
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Liu, Shi Qiang & Kozan, Erhan
(2016)
New graph-based algorithms to efficiently solve large scale open pit mining
optimisation problems.
Expert Systems With Applications, 43, pp. 59-65.

This file was downloaded from: https://eprints.qut.edu.au/87292/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1016/j.eswa.2015.08.044

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33502437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprints.qut.edu.au/view/person/Liu,_Shi_Qiang.html
https://eprints.qut.edu.au/view/person/Kozan,_Erhan.html
https://eprints.qut.edu.au/87292/
https://doi.org/10.1016/j.eswa.2015.08.044

1

New graph-based algorithms to efficiently solve

large scale open pit mining optimisation problems

Shi Qiang Liu and Erhan Kozan

Decision Science Discipline, Mathematical Sciences School

Queensland University of Technology

2 George St GPO Box 2434, Brisbane Qld 4001 Australia

Abstract:

In the mining optimisation literature, most researchers focused on two strategic-level and

tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit

limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the

substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000

thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for

use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances

without relying on exact MIP optimiser as well as the complicated MIP

relaxation/decomposition methods. To take this challenge, two new graph-based algorithms

based on network flow graph and conjunctive graph theory are developed by taking

advantage of problem properties. The performance of our proposed algorithms is validated

by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in

2013. In comparison to best known results from MineLib, it is shown that the proposed

algorithms outperform other CPIT solution approaches existing in the literature. The

proposed graph-based algorithms leads to a more competent mine scheduling optimisation

expert system because the third-party MIP optimiser is no longer indispensable and random

neighbourhood search is not necessary.

Keywords: Mine optimisation algorithms; planning and scheduling; mine block sequencing;

ultimate pit limit; constrained pit limit; network flow graph.

 Corresponding author. Tel: +61 7 3138 1029; Fax: +61 7 3138 2310.

Email: e.kozan@qut.edu.au; sq.liu@qut.edu.au

2

1. Introduction

Modern mining is a complicated procedure that may sustain over several decades and

necessitate huge investment in billions of dollars. To prepare for a feasibility study report at

the exploration phase, a tentative strategic mine production plan/schedule should be

optimised, that is: which part of orebody should be selected; and in which time period (when)

the subset of blocks in this part should be extracted. The first of these questions is answered

by the Ultimate Pit Limit (UPIT) problem in the mining literature. As pioneers, Lerchs and

Grossmann (1965) presented to the mining community a dynamic programming method

known as the Lerchs-Grossmann approach for UPIT. Caccetta and Giannini (1988) proposed

several mathematical theorems to improve the Lerchs-Grossmann approach. Underwood and

Tolwinski (1998) developed a dual simplex approach to solve the UPIT model. Hochbaum

and Chen (2000) presented a push-relabel algorithm for UPIT based on the network flow

graph theory. Nowadays, the UPIT problem has been well defined and computationally

tractable to be solved even for the very large UPIT instances in today’s computer technology.

After the determination of the ultimate pit contour, the next widely-studied mine optimisation

problem type is to answer the second question: when the blocks should be extracted over time

periods so that the total net present value is maximised. In the mining community, this

problem type is called mine production scheduling Caccetta and Hill, 2003; Boland et al,

2009; Bley et al., 2010; Chicoisne et al., 2012), or open-pit block sequencing (Cullenbine,

Wood and Newman 2011; Lambert et al., 2014), or constrained pit limit (Espinoza et al.,

2013; MineLib, 2013). For convenience, we use the term Constrained Pit Limit (CPIT) to

call this problem type in this paper. The following leading papers contribute to CPIT solution

approaches in the mining optimisation literature. As a pioneer, Caccetta and Hill (2003)

proposed a branch-and-cut algorithm embedded LP relaxation and MIP optimiser to solve

CPIT. However, due to software commercialisation and confidentiality agreements, they

only summarise some important features and the full details of all aspects of their proposed

branch-and-cut algorithm are not provided in this paper. Ramazan (2007) proposed a

“Fundamental Tree Algorithm” to aggregate the blocks for reducing the number of variables

and constraints in the MIP model. Boland et al. (2009) developed a LP-based relaxation

approach to solve large-size CPIT instances. Bley et al. (2010) improved the CPIT

formulation by adding inequalities derived by generating the union predecessor set to replace

3

the immediate predecessor set. Bienstock, D., & Zuckerberg (2010) developed linear

programming (LP) relaxation approaches to solve CPIT efficiently. Cullenbine, Wood and

Newman (2011) developed a sliding-time-window algorithm in which the relaxed CPIT

formulation models are iteratively solved by MIP optimiser over divided time windows.

Chicoisne et al. (2012) proposed a decomposition method to solve the relaxed CPIT

formulation model period by period, in which there is a single capacity constraint per period.

Then, the feasible solutions of more general CPIT formulation model with multiple capacity

constraints are obtained by adding a rounding algorithm based on a topological sorting

algorithm. Espinoza et al. (2013) presented a library (i.e., benchmark data and results of

varied-size instances) of open-pit mining optimisation problems such as UPIT and CPIT to

the mining community. Lambert and Newman (2014) employed a tailored Lagrangian

relaxation to efficiently solve the CPIT formulation model. Lambert et al. (2014) concluded

a tutorial of several CPIT mathematical formulation models developed in the literature.

The complexity of large scale CPIT problem and its variants led to development of numerous

heuristic/metaheuristic algorithms. Kumral and Dowd (2005) developed a simulated

annealing metaheuristic combined with Lagrangian relaxation. Ferland et al. (2007)

developed a particle swam optimisation metaheuristic for solving CPIT. Myburgh and Deb

(2010) reported an application of evolutionary algorithm to solve CPIT, in which an initial

feasible sequence of blocks represented as a chromosome is iteratively improved by genetic

operators such as crossover and mutation. Souza et al. (2010) developed a hybrid heuristic

approach for a CPIT-type problem with the consideration of operational constraints such as

truck allocations. Martinez and Newman (2011) developed a heuristic decomposition scheme

to efficiently obtain satisfactory CPIT solutions in a real-world implementation. Lamghari

and Dimitrakopoulos (2012) presented a tabu search to solve a CPIT-type problem with the

consideration of metal uncertainty. Alonso-Ayuso et al. (2014) developed a heuristic

approach to solve a stochastic CPIT model with the consideration of ore prices. Lamghari et

al. (2015) developed a two-phase approach to solve the CPIT problem, in which the first

phase is to generate the initial solution by a series of linear programming models and the

second phase is to apply a variable neighbourhood search procedure to improve the initial

solution. Shishvan and Sattarvand (2015) developed an Ant Colony Optimisation (ACO)

metaheuristic to solve an extended CPIT-type problem applied in a Copper-Gold mine.

4

According to the above literature review, the following five ways in solving large scale CPIT

instances are concluded and categorised below:

i. reduce the full model size by aggregating the blocks and periods;

ii. relax the full model complexity by decreasing the number of variables or constraints;

iii. decompose the full model into several sub-models so that much less number of

constraints and variables become tractable;

iv. embed heuristics within MIP optimiser to accelerate the solution procedure; and

v. develop metaheuristics with neighbourhood search.

However, the above first four ways still rely on the use of third-party MIP optimiser software

and sophisticated relaxation/decomposition approaches. The fifth way by the development of

metaheuristics such as generic algorithm (i.e., neighbourhood search with random

diversification mechanisms) may be not advanced enough because there exist unexpected

randomness in the solution procedure and the critical CPIT problem’s structural properties

are not utilised. Hence, the purpose of this study is to develop new graph-based algorithms to

outperform the existing CPIT solution approaches in the literature.

The development of advanced mining optimisation approaches is an active research topic in

expert and intelligent systems, especially for Australian mining industry. Main Australian

mining companies such as BHP Billiton, Rio Tinto, Xstrata and OZ Minerals, are keen to

adopt expert systems (e.g., commercialised mining software such as Whittle Gemcom’s

strategic planning software; XPAC’s mine block sequencing software; and Modular’s truck

fleet dispatching software) for improving their mining management systems. However, in

our recent visit to Australian mine sites, we observed that these commercialised expert

systems still lack the advanced solution approaches in optimisation engine. As the CPIT

problem is NP-hard, the required computational time of a MIP exact optimiser is increased

exponentially. For solving large scale CPIT instances without any relaxation/decomposition

schemes, a MIP exact optimiser such as IBM ILOG-CPLEX cannot be implemented due to

memory overflow or unacceptable computational effort. Another practical reason is that the

mining company is not willing to buy the third-party optimiser because the licence for

commercial use is costly. To fill this gap, this study contributes to extend the boundaries of

developing innovative numerical methods to solve large scale mining optimisation problems

in a more efficient and effective way.

5

The remainder of this paper is outlined as follows. In Section 2, five lemmas on problem

properties and the detailed procedures of two new algorithms are presented. In Section 3, the

computational results of benchmark UPIT and CPIT instances obtained by the proposed

algorithms are reported and compared to the best known results in MineLib. In the last

section, we conclude the contribution and significance of this research in the last section.

2. New Algorithms

The following two fundamental mathematical programming models are given for showing

the objective function and main constraints of the UPIT and CPIT problems respectively.

UPIT Model

Objective:

Maximise: ∑ 𝑥𝑏𝑝𝑏𝑏∈ℬ (1)

Subject to:

𝑥𝑏 ≤ 𝑥𝑏′ , ∀𝑏 ∈ ℬ; 𝑏′ ∈ Ψ𝑏|Ψ𝑏 ⊂ ℬ (2)

𝑥𝑏 ∈ {0,1}, ∀𝑏 ∈ ℬ; (3)

where 𝑥𝑏 is a binary decision variable that equals 1 if block 𝑏 is selected; 𝑝𝑏 is the value

(positive or negative) if block 𝑏 is to be mined; ℬ is the set of total blocks for the whole

orebody; Ψ𝑏 is the subset of blocks that are the immediate predecessors of block 𝑏 .

Constraint (2) ensures that each block should be extracted after its predecessors. Constraint

(3) defines that decision variables are binary.

CPIT Model

Objective:

Maximise: ∑ ∑ (𝑦𝑏𝑡 − 𝑦𝑏,𝑡−1)𝑝𝑏𝑡𝑡∈𝑇𝑏∈ℬ (4)

Subject to:

𝑦𝑏,𝑡−1 ≤ 𝑦𝑏𝑡, ∀𝑏 ∈ ℬ; 𝑡 ∈ 𝑇 (5)

𝑦𝑏𝑡 ≤ 𝑦𝑏′𝑡, ∀𝑏 ∈ ℬ; 𝑏′ ∈ Ψ𝑏|Ψ𝑏 ⊂ ℬ; 𝑡 ∈ 𝑇 (6)

𝑅𝑟𝑡
𝑚𝑖𝑛 ≤ ∑ (𝑦𝑏𝑡 − 𝑦𝑏,𝑡−1)𝑢𝑏𝑟𝑏∈ℬ ≤ 𝑅𝑟𝑡

𝑚𝑎𝑥, ∀𝑡 ∈ 𝑇; 𝑟 ∈ ℛ (7)

𝑦𝑏𝑡 ∈ {0,1}, ∀𝑏 ∈ ℬ; 𝑡 ∈ 𝑇 (8)

𝑦𝑏0 = 0, ∀𝑏 ∈ ℬ (9)

6

where 𝑝𝑏𝑡 is the discounted value of block 𝑏, which is calculated as 𝑝𝑏𝑡 =
𝑝𝑏

(1+ℴ)𝑡
 and ℴ is the

discount (interest) rate in the objection function (4). Constraint (5) ensures that each block is

mined no more than once over time periods. Constraint (6) satisfies the precedence

relationship. Constraint (7) requires that the minimum and maximum capacities/targets

(𝑅𝑟𝑡
𝑚𝑖𝑛 and 𝑅𝑟𝑡

𝑚𝑎𝑥) of resource type 𝑟 are satisfied in time period 𝑡, where 𝑢𝑏𝑟 is the usage/feed

of resource type 𝑟 by block 𝑏. Constraint (8) states that decision variables are binary, i.e., 𝑦𝑏𝑡

that equals 1 if block 𝑏 is mined by period 𝑡. Constraint (9) defines that each block should be

ready by the start of the first period.

Unlike UPIT, CPIT is strongly NP-hard (Espinoza et al., 2013). Many researchers indicated

that the substantial numbers of variables and constraints in industrial cases make the CPIT

mathematical formulation model impossible for use in practice. Our computational

experiments also justify the inapplicability of the CPIT formulation model in solving large

scale benchmark CPIT instances. For example, for a benchmark CPIT instance called

zuckSmall with 9400 blocks from MineLib, the number of constraints is 2,922,280 and the

number of variables is 188,000 in the ILOG-CPLEX model of zuckSmall. As a result, no

good solution can be obtained by IBM ILOG-CPLEX (Version 12.4 for academic use) after

running over 24 hours on a desktop computer with Intel CORE i7-2600 (8 cores) at 3.40 GHz.

Moreover, the ILOG-CPLEX model file (.lp format) of zuckSmall is too big (over 1GB) to be

opened by Notepad++ or Microsoft Word.

Therefore, mainly based on network flow graph, machine scheduling and train scheduling

theories, two new algorithms are developed to solve large scale CPIT instances in a more

efficient and more effective way. For convenience, these two algorithms are called CPIT-

Algorithm1 and CPIT-Algorithm2 in the paper.

The following notations will be used in property analysis and algorithm procedure.

Notations:

ℬ𝑈𝑃𝐼𝑇 the set of total selected blocks in a UPIT result.

|ℬ𝑈𝑃𝐼𝑇| number of total selected blocks in a UPIT result.

ℬ𝐶𝑃𝐼𝑇 the set of total decided blocks in a CPIT result, ℬ𝐶𝑃𝐼𝑇 ⊆ ℬ𝑈𝑃𝐼𝑇.

|ℬ𝐶𝑃𝐼𝑇| number of total decided blocks in a CPIT result, |ℬ𝐶𝑃𝐼𝑇| ≤ |ℬ𝑈𝑃𝐼𝑇|.

7

|𝑇| number of periods.

|ℛ| number of resource types.

𝑥𝑏𝑡 equals 1 if block 𝑏 is mined in period 𝑡; 0, otherwise. It is important to note the

difference between 𝑥𝑏𝑡 and 𝑦𝑏𝑡. For example, if block 𝑏 is mined by the second

period during a horizon of 4 periods, then 𝑦𝑏0 = 0; 𝑦𝑏1 = 0; 𝑦𝑏2 = 1; 𝑦𝑏3 = 1;

and 𝑦𝑏4 = 1. In the same case, the values of 𝑥𝑏𝑡 are 𝑥𝑏0 = 0; 𝑥𝑏1 = 1; 𝑥𝑏2 = 0;

𝑥𝑏3 = 0.

𝑅𝑟𝑡
𝑚𝑎𝑥 maximum capacity of resource type 𝑟 in period 𝑡.

𝑅𝑟𝑡
− remaining capacity of resource type 𝑟 in period 𝑡.

𝑝𝑏𝑡 discounted value of block 𝑏 in period 𝑡; if 𝑝𝑏𝑡 ≥ 0, then block 𝑏 is called a positive

block; else, block 𝑏 is called a negative block.

𝑆𝑏 a subset of blocks that contains an undecided positive block 𝑏 with its all

undecided (immediate and non-immediate) predecessors at the current stage. For

convenient, 𝑆𝑏 is called a positive subset associated with a positive block 𝑏.

𝑈𝑏𝑟 usage of resource type 𝑟 for 𝑆𝑏.

𝛿𝑏𝑡 equals 1 if 𝑆𝑏 can be assigned to period 𝑡 under the condition that their resource

usage is not more than the current remaining capacity for each recourse type; 0,

otherwise.

𝑆𝑏𝑡 a positive subset of blocks associated with a positive block 𝑏 that are assigned in

period 𝑡.

𝐵𝑡 a subset of blocks assigned to period 𝑡, 𝐵𝑡 = ⋃ 𝑆𝑏𝑡𝑏 and ℬ𝐶𝑃𝐼𝑇 = ⋃ 𝐵𝑡𝑡 .

The proposed algorithms are based on the following properties of UPIT and CPIT.

Property 1:

The fundamental UPIT problem is equivalent to be a special type of the maximum-flow and

minimum-cut network flow problem.

Proof: The UPIT problem can be transformed and modelled by a network flow graph

𝐺𝑈𝑃𝐼𝑇 = (𝑁1, 𝐴1), where 𝑁1 contains the set of total given blocks (vertices) associated with

weights (net values of blocks) and 𝐴1 is the set of directed edges that represent the total given

precedence relationship. Thus, the decision on which blocks to be selected to maximise the

total value is equivalent to finding a maximum-weight closure set of vertices. For more

8

analysis, please refer to Lerchs and Grossmann (1965), Hochbaum and Chen (2000) and

Hochbaum (2001).

Property 2:

To solve CPIT more efficiently, the optimal UPIT result can be used to cut the subset of

redundant vertices and edges in the construction of the corresponding CPIT graph.

Proof: The optimal UPIT and CPIT objective value can be respectively obtained by

∑ 𝑥𝑏𝑝𝑏𝑏∈ℬ𝑈𝑃𝐼𝑇 and ∑ 𝑥𝑏𝑡
𝑝𝑏

(1+ℴ)𝑡𝑏∈ℬ𝐶𝑃𝐼𝑇 . Assuming that 𝑆𝑈𝑃𝐼𝑇|𝑆𝑈𝑃𝐼𝑇 ⊂ ℬ𝑈𝑃𝐼𝑇 is the set of

unselected blocks in an optimal UPIT solution, the summation of value ∑ 𝑝𝑏𝑏∈𝑆𝑈𝑃𝐼𝑇
 is

negative. Thus, in the construction of a CPIT solution, the contribution from 𝑆𝑈𝑃𝐼𝑇 to the

objective value of CPIT is also negative because the discount rate ℴ is always positive,

implying that 𝑆𝑈𝑃𝐼𝑇 can be eliminated in the construction of CPIT graph without affecting the

optimality of CPIT.

Property 3:

To obtain the optimal CPIT solution, the positive blocks should be mined as early as possible

while the negative blocks should be mined as late as possible.

Proof: In a CPIT solution, the discounted value of block 𝑏 is calculated by
𝑝𝑏

(1+ℴ)𝑡 if it is

decided to be mined in period 𝑡 . Therefore, to maximise the CPIT objective value

determined by ∑ 𝑥𝑏𝑡
𝑝𝑏

(1+ℴ)𝑡𝑏∈ℬ𝐶𝑃𝐼𝑇 , the period index 𝑡 should be as small as possible for the

positive blocks and as large as possible for the negative blocks.

Property 4:

In the construction of a partial optimal CPIT solution in a period that also guarantees global

optimality, it is enough to consider a concise subset of blocks in the precedence-satisfaction

sequence.

Proof: Because the CPIT objective value is determined by ∑ 𝑥𝑏𝑡
𝑝𝑏

(1+ℴ)𝑡𝑏∈⋃ 𝐵𝑡𝑡
 and there exists

such a requirement: 𝑏′ ∈ 𝐵𝑡′ should be the predecessor of 𝑏 ∈ 𝐵𝑡|𝑡≥𝑡′ under resource capacity

9

constraints, it is enough to consider a subset of blocks 𝐵𝑡′ in an earlier period 𝑡′ in terms of

precedence-satisfaction sequence.

Property 5:

To obtain an optimal CPIT solution, a positive subset with the largest value in terms of

precedence-satisfaction sequence should be mined as early as possible.

Proof: According to equation (∑ 𝑥𝑏𝑡
𝑝𝑏

(1+ℴ)𝑡𝑏∈𝑆𝑏𝑡
) to determine the objective value of CPIT,

the value ∑
𝑝𝑏

(1+ℴ)𝑡𝑏∈𝑆𝑏𝑡
 is maximised under two conditions, that is, ∑ 𝑝𝑏𝑏∈𝑆𝑏𝑡

 should be as

large as possible while (1 + ℴ)𝑡 should be as small as possible.

Property 6:

A positive subset is not allowed to be mined in a period if there exists a bottleneck resource

type under the condition: 𝑟∗ = 𝑎𝑟𝑔𝑟(⋃ 𝑈𝑏𝑟𝑏∈𝐵𝑡
> 𝑅𝑟𝑡

𝑚𝑎𝑥).

Proof: The usage of a resource type 𝑟 in a period 𝑡 can be determined by ⋃ 𝑥𝑏𝑡𝑈𝑏𝑟𝑏∈𝐵𝑡
. In

the construction of a CPIT solution in a period, the conditions ⋃ 𝑈𝑏𝑟𝑏∈𝐵𝑡
≤ 𝑅𝑟𝑡

𝑚𝑎𝑥|∀𝑟 should

be satisfied. In this case, the bottleneck resource type is determined by

𝑟∗ = 𝑎𝑟𝑔𝑟(⋃ 𝑈𝑏𝑟𝑏∈𝐵𝑡
> 𝑅𝑟𝑡

𝑚𝑎𝑥).

In the following, the main steps of CPIT-Algorithm1 and CPIT-Algorithm2 are presented.

CPIT-Algorithm1

Step 1: Set the graph model of UPIT: 𝐺𝑈𝑃𝐼𝑇 = (𝑁1, 𝐴1), where 𝑁1 contains the set of total

given blocks (vertices) and 𝐴1 is the set of directed edges that satisfy the total given

precedence relationship among vertices.

Step 2: Based on 𝐺𝑈𝑃𝐼𝑇 = (𝑁1, 𝐴1), apply the maximum-flow minimum-cut network flow

algorithm to obtain the optimal UPIT result. For conciseness, please refer to

Hochbaum and Chen (2000) and Hochbaum (2001) about the details of the well-

known maximum-flow minimum-cut network flow algorithm.

10

Step 3: Based on the obtained UPIT solution, cut the redundant vertices and edges in 𝐺𝑈𝑃𝐼𝑇

for building the refined graph model for CPIT: 𝐺𝐶𝑃𝐼𝑇 = (𝑁2, 𝐴2), where 𝑁2 and 𝐴2

are the condensed set of vertices and edges respectively.

Step 4: Based on the 𝐺𝐶𝑃𝐼𝑇 = (𝑁2, 𝐴2), apply the topological sequencing algorithm that is

based on conjunctive graph theory for machine scheduling (Liu and Ong, 2002 and

2004) to determine the precedence-satisfaction sequence of selected blocks, which

are also in the non-increasing order of blocks’ values.

4.1 Based on 𝐺𝐶𝑃𝐼𝑇 = (𝑁2, 𝐴2), set the list of current immediate predecessors and

successors of each vertex.

4.2 Compute the in-count value (i.e. the number of immediate predecessors) of each

vertex in the graph.

4.3 Decrease the in-count value for each of the immediate successor of the selected

vertex by one after determining the current topological vertex.

4.4 If none of the undetermined vertices have a zero in-count value, stop running

algorithm as the given graph model is cyclic (infeasible); else, select any of the

undetermined vertices having a zero in-count value and put this vertex as the

next candidate in the topological order.

4.5 Repeat Steps 4.1 and 4.4 until all vertices are determined.

Step 5: According to the achieved precedence-satisfaction sequence in Step 4, assign the

positive subset of blocks period by period while the resources in each period are

utilised as much as possible.

5.1 While 𝑡 < |𝑇|

5.2 Initialise the remaining capacity of each resource type 𝑟 in period 𝑡 :

𝑅𝑟𝑡
− ← 𝑅𝑟𝑡

𝑚𝑎𝑥.

5.3 for 𝑏 ← 1 to |ℬ𝑈𝑃𝐼𝑇| in the precedence-satisfaction sequence obtained in

Step 4

5.4 if 𝑝𝑏𝑡 > 0, then set the positive subset 𝑆𝑏 by determining all undecided

predecessors of block 𝑏 at the current stage based on 𝐺𝐶𝑃𝐼𝑇 = (𝑁2, 𝐴2)

and the current decision status of blocks; and calculate the usage (𝑈𝑏𝑟) of

each resource type 𝑟 for 𝑆𝑏; and initialise the resource-capacity condition:

𝛿𝑏𝑡 ← 1.

5.5 for 𝑟 ← 1 to |ℛ|

11

5.6 if 𝑈𝑏𝑟 > 𝑅𝑟𝑡
− , then set the resource-capacity condition: 𝛿𝑏𝑡 ← 0 and

break.

5.7 if 𝛿𝑏𝑡 = 1, then assign 𝑆𝑏 to period t; update the remaining capacity:

𝑅𝑟𝑡
− ← 𝑅𝑟𝑡

𝑚𝑎𝑥 − 𝑈𝑏𝑟|∀𝑟; and update the decision status of blocks in 𝑆𝑏.

5.8 Else, then go Step 5.9.

5.9 Update the result in period 𝑡.

5.10 Consider the next time period: 𝑡 ← 𝑡 + 1.

CPIT-Algorithm2

The CPIT-Algorithm2 is an improved version of CPIT-Algorithm1, with the purpose of

improving the optimality performance. However, the computational effort of CPIT-

Algorithm2 is much more than that of CPIT-Algorithm1. The main difference between

CPIT-Algorithm1 and CPIT-Algorithm2 is only in Step 5. In CPIT-Algorithm1, the selection

of positive blocks is according to the precedence-satisfaction sequence. In comparison, in

CPIT-Algorithm2, the selection of positive blocks is determined both by the precedence-

satisfaction sequence and the best positive set found by a local search to find the best

accessible positive subset.

Pseudo-codes of Step 5 in CPIT-Algorithm2

5.1 While1 𝑡 < |𝑇|

5.2 Initialise the result in period 𝑡 such as resource capacity: 𝑅𝑟𝑡
− ← 𝑅𝑟𝑡

𝑚𝑎𝑥.

5.3 While a best positive subset can be found in period 𝑡

5.4 Initialise the list of positive subsets as empty.

5.5 for each undecided positive block 𝑏 in the precedence-satisfaction sequence

5.6 if block 𝑏 is not the successor of any blocks in the current list of positive

subsets.

5.7 then set the positive subset 𝑆𝑏 by determining all undecided predecessors

of block 𝑏 at the current stage based on 𝐺𝐶𝑃𝐼𝑇 = (𝑁2, 𝐴2) and the current

decision status of blocks; add 𝑆𝑏 to the current list of positive subsets.

5.8 for each positive subset 𝑆𝑏 in the current list of positive subsets

5.9 determine the best positive subset 𝑆𝑏
∗ that leads to the maximum value and

also satisfies the resource capacity.

12

5.10 If the best positive subset is found, then assign the best positive subset 𝑆𝑏
∗ to

period t; update the current status such as remaining capacity in this period and

the current decision status of assigned blocks.

5.11 Update the result in period 𝑡.

5.12 Consider the next time period: 𝑡 ← 𝑡 + 1.

It is noted that the data structure used for coding the above two algorithms plays an important

role in computational efforts and CPU times. For example, an efficient data structure should

be able to directly locate a block’s full information and current status to avoid unnecessary

indexing loops in the algorithm procedure. Otherwise, millions of unnecessary block-

indexing loops may be generated in a function for a large scale CPIT instance, in which the

number of blocks is usually over 10 thousand and a block regularly have over 30 immediate

predecessors (e.g., see the benchmark mclaughlin_limit CPIT instance in MineLib).

3. Computational Results

In this section, we conduct extensive computational experiments and report computational

results of benchmark large scale UPIT and CPIT instances, which are based on benchmark

data files recently from MineLib (2013). The proposed algorithms were coded in C#

programming language, compiled under Microsoft Visual Studio 2010 and run on a desktop

computer with Intel Core i7 CPU (8 processors) at 3.4 GHz and 8 GB RAM under 64-bit

Windows 7 Operating System.

The full data files of benchmark CPIT instances can be downloaded from the website:

http://mansci-web.uai.cl/minelib/. For the description of data format, please refer to the

recent paper about MineLib by Espinoza et.al (2013). Our computational experiments on

benchmark MineLib UPIT and CPIT instances are concluded in Table 1.

<<Insert Table 1 here>>

http://mansci-web.uai.cl/minelib/

13

In Table 1, the first column (Instance Name) displays the instance name from MineLib. The

next three columns (#B., #P., #R.) indicate the problem size of each instance in terms of three

main attributes, that is, the number of blocks, the number of periods and the number of

resource types. The fifth column gives the optimal UIPT objective values obtained in CPIT-

Algorithm1 and CPIT-Algorithm2 that are exactly same as the benchmark solutions in

MineLib. The sixth column (LP Upper Bound) gives the LP upper bound of CPIT objective

value from MineLib, which is determined by the LP relaxation model. The seventh column

(Best Know Solution) provides the objective value of the best known CPIT solution from

MineLib. In the eighth (New Solution1) and the ninth (Time1) columns, the objective values

of these benchmark CPIT instances obtained by CPIT-Algorithm1 with their CPU times are

presented. In the same format, the results of CPIT-Algorithm2 are shown in the last two

columns (New Solution2 and Time2).

The detailed results of benchmark CPIT instances obtained by CPIT-Algorithm1 and CPIT-

Algorithm2 were exported by Microsoft Excel 2010. Each CPIT solution represented in an

Excel Workbook file consists of several worksheets, each of which is regarded as a part of

the full CPIT solution. The format of a complete CPIT solution using Instance newman1 is

described in Appendix.

In comparison with the best known feasible solution in the seventh column (Best Know

Solution), CPIT-Algorithm1 is able to obtain the better solutions of two instances (i.e.,

newman1 and zuck_medium). For other eight instances, CPIT-Algorithm1 can find the high-

quality feasible solutions in a shorter time. For example, the exact MIP solver such as ILOG-

CPLEX can only exactly solve one CPIT instance’s MIP model (i.e., newman1 with 1060

blocks, 6 periods and 2 resource types) but with the CPU time of 27.55 seconds; in

comparison, the CPU time of CPIT-Algorithm1 is 0.11 seconds. In Furthermore, if the

computational time is allowed to be longer, the CPIT-Algorithm2 is a triumph as the better

solutions of eight benchmark CPIT instances have been achieved. It is also observed that for

only two benchmark CPIT instances (i.e., zuck_large and Mclaughin_limit), the better

solutions cannot be found by CPIT-Algorithm2 due to complexity of precedence relationship

in these two large scale instances. For example, the size of a data file about precedence

relationship in Instance Mclaughin_limit is over 500 megabytes, because most blocks (among

112,687 blocks) have over 37 immediate predecessors. To optimally solve such two

extremely complicated instances, it is essential to take much more computational efforts and

14

develop more globally-diversified search methods. We remain it as a future challenge to us

and other researchers in mine optimisation academic community.

4. Conclusion

In this paper, we proposed two new algorithms mainly based on our expertise of network

flow and scheduling theory (e.g., Liu and Kozan, 2009, 2011a, 2011b and 2012; Kozan and

Liu, 2011, 2012) in order to solve the large scale CPIT instances in a more efficient and

effective way. Computational results based on the recent benchmark CPIT instances from

MineLib (Espinoza et al., 2013) are conducted. In comparison with the best known solutions

from MineLib, the superiority of proposed algorithms is validated. By taking advantage of

UPIT and CPIT’s properties, our proposed graph-based numerical algorithms can lead to the

better (more efficient and applicable) mine scheduling optimisation expert systems, in which

the third-party MIP optimiser is no longer indispensable and the random neighbourhood

search under the mechanisms of any metaheuristics is also not required. The proposed

algorithms have extended the boundaries of advanced mining optimisation approaches and

would be promising to bring significant benefits for mine planning/scheduling engineers.

In comparison to other CPIT solution approaches in the literature, the strengths and

weaknesses of our proposed algorithms are discussed as follows. Firstly, most CPIT solution

techniques in the literature heavily relied on the use of third-party MIP optimiser software

such as IBM ILOG-CPLEX with sophisticated relaxation/decomposition approaches (see

Caccetta and Hill, 2003; Ramazan, 2007; Boland et al. 2009; Bley et al., 2010; Cullenbine et

al., 2011; Chicoisne et al., 2012; Lambert et al., 2014; etc.). In comparison, the third-party

MIP optimiser software is not required in the procedure of our proposed algorithms.

Secondly, the development of metaheuristics such as Simulated Annealing, Genetic

Algorithm or Ant Colony Optimisation algorithms for CPIT are not cutting-edge enough

because of unexpected randomness in their neighbourhood search procedure (see Kumral and

Dowd, 2005; Myburgh and Deb, 2010; Shishvan and Sattarvand, 2015). Instead of

metaheuristic framework and neighbourhood structure, our proposed algorithms implement

network flow graph solution techniques and utilise several fast decision rules through

analysing the CPIT’s critical problem properties (see the details in Section 2). On the other

15

hand, there are two main challenges which are regarded the so-called weaknesses (or

difficulties). One challenge is that unique expertise in the areas of scheduling theory and

network flow theory are requisite in the algorithm development. Moreover, to guarantee the

algorithm performance due to the problem size of a CPIT instance (e.g., over 100,000 block

units), a state-of-the-art data structure is essential because of need to quickly identify indices

of each block unit and its current immediate predecessors (e.g., over 37 predecessors) in the

algorithm design. Our proposed graph-based algorithms outperform other CPIT solution

approaches in the literature (as validated by computational experiments in Section 3), because

the efficiency and effectiveness of our proposed algorithm are balanced in a better way.

Regarding the future research directions, we will further improve CPIT-Algorithm2 in order

to find the better solutions of two unconquered instances (i.e., zuck_large and

mclaughlin_limit). In addition, the proposed algorithms will be enhanced to solve the CPIT

with multiple destinations also called PCPSP (Precedence Constrained Production

Scheduling Problem) in MineLib. Moreover, the proposed CPIT/PCPSP model will be

extended by including more practical constraints and attributes such as grade control,

blending, rehandling and stockpiling costs. Finally, the proposed algorithms will be

incorporated with a short-term mine equipment timetabling model (Kozan et al., 2013) within

a demand-responsive expert system.

Glossaries:

UPIT Ultimate Pit Limit

CPIT Constrained Pit Limit

PCPSP Precedence Constrained Production Scheduling Problem

MineLib A public online library of benchmark instances’ data files and best known results

of mine optimisation problems including UPIT, CPIT and PCPSP

Acknowledgements

The authors would like to acknowledge the support of CRC ORE, established and supported

by the Australian Government’s Cooperative Research Centres Programme.

16

References

Alonso-Ayuso, A., Carvallo, F., Escudero, L.F., Guignard, M., Pi, J., Puranmalka, R., &

Weintraub, A. (2014). Medium range optimization of copper extraction planning under

uncertainty in future copper prices. European Journal of Operational Research. 233 (3),

711-726.

Bley, A., Boland, N., Fricke, C., & Froyland, G. (2010). A strengthened formulation and

cutting planes for the open pit mine production scheduling problem. Computers &

Operations Research, 37, 1641-1647.

Boland, N., Dumitrescu, L., Froyland, G., & Gleixner, A. M. (2009). LP-based

disaggregation approaches to solving the open pit mining production scheduling

problem with block processing selectivity. Computers & Operations Research, 36,

1064-1089.

Bienstock, D., & Zuckerberg, M. (2010). Solving LP relaxations of large-scale precedence

constrained problems. In 14th International Conference IPCO (Integer programming

and Combinatorial Optimisation) 2010 Lausanne, Switzerland Proceedings, Springer.

Caccetta, L., & Giannini, L. M. (1988). An application of discrete mathematics in the design

of an open pit mine. Discrete Applied Mathematics, 21, 1-19.

Cullenbine, C., Wood, R. K., & Newman, A. M. (2011). A sliding time window heuristic for

open pit mine block sequencing. Optimisation Letters, 5, 365-377.

Caccetta, L., & Hill, S. P. (2003). An application of branch and cut to open pit mine

scheduling. Journal of Global Optimisation, 21, 1-19.

Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., & Rubio, E. (2012). A new

algorithm for the open-pit mine production scheduling problem. Operations Research,

60(3), 517-528.

Epstein, R., Goic, M., Weintraub, A., Catalan, J., Santibanez, P., Urrutia, R., Aguayo, A.

(2012). Optimizing long-term production plans in underground and open-pit copper

mines. Operations Research, 60(1), 4-17.

Espinoza, D., Goycoolea, M., Moreno, E., & Newman, A. M. (2013). MineLib: a library of

open pit mining problems. Annals of Operations Research 206, 93-1114.

Ferland, J.A., Amaya, J., & Djuimo, M.S. (2007). Application of a particle swarm algorithm

to the capacitated open pit mining problem. Studies in Computational Intelligence, 76,

127-133.

17

Hochbaum, D. S., & Chen, A. (2000). Performance analysis and best implementations of old

and new algorithms for the open-pit mining problem. Operations Research, 48(6), 894-

914.

Hochbaum, D. S. (2001). A new-old algorithm for minimum-cut and maximum-flow in

closure graphs. Networks, 37(4), 171-193.

Kozan, E., & Liu, S. Q. (2011). Operations research for mining: A classification and

literature review. ASOR Bulletin, 30(1), 2-23.

Kozan, E., & Liu, S. Q. (2012). A demand-responsive decision support system for coal

transportation. Decision Support Systems, 54, 665-680.

Kozan, E., Liu, S. Q., & Wolff, R. (2013). A short-term production scheduling methodology

for open-pit mines. Paper presented at International Symposium on the 36th

Applications of Computers and Operations Research in the Mineral Industry (APCOM),

Brazil.

Lambert, W. B., Brickey, A., Newman, A. M., & Eurek, K. (2014). Open-pit block-

sequencing formulations: a tutorial. Interfaces, 44(2), 127-142.

Lambert, W. B., & Newman, A. W. (2014). Tailored lagrangian relaxation for the open pit

block sequencing problem. Annals of Operations Research, 222, 419-438.

Lamghari, A., & Dimitrakopoulos, R. (2012). A diversified tabu search approach for the

open-pit mine production scheduling problem with metal uncertainty. European Journal

of Operational Research, 222, 642-652.

Lamghari, A., Dimitrakopoulos, R., & Ferland, J. A. (2015). A hybrid method based on linear

programming and variable neighborhood descent for scheduling production in open-pit

mines. Journal of Global Optimisation, DOI 10.1007/s10898-10014-10185-z.

Lerchs, H., & Grossmann, I. F. (1965). Optimum design of open-pit mines. Transactions on

CIM, LXVIII, 17-24.

Liu, S. Q., & Ong, H. L. (2002). A comparative study of algorithms for the flow shop

scheduling problem. Asia-Pacific Journal of Operational Research, 19, 205-222.

Liu, S. Q., & Ong, H. L. (2004). Metaheuristics for the mixed shop scheduling problem.

Asia-Pacific Journal of Operational Research, 21(4), 97-115.

Liu, S. Q., & Kozan, E. (2009). Scheduling a flow-shop with combined buffer conditions.

International Journal of Production Economics, 117, 371-380.

Liu, S. Q., & Kozan, E. (2011a). Optimising a coal rail network under capacity constraints.

Flexible Service and Manufacturing Journal, 23, 90-110.

18

Liu, S. Q., & Kozan, E. (2011b). Scheduling trains with priorities: a no-wait blocking

parallel-machine job-shop scheduling model. Transportation Science, 45(2), 175-198.

Liu, S. Q., & Kozan, E. (2012). A hybrid shifting bottleneck procedure algorithm for the

parallel-machine job-shop scheduling problem. Journal of the Operational Research

Society, 63(2), 168-182.

Kumral, M., & Dowd, P. A. (2005). A simulated annealing approach to mine production

scheduling. Journal of the Operational Research Society, 56, 922-930.

Martinez, M. A., & Newman, A. M. (2011). A solution approach for optimizing long- and

short-term production scheduling at LKAB’s Kiruna mine. European Journal of

Operational Research, 211, 184-197.

MineLib (2013) http://mansci-web.uai.cl/minelib/.

Myburgh, C., & Deb, K. (2010). Evolutionary algorithms in large scale open pit mine

scheduling. Paper presented at the GECCO’10, Portland, Oregon, USA.

Ramazan, S. (2007). The new Fundamental Tree Algorithm for production scheduling of

open pit mines. European Journal of Operational Research, 177, 1153-1166.

Shishvan, M. S., & Sattarvand, J. (2015). Long term production planning of open pit mines

by ant colony optimization. European Journal of Operational Research, 240, 825-836.

Souza, M. J. F., Coelho, I. M., Ribas, S., Santos, H. G., & Merschmann, L. H. C. (2010). A

hybrid heuristic algorithm for the open-pit-mining operational planning problem.

European Journal of Operational Research, 207, 1041-1051.

Underwood, R., & Tolwinski, B. (1998). A mathematical programming viewpoint for solving

the ultimate pit problem. European Journal of Operational Research, 107(1), 96-107.

http://mansci-web.uai.cl/minelib/

19

Table 1: Computational results of benchmark MineLib UPIT and CPIT instances

Instance

Name

Problem Size

MineLib UPIT,

Algorithms 1, 2*
MineLib CPIT

CPIT-Algorithm1**

CPIT-Algorithm2***

#B. #P. #R. Optimal Solution

LP Upper

Bound

Best Known

Solution

New

Solution1

Time1

(s)

New

Solution2

Time2

(s)

newman1 1060 6 2

26,086,899

24,486,184 23,483,671

23,899,187 0.11

24,147,400 0.57

zuck_small 9400 20 2

1,422,726,898

854,182,396 788,652,600

759,266,499 4.43

828,767,123 23.69

kd 14153 12 1

652,195,037

409,498,555 396,858,193

378,434,056 7.52

400,172,931 153.65

zuck_medium 29277 15 2

1,075,124,490

710,641,410 615,411,415

627,406,624 68.21

669,884,356 5812.13

p4hd 40947 10 2

293,373,256

247,415,730 246,138,696

210,912,953 49.97

247,206,003 1622.31

marvin 53271 20 2

1,415,655,436

863,916,131 820,726,048

772,144,782 59.62

849,609,951 1032.06

w23 74260 12 3

510,973,998

400,653,199 392,226,063

307,995,791 126.48

399,909,961 5261.93

zuck_large 96821 30 2

122,220,280

57,389,094 56,777,190

47,964,706 227.05

50,495,599 10870.76

sm2 99014 30 2

2,743,603,730

1,648,051,083 1,645,242,774

1,310,832,727 182.66

1,646,392,582 2004.59

Mclaughlin_l. 112687 15 1

1,495,726,474

1,078,979,501 1,073,327,197

851,487,048 332.06

9,814,511,41 55731.09

*: the optimal UPIT solutions of all instances obtained by Algorithms 1 and 2 are exactly same as the optimal UPIT solutions in MineLib.

**: the better CPIT solutions of two instances (newman1and zuck_medium) are found by CPIT-Algorithm1 in a shorter CPU time.

***: the better CPIT solutions of eight instances are found by CPIT-Algorithm2 but in a longer CPU time.

20

Appendix

A complete CPIT solution of Instance newman1 in terms of Microsoft-Excel format is described in the below. Each CPIT solution represented

in an Excel Workbook file consists of the following worksheets, each of which is regarded as a part of the full CPIT solution.

Worksheet 1: “General”

Worksheet 1 is named as “General”, in which the instance name, problem size, CPU time, objective value, and number of decided (positive)

blocks are given in this Excel worksheet. For example, the “General” worksheet of newman1 instance is shown in Table 2.

Table 2: The “General” worksheet of newman1 CPIT solution

Instance Name Problem Size
CPU Time

(s)

Objective Value of

CPIT

Number of

Total Decided Blocks

Number of Total

Decided Positive Blocks

1_newman1_CPIT 1060 blocks; 6 periods; 2 resources 0.11 23,899,187 1059 545

Worksheet 2: “GeneralResultOfPeriods”

Worksheet 2 is named as “GeneralResultOfPeriods”, in which the given resources’ capacities, resources’ usage rates, total (discounted) value,

number of (positive) blocks assigned in each period are given in this Excel worksheet. For example, the “GeneralResultOfPeriods” worksheet of

newman1 instance is presented in Table 3.

21

Table 3: The “Periods” worksheet of newman1 instance*

Period

ID

Resources

Capacities

Resources’

Usage Rate

Remaining Unused

Capacities

Total

Value

Total

Discounted Value
#Blocks #PBlocks

0 R0:2000000; R1:1100000;
R0:1998480 (99.92%);

R1:1086583 (98.78%);
R0:1520; R1:13417; 6106288 6106288 416 217

1 R0:2000000; R1:1100000;
R0:1992924 (99.65%);

R1:850938 (77.36%);
R0:7076; R1:249062; 9662825 8947060 356 144

2 R0:2000000; R1:1100000;
R0:1624608 (81.23%);

R1:1081824 (98.35%);
R0:375392; R1:18176; 10317786 8845838 287 184

*#Blocks: number of blocks assigned in a period; #PBlock: number of positive blocks assigned in a period.

Worksheets 3-5: “BlocksInPeriod_t” (t=0, 1, 2)

For the solution of newman1 CPIT instance, all of 1059 blocks are decided to be mined in three periods (i.e., Periods 0, 1 and 2). In this case,

Worksheets 3-5 are named as “BlocksInPeriod0”, “BlocksInPeriod1” and “BlocksInPeriod2” respectively. For example, Table 4 (Worksheet 5)

shows the decision status of blocks assigned in Period 2. Due to the page limit, only a sample output using the graphical user interface of our

developed mining optimisation software is illustrated in Table 4, in which the block index, assigned in-period index (e.g., Period 2), precedence-

satisfaction sequence index, block value, discount block value, number of immediate predecessors, decision status of immediate predecessors

and resource usages of each block are presented. As shown in Table 4, there are 287 blocks assigned in Period 2 and each row represents one

block’s decision status with its immediate predecessors’ decision status.

22

Table 4: A sample output of “BlocksInPeriod2” worksheet of newman1 CPIT instance

