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1 ABSTRACT 

Intermittent microwave convective drying (IMCD) is an advanced technology that 

improves both energy efficiency and food quality in drying. Modelling of IMCD is essential 

to understand the physics of this advanced drying process and to optimize the microwave 

power level and intermittency during drying. However, there is still a lack of modelling 

studies dedicated to IMCD. In this study, a mathematical model for IMCD was developed 

and validated with experimental data. The model showed that the interior temperature of the 

material was higher than the surface in IMCD, and that the temperatures fluctuated and 

redistributed due to the intermittency of the microwave power. This redistribution of 

temperature could significantly contribute to the improvement of product quality during 

IMCD.  Limitations when using Lambert’s Law for microwave heat generation were 

identified and discussed.  

2 INTRODUCTION 

Currently, 1.3 billion tonnes of foodstuffs are lost annually due to a lack of proper 

processing and preservation[1]. Drying is a method of removing moisture for the purpose of 

preserving food from microbial spoilage. Conventional convective drying is a very lengthy 

and energy intensive process[2]. Higher drying temperatures reduce the drying times, however 

under such conditions food quality and nutritional value is reduced and more energy is 

wasted as exhaust. To overcome these latter problems, convective drying can be combined 

with microwave drying. Microwaves interact with water molecules inside the food and heat 

up samples volumetrically, thus increasing the moisture diffusion rate and significantly 
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reducing the drying time and improving energy efficiency[3]. Microwaves are often combined 

with other drying processes, for example, vacuum-microwave dried sour cherries were 

superior to convective drying and competitive with freeze drying[4]. There was a problem, 

however, with the continuous application of microwaves in the drying process, as high 

product temperatures and uneven heating resulted[3]. As noted above, high drying 

temperatures can cause quality degradation in heat sensitive materials, such as fruits and 

vegetables[5, 6]. This problem can potentially be overcome by applying microwave power 

intermittently. Research has shown that intermittent microwave convective drying increases 

both energy efficiency and product quality[3, 7].  

Microwave related heating processes have many advantages compared to conventional 

methods[8]. The main advantages of intermittent microwave assisted drying are: (1) 

Volumetric Heating: Microwave energy interacts with water molecules within the food 

leading to volumetric heating and increased moisture diffusion[8], thus significantly reduce 

drying times[9]; (2) Quality Improvement: The quality of the dried product can be improved 

by combining intermittent microwave heating with other drying technologies[10]; (3) 

Controlled Heating: The fidelity of heating can be controlled using microwave energy as it 

can be applied in a pulsed manner[11].  

 Soysal et al.[12] experimentally investigated intermittent microwave-convective drying 

(IMCD), and the results were compared with continuous microwave-convective drying 

(CMCD), and traditional convective drying for oregano. They observed that IMCD was 4.7–

11.2 times more energy efficient when compared to convective drying. Furthermore, the 

drying time of the convective drying process was about 4.7–17.3 times longer when 

compared with the IMCD drying. Zhao et al.[13]  found that intermitted microwave assisted 

hot air drying was a promising method for industrial application because of lower energy 

consumption and improved quality of the dried food. Ahrné et al.[14] compared CMCD and 

IMCD for bananas, as these were a heat sensitive food product. They reported that drying 

using variable microwave power was a more suitable process. They also reported that IMCD 

produced better outcomes in that it reduced the charring of the product. Esturk[15] studied 

IMCD of sage leaves and compared the result with convective air-drying and CMCD. 

Although CMCD provided the fastest drying rate, it yielded the lowest quality (in terms of oil 

content). Esturk[15] also noted that in IMCD, the intermittency and the microwave power level 

significantly impacted the energy consumption and the quality of dried product[15]. Therefore, 



the microwave power level and pulse ratio should be carefully chosen to achieve the best 

outcomes. 

Mathematical modelling can help us to understand the heat and mass transfer involved 

in IMCD and thereby be used to determine the optimum pulse ratio and power levels for 

drying[3]. The previously mentioned work related to IMCD has been limited to experimental 

analysis. To date, relatively few studies have presented theoretical models of the IMCD of 

food.  

Recently, Bhattacharya et al.[16] and Esturk[15] developed a purely empirical model for 

CMCD (not IMCD) of oyster mushroom (pleurotus ostreatus) and sage, respectively. 

However, these empirical models did not provide physical insight into the process and were 

only applicable to a specific experimental range[17-19]. Some diffusion-based single phase 

models exist for CMCD[20, 21], however, none of them considered intermittency of the 

microwave energy applied. For this reason, they cannot be applied to IMCD, and are not 

capable of investigating the temperature redistribution which occurs due to the intermittency 

of the microwave. However, there are some simulation models that considered intermittency 

of microwave power[11, 22-25]; but the mass transfer was neglected in those models. In other 

words, these are only heating models, not drying models.  

Some models of intermittent heating have used constant dielectric properties[26]. 

However, dielectric properties vary with moisture content, in particular, for fruits and 

vegetables because they contain a large amount of moisture. Moisture content has a 

significant effect on dielectric properties of fruits and vegetables[27]. Therefore, constant 

dielectric properties cannot be considered in the case of drying of fruits and vegetables.  

Taken together, it can be concluded that, although extensive research has been carried 

out on microwave convective heating, there are very limited studies dealing with modelling 

the IMCD of food, that considers the entire drying period, as well as variable material 

properties. Furthermore, the temperature redistribution due to the intermittency of the 

microwaves, which is crucial in IMCD for quality improvement, has not been properly 

investigated.  

In the current study, we present a model of IMCD of food that accounts for the 

intermittency of the microwave power, and variable thermo-physical and dielectric properties 

of the material. COMSOL Multiphysics 4.4, a finite element based engineering simulation 



software, was used to model coupled heat and mass transfer model equations. The outcomes 

of the model are presented and discussed, and validated with experimental data.   

3 MATHEMATICAL MODELLING 

We considered a 2D axisymmetric geometry of a cylindrical slice of apple as presented 

in Figure 1. The following assumptions were applied when developing the mathematical 

model: 

 A homogeneous domain having a single temperature was considered; 

 The initial temperature and moisture distribution within the slice were uniform; 

 The thermo-physical and dielectric properties varied with moisture content of the 

sample; 

 Only single-phase water was present in the domain. This characterized the 

moisture concentration of the apple. Furthermore, moisture was transported by 

diffusion towards the surface.  

 It was assumed that the volume of the sample did not change.  

 

Figure 1. 3D apple slice and 2D axisymmetric domain showing symmetry boundary and transfer boundary 

(arrow) 

Governing equations 

Heat transfer: 

The energy balance was characterized by a Fourier flux with a heat generation term due 

to microwave heating, micQ (W/m3).   

 tfQTk
t

T
c micp 




).(  (1) 

 



where, T is the temperature (0K),  is the density of sample (kg/m3), pc is the specific heat 

(J/kg/K), and k is the thermal conductivity (W/m/K). The heat generation, micQ (W/m3), was 

calculated using Lambert’s Law[20, 21, 28, 29] and f(t) is the intermittency function as discussed 

in the later section.  

Mass transfer: 

We assume that the mass flux of moisture was due to Fickian diffusion; therefore,  
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where, c is the moisture concentration (mol/m3), effD is the effective diffusion coefficient 

(m2/s) discussed further in the input parameters section.  

Initial and boundary conditions 

 The initial conditions for heat and mass transfer were given by, 
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respectively. Here 0c is the initial moisture concentration of the apple (mol/m3).    

The boundary conditions for the heat and mass transfer equations at the transport 

boundaries (as shown in Figure 1) were given by,  
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respectively. Here, Th is the heat transfer coefficient (W/m2/K) and airT  is the drying air 

temperature (0C), airvp , vapour pressure of ambient air (Pa), eqvp , is the equilibrium vapour 

pressure (Pa), fgh  is the latent heat of evaporation (J/kg) , R is the universal gas constant 

(J/mol/K), and mh  is the mass transfer coefficient (m/s). 



The boundary conditions for heat and mass transfer of the symmetry boundary (as 

shown in Figure 1) were given by  
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and  
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Modelling of microwave power absorption using Lambert’s Law 

Budd & Hill[30] compared power absorption modelled by Lambert’s Law and 

Maxwell’s equation, and showed that for thicker material the power absorption according to 

both approaches was similar.   

Many researchers have used Lambert’s Law for microwave energy distribution in food 

products during drying[20, 21, 28, 29, 31]. Therefore, in this study, Lambert’s Law has been used to 

calculate microwave energy absorption inside the food samples. It considered exponential 

attenuation of microwave absorption within the product, as expressed by the following 

equation:  

 h-zα-

mic=PP 2

0 exp . 
(9) 

 

Here, 𝑃0 is the incident power at the surface (W), α is the attenuation constant (1/m), 

and h is the thickness of the sample (m) and (h-z) represents the distance from surface (m). 

The measurement of 0P via experiments is presented in the following section4. 

The attenuation constant, α is given by  
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where   is the wavelength of the microwave in free space ( cm24.12 at 2450MHz and air 

temperature 200C) and ε' and ε" are the dielectric constant and dielectric loss, respectively.  



The dielectric constant and dielectric loss of the material are the most important 

parameters in microwave heating and drying applications, because these properties define 

how materials interact with electromagnetic energy[32]. The evaluation of dielectric properties 

is critical in modelling and product and process development[33].  Dielectric properties of 

materials define how much microwave energy will be converted to heat[34].  

Here we use the data of Martín-Esparza et al.[35] in a quadratic regression analysis in 

which the intercept of the '  and    versus wbM  graph was set to 0.1 in order to avoid 

numerical singularity in '  and    when wbM  is zero. The resulting quadratic expressions 

were found to be:  
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 The volumetric heat generation, micQ  (W/m3) in Equation 1 was then calculated by: 

V

P
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where, V is the volume of Apple sample (m3). 

Input parameters 

The input parameters of the model are listed in Table 1 and some of these values are 

further discussed later in this section. 

Table 1. Input properties of the model 

Parameters Value[Unit] Reference 

Initial moisture content (db), 0M  6.14[kg/kg] This work 

Initial temperature, iT  20[°C] This work 

Molecular weight of water, wM  18[g/mol] [36] 

Latent heat of evaporation, fgh  2358600[J/kg] [36] 

Drying air temperature, airT  60°C This work 



Parameters Value[Unit] Reference 

Vapour pressure of ambient air, 
airvp  2.7[kPa] Calculated 

Diameter of the sample  40[mm] This work 

Thickness of the sample 10[mm] This work 

Reference diffusivity, refD  3.24e-9 [m2/s]  Calculated  

Heat transfer coefficient, Th  
16.746 [W/(m2·K)] [37] 

Mass transfer coefficient, mh  0.067904 [m/s] [37] 

Microwave incident power absorption  

The incident power at the surface, 0P , can be determined by calculating the heat 

absorbed by distilled water of same volume, with the sample placed in the microwave oven[21, 

38, 39].This is one of the most difficult aspects of microwave heating[40]. Arballo et al.[20] 

determined 0P  via the application of the formula,  
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where, wm is the mass of water (kg), pwC  is the specific heat of water (J/kg/K), T is the 

temperature rise of water (0C) and T  is the heating time (s).  

A major drawback of equation (14) was that it did not account for the evaporation heat 

loss. The evaporation of water is not negligible at higher microwave power. This evaporative 

heat loss was also taken into account in some studies[29]. Then the absorbed power 

considering evaporative heat loss can be calculated by  
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Here, wm is the evaporated mass (kg) of water and fgh is the latent heat of evaporation 

(J/kg).  

Auxiliary Equations 

The moisture content (wb), wbM , can be calculated from the water concentration by the 

formula: 
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Here wM  is the molecular weight of water (kg/mol). 

The relationship between dry basis moisture content, dbM , and wet basis moisture 

content, wbM , was given by: 
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Equilibrium vapour pressure 

The vapour pressure of the food was assumed to be always in equilibrium with the 

vapour pressure given by an appropriate sorption isotherm. For Apple, the correlation of 

equilibrium vapour pressure with moisture and temperature is given by[41], 
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 Here, dbM  is the moisture content dry basis and satvP ,  is the saturated vapour pressure 

given by[42],  
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Effective diffusivity  

For effective diffusivity, effD , we adopted an expression that was developed in the 

previous work[37] that was a function of both temperature and moisture, namely,   
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Here refD is reference diffusivity (m2/s), aE is activation energy of diffusion of water 

(J/mol), b is the half thickness of the material (m), b0 is the initial thickness (m), and D0 is an 

integration constant and is usually referred to as a frequency factor when discussing 

Arrhenius equation  (m2/sec). The activation energy was calculated from the slope of a 

 
refDln  versus (1/T) graph resulting in the values D0 =0.09 and  aE  = 50 kJ/mol.  



The thickness ratio obtained by the following equation: 
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where w is the density of water (kg/m3),  is density of sample (kg/m3), wbM  is moisture 

content wet basis and 0M is initial moisture content kg/kg (wb).  

Thermo-physical properties of apple 

Thermal conductivity and specific heat of apple can be expressed as a functions of 

moisture content[43],  

wbMk 00493.0148.0   (22) 

 

and  wbp Mc 22.34.11000  , (23) 

 

respectively. 

Moreover, the density of Apple, 𝜌, during drying changes with moisture content, wbM . 

In this study, we measured the density change with moisture content of apple by a solid 

displacement method[44, 45] using a cylindrical vial and 57 µm glass beads. The relationship 

between 𝜌 and wbM  was determined to be,  

94.41501.569  wbM . (24) 

 

Heat and mass transfer coefficient 

The heat and mass transfer coefficients were calculated based on the empirical 

relationship discussed in a previous paper[37] and found to be Th =16.746 W/(m2·K) and mh

=0.067904 m/s, respectively. 

4 MATERIALS AND METHODS 

Sample preparation 

Fresh Granny Smith apples used for the intermittent microwave drying experiments 

were obtained from local supermarkets. The samples were stored at 5±10C to keep them as 

fresh as possible before they were used in the experiments. The apples taken from the storage 

unit were washed and put aside for one hour to allow their temperature to elevate to room 



temperature prior to each drying experiment. The samples were cut to a thickness of 10mm 

and a diameter of approximately 40mm. The initial moisture content of the apple slices was 

approximately 0.868 kg/kg (wet basis).  

IMCD and convection drying 

The IMCD drying was achieved by heating the sample in a microwave for 60s and then 

drying for 120s in the convection dryer. The experiments were conducted with a Panasonic 

Microwave Oven having inverter technology with cavity dimension 355mm (W) x251mm 

(H) x365mm (D). The inverter technology enabled accurate and continuous power supply at 

lower power settings. Whereas, with conventional microwave oven supply, lower power was 

achieved by turning the microwave on and off while running at maximum rated power of the 

oven[46]. The microwave oven supplied 10 accurate power levels with a maximum of 1100W 

at 2.45GHz frequency. The apple slices were placed in the centre of the microwave cavity, to 

facilitate an even absorption of microwave energy. The moisture loss was recorded at regular 

intervals at the end of power-off times by placing the apple slices on a digital balance 

(specification: 0.001g accuracy). 

Convection drying was conducted to compare the results with IMCD. For convection 

drying, the same samples were placed in a convection dryer where the temperature was set to 

600C. The moisture loss was recorded at regular intervals of 10 mins with the digital balance 

(specification: 0.001g accuracy). All experiments were repeated three times for repeatability 

and comparison, and the standard deviation was calculated. 

Thermal imaging 

A Flir i7 thermal imaging camera was used to measure the temperature distribution on 

the sample surface. Accurate measurement of temperature by thermal imaging cameras 

depends on the emissivity values. The emissivity value for apple was found in the range 

between 0.94 and 0.97[47] and 0.95 was set in the camera before taking images.  

Determination of incident power (P0) for Lambert’s Law  

The Panasonic Inverter microwave oven was used in the experiments to determine the 

power absorption. The tests were conducted at three power levels, namely; 100W, 200W and 

300W with a water sample. The volume of water sample was taken as the same volume of 

apple to obtain accurate power absorption. Water was heated for 60s and thermal images 

were taken by the thermal imaging camera (Flir i7) before and after heating. The water was 



properly agitated to measure the average rise of temperature. The absorbed power, 0P , was 

calculated by equation (15) for various load volume and applied microwave power. 

5 SIMULATION PROCEDURE 

COMSOL Multiphysics, an advanced software for modelling and simulation, was used 

to implement the numerical solution of the model introduced in Section 3. 

Combinations of a rectangular function and an analytic function in COMSOL 

Multiphysics were used to develop an intermittency function as shown in Figure 2. The 

mathematical expression for the intermittency function is given below:  
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where n=0, 180, 360, 540,720………………3960, 4140, 4320. 

Then the function was multiplied with the heat generation term in the energy equations 

to implement intermittency of the microwave heat source.  

 

Figure 2. Intermittency function  

  

Figure 3 below shows the flow chart of the simulation procedure. It shows that the 

moisture dependent material properties, microwave source term, and input properties were 

updated at the beginning of each iteration. 



 

Figure 3. Flow chart showing the modelling strategy in COMSOL Multiphysics 

6 RESULTS AND DISCUSSIONS 

Incident power absorption by experiments  

The incident power absorbed by the sample (P0) was calculated for three different 

power levels for various loads. Absorbed power was calculated by using equation (15) and 

then converted to power absorption ratio defined as the ratio of absorbed power by sample 

(P0) and microwave set power (Pset). Table 2 shows the power absorption ratio obtained for 

three different microwave set power values, namely, 100W, 200W and 300W.  

Table 2. Power absorption ratio for microwave power (100W, 200W and 300W) for different sample volume 

Sample 

volume (cc) 

Power absorption ratio (%), P0/Pset Standard 

deviation 100W 200W 300W Average 

15 25 25.3 26 25.43 0.51 

35 38 43 41 40.67 2.52 

55 59 66 59 61.33 4.04 

It was interesting to note that the power absorption ratios were the same for a certain 

volume of sample irrespective of the microwave power. Therefore, the average power 

absorption ratios in percentage were plotted against the sample volume in Figure 4 with the 

error bar showing standard deviations. Figure 4 can be used to find absorbed microwave 

power (P0) when the sample volume and microwave set power (Pset) is known.  



 

Figure 4. Microwave power absorption for different loading volume 

The above results correlated well with those of Mudgett[48] who also investigated the 

power absorption ratio and found a similar trend.  

Average moisture curve 

The comparison of moisture content obtained from experiments and simulation is 

shown in Figure 5. A Pearson correlation coefficients, R2, was used to determine the 

goodness of fit of the model. We observed that a high correlation was obtained between the 

model and experimental values with R2=0.997623. This good agreement between 

experimental data and model calculations supported the suitability of the model to describe 

the drying kinetics and moisture content obtained during the IMCD drying process.  

The drying curves for both processes were also plotted in Figure 5 to demonstrate the 

advantage of IMCD drying over convection drying. It was found that, after 75 minutes of 

drying, convection drying reduced the moisture content to 3 kg/kg db, whereas by using 

IMCD reduced the moisture content to 0.4 kg/kg db.  Thus, IMCD significantly reduced the 

drying time. To reduce the moisture content to 0.4 kg/kg db by convection drying took 

around 300min, which was four times longer than the IMCD with intermittency 60s on and 

120s off. 



 

Figure 5. Drying curve for IMCD (experiments and model) and convective drying 

Temperature 

Figure 6 shows the temperature at the centre of the top surface predicted from our 

model whilst Figure 7 shows the temperature distribution of the surface obtained 

experimentally from thermal imaging. The thermal images were taken immediately after 

microwave heating for 60s and after tempering for 120s in the convection dryer. Thus, this 

measurement allowed the investigation of temperature rise during microwave heating and 

drops during tempering in the process of IMCD.  



 

Figure 6. Temperature curve obtained from the model 

The temperature profile from the model showed that the temperature rose after each 

heating cycle. The temperature then fell (at the centre of the surface) during the 120s 

convection drying phase (when the microwave was turned off). Similar fluctuating 

temperature profiles were obtained under oscillating infrared irradiation[49].  

 



.  

Figure 7. Thermal images of top surface at selected times  

The thermal images also showed a similar pattern. To illustrate this more clearly, the 

centre temperatures measured on the surface and the analogous model prediction for the 

selected time are presented in Table 3. 

 Table 3: Centre temperature of apple surface from experiment and model  

Time (mins) 16 18 19 21 73 75 

Microwave On Off On On Off On 

Experimental temperature 70 50 70.6 45.5 114 57.3 

Model temperature 70.5 57 76.5 61 114.5 95.4 



We observed that there was a reasonable correlation between the observed and 

predicted temperatures. Certainly the periodic pattern of heating and cooling was captured by 

the model.  There were, however, some discrepancies observed in Table 3. Generally, the 

model seemed to predict higher temperatures than those observed. We believe that this was 

due to the fact that the thermal images were taken after removing the sample from the 

microwave oven and placing them in an ambient environment (~200C) for a short time.  

It can be seen from the above figures (Figure 6 and Figure 7) that the temperature 

reached as high as 114°C at the end of the drying process. This was because the temperature 

continued to rise after each cycle while it fluctuated. We note that a similar rise in 

temperature with cycled microwave heating was found by Rakesh et al.[50] and Yang et al.[26]. 

In light of these findings, it can be said that the temperature of the sample should be 

controlled, particularly, at the later stages of drying. Since the higher temperature may reduce 

the food quality or even burn the product, the microwave power should be reduced or the 

tempering period increased to avoid burning at the final stage of drying.  

Although the above results were taken at a single point in the sample, it is reasonable to 

assume that heat energy was being dissipated during tempering via conduction as opposed to 

purely convective cooling. This redistribution of temperature could significantly contribute in 

the improvement of product quality during IMCD by selecting an optimum tempering time.  

Moisture and temperature distribution 

Moisture distribution inside the sample is shown in Figure 8. We observed that the 

moisture content of the surface reduced to nearly zero after about 20mins of drying, whereas 

at that time the moisture content at the centre was still at its maximum.   



 

Figure 8. Moisture distribution inside the sample 

Another observation to note from the figure was that the moisture content was always 

higher in the inner part of the sample and decreased as drying progressed.  These results were 

consistent with the idea that the surface of the sample dried first and then the moisture from 

the centre was removed.   

Figure 9  shows the simulated temperature profile at the surface, centre and 8mm 

beneath the surface. It showed that the temperature was always higher in the interior of the 

apple than the surface, despite the fact that microwave power absorption was higher at the 

surface, according to Lambert’s Law. This was due to the internal heating characteristics of 

the microwave. Although the heating was higher near the surface, the convection and 

evaporative cooling reduced the temperature of the surface. A similar pattern (higher centre 

temperature) has been observed during microwave heating[50, 51]. The temperature difference 

between surface and centre increased as drying progressed. This was because the thermal 

conductivity was considered to be a function of moisture content, and it decreased with 

moisture content.  



 

Figure 9. Temperature distribution inside the sample 

 

Equilibrium vapour pressure 

Equilibrium vapour pressure, eqvP , , is an important parameter for surface evaporation 

and thus moisture loss. The equilibrium vapour pressure at the surface was determined from 

Equation (18)  and plotted in Figure 10. We observed that eqvP ,  initially increased rapidly 

because of increase in temperature and the higher moisture content. However, when the 

material became drier, near the end of the drying period, the equilibrium vapour pressure 

decreased. This behaviour indicated that initially the moisture loss was higher and that the 

drying rate started to decrease when the equilibrium vapour pressure decreased at about 15 

mins. From the moisture distribution curve (Figure 8), it could be seen that the surface 

moisture content became close to zero after 15 mins of drying time, and after that time the 

vapour pressure did not rise. However, due to diffusion the vapour pressure was still higher 

than the ambient vapour pressure, airvP , , and evaporation occurred. 



 

Figure 10. Evolutions of equilibrium vapour pressure at the surface of the sample 

 

 

Absorbed power distribution 

Absorbed power along the depth of the sample at the end of drying is shown in Figure 

11. According to Lambert’s Law, the power absorbed was maximum at the surface and 

decreased exponentially inside the sample. Therefore, Figure 11 showed that the absorbed 

power at the top surface was the highest (25W) which was calculated in Table 2. The power 

decreased with depth of the sample to a minimum of 10W at the bottom of the surface.  A 

similar trend of theoretical power absorption was found by Budd et al.[30] and they also 

showed that the power absorption was higher at the surface and decayed exponentially with 

depth in the sample. Although microwave power absorption was higher near the surface, the 

convection and evaporative cooling led to a reduction of the temperature of the surface.  

However, the assumption of Lambert’s Law suggested that the power absorption was 

always highest at the surface, irrespective of the moisture content of the sample. It is well 

known that moisture or dipolar materials are mainly responsible for microwave absorption 

[52]. Therefore, when the surface became dry, the microwave absorption should be less. 

Lambert’s Law fails to take this into account, giving always highest power at the surface, 



irrespective of moisture content. This could be one possible error in the temperature 

prediction from the model.   

 

Figure 11. Absorption of microwave power along the length of the sample at 75mins 

7 CONCLUSIONS 

In this study, a novel model of IMCD has been developed and compared with 

experimental data collected from a sample of apple. The predicted moisture content showed 

good agreement with experimental data. The IMCD (with microwave 60s on and 120s off) 

was four times faster as compared to convection drying. The intermittency of microwaves in 

IMCD allowed the temperature to re-distribute and drop. Thus, IMCD helped to limit the 

temperature and improved product quality. Unlike convection drying, the temperature at the 

centre of the sample was higher in IMCD, which was due to the volumetric heating capability 

of microwave. The moisture distribution from the model showed that the moisture content 

was always higher in the inner part of the sample and decreased as drying progressed. The 

primary limitation of using Lambert’s Law in modelling of microwave heat generation in 

IMCD was that the sample surface always absorbed higher microwave power irrespective of 

its moisture content. This could be one possible source of error in the over-prediction of 

temperature.  Consideration of a multiphase porous media model for transport and Maxwell’s 

equations for microwave heat generation may improve the accuracy of the model. 
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