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Abstract

There is a need for materials that are well suited for cartilage tissue engineering.

Hydrogels have emerged as promising biomaterials for cartilage repair, since, like

cartilage, they have high water content, and they allow cells to be encapsulated

within the material in a genuinely three-dimensional microenvironment. In this

study, we investigated the mechanical properties of tissue-engineered cartilage

constructs using in vitro culture models incorporating human chondrocytes from

osteoarthritis patients. We evaluated hydrogels formed from mixtures of

photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations

(0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in

the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater

extent 8 weeks of culture, HA-MA had striking and concentration dependent impact

on the changes in mechanical properties. For example, the initial compressive

moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa,

respectively. After 8 weeks of culture, the moduli of these constructs had increased

to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels

with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure

strength and failure strain were all improved in constructs containing HA-MA.

Differences in mechanical properties did not correlate with glycosaminoglycan

content, which did not vary greatly between groups, yet there were clear differences

in aggrecan intensity and distribution as assessed using immunostaining. Based on

the functional development with time in culture using human chondrocytes,

mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-

engineering applications.
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Introduction

Articular cartilage is a load bearing tissue. In articulating joints, cartilage provides

low friction surfaces for efficient movement, and effective impact absorption and

load dissipation. Unfortunately, cartilage is susceptible to damage, and has a very

limited capacity to heal. To address this clinical need, researchers and clinicians

have developed methods to potentially regenerate or tissue-engineer new cartilage,

but currently there remains a shortage of materials that are well suited for guiding

effective regeneration of high quality, hyaline cartilage [1].

The mechanical properties of cartilage are crucial to its ability to withstand the

compressive and shear loads to which it is routinely subjected in the joint

environment. It has been noted elsewhere that the importance of mechanical

properties in tissue-engineered cartilage is often overlooked [2], and has even

been suggested that mechanical properties should be viewed as the most

important metric for assessing the quality of tissue-engineered cartilage [2].

Studies to identify materials for cartilage tissue engineering commonly

characterise the mechanical properties of cell-free scaffolds or hydrogels, but

frequently do not examine how the mechanical properties change with time [3].

While the optimal mechanical properties for a cartilage scaffold or tissue

engineered cartilage are not known, healthy cartilage is a common reference,

which has an equilibrium compressive modulus in the order of 0.1–2 MPa,

varying significantly with depth from the articular surface [4]. Implanting a

construct that has matured for four weeks in vitro showed better integration with

the surrounding cartilage compared to implanting a freshly crosslinked construct

[5], which may be partially a result of the mechanical properties developed over

four weeks culture protecting the construct from damage once implanted.

The mechanical properties of tissue-engineered cartilage can be considered in

two distinct elements. Firstly, the biomaterial has some inherent mechanical

properties, and generally the mechanical properties of the newly formed construct

will be derived from these inherent properties. Secondly, over time, the

mechanical properties of the construct will change, due to material degradation,

production of proteins and assembly of extracellular matrix via the cell machinery,

and matrix remodelling.

The first element, the initial mechanical properties, is relatively simply altered

by changing the materials used, the way in which they are constructed, or the way

in which they are held together. For example, thermoplastic polymers can be used

to produce very stiff constructs, which can easily match the stiffness of articular

cartilage [6], but fail to adequately match the low friction properties and shock

absorption characteristics. Hydrogels, meanwhile, have been extensively investi-

gated for cartilage repair, but the mechanical properties of these typically soft and

highly water-swollen materials have limited their clinical impact. To overcome the

limitation of the mechanical properties, strategies to enhance the mechanical

properties of hydrogels have been keenly investigated. For example, double

network hydrogels have been developed that have excellent compliance, high

water content and remarkable failure strengths [7], however the process for
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producing these gels is not easily adapted for cell encapsulation and the strength is

reduced upon repeated loading [8]. Very stiff and strong hydrogels can also be

produced from polyvinyl alcohol, and promising short term clinical results have

been reported [9], but these materials replace cartilage, rather than regenerate the

original tissue. Similarly, polyethylene glycol (PEG) hydrogels formed from a high

concentration (40% w/v) of low molecular weight (508 Da) have mechanical

properties comparable to cartilage [4], but the potential to successfully

encapsulate cells in such stiff gels remains uncertain, and exposure to low

molecular weight PEG may also limit cell compatibility. Yet another approach has

been to combine soft, cell compatible hydrogels with stronger materials, such as

thermoplastic polymers [10, 11], to produce constructs in which the hydrogel

contributes negligibly to the overall mechanical properties.

In parallel, research efforts have also been directed towards developing

materials that allow an increase in the mechanical properties of tissue-engineered

constructs with time, usually mediated by the deposition of extracellular matrix

from embedded or invading cells. For hydrogels, one common method to allow

for greater increases in mechanical properties has been to lower the initial stiffness

of the gels, usually be lowering the concentration of polymer [12, 13]. The basic

principle is that reducing the polymer concentration results in a hydrogel that is

not only softer, but also has larger pores, therefore allowing more diffusion of

extracellular matrix into and throughout the hydrogel, which ultimately accounts

for the bulk of the mechanical strength.

Hyaluronic acid (HA) is a ubiquitous component of extracellular matrices, and

performs important functions in cartilage. By binding and immobilising aggrecan,

HA mediates the formation of massive aggregates of fixed negative charge that

retain water and is a critical extracellular matrix (ECM) component for cartilage

mechanical properties. Meanwhile, the collagen network acts to resist this swelling

tendency and provides tensile strength. In this study, we evaluated hydrogels

formed from mixtures of photocrosslinkable derivatives of gelatin and HA

(gelatin-methacrylamide (Gel-MA) and HA-methacrylate (HA-MA), respec-

tively). In particular, we aimed to investigate in detail the role of HA-MA in the

developed mechanical properties of engineered cartilage constructs using

chondrocytes from four human patients. Based on our previous studies [14], we

hypothesised that HA-MA would significantly enhance the mechanical properties

of cultured constructs, and that the influence would be concentration dependent.

Materials and Methods

Ethics statement

Ethics approval was granted from the Queensland University of Technology

Human Research Ethics Committee (EC00171) and the Prince Charles Hospital

Human Research Ethics Committee (EC00168) (both Brisbane, Australia), and

written informed consent was obtained from the donors for use of their tissue

samples in research.
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Study Design

The main aim of this study was to evaluate the importance of a hyaluronic acid

derivate on mechanical property development in tissue-engineered cartilage

constructs, and can be considered in two parts. The objective of the first part was

to characterize the mechanical properties of cell-free hydrogel constructs after 1

and 28 days in culture, including compressive modulus, swelling ratio, and also

the release profile of non-covalently bond HA from Gel-MA hydrogels. The

objective of the second part was to encapsulate human chondrocytes in Gel-MA/

HA-MA constructs and evaluate the impact of HA-MA on the change in

mechanical properties and matrix production. For the cellular experiments, the

compressive modulus and swelling ratio were tested on days 1, 28 and 56, and

failure strength was measured after 63 days. ECM production was assessed on

constructs cultured for 28 days.

Macromer synthesis

Gelatin and methacrylic anhydride (MAAh) were purchased from Sigma Aldrich

(St Louis, MO, USA). Hyaluronic acid was purchased from Novozymes

Biopharma (Bagsvaerd, Denmark). Irgacure 2959 was purchased from BASF

(Ludwigshafen, Germany). Gelatin-methacrylamide (Gel-MA) and hyaluronic

acid methacrylate (HA-MA) were synthesized using protocols based on previous

methods [15, 16, 17]. Unless otherwise stated, all concentrations are given as

percentage weight per volume (% w/v). Gelatin was dissolved in phosphate

buffered saline (PBS, Invitrogen, Carlsbad, CA, USA) at 10% and reacted with

0.6 g MAAh per gram of gelatin for 1 hour at 50 C̊ under constant stirring. After

the reaction period, excess MAAh was removed by centrifugation, and the Gel-

MA was exhaustively dialysed against distilled water at 40 C̊. The pH of the

dialysed Gel-MA solution was adjusted to 7.4, and Gel-MA was recovered by

lyophilisation. HA was dissolved in distilled water at 2% and reacted with MAAh

on ice for 8 hours under constant stirring. HA-MA was precipitated in an excess

of cold 100% ethanol, redissolved, then exhaustively dialysed against distilled

water. The pH of dialysed HA-MA was adjusted to 7.4, and HA-MA was

recovered by lyophilisation. Following lyophilisation, HA-MA was washed with

acetone and allowed to dry overnight in a biological safety cabinet to ensure

sterility. Each polymer was dissolved separately at 10 mg/mL in deuterium oxide

(Sigma) and proton nuclear magnetic resonance spectra were recorded on a

Mercury 300 MHz instrument (Varian Associates Inc., CA, USA).

Cell isolation and expansion

Human chondrocytes were isolated and expanded as described in detail elsewhere

[18]. Cartilage with a macroscopically normal appearance was excised from the

femoral condyles of four osteoarthritis (OA) patients that had undergone knee

replacement surgery. The cartilage was diced with a scalpel and digested overnight

with 0.15% collagenase type II (Worthington, NJ, USA) in high glucose
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Dulbecco’s modified eagle medium (DMEM, Invitrogen). Chondrocytes from the

four patients were kept separate for the entirety of the study, and were expanded

in low-glucose DMEM with 2 mM glutamax (Invitrogen), supplemented with

10% fetal bovine serum (Lonza, Waverly Australia), 10 mM 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES), 0.1 mM non-essential amino acids,

0.5 mg/mL amphotericin B (Fungizone), 50 U/mL penicillin G sodium, 50 mg/mL

streptomycin (all Invitrogen), 0.4 mM L-proline and 0.1 mM ascorbic acid (both

Sigma).

Hydrogel formation

All hydrogels were crosslinked in a custom made Teflon mould by 15 minutes

exposure to 2.6 mW/cm2 365 nm light (UVP CL-1000, Upland, CA, USA). All gel

precursor solutions had a total polymer concentration of 10% and contained

0.05% of the photoinitiator Irgacure 2959. Passage one chondrocytes were

released from monolayer culture by 5 minutes incubation with 0.25% trypsin

(Invitrogen). The cells were washed with DMEM containing FBS, then washed a

further two times with serum-free DMEM. The cells were counted using a

hemocytometer, and encapsulated by combining one millilitre of gel precursor

solution with each 107 cells and photocrosslinking. Initially gels had dimensions of

approximately 46462 mm. Cell-hydrogel constructs were cultured for up to 9

weeks in defined chondrogenic differentiation media (high-glucose DMEM with

2 mM glutamax (Invitrogen), 10 mM HEPES, 0.1 mM nonessential amino acids,

ITS-G (1006 dilution), 0.5 mg/mL amphotericin B (Fungizone), 50 U/mL

penicillin G sodium, 50 mg/mL streptomycin (all Invitrogen), 1.25 mg/mL bovine

serum albumin (BSA), 0.4 mM L-proline, 0.1 mM ascorbic acid, 0.1 mM

dexamethasone (all Sigma) and 10 ng/mL TGF-b3 (GroPep, Adelaide, Australia)).

Cell-free hydrogels were cultured in high-glucose DMEM with 1.25 mg/mL BSA,

0.5 mg/mL amphotericin B, 50 U/mL penicillin G sodium and 50 mg/mL

streptomycin.

Viability analysis

After 28 days culture, cell-laden hydrogel constructs were halved with a scalpel,

incubated in a solution of 10 mg/mL fluorescein diacetate and 5 mg/mL propidium

iodide (both Sigma) in PBS for 10 minutes, and imaged using a Zeiss Axio

microscope. The cut face of the hydrogel construct was imaged to visualise the cell

viability in the centre of the construct.

Mechanical testing

All hydrogels were tested in an unconfined arrangement between non-porous

platens while submerged in PBS at 37 C̊, using an Instron 5848 microtester

(Instron, Melbourne, Australia). The compressive modulus was determined by

compressing gels at 0.01 mm/s, and calculating the slope of the stress-strain curve

between 10–15% strain. The cross-sectional area of each gel was calculated from
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the ratio of wet weight to height. After testing, the gels were lyophilised to

determine the dry weight. The (mass) swelling ratio was determined as the ratio of

wet weight to dry weight. The following procedure was used to determine the

equilibrium modulus, dynamic modulus, failure strength and failure strain for

each gel, using a displacement rate of 0.01 mm/s. Gels were compressed to 5%

strain, held for 10 minutes, compressed to 10% strain, and held for 10 minutes.

Fifty cycles of a sinusoidal waveform with an amplitude of 2% and frequency of

1 Hz was applied, centred about 10% strain. Gels were then compressed to 15%

strain, held for 10 minutes, and compressed to 20% strain and held for

10 minutes. The load was released completely, and the gels were compressed until

failure using a displacement rate of 0.01 mm/s. For each gel, the equilibrium

modulus was determined from the slope of the residual stress-strain curve

between 10 and 15% strain. The dynamic modulus was determined as the slope of

the stress strain curve between 9 and 11% strain during dynamic compression.

The failure force and displacement were taken as the point of a clear discontinuity

of the force-displacement curve, from which failure strength and strain were

calculated based on cross-sectional area and height.

Immunofluorescence

Constructs were snap frozen in Optimal Cutting Temperature (OCT) compound

(Sakura, Finetek, Tokyo, Japan) and sectioned. Sections were fixed with ice-cold

acetone for 10 minutes, and washed in PBS. Antigen retrieval was performed for

collagen type II, using 0.1% hyaluronidase (Sigma) for 30 minutes at room

temperature. All sections were blocked with 2% bovine serum albumin (BSA,

Sigma) in PBS for 1 hour at room temperature. Primary antibodies were diluted

in 2% BSA in PBS and applied overnight at 4 C̊. Antibodies for aggrecan

(969D4D11, Invitrogen, 1:300 dilution), collagen type II (II-II6B3, Developmental

Studies Hybridoma Bank (DSHB), Iowa City, IA, USA, 1:200 dilution) and CD44

(H4C4, DSHB, 1:200 dilution) were used. Slides were washed three times in PBS

for 5 minutes each. The goat anti-mouse secondary antibody (Alexa Fluor488,

Invitrogen, 1:400 dilution) was diluted in 2% BSA in PBS containing 5 mg/mL 4,6-

diamidino-2-phenylindole (DAPI, Invitrogen), and applied in the dark for

1 hour. Slides were washed a further 3 times in PBS for 5 minutes each, and after

drying, mounted with Prolong Gold (Invitrogen) and imaged using a Zeiss Axio

microscope. Confocal microscopy was used to image the morphology of

encapsulated cells and cells at the surface of constructs. Whole constructs were

incubated in PBS containing 5 mg/mL DAPI and 0.8 U/mL rhodamine phalloidin

for 1 hour then washed three times in PBS. Images were captured on a Leica SP5

laser scanning confocal microscope.

Biochemical analyses

GAG content was measured quantitatively using the dimethylmethylene blue

(DMMB, Sigma) assay and a standard curve of chondroitin-6-sulfate (Sigma) and
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the ratio of absorbance at 525 nm to 590 nm. For HA/HA-MA retention

experiments the assay was performed at pH 3.0, and for cell culture experiments

pH 1.5 was used, since unsulfated GAGs bind with DMMB at a pH of 3.0 but not

1.5 [19]. For the retention experiments, cell-free gels were incubated in PBS at

37 C̊ for up to two weeks. At each time point, four gels were removed from PBS,

weighed, and digested with papain (250 mg/mL, Sigma) at 60 C̊ overnight. GAG

content was measured in cell-laden constructs after 1 and 28 days culture. The

constructs weighed, lyophilised, weighed again, and digested with 0.5%

hyaluronidase (Sigma) in PBS at 37 C̊ for 48 hours, followed by digestion with

proteinase K (Invitrogen) overnight at 56 C̊. DNA content in the digests was

measured using the Quant-iT PicoGreen dsDNA assay (Invitrogen).

EPIC-mCT

Equilibrium partitioning of an ionic contrast agent (EPIC) microcomputed

tomography (mCT) was used to visualize the concentration and distribution of

negative charge, as a measure for proteoglycan content in hydrogel constructs

[20, 21]. This technique uses a negatively charged contrast agent to indicate the

amount and distribution of fixed negative charge in the hydrogel construct. Since

cartilage ECM is negatively charged, gels with a higher amount of ECM, and

therefore a higher negative charge, have a lower signal strength of contrast agent.

Gels were incubated in a mixture of 40% Ioxaglate (Hexabrix, Aspen, Australia) in

PBS at 37 C̊ overnight with constant mixing, and imaged using a Scanco mCT 40

scanner (Scanco Medical, Brüttisellen, Switzerland).

Statistical analyses

All statistical analyses were performed using SPSS v20 (IBM corporation,

Armonk), with a statistical significance level of 0.05. Differences between hydrogel

groups (0–2% HA-MA) were determined using ANOVA. Tukey’s posthoc test was

used in instances where the p-value for Levene’s test was greater than 0.05, and

Tamhane’s T2 posthoc test was used where the p-value for Levene’s test was less

than 0.05. Statistically significant differences from the appropriate posthoc test are

indicated in Figures using Roman numerals. Independent samples t-tests were

used for comparisons within groups or between days, and statistically significant

differences were indicated in figures using the symbols *, # and {.

Results

All hydrogels maintained their macroscopic appearance and shape throughout the

entirety of the study, and could be easily handled with a spatula. Cell-free gels

were noticeably more transparent than cell-laden gels. The opacity of gel

precursor solutions increased slightly with HA-MA concentration at 37 C̊, and

much more so at 4 C̊ Figure S1), indicating imperfect mixing of the two polymers.

The solution with 2% HA-MA was notably more viscous that all other groups,
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and consequently more challenging to work with. Proton nuclear magnetic

resonance confirmed that gelatin and HA were successfully modified with

methacrylate or methacrylamide groups (Figure S2).

Retention of HA

When unmodified HA was incorporated into Gel-MA hydrogels, a portion

diffuses out of the gels over the first 1-3 days, but some HA is stably incorporated

(Figure 1). HA-MA content could not be quantified using the DMMB assay after

papain digestion, since after digestion of gels containing HA-MA, a soft, yet stable

hydrogel remained, most probably a crosslinked network of HA-MA. This

nevertheless provides reasonable evidence that HA-MA is stably incorporated, and

in all studies with chondrocytes, HA-MA was therefore, used.

Viability and cell morphology

Cell viability was not dependent of HA-MA concentration, and was high in all

groups after 28 days (Figure 2A). The morphologies exhibited by cells in all gels

fell into one of two major categories: encapsulated cells displayed a predominantly

rounded morphology, while cells at the surface of constructs had highly spread,

fibroblastic morphologies (Figure 2B and C, Figure S3). Some encapsulated cells

showed slight deviations from rounded morphology, with some non-circular actin

structures and cell membrane extensions observed, particularly in constructs with

0% HA-MA (Figure S3).

Physical properties

On day 1, HA-MA had a relatively minor, but statistically significant impact on

the compressive modulus of cell-free and cell-laden hydrogels (Figure 3A). For

HA-MA concentrations up to 1%, compressive modulus increased with HA-MA

concentration. Constructs with 2% HA-MA were softer than those with 1% HA-

MA, which was driven by substantially greater swelling in the 2% HA-MA

hydrogels (Figure 3B). On day 1, all cell-laden hydrogels were softer than their

cell-free counterparts (Figure 3A), but the effect was not a consequence of

differential swelling. On day 1, swelling ratios of cell-free and cell-laden gels were

generally similar, with only a few small, but statistically significant differences

(Figure 3B).

After 28 days of culture, cell-free gels with 0–0.5% HA-MA were softer than on

day 1, while 1% HA-MA gels were unchanged, and 2% HA-MA increased in

stiffness (Figure 4A). The increased stiffness of gels with 2% HA-MA was

consistent with a notable reduction in the swelling ratio, whereas the swelling

ratios of other hydrogels either increased or were unchanged (Figure 3C). For

each group with HA-MA, the change in swelling ratio during culture was the same

for cell-free and cell-laden gels. For the Gel-MA only group, however, the cells

caused the swelling ratio to increase significantly more during culture than the

cell-free gels.
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The most striking effect of HA-MA was apparent for the changes in the

compressive moduli of cell -laden gels during culture. HA-MA had a strong and

concentration-dependent effect on the developed mechanical properties after 28

and 56 days culture (Figure 4A and B). The stiffness of all groups increased during

culture, but the increases were substantially greater in constructs containing HA-

MA, and generally, the change in modulus increased as HA-MA concentration

increased (Figure 4C). After 56 days culture, the compressive modulus of Gel-MA

only constructs (0% HA-MA) increased by an average of 37 kPa, whereas

constructs with 2% HA-MA increased by an average of 129 kPa during the same

period.

After 63 days culture, the dynamic and equilibrium moduli of cell-laden

constructs were measured (Figure 5A and B). Both dynamic and equilibrium

moduli tended to increase with HA-MA concentration, although for higher HA-

MA concentrations, the differences were smaller and less likely to be statistically

significant. The presence of clear differences in the equilibrium moduli confirms

that the differences in compressive and dynamic moduli are not just a result of

increased resistance to fluid flow, but also stem from increased rigidity of the

network. For hydrogel materials, the compressive modulus measured at a given

strain will always be equal to or higher than the equilibrium modulus at the same

strain. On day 63, the equilibrium modulus of gels with 1% HA-MA was 86 kPa,

significantly higher than the compressive modulus of the same gels on day 1

(41 kPa), which also confirms that a substantial component of the equilibrium

stiffness can be attributed to the cell-secreted extracellular matrix.

HA-MA also had a significant impact on the failure properties of cell-laden

constructs on day 63, but unlike the moduli measurements, was not strongly

dependent on HA-MA concentration (Figure 5C). On average, the failure stress of

gels with any concentration of HA-MA was 63 kPa, which represents a notable

increase from the failure strength of gels without HA-MA (23 kPa). Failure strains

Figure 1. Retention of HA in cell-free Gel-MA hydrogels over 14 days. HA content per wet weight,
determined using a quantitative GAG assay at a number of time points. The retention of HA-MA was not
measureable, since the HA-MA appears to become crosslinked, and does not dissolve after proteinase K or
papain digestion. Each point represents the mean of four samples, and error bars show standard deviations.

doi:10.1371/journal.pone.0113216.g001

HA Enhances Mechanical Properties of Tissue-Engineered Cartilage

PLOS ONE | DOI:10.1371/journal.pone.0113216 December 1, 2014 9 / 24



followed a similar pattern to failure strength, although not all differences were

statistically significant (Figure 5D).

Matrix production

After 4 weeks of culture, immunofluorescence was used to visualize the presence

and distribution of the major cartilage matrix components aggrecan and collagen

type II. For all hydrogel compositions, the intensity of both aggrecan and collagen

Figure 2. Viability and morphology of chondrocytes after 28 days culture in Gel-MA hydrogels with 0–
2% HA-MA. (A) Viability images from the centre of hydrogel constructs, in which living cells appear green
(stained with fluorescein diacetate) and dead cells appear red (stained with propidium iodide). (B) Confocal
microscopy showing actin filaments (green) and nucluei (blue) showing the morphology of encapsulated
chondrocytes inside the gels and at the surface of the gels (insets for 0 and 2% HA-MA). (C) CD44
immunostaining (green) and nuclei (blue) showing the cell membrane morphology of encapsulated cells. The
scalebar in (A) represents 500 mm, and scalebars in (B) and (C) represent 100 mm.

doi:10.1371/journal.pone.0113216.g002
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Figure 3. Physical properties of cell-free and cell-laden gels after 1 and 28 days culture in vitro. (A)
Compressive modulus of cell-free and cell-laden gels on day 1; (B) swelling ratio of cell-free and cell-laden
gels on day 1; and (C) change in swelling ratio between days 1 and 28 of culture. Bars and error bars

HA Enhances Mechanical Properties of Tissue-Engineered Cartilage
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type II immunofluorescence was greater towards the outer regions of the

construct than in the centre (Figure 6). HA-MA appeared to influence the

distribution of aggrecan, with more staining in the ECM as opposed to the

pericellular matrix in constructs with HA-MA. Hydrogel composition appeared to

have only minor impacts on the staining patterns of collagen type II, and the

staining patterns of collagen type II and aggrecan were quite distinct.

Collagen type 1 immunofluorescence was strong at the outermost edge of the

constructs (Figure 7), consistent with the stretched chondrocyte morphologies

observed on the surface of the gels. Collagen type I was also more strongly and

widely stained in gels without HA-MA, especially compared to those with 0.5%

and 1% HA-MA (Figure 7). Collagen type X was present throughout the cultured

constructs (Figure 7), indicating that cells may be undergoing hypertrophy and

potentially for the ECM to be partially mineralised.

GAG production

The amount of GAG accumulated in the constructs over 28 days culture was

quantified, and DNA content was quantified on days 1 and 28. In all gels, DNA

content increased by a similar amount during 28 days culture (Figure 8A). Total

GAG content was statistically similar in all groups (Figure 8B), and GAG content

normalised to dry weight was also similar in all groups (Figure 8C). When

normalised to the total GAG content to the 0% HA-MA group for each patient to

account for inter-patient variability, a modest increase is apparent in gels with

0.5% HA-MA compared to Gel-MA only gels (Figure 8D).

EPIC-mCT

EPIC-mCT was used as a tool to visualize and semi-quantify differences in GAG

content between hydrogels. In cell-free gels, the intensity of the negatively charged

contrast agent Ioxaglate varies with HA-MA (Figure 9A). For example, 0% HA-

MA gels show considerably more red coloration than 2% HA-MA gels. EPIC-mCT

can also give an indication of charge distribution, with more red coloration

generally visible in the center regions of cell-laden constructs, where matrix

synthesis was observed to be much lower (Figure 9B).

Discussion

Hyaluronic acid (HA) is one of the most commonly studied biomaterials in

cartilage tissue engineering, yet we are still discovering aspects of its significance

for cartilage biology. In healthy cartilage, aggrecan is non-covalently bound to HA

represent the means and standard deviations of data from four patients. In (C), a value of 2 represents an
increase in swelling ratio, for example from 8 on day 1 to 10 on day 28. The symbol # indicates a significant
difference between cell-free and cell-laden gels.

doi:10.1371/journal.pone.0113216.g003
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Figure 4. Compressive modulus of cell-free and cell-laden gels throughout in-vitro culture. (A) The
compressive modulus of cell-free gels on days 1 and 28; (B) compressive modulus of cell-laden gels on days
1, 28 and 56; and (C) change in modulus between day 1 and day 28 and day 1 and day 56. The compressive
modulus increased in all gels with culture time, and HA-MA had a significant impact on the rate of increase. *
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to create massive aggregates of fixed negative charge which provide compression

resistance and swelling properties, both of which are key to its mechanical

properties [22]. Many biomaterials for cartilage tissue engineering have been

produced partly or wholly from HA or HA derivatives, some of which have

progressed to clinical trials [13, 23, 24]. In addition, lightly crosslinked HA is an

effective viscosupplementation agent for diseased or damaged joints, including

those with OA [25].

In this study, a photocrosslinkable HA derivative has been shown to be a

valuable addition to gelatin-based hydrogels, and specifically, has shown that the

addition of HA-MA results in a substantial improvement in the developed

mechanical properties, as measured using a number of different parameters. This

is relevant for tissue-engineered cartilage in vivo, which must routinely withstand

considerable stresses. After 9 weeks of culture, construct dynamic and equilibrium

moduli significantly increased in a HA-MA concentration-dependent manner.

After this time in culture, the majority of the compressive modulus was due to

cell-secreted ECM. Additionally, inclusion of HA-MA increased failure strength

relative to Gel-MA constructs, but strength was independent of HA-MA

concentration over the range 0.25–2%. Although the failure strength of cell-free

gels was not measured, it is likely that the cell secreted ECM is also a major factor

in determining the failure strength of the cell-hydrogel constructs.

While it is clear that the mechanical properties of the constructs in this study

improve with time in culture, the exact mechanism for this improvement is not

clear. GAG content in articular cartilage is correlated with compressive properties

[26, 27] and GAG content is the most commonly used method to measure the

functional development of tissue-engineered cartilage. However the importance of

total GAG content for the mechanical properties of tissue-engineered cartilage is

unclear, and an important distinction was observed in this study. In contrast to

the role of GAGs in cartilage, the total GAG content had very little, if any,

correlation with mechanical properties of the tissue engineered constructs in this

study. GAG content was relatively similar for each patient and hydrogel

composition, with no significant differences in total GAG content or GAG/dry

weight. When normalised within each patient, a slight increase in GAG/dry weight

was measured for gels with 0.5% HA-MA, which is roughly in line with previous

results from a single patient [14]. Other studies have shown that in pure HA-MA

hydrogels, the correlation between mechanical properties and GAG content was

also highly non-linear [13]. This must be considered when assessing the quality of

tissue-engineered cartilage throughout the literature, where GAG content has been

measured but not mechanical properties. Along with GAGs, the collagen network

is also important for providing cartilage with mechanical strength. Total collagen

indicates a difference between days 1 and 28, and { indicates a difference between days 28 and 56. In each
panel, groups without a like Roman numeral are significantly different, and upper and lower cases should be
considered separately.

doi:10.1371/journal.pone.0113216.g004
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Figure 5. Physical properties of cell-laden gels after 63 days of culture. (A) Dynamic and (B) equilibrium moduli (B); (C) failure strength and (D) failure
strain. An example stress-strain curve for a compression-to-failure test is shown in (E). Bars and error bars represent the means and standard deviations of
data from four patients. Differences between groups are indicated using Roman numerals; groups with a common numeral are significantly similar, and
groups without a common numeral are significantly different.

doi:10.1371/journal.pone.0113216.g005
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content was not measured in this study, but it is likely that both the collagen

content and its distribution throughout the gels contribute substantially to the

mechanical properties. The hydroxyproline assay is the most common technique

to measure total collagen content, but this is not practical for gels containing such

a large amount of gelatin.

Cell viability was high after 28 days, indicating that the crosslinking process is

well tolerated and that cells receive sufficient nourishment by diffusion through

the gel. The crosslinking process has been previously shown to yield high cell

viabilities [28, 29], but no study has definitely shown that no adverse cell

outcomes occur. Meanwhile, photoinitiators that are active in the visible region of

the spectrum are being investigated to further remove the potential for UV or

radical induced cell damage [30].

Immunofluorescence analysis showed that aggrecan distribution was enhanced

in gels with HA-MA, particularly towards the outer edges, and in the 1% HA-MA

group, in which an almost continuous aggrecan staining can be observed. This

enhanced ECM distribution may be responsible for the increases in mechanical

properties when HA-MA was included. Less staining was consistently observed in

the centre of the constructs, and this is most likely a consequence of lower

nutrient concentrations due to diffusion gradients within the gels. Constructs with

2% HA-MA appeared to inhibit the diffusion of OCT into the tissue; this

adversely affected the quality of the sections from gels with 2% HA-MA, and as

such, limited emphasis should be placed on images from these gels. Cell viability,

however, was not reduced in the centre regions of all tested gels, perhaps

unsurprisingly, since chondrocytes habitually withstand hypoxic conditions in

native cartilage. Mechanical stimulation using bioreactors or perfused medium

culture systems could be used to increase mass transfer throughout these

constructs, potentially further improving mechanical properties [13]. Mechanical

stimulation may also simultaneously enhance chondrogenesis and matrix

synthesis by mimicking the natural strains that are applied to cartilage [18], and

further studies should investigate bioreactor systems to progress these materials

towards regenerative medicine applications.

Collagen type X was observed in all hydrogels in this study, which could

potentially be a consequence of prolonged TGF-b3 exposure or the presence of

reactive oxygen species during crosslinking. Other studies have indicated that

reactive oxygen species may promote hypertrophy and collagen type X production

[31, 32], thereby reducing the quality of the resulting tissue. Importantly, using

alternative chemical groups for photocrosslinking can reduce hypertrophy and

collagen type X production. Thiol groups, for example, can quench reactive

oxygen species during crosslinking, whereas acrylate-based chemistries cannot

[32]. HA can be modified with thiol groups using simple procedures [33] or

purchased, and could be used instead of HA-MA [34]. Such a study would also

provide insight into the importance of network topology on the developed

mechanical properties and cell responses [32], since a substantial proportion of

the crosslinks would be expected to occur between HA and Gel-MA macromers.

In addition, oxygen inhibition results in a several-minute delay in the onset of
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crosslinking of acrylate (and methacrylamide) systems [10, 34]. By using thiolated

HA this delay is effectively removed, which would greatly reduce the required UV

exposure [32] and make the process safer.

Biological variation, or donor-to-donor variation, presents a significant

challenge for biomedical research. Previously, it has been identified that HA-MA

can improve the stiffness of cultured Gel-MA/HA-MA constructs, but these

results were obtained using chondrocytes from a single patient [14], and thus

uncertainty remained over how applicable the findings were to cells from other

patients. In the present study, we used chondrocytes from four patients to

measure the importance of donor-to-donor variation. The similar response of

Figure 6. Aggrecan and collagen type II immunofluorescence in constructs after 28 days of culture. Aggrecan and collagen type II are shown in
green, and nuclei are shown in blue. Regions at the edge and centre of each construct are shown. The scalebar represents 100 mm and applies to all
panels.

doi:10.1371/journal.pone.0113216.g006
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each patient to these materials confirms that material composition has a

significant influence on construct maturation. It is reasonable to expect that the

differences observed here using in vitro methods would also translate to

substantial differences in an in vivo setting, but this remains to be verified.

Cell source is an important consideration for cartilage repair, and a number of

different clinically-driven routes have been explored. Therefore, this study also

provides further validation for the functionality of chondrocytes from elderly

patients and OA joints. Initially, expanded autologous chondrocytes were used for

cartilage repair [35], but since then allogeneic chondrocytes [36] and

mesenchymal stem cells [37] have been investigated. Cells from young donors are

Figure 7. Collagen type I and type X immunofluorescence in constructs after 28 days of culture. Collagen type I and type X are shown in green and
nuclei are shown in blue. Regions at the edge and centre of each construct are shown. The scalebar represents 100 mm and applies to all panels.

doi:10.1371/journal.pone.0113216.g007

HA Enhances Mechanical Properties of Tissue-Engineered Cartilage

PLOS ONE | DOI:10.1371/journal.pone.0113216 December 1, 2014 18 / 24



thought to be more biologically active and have greater potential for regeneration,

and thus cartilage from juvenile donors has been preferred for a larger group of

clinical treatments [38]. Although we have no comparative data from juvenile

patients, in this study all cells were isolated from elderly patients with OA, and the

cells from all patients were able to secrete ECM that significantly increased the

construct stiffness. This reinforces the potential for using autologous chondro-

cytes even in elderly patients in combination with biomimetic hydrogels.

The hydrogels formed in this study are crosslinked using two very similar

chemistries. The gelatin component is modified with methacrylamide groups,

while HA is modified with methacrylate groups. Both groups are crosslinked via

the reaction of unsaturated vinyl bonds however the reactivity of methacrylamide

is reduced by resonance stabilisation with the adjacent nitrogen. Theoretically,

methacrylamide can crosslink with methacrylate, and this has recently been

demonstrated using Gel-MA and methacrylate functionalised polycaprolactone

[39]. Should no preference exist, Gel-MA – HA-MA gels would be randomly

inter-crosslinked on a molecular level. However, it is possible that the

Figure 8. Biochemical analyses of cartilage constructs. (A) DNA content of constructs on days 1 and 28. (B) Total GAG content in each hydrogel
construct after 28 days of culture; (C) GAG content normalised to dry weight, and (D) GAG content normalised to the GAG content for 0% HA-MA hydrogels
for each patient (D). Bars and error bars represent the means and standard deviations of four patients. Groups without a like Roman numeral are
significantly different, and those with a like numeral are statistically similar. In (A), * indicates a significant difference in the DNA content in a hydrogel group
between days 1 and 28.

doi:10.1371/journal.pone.0113216.g008
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methacrylate groups preferentially crosslink with other methacrylate groups, or

that due to their higher reactivity, methacrylate groups are favoured, particularly

during the early stages of crosslinking. In this case, the network would resemble a

double-network hydrogel, in which the first network is formed by crosslinked

HA-MA, and the second network is crosslinked Gel-MA.

The degradation characteristics lend some weight to the hypothesis that two

distinct networks may exist. For example, if the gelatin component of a gel with a

composition of 9.5% Gel-MA, 0.5% HA-MA is removed by papain or proteinase

K digestion, an intact, stable network of crosslinked HA-MA remains. The

existence of a stable HA-MA network, even when HA-MA accounts for only one

twentieth of the total dry mass indicates that the HA-MA network exists

independently of the Gel-MA network. Of course this is also facilitated by the high

molecular weight of the HA used here, increasing the likelihood and occurrence of

HA chains overlapping.

The extent of mixing between Gel-MA and HA-MA is temperature dependent.

Mixtures of these polymers have a degree of turbidity, which increases as

temperature is reduced, probably as a result of the thermal gelation response of

Gel-MA (Figure S1). This suggests that the network structure of crosslinked Gel-

MA – HA-MA hydrogels may be temperature dependent, and possibilities may

exist to further improve mechanical property development by adjusting the

crosslinking temperature.

An important question also remains about the functionality of HA-MA

compared to HA, and the mechanism by which HA-MA improves the mechanical

properties. In cartilage, for instance, the non-covalent interaction between

aggrecan and HA is stabilised by link protein [40], and HA turnover is mediated

by enzymatic degradation by hyaluronidase and replacement with high molecular

weight HA [41]. Preliminary data from our research (not shown) indicates that

Figure 9. EPIC-mCT scans of cell-free (A) and cell-laden (B) constructs after 28 days culture. The scans
show intensity of the negatively charged contrast agent Ioxaglate, and attenuation range in each panel is from
5,000 (blue) to 22,000 (red). The 2 mm scalebar applies to all panels.

doi:10.1371/journal.pone.0113216.g009
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HA-MA is much less readily degraded by hyaluronidase than HA, and that link

protein does not strongly bind to or recognise HA-MA. The reduced susceptibility

of HA-MA to hyaluronidase has been noted in other studies, and appears, as one

might expect, to depend on the degree of functionalisation [42]. Thus if HA-MA

has altered functionality to HA, the mechanisms by which HA-MA improves the

matrix organisation and function when added to Gel-MA gels requires further

research.

There is a strong need for improved materials for cartilage tissue engineering,

and biomimetic materials are a promising strategy to deliver these improvements.

Currently, fibrin glue is one of the most commonly used gels to deliver cells to

cartilage defects [43]. This usage is based on the familiarity of fibrin glue to

orthopaedic surgeons and existing regulatory approval, rather than solid evidence

demonstrating the suitability of fibrin glue for cartilage repair. Individually, Gel-

MA and HA-MA are both interesting materials for tissue engineering [2, 15, 44],

and here and elsewhere, mixtures of these two materials have been identified as

having particularly intriguing properties [10, 14, 45]. The crosslinked hydrogels

appear to be quite stable in PBS, with cell-free gels of all compositions

maintaining their shape and structure for at least six months at room temperature

(data not shown). The gels are susceptible to enzymatic degradation, which can be

manipulated by varying the relative amount of HA-MA [45] or incorporating

polymers that are not susceptible to enzymatic degradation, such as PEG [46].

Further research should consider the mechanisms by which HA-MA exerts an

impact on developed mechanical properties, possibilities to enhance diffusion

throughout the gel, and direct comparisons between these gels and existing

clinically used materials in large preclinical animal models.

Conclusion

In summary, combinations of Gel-MA and HA-MA are promising candidates for

cartilage tissue engineering. Encapsulated chondrocytes display a predominantly

rounded morphology, and secrete extracellular matrix that increases the

compressive modulus by up to three-fold over 8 weeks culture. Importantly,

different patients respond similarly to HA-MA, and cells from all patients were

capable of substantially increasing the stiffness of Gel-MA – HA-MA hydrogels.

Supporting Information

Figure S1. Photographs of gel precursor solutions at 37 C̊ and 4 C̊. Mixing of

Gel-MA and HA-MA is temperature dependent, with HA-MA causing much

greater opacity when the mixtures are cool.

doi:10.1371/journal.pone.0113216.s001 (TIF)

Figure S2. Proton nuclear magnetic resonance spectra of gelatin, hyaluronic

acid, and their photocrosslinkable derivatives. The appearance of two peaks in
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the region 5.5–6.5 ppm demonstrates the addition of unsaturated, photocros-

slinkable groups.

doi:10.1371/journal.pone.0113216.s002 (TIF)

Figure S3. High magnification confocal micrographs of actin structures from a

0% HA-MA construct cultured for 28 days. Images were taken from the surface

of the gel (A and C) or the centre (B). Scalebars represent 100 mm (A), 50 mm (B)

or 10 mm (C).

doi:10.1371/journal.pone.0113216.s003 (TIF)

Dataset S1. Raw data from hydrogel constructs. Data on wet weight, dry weight,

compressive modulus, DNA content, and GAG content are provided in a

spreadsheet for all analysed hydrogel constructs. Additionally, raw data from

mechanical compression tests (time, displacement, and load) are provided.

doi:10.1371/journal.pone.0113216.s004 (ZIP)
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