °C with shaking (250 rpm) to an
optical density at 600 nm of approximately 0.8 in 50ml of pooled, filter
sterilised mid-stream urine (collected from 4 healthy female
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volunteers). Preparation of OMVs was performed as previously de-
scribed [31]. Briefly, cells were pelleted at 10,000 ×g for 10 min at 4
°C post-incubation and washed three times in 25 ml ice-cold sterile
PBS. Bacteria were resuspended in 1 ml EDTA buffer (0.05 M Na2HPO4,
0.15 M NaCl, 0.01 M EDTA, pH 7.4) and incubated for 30 min at 56 °C.
Cells were pelleted at 10,000 ×g for 10 min at 4 °C and the supernatant
was collected and sterilised using a 0.22 μm PVDF low protein binding
filter (Millipore). Proteins were precipitated by the addition of TCA to
a final concentration of 20% (w/v) and incubated overnight at 4 °C, sub-
sequently pelleted at 14,000 ×g for 30 min at 4 °C, washed 3 times in
1ml 100% ethanol, briefly air-dried and dissolved at 60 °C in 50 μl resus-
pension buffer (50 mM ammonium bicarbonate, 3 M urea, 5 mM DTT).
Proteins were alkylated for 30 min at room temperature in the dark
using iodoacetamide (final concentration 22.5 μM) and afterwards di-
luted with 100 μl ammonium bicarbonate (50 mM). 50 μl protein sam-
ple was digested overnight at 37 °C by the addition of 5 μl sequencing
grade modified trypsin (1 mg ml−1, Promega).

2.4. Mass spectrometry and protein identification

Protein fractionswere analysed by nanoLC–MS/MS as previously de-
scribed [31]. Briefly, digested OMV samples (5 μl) were injected into a
Prominence NanoLC (Shimadzu) coupled to a Triple TOF 5600 mass
spectrometer (AB SCIEX) equippedwith a nano-electrospray ion source,
desalted for 5min in a 50mm× 300 μmC18 trap column (Agilent), and
subsequently gradient-eluted using an in-line 150 mm × 75 μm C18
nanoLC column (Agilent). The mass spectrometer acquired 500 MS
full scan TOF-MS data (mass range 350–1800) followed by 20 by 50
MS full scan product ion data in Information Dependant Acquisition
(IDA) mode (mass range 100–1800). TOF-MS scan ions exceeding a
100 count threshold and a charge state of +2 to +5were set to trigger
product ion acquisition of the resultant 20 most intense ions. Spectral
data were acquired and processed using Analyst TF 1.5.1 software
(AB SCIEX), proteins were identified using the Paragon algorithm of
the ProteinPilot v4.0.8085 Software Package (AB SCIEX) queried against
the UniProt redundant E. coli proteome database [34]. Protein redun-
dancy was investigated using an all-vs-all BLASTp query with a cut-off
value of 75% of full-length sequence identity. BLASTp hits in the 65–
75% identity range were investigated for shared locus synteny and clas-
sified accordingly. Protein sub-cellular location and signal-peptides/
transmembrane domains were predicted with PSORTb v3.0.2 [35] and
LipoP v1.0 [36], respectively. The Circos software package was used to
generate a circular diagram of the proteomic data [37].

2.5. Multiple sequence alignment and phylogenetics

The MEGA5 software package was used to infer evolutionary rela-
tionships of UCL related fimbriae [38]. Full-length amino acid sequences
of the UCL, UCA, F17/G and KTE194 (A13Y_00037–00040) fimbrial
usher proteins were aligned by ClustalW using the BLOSUM protein
weight matrix with default parameters. The evolutionary phylogeny of
usher proteins was reconstructed with the Neighbour-Joining method,
using the Jones–Taylor–Thornton (JTT) substitution model for the gen-
eration of distance matrices and a 1000 replicate bootstrap test of phy-
logeny. The resultant phylogenetic tree was visualised in iTOL [39].
Protein evolutionary divergence rates were estimated using the JTT cor-
rection model and standard error estimates were calculated using a
bootstrap procedure of 1000 replicates. DNA sequences of the UCL,
UCA, F17/G and KTE194 (A13Y_00037–00040) fimbrial operons and
their corresponding genomic contexts were aligned and visualised in
Easyfig 2.1 [40].

2.6. Electron microscopy

E. coli MS428 harbouring pUCL or pSU2718 (vector control) were
cultured overnight in LB broth containing 1 mM IPTG and 30 μg ml−1
chloramphenicol at 37 °C, 250 rpm. Glow-discharged carbon-coated
Formvar copper grids were placed on drops of bacterial suspension for
1 min and then washed on drops of water (3 × 1 min). Grids were neg-
atively stained with 1% uranyl acetate and cells were examined under a
JEOL 1010 TEM operated at 80 kV. Micrographs were captured using an
analySIS Megaview III digital camera.

2.7. Biofilm assays

Bacterial biofilm formation was assessed on sterile non-coated 96-
well polyvinyl chloride (PVC) microtitre plates (BD Falcon), essentially
as previously described [41]. Cells were cultured in 150 μl M9 medium
containing 1 mM IPTG and 30 μg ml−1 chloramphenicol for 24 h at 37
°C, 150 rpm. After incubation, cells were washed in dH2O, stained with
0.1% crystal violet for 30 min at 4 °C, and washed three additional
times. Bound bacterial cells were quantified by adding ethanol–acetone
(80:20 v/v) andmeasurement of the dissolved crystal violet at an optical
density of 595 nm.

Flow chamber biofilm assays were performed essentially as previ-
ously described [42]. Briefly, individual flow cells were inoculated
with green fluorescent protein (GFP) tagged E. coli strain OS56 contain-
ing either plasmid pUCL or pSU2718 from a standardised (OD600 =
0.02) pre-culture and incubated at 28 °C in M9 medium containing
1 mM IPTG and 30 μg ml−1 chloramphenicol. Biofilms were allowed
to form on glass coverslips (Menzel-Gläser) in a multichannel flow sys-
tem at a flow rate of 4ml/h that permittedmonitoring of biofilm forma-
tion. Biofilm development was monitored at 24 h post-inoculation by
confocal laser scanning microscopy (LSM 510 META, Zeiss), equipped
with GFP specific filters and detectors. Biofilm cross-sections were
visualised with the LSM Image Examiner software (Zeiss), 12 z-stacks
were collected per strain for analysis in Matlab (Mathworks) using the
COMSTAT software package [43].

2.8. Uroepithelial cell adherence assay

GFP expressing strains MS428(pSU2718,pCO13) and MS428
(pUCL,pCO13)were cultured overnight at 37 °C, 250 rpm in LBmedium
containing 1 mM IPTG, 30 μg ml−1 chloramphenicol, 100 μg ml−1

kanamycin and/or 100 μg ml−1 ampicillin where appropriate. Exfoliat-
ed uroepithelial cells were collected from pooled mid-stream urine
from 4 healthy female donors by centrifugation at 500 ×g for 15 min
and washed once in 25 ml PBS. 1 × 105 uroepithelial cells were resus-
pended in 1 ml PBS containing 1 × 109 bacterial cells (MOI: 10,000)
and incubated for 30 min at 37 °C, 100 rpm. Cells were washed four
times in 1 ml PBS and examined by epifluorescence/light microscopy
(Axioplan 2, Zeiss). Bacterial adherence was assessed by counting the
number of GFP-positive bacteria attached to 50 eukaryotic cells ob-
served in randomly selected fields of view.

2.9. Statistical analyses

Peptide confidence intervals (CI) were calculated using the
ProteinPilot Software v4.0.8085 scoring algorithm(AB SCIEX). Differences
in UCL gene prevalence in E. coli isolates belonging to the ECOR and a
urosepsis collection were determined using Fisher's exact test with a
two-tailed P value. Bacterial biofilm formation in PVC microtitre plates
was analysed using a two-tailed t test. COMSTAT data was analysed
using the nonparametric Mann–Whitney Test within the Minitab (v.14)
software package. P values b0.05were considered statistically significant.

2.10. Ethics statement

This study was performed in accordance with the ethical standards
of theHelsinki Declaration. The studywas approved and the need for in-
formed consent was waived by the institutional review board of the
Princess Alexandra Hospital (research protocol 2008/264).



Table 2
Proteins identified in EDTA heat-induced UPEC OMVs after growth in human urine

Accession Protein Description/annotationa Functional classificationb LipoPc
Prevalenced

(detected protein/gene)

Extracellular
Q0T8Z4 FimA Type-1 fimbriae major subunit Adhesion SpI 5/5
Q8GA68 UclA F17-like fimbriae major subunit Adhesion SpI 2/3
Q8GA71 UclD F17-like fimbriae adhesin subunit Adhesion SpI 1/3
Q8VR35 PapA P fimbriae major subunit Adhesion SpI 3/5
Q93K75 SfaA F1C/S fimbriae major subunit Adhesion SpI 4/4
Q9S0U1 FliC Flagellin Motility CYT 4/5
D6IT07 SslE Putative lipoprotein mucinase Unknown SpII 2/4
Q8FE01 HlyA Hemolysin A Cytotoxicity CYT 3/4

Outer membrane
Q14F40 BtuB Vitamin B12 receptor Transport CYT 5/5
Q8CVW8 CirA Colicin I sensitive receptor Transport CYT 4/5
Q9EZQ6 ChuA Haem/haemoglobin receptor Metal ion transport SpI 5/5
Q933S4 CjrC Putative siderophore receptor Metal ion transport SpI 3/3
Q8CWA1 FepA Ferrienterobactin receptor Metal ion transport SpI 5/5
Q8X901 FhuA Ferrichrome-iron receptor Metal ion transport SpI 2/5
B1LM97 Fiu Catecholate siderophore receptor Fiu Metal ion transport SpI 4/5
Q9RQ18 FyuA Yersiniabactin/pesticin receptor Metal ion transport SpI 5/5
Q8FDW0 IutA Ferric aerobactin receptor Metal ion transport CYT 2/2
Q9LAP1 Iha Siderophore receptor/adhesin Metal ion transport SpI 2/2
Q4FBD9 IreA Putative siderophore receptor Metal ion transport SpI 1/1
Q93K73 IroN Salmochelin receptor Metal ion transport SpI 4/4
Q1RAB2 UTI89_C2234 Putative iron compound receptor Metal ion transport SpI 3/4
C9QUX0 UidC Outer membrane porin protein Porin SpI 5/5
Q8CVY9 NmpC Outer membrane porin protein Porin CYT 5/5
Q1RDQ7 OmpA Outer membrane protein A Porin SpI 5/5
D6JCB5 OmpC Outer membrane protein C Porin SpI 5/5
Q8XDF1 OmpF Outer membrane protein F Porin SpI 5/5
Q0TKA6 OmpT Outer membrane protein T, protease VII Proteolysis SpI 5/5
Q8CW43 OmpW Outer membrane protein W Unknown SpI 3/5
Q1REB0 OmpX Outer membrane protein X Unknown SpI 4/5
Q8CW11 SlyB Outer membrane lipoprotein Unknown SpII 4/5
Q1RDE2 Flu Antigen 43 autotransporter Autoaggregation SpI 5/5

Unknown
Q1RGG7 CarB Carbamoyl-phosphate synthase large chain Nucleotide metabolism CYT 5/5
B3HX45 Mdh Malate dehydrogenase Organic compound metabolism SpI 5/5
Q1RGJ5 TalB Transaldolase B Organic compound metabolism CYT 4/5
Q0TFS5 PsuG Putative uncharacterised protein Cellular processes CYT 1/4
Q8FBD4 SodA Superoxide dismutase Cellular processes CYT 2/5
D6JHU3 RplL 50S ribosomal protein L7/L12 Translation CYT 1/5
D6J8X1 WrbA NAD(P)H:quinone oxidoreductase Regulation, cellular processes CYT 1/5
Q8GA08 Hek Adhesin/virulence factor Unknown SpI 3/3
B1IQT1 MlaC ABC transporter maintaining OM asymmetry Unknown SpI 3/5
Q1R227 UTI89_P011 Putative exported protein Unknown SpI 2/3
Q1RFK8 UTI89_C0355 Putative ribose ABC transporter Unknown SpI 2/2
Q8FHZ4 YchN Putative uncharacterised protein Unknown CYT 3/5
Q1RBM1 YdfZ Putative uncharacterised protein Unknown CYT 2/2
Q8CW30 YncE Putative uncharacterised protein Unknown SpI 4/5

Periplasmic
Q8CVK7 DppA Periplasmic dipeptide transport protein Transport SpI 4/5
D2NES2 MalE Maltose ABC transporter protein Carbohydrate transport SpI 4/5
D6J882 Pgl 6-Phosphogluconolactonase Carbohydrate metabolism CYT 4/5
D6IPI4 Tpx Thiol peroxidase Cellular processes CYT 4/5
D6J8Y7 ECP_1017 Putative imelysin-like protein Unknown SpI 4/5

Cytoplasmic
Q1R5J3 Asd Aspartate-semialdehyde dehydrogenase Amino acid metabolism CYT 5/5
Q304P7 AspC Aspartate aminotransferase Amino acid metabolism CYT 5/5
D6J627 DapD Tetrahydrodipicolinate N-succinyltransferase Amino acid metabolism CYT 5/5
D6I9Y8 GlyA Serine hydroxymethyltransferase Amino acid metabolism CYT 5/5
D6JH90 IlvD Dihydroxy-acid dehydratase Amino acid metabolism CYT 5/5
Q0TLR6 LeuB 3-Isopropylmalate dehydrogenase Amino acid metabolism CYT 5/5
Q1RB13 GapA Glyceraldehyde-3-phosphate dehydrogenase A Carbohydrate metabolism CYT 5/5
Q1R4K6 GlmS Glucosamine-6-phosphate synthase Carbohydrate metabolism CYT 5/5
Q1R3Z2 GlpK Glycerol kinase Carbohydrate metabolism CYT 4/5
Q1R5N2 PckA ATP phosphoenolpyruvate carboxykinase Carbohydrate metabolism CYT 5/5
C6UM75 AceE Pyruvate dehydrogenase subunit Cellular processes CYT 4/5
D3GXX4 UxuB D-Mannonate oxidoreductase Cellular processes CYT 4/5
Q8X6U4 YliJ Putative transferase Cellular processes CYT 4/5
D6J5F5 PurA Adenylosuccinate synthetase DNA Metabolism CYT 5/5
D6JEB0 Eno Phosphopyruvate hydratase Energy metabolism CYT 4/5
B7MPL3 GltA Citrate synthase Energy metabolism CYT 5/5
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Table 2 (continued)

Accession Protein Description/annotationa Functional classificationb LipoPc
Prevalenced

(detected protein/gene)

Q1REH6 GpmA Phosphoglycerate mutase 1 Energy metabolism CYT 4/5
Q9KH99 Icd Isocitrate dehydrogenase [NADP] Energy metabolism CYT 5/5
Q1RG75 LpdA Dihydrolipoyl dehydrogenase Energy metabolism CYT 5/5
Q1R7A7 Pgk Phosphoglycerate kinase Energy metabolism CYT 5/5
Q707L6 GlcB Malate synthase Organic compound metabolism CYT 4/5
Q65A08 UxuA Mannonate hydrolase Organic compound metabolism CYT 5/5
Q1REV6 AhpC Alkyl hydroperoxide reductase, C22 subunit Stress response CYT 5/5
D6JGC4 FusA Translation elongation factor G Translation CYT 5/5
D6JGA3 RplC 50S ribosomal protein L3 Translation CYT 4/5
D6JG91 RplE 50S ribosomal protein L5 Translation CYT 5/5
D6J631 Tsf Translation elongation factor Ts Translation CYT 5/5
D5D637 Tuf Elongation factor Tu Translation CYT 5/5

Proteins are organised according to their subcellular location as predicted by the PSORTb algorithm [35]. All identified extracellular, outer membrane and proteins of unknown subcellular
location are included, as well as prevalent (detected in ≥80% of strains) periplasmic and cytoplasmic proteins.

a UniProt protein annotation [34].
b Functional classification according to ontology [78].
c LipoP prediction [36]; CYT: cytoplasmic, TMH: transmembrane helix, SPI: classic signal peptide, SPII: lipoprotein signal peptide.
d Prevalence of detected proteins and corresponding genes in the five reference UPEC strains.
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3. Results

3.1. Mass spectrometric analysis of proteolytic peptides and proteins of
UPEC produced during growth in human urine

The OMVproteome of five reference UPEC strains (536, CFT073, F11,
UMN026 and UTI89) was determined following culture in human urine
at 37 °C using a combination of EDTA heat-induced OMVs and nanoLC–
MS/MS. Mass spectrometric analysis detected 3569 unique peptide se-
quences with a confidence interval (CI) ≥95%, originating from 501 pro-
teins (mean: 7.1 ± 12.9 high confidence peptides per protein), for an
average of 100.6 ± 30.0 proteins per strain (Table S2). This equated to
a non-redundant set of 173 unique proteins (Tables 2 and S2). Proteo-
mic and genetic profiles were congruent, i.e. identified proteins were
detected in strains positive for the corresponding gene (Table S2).

3.2. Subcellular distribution of UPEC proteins identified following growth in
human urine

The subcellular origin of identified proteins and corresponding pep-
tideswas analysed in silico using the PSORTb algorithm [35]. Of the 3569
high confidence peptide sequences detected, 644 (18%) originated from
extracellular proteins, 1332 (37%) from OM proteins, 219 (6%) from
proteins of unknown subcellular location, 205 (6%) from periplasmic
proteins and 1169 (33%) from cytoplasmic proteins (Fig. 1A). No inner
membrane specific peptide sequences (CI ≥ 95%) were detected. Since
proteins were typically identified by more than one high confidence
peptide hit, subcellular fraction ratios varied between identified peptide
sequences and identified proteins (Fig. 1A). The 501 redundant proteins
consisted of 24 (5%) extracellular, 91 (18%) OM, 38 (8%) proteins of un-
known origin, 50 (10%) periplasmic and 298 (59%) cytoplasmic pro-
teins, for an average of 4.8 ± 1.1 extracellular, 18.6 ± 2.1 OM, 7.6 ±
3.2 proteins of unknown origin, 10.0 ± 4.7 periplasmic and 59.6 ±
24.3 cytoplasmic proteins per strain. The non-redundant library of 173
unique proteins consisted of 8 (5%) extracellular, 23 (13%) OM, 14
(8%) unknown, 21 (12%) periplasmic and 107 (62%) cytoplasmic pro-
teins (Table S2). LipoP analysis predicted either a classic signal peptide
sequence (SP I) or a lipoprotein signal peptide sequence (SP II) in 43%
of proteins of unknown origin, suggesting that they did not originate
from the cytoplasm (Fig. 1, Table 2).

The number of identifiedproteinswas compared to the total number
of proteins in the predicted bacterial proteome for each strain (Fig. 1B).
In a subcellular context, a relatively large fraction of predicted OM pro-
teinswas identified (16–19%), whereas up to 10% and 9% of the predict-
ed extracellular and periplasmic proteome were detected, respectively
(Fig. 1B). Comparatively few cytoplasmic and proteins of unknown ori-
gin were detected.

3.3. Virulence and surface proteins produced by UPEC during growth in
human urine

The OMV proteomic analysis of the five UPEC strains grown in
human urine identified 37 surface proteins, some of which are linked
to UPEC virulence (Table 2, Fig. 2). Peptide sequences specific to the
porin proteins OmpA, OmpC, OmpF, NmpC and UidC were ubiquitous
in the OMV proteomes of the UPEC strains examined. Other identified
surface proteins with conserved cognate genes in all five strains includ-
ed the protease VII protein OmpT (detected in all strains), OmpX and
the lipoprotein SlyB (detected in 4/5 strains), and OmpW (detected in
3/5 strains). The vitamin B-12 receptor BtuB and colicin I sensitive re-
ceptor CirA were detected in 5/5 and 4/5 strains, respectively.

Multiple surface proteins corresponding to virulence factors were
detected, including iron acquisition receptors, toxins and adhesins.
Peptide sequences specific to eleven distinct iron acquisition receptors
were identified, including two putative iron receptor proteins. The
haem/haemoglobin receptor ChuA was identified in all five strains, as
were the ferrienterobactin receptor FepA and the yersiniabactin recep-
tor FyuA. The catecholate siderophore receptor Fiu and the salmochelin
receptor IroN were detected in 4/5 and 4/4 strains positive for the cor-
responding gene, respectively (Fig. 2). Peptide sequences specific to
the putative siderophore receptor CjrC, the siderophore receptor Iha
and the ferric aerobactin receptor IutAwere detected in 2/2 strains con-
taining the corresponding genes; the putative iron transport receptor
UTI89_C2234 was detected in 3/4 strains. Peptides corresponding to
the ferrichrome-iron receptor FhuA were detected in 2/5 fhuA positive
strains; a single strain contained theDNA and peptide sequences specif-
ic to the siderophore receptor IreA. Co-expression of multiple iron re-
ceptor proteins was observed in all strains (mean: 7.6 ± 1.7 iron
receptors per strain), with up to nine distinct iron uptake receptor pro-
teins identified in the OMV proteome of CFT073 and UTI89 (Fig. 2).

Peptides corresponding to the flagellar filament subunit protein FliC
were detected in 4/5 strains containing the corresponding gene, the
haemolysin toxin HlyA was detected in 3/4 strains containing hlyA and
the accessory colonisation factor SslE was observed in 2/4 isolates pos-
itive for sslE (Fig. 2). Several distinct adhesins were detected, including
the antigen 43 (Ag43) autotransporter protein (detected in all strains),
and the neonatal meningitis E. coli (NMEC) Hek adhesin protein, which
was detected in strains 536, F11 and UTI89. The hek gene is absent from
the genome of CFT073 and UMN026. Hypothetical exported protein
UTI89_P011was detected in 2/3 strains positive for the analogous gene.



Fig. 1. Subcellular distribution and recovery rates of detected peptides and proteins. Peptides and proteins were identified by nanoLC–MS/MS of EDTA heat-induced OMVs isolated
from five UPEC strains cultured in urine. Protein subcellular locations were predicted with PSORTb [35] and defined as Extracellular, Outer-membrane (OM), Unknown, Periplasmic or
Cytoplasmic. (A) Location-based distribution of identified peptides, redundant proteins and non-redundant proteins, displayed as a percentage of the total number of peptides/proteins
detected. A large fraction of identifiedpeptide sequences originated fromOM, cytoplasmic and extracellular proteins. (B) Per strain protein recovery rate relative to the complete proteome
in a subcellular location-based arrangement. The total percentage of proteins recovered per strain is displayed at the top of the figure, with the number of identified/total number of pro-
teins displayed in parentheses. Up to 19% of predicted OM and 10% of extracellular proteinswere recovered, whereas relatively few cytoplasmic or proteins of unknown subcellular origin
were detected. No high confidence peptides corresponding to inner membrane proteins were detected.

Fig. 2. Prevalence and distribution of surface proteins identified in five UPEC strains during growth in human urine. Outer ring groups: proteins of extracellular, OM and unknown sub-
cellular origin as predicted by the PSORTb algorithm [35], and highlighted according to function where this is known (AT: autotransporter). Signal peptide sequences were predicted
using LipoP [36] and displayed in pink to magenta as described in the key. The histogram in blue displays the prevalence in percentage of identified proteins in the five strains. The
inner five rings represent a qualitative display of the number of high confidence peptides (CI ≥ 95%) detected per protein per strain as indicated in the key. The figure was created
using the Circos software package [37].
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Fimbrial subunit proteins from four distinct CU fimbrial types were
identified in the proteomes of the UPEC strains examined (mean:
2.8 ± 1.1 fimbrial types per strain). Peptide sequences specific to the
type 1 fimbriae major subunit FimA were detected in all strains, the
F1C/S fimbriaemajor subunit SfaAwas identified in 4/4 strains contain-
ing the F1C/S operon, and the P fimbriae major subunit PapA was de-
tected in 3/5 strains positive for at least one pap operon. Peptides
corresponding to the major subunit of a previously uncharacterised
F17-like fimbrial type were detected in UPEC strains F11 and 536 (Fig.
2). Based on their phylogeny described in the remainder of this work,
these fimbriae have been termed UCL (UCA-like) fimbriae. Peptide se-
quences identified by mass spectrometry covered 100% (160/160 aa,
22 high confidence peptides) and 22% (35/160 aa, 2 high confidence
peptides) of the UclA predicted mature major subunit protein in E. coli
F11 and 536, respectively (Fig. 3). Additionally, peptides corresponding
to the UCL adhesin protein UclD were detected in F11 and covered 20%
(67/339 aa, 4 high confidence peptides) of the predicted mature pro-
tein. While the ucl operon is also present in UTI89, no UCL specific pep-
tide sequences were detected in the OMV proteome of this strain under
the conditions examined in this study.

3.4. Evolutionary phylogeny and genomic organisation of UCL fimbriae

In a previous study on the identification and phylogenetic classifica-
tion of CU fimbriae in the E. coli pan-genome, we classifiedUCL fimbriae
(previously annotated as F17-like or UCA-like fimbriae) as a PAI-
associated gamma 4 fimbrial type exclusively found in UPEC strains
[22]. In order to investigate the distribution of the ucl operon among
Gram-negative bacteria, genomes available on the NCBI database were
probed using the BLASTp and tBLASTn algorithms for the UCL major
subunit (Q1R2V4), chaperone (Q1R2V5), usher (Q1R2V6) and adhesin
(Q1R2V7) amino acid and cognate nucleotide sequences. A phylogenet-
ic tree based on UCL-related usher protein sequences was constructed
to evaluate the UCL evolutionary history and combinedwith DNA align-
ments of the genomic context of the corresponding fimbrial operons to
determine genetic conservation. The ucl gene cluster was detected in
four complete E. coli genomes, namely UPEC strains 536 (ECP_3785–
3782), F11 (EcF11_0745–0748) and UTI89 (UTI89_C4907–C4904) as
well as asymptomatic bacteriuria (ABU) E. coli strain 83972
(ECABU_c48670–c48640). The ucl operon is 4957 nucleotides in
length and consists of four structural genes arranged in polycistronic
conformation, encoding, from 5′ to 3′: the major subunit (uclA),
Fig. 3. Alignment and mass spectrometric sequence coverage of UclA from UPEC strains 536 and
UclAF11; ‘+’ symbols represent conserved amino acid substitutions. The asterisk at position 23
Amino acid residues highlighted in blue represent peptide hits (CI ≥ 95%) detected by nanoLC–M
peptide hit with a lower confidence score (69%), and residues in greywere not detected by tand
residues) were detected in strains 536 and F11, respectively. The UclA major subunit is the lea
83972 are identical, the relative high degree of variation of the UCL major subunit is exclusivel
chaperone (uclB), usher (uclC) and adhesin (uclD) (Fig. 4). No partial/
disrupted ucl related DNA sequences were discovered. Based on usher
protein sequence phylogeny, UCL fimbriae form a monophyletic clade,
which is closely related to UCA fimbriae from P. mirabilis (PMI0536–
PMI0533) and an uncharacterised fimbrial type in E. coli KTE194
(A13Y_00037–00040), whereas they are relativelymore distantly relat-
ed to F17/G fimbriae (pVir_8–11) in E. coli (Fig. 4). In this scheme, the
mean evolutionary distance between the UCA and UCL fimbrial usher
protein is 0.22 ± 0.02 amino acid substitutions per site over 808 posi-
tions, which is similar to the evolutionary divergence of P and Pix fim-
briae (0.28 ± 0.05 substitutions/site, 808 positions) [22,44]. The
estimated evolutionary divergence between UCL and F17/G fimbriae
comprises 1.41 ± 0.05 substitutions per site over an equal number of
amino acid positions.

To evaluate the conservation of UCL fimbriae in E. coli, individual
UCL structural subunit proteins from strains 536, F11, UTI89 and
83972 were investigated for sequence variation. The mean estimated
evolutionary divergence between UCL usher proteins equals 0.006 ±
0.002 amino acid substitutions per site over 837 positions, while the
chaperone divergence rate equates to 0.005 ± 0.003 substitutions per
site (237 positions). The UCL adhesin protein exhibits a high degree of
conservation, with 0.001 ± 0.001 amino acid substitutions per site
over 359 positions, involving a single isoleucine to threonine mutation
at position 259 in the C-terminal domain of UclD83972. The estimated
mean evolutionary divergence between the UCL and UCA adhesin pro-
tein equals 0.235 ± 0.026 amino acid substitutions over 359 positions,
which is similar to the evolutionary distance based on usher protein
phylogeny. The UclAmajor subunit is the least conservedUCL structural
protein, with an evolutionary divergence of 0.187 ± 0.025 amino acid
substitutions per site over 182 positions. As UclA sequences of E. coli
F11, UTI89 and 83972 are identical, the relatively high degree of diver-
sity of the UCLmajor subunit is exclusively due to sequence variation of
UclA536. Based on protein phylogeny, the closest homologue to UclA536

is the major subunit of the UCA-like uncharacterised fimbrial type in
E. coli KTE194 (A13Y_00037). Apart from UclA, UCL fimbrial gene prod-
ucts form monophyletic groups and display a low degree of variation,
demonstrating that UCL fimbriae are generally well conserved.

The chromosomal location of the ucl operon comprises a highly con-
served 5′ region,which contains four ORFs including a putative tetR-like
regulator (Fig. 4). The 3′ region is somewhatmore variable and contains
a putative luxR-like regulator in E. coli F11, UTI89, and 83972 or a puta-
tive papX-like regulator in 536. Like the uca regulator immediately
F11. Amino acid sequence alignment of the unprocessed UCLmajor subunits UclA536 and
marks the first amino acid after the signal peptide cleavage site as predicted by LipoP [36].
S/MS in the OMV proteome of the corresponding strain. Sequences in yellow represent a

emmass spectrometry. 22% and 100% of the predictedmature UclA protein sequence (160
st conserved UCL structural protein. Since UclA protein sequences of E. coli F11, UTI89 and
y due to sequence diversity of UclA536.

Image of Fig. 3


Fig. 4. Evolutionaryphylogeny and genetic organisation ofUCLfimbriae. Left: The evolutionary phylogeny ofUCL and relatedfimbriaewas inferredusing theNeighbour-Joiningmethod on
usher amino acid sequences and evaluated using a 1000 replicate Bootstrap test displayed as percentage onmajor nodes. The scale represents the number of amino acid substitutions per
site over 808 positions. The phylogenetic tree was visualised with iTOL [39]. Right: Alignment and genomic context of F17/G, UCL, KTE194 A13Y_00037–00040 and UCA fimbriae
(highlighted in dark blue to light blue, respectively), with corresponding bacterial strainsmarked on the left of the alignment. The genomic context scale represents DNA length in kilobase
pair, DNA sequence similarity is indicated in grey as percentage identity. UCL and relatedfimbrial operons areflanked by transposable elements (yellow) or phage encoding genes (purple)
and are associated with plasmids (F17/G) or PAIs (UCL, KTE194 A13Y_00037–00040), suggesting this fimbrial clade is involved with horizontal gene transfer.
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downstreamof the uca operon in P. mirabilis, a conserved ORF is located
directly downstreamof uclD. However, this ORF shares no significant se-
quence similarity with the uca regulator or any other characterised
genes.

As previously reported, UCL fimbriae are associatedwith PAIs; the ucl
operon is located 3.8 kb upstream of the P fimbrial operon on the PAI-
leuX in E. coli F11, UTI89 and 83972, whereas it resides on PAI-selC in
E. coli 536 [22,45]. Typical for mobile genetic elements, the GC content
of the ucl operon (mean: 42.1% ± 0.1) differs from the mean genomic
GC content of the four corresponding E. coli strains (mean: 50.6% ±
0.1). UCL encoding genes are flanked by insertion sequence elements ap-
proximately 4.7 kb upstream of uclA and between 1.4 and 3.0 kb down-
stream of uclD (Fig. 4). UCL-related fimbrial operons are likewise
associated with mobile genomic elements; E. coli KTE194 A13Y_00037–
00040 resides on PAI-pheU and is flanked upstream by insertion se-
quences, prophageφ-PMI0456–PMI0530 is located directly downstream
of the uca operon of P. mirabilis and the plasmid-borne F17/G fimbrial
gene cluster is flanked by insertion sequences and prophage related
genes (Fig. 4).

3.5. Prevalence of ucl genes in E. coli

Seventy-two strains of the diverse and well-characterised E. coli ref-
erence (ECOR) collection, as well as a diverse in-house collection of
fifty-one urosepsis UPEC isolates were screened by PCR for the presence
of UCL encoding genes. Based on the genomic analysis described above,
primers were designed in conserved regions of the ucl operon to screen
for the major subunit/chaperone (uclA, uclB), usher (uclC) and adhesin
(uclD) genes (primers listed in Table S2). Consistent with the finding
of the genomic analysis, genomic integrity of the ucl operon was con-
served and strains either possessed or lacked all of the ucl genes
screened by PCR, with no partial subunit conformations observed. In
the ECOR collection, 10% (7/72) of strains screened positive for the
uclABCD genes (strains ECOR48, ECOR51, ECOR52, ECOR53, ECOR54,
ECOR60, ECOR63). The uclABCD genes were significantly more preva-
lent in the urosepsis UPEC collection (present in 15/51 [29%] strains,
P b 0.01).

While the E. coli species is highly genetically diverse, strains can be
grouped into 5 major monophyletic clades (phylogroups A, B1, B2, D
and E) [46]. UPEC strains are typically members of phylogroups B2
and D. PCR data from both ECOR and urosepsis UPEC collections were
merged to evaluate ucl operon prevalence in a phylogenetic context.
The ucl operon was present in 40% (19/48) and 11% (3/27) of B2
and D isolates, respectively, but absent in phylogroup A (n = 26), B1
(n = 18) and E (n = 4) strains. Together, these data demonstrate that
UCL fimbriae are primarily found in UPEC strains and are strongly asso-
ciated with E. coli phylogenetic groups B2 and D.

3.6. Morphology of UCL fimbriae

CU fimbriae are frequently associated with E. coli adherence and
biofilm formation. To investigate whether UCL fimbriae mediate these
phenotypes, the complete uclABCD gene cluster from UPEC strain 536
was PCR amplified and cloned under the control of the lac promoter
(plasmid pUCL). E. coli strain MS428 [47] transformed with pUCL or
pSU2718 (vector control) was cultured in the presence of 1 mM IPTG
and examined by electron microscopy to confirm fimbrial production
on the cell surface. Negatively stained E. coli MS428(pUCL) cells
contained relatively long, thin, flexible fimbrial structures uniformly
distributed on their surface (Fig. 5A–C), while no fimbrial structures
were observed on MS428 cells containing pSU2718 (Fig. 5D).

3.7. UCL fimbriae mediate biofilm formation on abiotic surfaces

The ability of UCL fimbriae to mediate biofilm formation was evalu-
ated using a high throughput microtitre plate assay and a continuous
flow chamber system. The UCL-overexpressing recombinant E. coli
strain MS428(pUCL) formed a strong biofilm (OD595 = 3.15 ± 0.11)
on PVC microtitre plates when cultured at 37 °C in M9 medium
(Fig. 6A). No substantial biofilm (OD595 = 0.4 ± 0.06) was produced
by vector control strain MS428(pSU2718). Using a continuous-flow
chamber system in combination with a gfp-tagged derivative of E. coli
MS428 (i.e. E. coli OS56), the ability of UCL fimbriae to promote biofilm
formation under dynamic conditions was examined. UCL-expressing
E. coli OS56(pUCL) produced a dense and uniform biofilm significantly
increased in biovolume, substratum coverage andmean thickness com-
pared to the vector control strain OS56(pSU2718) (P b 0.001; Fig. 6B).

Image of Fig. 4


Fig. 5. UCL fimbriae are organised as flexible thin hair-like structures on the cell surface of E. coli. Transmission electron micrographs of (A–C) UCL-expressing E. coli strain MS428(pUCL)
and (D) control E. coli strainMS428(pSU2718) negatively stainedwith 1% uranyl acetate. Cells were obtained from overnight cultures at 37 °C in LBmedia supplementedwith 1mM IPTG.
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Combined, these data demonstrate that UCL fimbriae promote strong
biofilm formation in two distinct biofilm model systems.

3.8. UCL fimbriaemediate adherence to exfoliated human uroepithelial cells

The UCL fimbrial operon is unique to UPEC and its constituent sub-
unit proteins were detected following growth of UPEC F11 (UclA and
UclD) and 536 (UclA) in human urine. To investigate whether UCL
Fig. 6. UCL fimbriae mediate E. coli biofilm formation on abiotic surfaces. (A) PVC microtitre p
fimbriae expression plasmid pUCL after 24 h growth at 37 °C inM9medium. The optical density
formed a significantly stronger biofilm (P b 0.001) in comparisonwith vector control strainMS4
formation on a glass surface of the GFP+ strainOS56 containing pSU2718 (vector control plasmi
large panes illustrate representative horizontalflow cell cross sections (positioned at the blue lin
at the positions indicated by the red and green lines. The UCL-overexpression strain OS56(pUCL
coverage and mean thickness compared to vector control strain OS56(pSU2718).
fimbriae recognise epitopes on cells of the urinary tract, exfoliated
human uroepithelial cells were mixed with UCL overexpressing E. coli
and examined for adherence. Desquamated epithelial cells were collect-
ed from the mid-stream urine of four healthy female volunteers, incu-
bated with MS428(pUCL, pCO13) (gfp-tagged strain expressing UCL
fimbriae) or MS428(pSU2718, pCO13) (gfp-tagged negative control
strain) and examined by epifluorescence/light microscopy. In this
assay, UCL-expressing E. coli strain MS428(pUCL, pCO13) attached in
late biofilm formation assay of MS428 containing vector control plasmid pSU2718 or UCL
at 595 nm is an indication of biofilm formation (displayed asmean± SD). MS428(pUCL)
28(pSU2718). (B) Dynamic flow chamber assay displaying spatial distribution and biofilm
d)or pUCL (UCL fimbriae expression plasmid) cultured inM9medium for 24h at 28 °C. The
e in the sidepanels); the smaller panes at the top and right represent vertical cross sections
) produced a biofilmwith a significant (P b 0.001) increase in total biovolume, substratum

Image of Fig. 5
Image of Fig. 6
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large numbers (N100 GFP+ bacteria per eukaryotic cell) to exfoliated
uroepithelial cells, while no adherence (b5 GFP+ bacteria per eukaryot-
ic cell) was observed by vector control strain MS428(pSU2718, pCO13)
(Fig. 7). E. coli strains expressing UCL fimbriae adhered to 68–80% of
uroepithelial cells (data from3 independent experiments, 50 eukaryotic
cells examined per experiment). We also examined the ability of UCL
fimbriae to mediate binding of E. coli to T24 human bladder and A498
human renal epithelial cells, however no binding was observed (data
not shown). Taken together, our data demonstrate that UCL fimbriae
bind to human desquamated uroepithelial cells via interaction with
structures either not present or not readily exposed on the surface of
immortalised human bladder and kidney epithelial cells.

4. Discussion

Bacterial surface proteins are often associated with virulence, and in
some cases can be targeted for the development of diagnostics and ther-
apeutics. However, the extensive genotypic and phenotypic heteroge-
neity of the UPEC pathogroup makes identification of common surface
proteins challenging. We previously described a high-throughput
method for the rapid characterisation of the E. coli surface proteome
based on nanoLC–MS/MS of EDTA heat-induced OMVs [31]. Here, we
have employed this methodology to characterise the UPEC surface pro-
teome during growth in human urine.

OMVs are 20–200 nm spherical structures secreted constitutively
from the OM of Gram-negative bacteria and are inherently enriched in
Fig. 7.UCL fimbriaemediate E. coli adherence to exfoliated humanuroepithelial cells. Desquama
infectedwith GFP+ E. coli cells at aMOI of 10,000, incubated for 30min at 37 °C, 100 rpm, thorou
No substantial adherence was observed by vector control strain MS428(pSU2718, pCO13) (lef
80% of uroepithelial cells isolated fromhuman urine, typically covering the complete uroepithel
cells were examined per experiment.
surface proteins compared to whole-cell proteomes [48,49]. Chemical
heat treatment was used to induce OMV production from UPEC strains
and associated proteins were identified by nanoLC–MS/MS. Based on
PSORTb predictions [35], the majority (55%) of high confidence peptide
sequences detected originated either fromOM or extracellular proteins.
Overall, the subcellular composition of the EDTA-heat induced OMV
proteome isolated from UPEC grown in urine resembled that of UPEC
cultured in minimal medium and the native OMV proteome of E. coli
DH5α [31,49]. More specifically, the number of surface proteins identi-
fied in CFT073 corresponded to previous studies investigating CFT073
under similar conditions using traditional proteomic methods [50,51].
While thesemethods generally identifiedmoreOMproteins, extracellu-
lar proteins associatedwith the cell surface, including fimbrial subunits,
were typically absent.

UPEC are genetically heterogeneous pathogens and express a diverse
array of surface proteins and virulence factors dependent on gene reper-
toires and/or environmental conditions. Accordingly, a comparative pro-
teomic approachwas utilised to investigatemultiple UPEC strains for the
expression of common surface proteins and variability of virulence fac-
tors. A total of 14 surface proteins (FimA, BtuB, ChuA, FepA, FyuA,
UidC, NmpC, OmpA, OmpC, OmpF, OmpT, Flu, CarB and Mdh) were de-
tected in all strains, and represent the core surface proteome of the five
UPEC strains examined in this study during growth in urine. The ubiqui-
ty and association with the bacterial cell surface of these proteins may
provide a framework for novel and broadly protective therapeutic inter-
ventions against UPEC-mediated UTI. The expression of this core set of
ted uroepithelial cells recovered from urine donated by four healthy female volunteers and
ghlywashed and examined by phase contrast (top) and fluorescent (bottom)microscopy.
t). In contrast, UCL fimbriae-overexpressing strain MS428(pUCL, pCO13) adhered to 68%–
ial cell surface (right). Data were collected from 3 independent experiments, 50 eukaryotic

Image of Fig. 7
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surface proteins exhibited some differences when compared to a
previous study performed following growth in M9 minimal medium
[31] (i.e. ChuA, FepA, FyuA, NmpC, OmpA, OmpC, OmpF and OmpT
were highly prevalent during both culture conditions, whereas FimA,
BtuB, UidC, Flu, CarB and Mdh constitute core proteins after growth in
urine only), suggesting specific regulatory control for at least some of
the genes encoding these proteins.

Consistent with genome heterogeneity, the prevalence of identified
virulence-associated proteins was variable, however, proteins associat-
ed with both iron uptake and adhesion were detected in all strains. As
the urinary tract is iron-limited, iron-chelating siderophores and their
cognate uptake systems enable UPEC to sequester this essential growth
factor from the host. Secreted toxins including haemolysin and cytotox-
ic necrotising factor 1 cause extensive damage to tissues and immune
effector cells, promoting bacterial dissemination, cell invasion, release
of nutrients and suppression of host defence mechanisms [52–55].
Alpha-haemolysin is secreted either directly into the extracellular mi-
lieu or associated with OMVs and disseminated accordingly [56]. The
haemolysin toxin HlyA was detected in three out of four UPEC isolates
positive for the hlyA gene. Since E. coli 536 possesses two copies of the
hlyA gene, the probability of detecting the corresponding protein
using proteomic approaches may be increased in comparison with
strains containing a single gene copy. Similar inferences may be made
in respect to the detection of P fimbrial subunits in CFT073, which pos-
sesses two copies of the pap operon. The major flagellar filament sub-
unit protein FliC was detected in four out of five strains containing the
fliC gene, consistent with the notion that growth in urine may prime
UPEC for flagella-mediated ascension to the upper urinary tract [57].
Eleven distinct iron uptake receptors were identified including the pu-
tative receptor proteins CjrC and UTI89_C2234. The cjrC gene is located
on IncF conjugative plasmids in UTI89, UMN026 and F11 [28–30,58].
The cjrABC gene cluster has been associated with UPEC fitness during
the early stages of acute cystitis in mice, however, the precise role
of CjrC in uropathogenesis remains to be elucidated [58]. The
UTI89_C2234 protein was detected in three out of four strains positive
for the corresponding gene (E. coli CFT073, F11 and UTI89) and contains
TonB-dependent haem/haemoglobin receptor and inorganic Fe trans-
port domains. The co-expression of an average of 7.6 ± 1.7 iron recep-
tors per strain exemplifies UPEC dependence on iron for growth in
urine. Identified in all strains, the predicted porin protein UidC is part
of the uidABC operon and involved in the active uptake of beta-
glucuronosides, suggesting that UPEC actively acquires andmetabolises
glucuronosides secreted as a metabolic waste product by the kidneys
[59]. UidA beta-glucuronidase is an intracellular hydrolase unique to
E. coli that catalyses beta-glucuronosides, allowing the resulting glycone
to be used as carbon source [59]. The secreted and surface-associated li-
poprotein SslE is a strongly immunogenic and protective vaccine anti-
gen in mice, and contributes to biofilm formation and gut colonisation
by pathogenic E. coli [60–62]. SslE was detected in three strains after
growth in human urine, suggesting that UPEC produces this protein
during colonisation of the urinary tract and may be susceptible to SslE
based vaccines. The Hek adhesin was detected in UPEC 536, F11 and
UTI89 (CFT073 and UMN026 lack the hek gene). The hek gene is located
on PAI-leuXdirectly downstreamof the Pfimbriae operon and is present
in approximately 55% of UPEC strains [63]. This virulence factor medi-
ates autoaggregation, adherence and invasion of T84 colonic cells by
neonatal meningitis E. coli (NMEC) [64]. To the best of our knowledge,
this is the first evidence of Hek expression by UPEC. Other adhesins
identified includedAg43,whichwas detected in all strains andmediates
autoaggregation, biofilm formation on abiotic surfaces, IBC formation
and enhanced colonisation of themurine bladder epithelium [12,47,65].

UPEC utilise CUfimbriae as primary adherence factors for the coloni-
sation of the human urinary tract.While type 1, P, F1C/S andAFA fimbri-
ae are common fimbrial adhesins associated with UTI, the large
diversity of adhesin-encoding genes in UPEC suggests that other fimbri-
ae may also contribute to this phenotype. Based on peptide sequences
corresponding to major subunit proteins, four distinct fimbriae types
were identified during growth in urine, including the previously
uncharacterised UCL fimbriae, which were detected in two out of
three strains positive for the ucl operon (F11 and 536). Besides this
new fimbrial type, major subunit proteins of type 1 fimbriae were de-
tected in all strains, F1C/S fimbriae were detected in four strains and P
fimbriae were detected in three out of five strains. The F1C/S operon
in the F11 genome is annotated as disrupted due to a single pointmuta-
tion in the usher-encoding gene, however the detection of the F1C
major subunit in the F11 OMV proteome suggests that this operon is
expressed in this strain and potentially functional. Co-production of
multiple distinct fimbriae was observed in all UPEC strains. UPEC have
been shown to coordinate fimbrial expression to limit the production
of multiple fimbrial types on the cell surface [66,67]. Phase variation
of several fimbrial operons in UPEC results in isogenic bacterial subpop-
ulations expressing functionally distinct fimbriae, presumably to in-
crease the probability of adherence to host tissues in the diverse
niches of the human urinary tract [68]. As our proteomic analysis is at
the population rather than the single cell level, it remains to be deter-
mined whether the identified fimbrial types are co-produced on the
cell surface of these UPEC strains or produced by tightly regulated
subpopulations.

We previously described that E. coli possess at least 38 distinct fim-
brial types, some of which are associated with specific E. coli pathotypes
[22]. UCL fimbriae (previously described as F17-like or UCA-like fimbri-
ae [9,45,69]) were found exclusively in UPEC and are located within
PAIs. In this study, we analysed the UCL genomic context, prevalence
and phylogeny in order to investigate the conservation and evolution-
ary history of the ucl operon. The relatively low GC content, flanking in-
sertion elements and PAI association suggest that UCL fimbriae were
acquired via horizontal gene transfer [11]. Notably, the closely related
UCA fimbriae of P. mirabilis and E. coli KTE194 (A13Y_00037–00040),
aswell as themore distantly related E. coli F17/G fimbriae, are also asso-
ciated with mobile genetic elements. Based on the protein sequence
phylogeny of UCL subunits, UCL fimbriae form amonophyletic clade, in-
dicating that the ancestral UCL operonwas acquired by an ancient E. coli
lineage and subsequently disseminated among its extant E. coli descen-
dants. The genetic mobility of the ucl genes is further emphasised by
their location within PAI-selC (E. coli 536) or PAI-leuX (E. coli F11,
UTI89, 83972). Additionally, the major subunit protein UclA536 varies
extensively in comparisonwith other UclA sequences, suggesting allelic
replacement via recombination or considerable divergence of this pro-
tein during the evolutionary history of E. coli 536. TheUclD adhesin pro-
tein is highly conserved, containing a single non-synonymousmutation
in the C-terminal domain of the protein. The conservation of the lectin-
recognising N-terminal domain implies that the binding properties of
UCL fimbriae may be highly conserved. The direct 5′ and 3′ regions
of the ucl operon contain multiple distinct ORFs homologous to
characterised regulators, however there is currently no evidence linking
these elements to the regulation of uclABCD transcription. Despite the
presence of an apparently intact ucl fimbrial operon in UTI89, we did
not detect expression of UCL fimbriae, suggesting differential regulation
in this strain. This observation is consistentwith a recent analysis of fim-
brial expression in UTI89 following growth in LB broth [70,71]. There is
currently no evidence for UCL fimbriae expression in ABU E. coli strain
83972.

The ucl fimbrial genes were identified in 29% of urosepsis E. coli iso-
lates and exclusively found in members of phylogenetic groups B2 and
D,which is consistentwith the frequency of PAIs carrying the ucl operon
in UPEC [72]. In addition to their association with UPEC strains, UCL
fimbriae are closely related to UCA fimbriae from P. mirabilis, whichme-
diate adherence to desquamated uroepithelial cells and play a role in
the colonisation of the murine urinary tract by P. mirabilis [73,74].
Accordingly, UCL fimbriaewere functionally characterised to determine
a potential role in UPEC mediated uropathogenesis. We demonstrated
that UCL fimbriae promote strong biofilm formation in two distinct
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in vitro assays and mediate specific bacterial attachment to exfoliated
uroepithelial cells when expressed in a recombinant E. coli strain. We
did not detect any significant UCL-mediated binding of E. coli to T24
human bladder carcinoma or A498 human kidney carcinoma cells, and
the target epitopes and precise role of UCL fimbriae in UPEC mediated
UTI remain to be elucidated.

This study describes a comprehensive comparative characterisation
of the UPEC surface proteome during growth in human urine. Our ap-
proach led to the identification of 14 core surface proteins, as well as
the identification and characterisation of UCL fimbriae as a new PAI-
associated fimbrial adhesin that mediates significant biofilm formation
and confers specific adherence to human uroepithelial cells. Taken to-
gether, this study provides new insight into the composition of the
UPEC surface proteome and highlights the potential contribution of
UCL fimbriae in UPEC colonisation of the human urinary tract.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jprot.2015.11.001.
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