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Abstract

As critical infrastructure such as transportation hubs continue to grow in
complexity, greater importance is placed on monitoring these facilities to en-
sure their secure and efficient operation. In order to achieve these goals, tech-
nology continues to evolve in response to the needs of various infrastructure.
To date, however, the focus of technology for surveillance has been primarily
concerned with security, and little attention has been placed on assisting op-
erations and monitoring performance in real-time. Consequently, solutions
have emerged to provide real-time measurements of queues and crowding in
spaces, but have been installed as system add-ons (rather than making better
use of existing infrastructure), resulting in expensive infrastructure outlay for
the owner/operator, and an overload of surveillance systems which in itself
creates further complexity. Given many critical infrastructure already have
camera networks installed, it is much more desirable to better utilise these
networks to address operational monitoring as well as security needs.

Recently, a growing number of approaches have been proposed to moni-
tor operational aspects such as pedestrian throughput, crowd size and dwell
times. In this paper, we explore how these techniques relate to and com-
plement the more commonly seen security analytics, and demonstrate the
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value that can be added by operational analytics by demonstrating their
performance on airport surveillance data. We explore how multiple analytics
and systems can be combined to better leverage the large amount of data
that is available, and we discuss the applicability and resulting benefits of
the proposed framework for the ongoing operation of airports and airport
networks.

Keywords: Transportation, Security, Operational performance, Video
surveillance, Operational analytics, Airport Operations

1. Introduction

The scale of challenges facing society in providing more advanced criti-
cal infrastructure, and in particular transportation hubs, is substantial. An
increased importance has been placed (and will continue to be placed) on
transportation hubs to accommodate increased demand as cities continue
to expand, and global air travel becomes more accessible. Consequently,
the complexity of these hubs is increasing; airports are a perfect example
where a multitude of factors are continually in play, including technolog-
ical advancements, changes in regulations, and the interaction of multiple
stakeholders including (but not limited to) government agencies, airport op-
erators, airlines, security contractors, commercial operators, and of course,
the travelling public (Ashford et al., 2013). With this increase in demand and
complexity, it can be argued that it is becoming more important to monitor
the operational performance of the system. This is especially true for many
privatised airports who often depend on non-aviation revenue sources to a
greater extent than traditional aviation revenue.

Unfortunately, with millions of passengers passing through these hubs on
a daily basis, the infrastructure itself become prime targets for terrorist ac-
tivities (Tsai et al., 2009). Recent examples of such attacks on transportation
hubs include the London train bombings in 2005, the Glasgow Airport car
bombing in 2007, the Domodedovo International Airport bombing in 2011;
the Peshawar airport attack in 2012l and the Jinnah International Airport
attack in 2014. With this constant threat in place, it is extremely important
to ensure transportation hubs are safe and secure for all involved.

Over the past decade, surveillance cameras have become commonplace
in public locations, including transportation hubs (Wells et al., 2006; Welsh
and Farrington, 2009; Adrem et al., 2007). This is a direct result of an
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increased focus on public safety and security, but can also be attributed to
the reduced cost of cameras and their associated computing infrastructure
which help to keep overall security costs down (Adrem et al., 2007). The
increase in surveillance cameras has given rise to an increase in computer
systems to manage, and in many cases to analyse the incoming camera feeds.
At present, these feeds are typically monitored by staff, and detecting events
as they happen is very challenging due to the sheer amount of data being
presented to each operator.

To assist human operators in monitoring large CCTV networks, there has
been a significant increase in computer vision research and development, to
create algorithms to analyse and extract information from the CCTV feeds.
These developments have tended to focus on security related tasks such as ob-
ject/person tracking, perimeter surveillance, motion segmentation, abnormal
event detection and recognition, and biometrics (e.g face, iris, fingerprint) for
person identification (Fookes et al., 2010). Many of these algorithms have
begun to be implemented within video management and analytic systems,
giving commercial video analytic packages a wide range of (primarily) secu-
rity capabilities.

Operational analytics however, such as crowd counting and queue mon-
itoring, have received less attention and while commercial systems do exist
to perform these tasks, they are fewer in number and often require specially
placed cameras making them difficult to integrate with existing systems.
This is despite the comparatively poor performance of security based sys-
tems, which are prone to missed detections and false alarms.

Furthermore, the integration of these emerging techniques into airports
or other critical infrastructure has received limited attention. When dis-
cussing the implementation of surveillance techniques, existing research has
focussed on how a single surveillance task may function within a piece of
infrastructure in isolation (i.e. Li et al. (2014) considers person re-detection
in an airport environment; while Arroyo et al. (2015) consider suspicious
behaviour detection in a shopping mall. Similarly, when considering the sys-
tem wide implications of video surveillance, the literature has focussed on
aspects such as the data and networking requirements of such large scale
systems (Ajiboye et al., 2015; Chang et al., 2012); interfaces to retrieve and
display results (Ye et al., 2015); or the needs of researchers and developers
to aid in the development of such techniques (Nazare et al., 2014).

Within this paper we propose an automated surveillance framework for
both operational and security tasks for on-site and across-site monitoring.
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Whilst ensuring that a wide range of possible surveillance technologies are
included in this framework, we specifically discuss the overlap between video
analytics for security and operational analytics for operational monitoring
which can be exploited to make better use of CCTV networks in public
spaces. We present an overview of intelligent surveillance techniques for
security and operational tasks, and show that although security has long
been the focus of surveillance deployments, the operational video analytics
currently in development are in many ways, more appropriate for deployment.

We show, on airport surveillance data, how recent approaches can be used
and combined to extract measures of operational performance such as crowd
sizes, processing rates and dwell times. The performance of these approaches,
as well as their strengths and weaknesses from a real-world standpoint (i.e.
deployment requirements and challenges) are discussed, and we explore how
these techniques can be used in tandem with other statistical modelling ap-
proaches to provide better situational awareness. To demonstrate how such a
combined security and operations framework could benefit a transport hub,
we develop a case study around airport security, incident response and level
of service monitoring to demonstrate the potential of video analytics as a
solution to both these needs.

The remainder of this paper is structured as follows: Section 2 presents
an overview of intelligent surveillance and provides an outline of the current
abilities of security analytics; Section 3 presents our proposed surveillance
framework, and an overview of operational analytics and how they can be
applied to a transport environment; Section 4 presents two case studies ex-
amining how our proposed framework could be applied to an airport envi-
ronment; and Section 5 concludes the paper.

2. Automatic Surveillance: A History in Security

Surveillance systems are an essential and integral component in trans-
portation networks, public places, and other critical infrastructure where
it is necessary to monitor activities, threats, and to prevent or investigate
criminal or other unwanted activity.

An increased focus on security coupled with falling costs of hardware
has seen an increase in the number of CCTV management products avail-
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able. Some systems (such as Iomniscient 1, BlueEye Video 2, Agility Video
3, ObjectVideo 4) also offer video analytics: algorithms which can extract
information from the incoming feeds in real-time or near real-time. The
capabilities of such products vary significantly and as such, it is helpful to
categorise them through a high-level classification outlined below.

• 1st Generation: Traditional analogue CCTV systems with recording
facilities through tape or digital video recorders.

• 2nd Generation: Highly capable “Video Management Systems” utilis-
ing large IP networks (cameras may be digital or analogue with en-
coders). These systems have a suite of low-level image processing tools
(such as perimeter intrusion detection, loitering, abandoned object de-
tection, etc).

• 3rd Generation: True multi-view capable intelligent surveillance sys-
tems with robust semantic information extraction.

We argue that most commercial solutions are still only 2nd generation sys-
tems (with a select few 2.5 generation) and are often characterised by high
false-alarm rates, and limited knowledge of the environment in which they
are deployed (i.e. camera calibration). A significant advancement in capa-
bilities is still required before 3rd generation systems are reached, i.e. “cog-
nitive” systems that can track, identify and explain what is taking place
(Bellotto et al., 2009). This includes the development of: true multi-view
capability (rather than single-view with simple camera network topologies);
automatic camera calibration; robust tracking and recognition of people and
events that are invariant to the challenging day-to-day operating conditions
including illumination, pose, viewpoint; and invariance to noisy, cluttered
complex environments. Recent advances in deep learning and convolutional
neural networks indicate one direction that may advance these goals. Signif-
icant gains have been made in fields such as speech recognition (Deng and
Yu, 2014), natural language processing Manning et al. (2014), object recog-
nition Erhan et al. (2014) and pedestrian detection (Luo et al., 2014) by

1http://iomniscient.com/
2http://www.blueeyevideo.com/
3http://www.vidient.com/
4http://www.objectvideo.com/
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leveraging very large amounts of data to automatically learn complex rela-
tionships within the data. The data requirements of deep-learning have to
date meant that it’s applications has been restricted to data rich domains;
however it offers a promising direction to enable the development of true ‘3rd
Generation’ systems.

As products move towards becoming 3rd generation, many video ana-
lytics are becoming incorporated and/or integrated into video management
systems. The majority of analytics can broadly be classified into two groups:

1. Security - such as (but not limited to) perimeter protection, suspect
tracking, loitering detection, and abandoned luggage detection;

2. Operational - such as (but not limited to) crowd counting, queue length
estimation, throughput analysis, service rates, utilisation rate estima-
tion, trajectory analysis, and travel time estimation.

There is some overlap between the two categories of analytics, for example
crowd counting can be used to obtain both operational measures as well as
indicate when the crowd has reached a dangerous size. Despite this overlap
of capabilities, surveillance systems are still seen primarily as a security tool,
and as such the majority of the analytics available in commercial products
are security related. It is also important to note that other technologies aside
from CCTV analysis are being used for both operational and security tasks.
Wireless sensors such as BlueTooth or WiFi can be used to track assets or
measure performance (Shen et al., 2008; Versichele et al., 2012; Woo et al.,
2011; Patil and Kokil, 2015) (either by tracking a dedicated tag or another
device that incorporates the technology such as a smart phone). Other sensor
based technologies such as RFID are becoming widely adopted for inventory
management problems, such as luggage tracking within the transport domain
(Medeiros et al., 2011; Ting et al., 2006; Zhang et al., 2008). At present,
technologies such as these are typically implemented independently of any
CCTV systems and are restricted to operational tasks, while CCTV is used
for security.

A broad range of video analytics are available for security, however, they
can be broadly classified as follows:

1. Object Tracking Derived - Analytics such as perimeter intrusion and
out of bounds detection, loitering, and tail-gaiting detection;

2. Change Detection Derived - Analytics such as abandoned object detec-
tion, stopped vehicle detection, and theft detection.
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Furthermore, other key surveillance tasks are attracting significant attention
from the research community, including:

1. Event recognition in crowded scenes;

2. Person re-detection and a semantic search for a specified person.

While these techniques are less mature than those that underpin tracking
and change detection analytics, applications of these are beginning to filter
into commercial systems, such as Iomniscient’s detection of slips and falls.

A brief overview of these four areas is presented in Sections 2.1, 2.2, 2.3
and 2.4.

2.1. Object Tracking

Object tracking is the task of continuously detecting an object through a
video sequence, and can be broken down into two types:

1. Single object tracking;

2. Multi-object tracking.

Single object tracking is the problem of following a region of interest in
video. Typically, an initial detection is provided by a user, and this region
is then tracked through a video clip. Two broad approaches exist for this
problem: generative trackers (Liu et al., 2010; Zhang et al., 2015b; Sevilla-
Lara and Learned-Miller, 2012; Felsberg, 2013) which seek to find a region
that best matches a target model; and discriminative trackers (Hare et al.,
2011; Danelljan et al., 2014; Henriques et al., 2015) which treat the tracking
problem as a binary classification task, and train a model to classify a region
as being the target of interest.

Generative approaches seek to build a model to represent a target’s ap-
pearance. Multi-channel representations such as a distribution field (Sevilla-
Lara and Learned-Miller, 2012), or channel representation (Felsberg, 2013)
have proven successful, while sparse representation has also been very effec-
tive. Sparse representation allows the target’s appearance to be modelled as
a linear combination of templates that can be updated on-line to allow for
appearance changes (Liu et al., 2010). A recent approach by Zhang et al.
(2015b) sought to extend this further to better incorporate the underlying
target structure by learning a joint dictionary to represent both the overall
and part-wise appearance of the target object, allowing the overall appear-
ance and structure to be incorporated, improving performance.

7



Discriminative approaches (Hare et al., 2011; Danelljan et al., 2014; Hen-
riques et al., 2015) have typically used intensity based features due to the
demands of training and updating a classifier each frame. Although recent
research by Danelljan et al. (2014) demonstrated how low dimensional colour
features could be incorporated to improve performance; while Henriques et al.
(2015) proposed a highly efficient correlation filter that leveraged the circu-
lant nature of the data to greatly improved computational efficiency and
storage, and thus enabled the use of multiple channels to further improve
performance.

Multi-object tracking is typically a two stage problem, where detection
of objects is followed by a matching and updating step. Detection may be
performed either through the analysis of motion features (Huang and Barth,
2010; Ottlik and Nagel, 2008; Zhao and Nevatia, 2004; Lu and Tan, 2001;
Haritaoglu et al., 2000), or through the detection of a previously learned
model (?Tamersoy and Aggarwal, 2009; Yang et al., 2005; Okuma et al.,
2004). The available methods to match and update the tracked objects
are many and varied, and depend on the features being extracted from the
objects. Various geometric features (i.e. object position, size), colour and
appearance features (i.e. histogram), edge- or graph- based features can be
used, either in isolation or combination (?Denman et al., 2006a; Haritaoglu
et al., 2000).

Technologies such as the detection of people inside ‘out-of-bounds’ areas,
and loitering detection can all be achieved through object tracking, by con-
figuring simple rules to trigger alerts within the object tracking system. For
instance:

• A given area may be marked as ‘out-of-bounds’, if a person enters this
region they are an intruder.

• If a person is observed and tracked for a long period of time within a
single area, they are loitering.

Within the research space, there has been much work focused on object track-
ing. This research has covered person tracking (?Zhao and Nevatia, 2004; Lu
and Tan, 2001; Haritaoglu et al., 2000), vehicle tracking (Huang and Barth,
2010; Brulin et al., 2010; Tamersoy and Aggarwal, 2009; Ottlik and Nagel,
2008; Denman et al., 2006b), tracking multiple types of objects (Denman
et al., 2006a), handling of groups of objects (Bazzani et al., 2015; Kooij
et al., 2015; Denman et al., 2010; Galoogahi, 2010; Haritaoglu et al., 1999),
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tracking people in a sports environment (Vermaak et al., 2003; Okuma et al.,
2004), and recently tracking people in crowds (Tang et al., 2015; Ben Shitrit
et al., 2014; Eshel and Moses, 2008; Pirsiavash et al., 2011; Berclaz et al.,
2011).

The primary limitation of tracking systems is their ability to handle large
(or even moderately sized) crowds effectively, with occlusions and people
crossing paths causing frequent errors. The approach of ?, which combined
the detector confidence from multiple object detection routines with object
specific classifiers in a particle filter framework, showed progress in address-
ing these issues, demonstrating improved performance over a variety of other
techniques (Huang et al., 2008; Leibe et al., 2008; Okuma et al., 2004), across
a suite of databases that include small crowds and frequent occlusions. How-
ever, ? still has a false negative rate (i.e. missed detections and tracks) of
15%-30% for most databases, and ID switches are still common in several
data sets which would likely lead to frequent errors if used in a live analyt-
ics system. Explicitly modelling groups has been pursued to obtain further
improvement, with Bazzani et al. (2015) proposing the the joint modelling
of individuals groups jointly using a decentralised particle filter. This allows
the groups and individuals to be tracked within the same framework, with
information shared between the two processes. Kooij et al. (2015) proposed
the use of Latent Dirichlet Allocation (LDA) to resolve unreliable object de-
tections into the true individual targets that generated them. By effectively
treating the targets in the scene as the ‘topics’ within the LDA model, the
targets present in each frame can be detected, and the LDA model can be
back-projected into the source frame to segment the individual targets.

An alternate approach is to treat the tracking problem as an optimisation
task, where the goal is find the optimum configuration of trajectories across
a video sequence for a given set of detections (Pirsiavash et al., 2011; Berclaz
et al., 2011; Ben Shitrit et al., 2014; Tang et al., 2015). Such approaches
offer increased robustness to detection errors, however they are non-causal in
nature, making such techniques difficult to apply in a live environment. These
approaches typically first form tracklets (i.e. tracks of a few frames length)
based on spatial constraints, and then cluster these over time (Pirsiavash
et al., 2011; Berclaz et al., 2011; Ben Shitrit et al., 2014), however this can
lead to duplicate tracklets when multiple detections occur for a single person.
Tang et al. (2015) overcame this and achieved improved performance by
jointly clustering all observations in time and space.
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Extensive research has also focused on issues relating to multi-camera
tracking, and in particular being able to accurately re-detect people across
multiple disjoint camera views. Various techniques based around colour (Baz-
zani et al., 2013) and texture (Bak et al., 2010) features have been proposed
to re-detect people in different camera views. While these techniques show
promise, performance is still limited with Bazzani et al. (2013) achieving
Rank-1 and Rank-10 matching accuracies (for an identification task) of 20%
and 50% for the Viper data set (Gray et al., 2007) (although, synthetic recog-
nition rates of approximately 88% and 75% are achieved for 5 and 10 subjects
respectively); while Bak et al. (2010) reported Rank-1 and Rank-10 accura-
cies of 41% and 80%, although it should be noted that this is for a much
smaller database than Viper (44 subjects verses 632).

One major problem in person re-identification is that of pose changes,
which cause a person to look different from different angles. Bak et al. (2015)
proposed learning a metric pool, where each metric is designed to best match
a pair of poses, as a method to improve performance in the presence of pose
variation. By first estimating the pose of the image pairs to compare, im-
proved performance could be achieved. Richer, more diverse feature sets
offer another avenue to improve performance and Bedagkar-Gala and Shah
(2014) explored how gait could be combined with appearance for recogni-
tion in surveillance imagery. The nature of gait, in that it can be obtained
at a distance without cooperation from the subject, makes it appealing for
surveillance. A sparse representation based method was proposed, which al-
lowed gait to be used without incorporating view-angle estimation, and also
allowed for missing data (in the event that gait could not be captured). It
was shown that despite the difficulties in extracting gait information, gait
could be used to improve re-identification performance.

A second major challenge in person re-identification is the open world
nature of the problem. The majority of existing work assumes a closed-
world scenario, i.e. every subject in one camera has a matching image in
a second. This is a highly unrealistic view, and the recent work of both
Cancela et al. (2014) and Kenk et al. (2015) has sought to address this and
re-formulate person re-identification as an open world problem. Cancela et al.
(2014) proposed a conditional random field inference based framework to deal
with the open-world nature of the problem, by learning possible transitions
between cameras to improve matching across complex networks. Kenk et al.
(2015) proposed an on-line distributed system, that incorporated novelty
detection and a forgetting mechanism to add new potential identities and
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remove those that are no longer required.

2.2. Change Detection

Change detection is the process of identifying medium to long term changes
in the scene. This process is different from motion segmentation in that it is
not concerned with moving objects; instead changes to the underlying back-
ground are of interest, such as an object missing (i.e. theft), or a new item
being added (i.e. abandoned luggage).

The vast majority of change detection algorithms have been developed
and demonstrated as abandoned object detection systems. Early systems
used long term change detection (Sacchi and Regazzoni, 2000; Stringa and
Regazzoni, 2000), double background subtraction (Herrero et al., 2003; Singh
et al., 2009), or multiple layers of motion segmentation (Denman et al., 2007)
to cope with occlusions; with recent methods adding filtering stages to re-
duce false alarms (Wen et al., 2009; López-Méndez et al., 2014; Nam, 2015).
Algorithms designed for multi-camera environments have also been proposed
(Auvinet et al., 2006; Krahnstoever et al., 2006), although these use a simi-
lar methodology to typical single camera approaches in that they simply use
motion segmentation information to locate regions of interest and the data is
aggregated across the multiple cameras (either prior to detection in the case
of Auvinet et al. (2006), or after detection and tracking as in Krahnstoever
et al. (2006)).

Typically these systems are able to achieve high detection rates (100%
for Krahnstoever et al. (2006), 85% for Auvinet et al. (2006) and Singh et al.
(2009)), although evaluations are limited and restricted to small data sets
such as PETS 2006 Thirde et al. (2006), which only contains seven examples.
It should be noted that a common weakness of all these approaches is that
they are prone to false alarms in difficult conditions, such as when large
numbers of people are standing still, or the abandoned luggage is frequently
occluded.

To overcome the problems of background modelling based methods, a
number of approaches to filter candidates have been proposed. Wen et al.
(2009) refined a set of coarse candidates through classification with a gen-
erative model incorporating colour, shape, edge and texture features. This
approach is shown to be able to detect over 85% of abandoned objects with
no false alarms on a larger database of 29 examples. López-Méndez et al.
(2014) proposed the use of prior information (geometric information that
describes the ground plane locations, and detector output that provides the
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likely locations of people) to help reduce the number of false alarms gener-
ated by a multi-layer background subtraction method. The approach was
shown to be able to detect all abandoned objects with no false alarms on the
PETS2006 database. Nam (2015) used the relationship in time and space
between moving and stationary objects to filter candidate regions, achiev-
ing high performance on a number of databases. While approaches such as
these reduce the susceptibility to false alarms, the reliance on background
modelling means that missed detections in crowded situations are still a sig-
nificant problem.

2.3. Detecting Events in Crowds

As outlined in Section 2.1, tracking people in crowded scenes is challeng-
ing and often unreliable. As such, the monitoring of a crowded scene is often
better served by using event detection techniques, that extract features from
the scene (such as optical flow (Wang et al., 2009a) or optical flow derived
features (Ryan et al., 2011a; Nallaivarothayan et al., 2014), particle trajecto-
ries (Xu et al., 2012a), or dynamic textures (Mahadevan et al., 2010)), and
use these to model the interactions of individuals and the activities present
in the scene.

While simple events such as a mass evacuation or panic (such as depicted
in the UMN data set 5) can be detected with high reliability (Xu et al.
(2012b) and Mehran et al. (2009) achieved AUCs of 0.97 and 0.96 respec-
tively), more subtle events such as a cyclist or skateboarder moving through
a crowd of pedestrians as depicted in the UCSD data set (Mahadevan et al.,
2010) are more difficult to detect. State-of-the-art approaches such as that of
Nallaivarothayan et al. (2014) have reported for detecting these more subtle
events (in terms of the equal error rate) of 14.9% and 4.89% for data sets
1 and 2 respectively, while Roshtkhari and Levine (2013) achieved an equal
error rate of 15% for data set 1.

For real world events typical of a transport hub, where crowd levels are
high and individuals are frequently occluded, the problem becomes even more
challenging. The TrecVid Surveillance Event Detection (SED) evaluations 6

seek to evaluate the performance of event detection algorithms in a crowded
airport environment, and aims to detect events such as a person running,

5This database can be found at http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi
6see http://www-nlpir.nist.gov/projects/trecvid/ for details on the TrecVid evaluations
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people embracing, and a person using a cell phone in a crowded airport
terminal. In such environments, performance is typically very poor. For the
2014 SED evaluation7, the performance for majority of events was limited
to a miss rate of approximately 80% at a cost of 10 false alarms an hour,
although one system was able to detect almost 50% of the ‘person running’
events at a cost of approximately 5 false alarms per hour. Of note is that
for all the events in the TrecVid SED evaluation, no system is able to detect
more than 50% of the instances of any event, regardless of the false alarm
rate, highlighting the difficulty in detecting such events in surveillance video.

One of the major obstacles for event detection research has been the data
annotation requirements. Unsupervised approaches are popular for anomaly
detection, but assume that the training data only contains normal events
(and contains examples of all normal events); while supervised approaches
need a large number of carefully annotated examples, localising the event
both in time and space, for the target events. Recently, weakly supervised
learning (Hospedales et al., 2011) has been proposed as a means to reduce
the burden of data collection, by only requiring coarse annotation (typically
approximate temporal segmentation) of the events. Weakly supervised learn-
ing allows a model for the target event to be learnt using data that contains
the target event as well as a number of background events, simplifying the
data collection process. To further reduce data needs, the recent approach
of Xu et al. (2015) is designed to require only a small number of examples of
the target event relative to the number of background examples.

2.4. Re-Detecting and Searching for People

A major security challenge is that of locating a person in an environment
from a simple, semantic, description (i.e. 1.7m tall, blue shirt and grey
trousers). To achieve this, a mapping must exist between the semantic traits
and the real-world appearance of those features (i.e. we need to learn what
a blue shirt looks like, and be able to detect it). It is only recently that
researchers (such as Park et al. (2006); Vaquero et al. (2009); D’Angelo and
Dugelay (2010); Satta et al. (2012); Denman et al. (2012)) have attempted to
address this problem. However, while promising results have been obtained,
techniques that are appropriate for real-world deployment are a long way off.

7see http://www-nlpir.nist.gov/projects/tv2014/active/tv14.workshop.notebook/tv14.sed.results/
for evaluation results
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Many techniques (Park et al., 2006; Vaquero et al., 2009; Satta et al.,
2012) have relied on the subject already being detected and segmented which
is itself a challenging problem, especially in crowded scenes. Satta et al.
(2012) proposed learning the appearance of various features (i.e. a red shirt,
short trousers or a skirt), and demonstrated the recognition performance
for these features using the Viper database (Gray et al., 2007). The break
even point on precision-recall plots (the point where precision equals recall)
is used to evaluate the performance of the proposed approach, with break-
even point values of between 0.916 and 0.433 being achieved (note that for
the break-even point, a score of 1 indicates perfect performance, while 0
indicates complete failure). This work was extended in Satta et al. (2014)
to allow for people with specific attributes to the be located, although the
requirement that the subject first be detected and localised remains.

Less constrained techniques have been proposed by D’Angelo and Duge-
lay (2010); Denman et al. (2012, 2015b); Halstead et al. (2014), that are
aimed at allowing such a search to be performed in crowded scenes where
person detection is not possible. D’Angelo and Dugelay (2010) sought to
locate potential hooligans in a football stadium, and used colour descriptors
and a patch-based approach to locate rival supporters congregating together.
Denman et al. (2012) and Halstead et al. (2014) proposed approaches where
an avatar based on size and colour features is used to locate a person in
an image sequence without requiring people to be first detected. While this
approach showed promise in that it could function in the presence of partial
occlusions, it is troubled by ambiguities in colours and errors in segmentation.
An alternate approach that built upon an efficient distribution field based
single object tracking approach (Felsberg, 2013) was proposed by Denman
et al. (2015b), who constructed a channel representation (CR) to describe
the target subject. The CR allowed the distribution of colours, as well as (to
a limited extent) the uncertainty in both the colours and their distribution,
to be incorporated. This approach was shown to outperform that of Halstead
et al. (2014), achieving good localisation of 74% of target subjects, compared
to only 37% for Halstead et al. (2014).

3. The Emerging Role of Automatic Surveillance in Operations
Management

A major limitation of existing surveillance systems is their focus on se-
curity at the expense of critical business performance data and operational
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information that can be extracted from the same system. Often, cameras
placed to look for security threats in public areas (such as a fight or dis-
turbance) are also able to observe an operational processes such as a queue,
doorway or meeting place. These cameras can also be used to extract ad-
ditional information of interest, such as the number of people in a space or
queue, or the rate of people moving through a doorway. While this infor-
mation may not provide any direct security information, it can be vital in
determining how well the overall system is functioning, and assist in rede-
ploying staff to deal with crowding, load balancing (Adrem et al., 2007), and
forward planning.

Although some technologies do exist for monitoring queues and passenger
movements, they rely on additional hardware and many require the passenger
to possess a device which can be detected and tracked (such as a BlueTooth
or WiFi enabled mobile phone). Furthermore, while it may be possible to
capture this information from other sources, integrating this data with other
security information - whether it is obtained by automatic or manual moni-
toring of CCTV feeds, from access control or from human observers - is far
from trivial.

Emerging technologies, such as crowd counting from CCTV footage (Ryan
et al., 2011b, 2015), are enabling surveillance systems to play a greater role
in operations management. At present, existing commercial systems require
specially configured cameras (i.e. placed directly overhead for a top-down
view), however, current research is seeking to address this limitation and
develop turn-key solutions. In addition, operational measures can also com-
plement and enhance security. Techniques such as crowd counting, while
offering a powerful tool for managing operations, also allows the detection of
unusually large gatherings, and unusual crowd patterns which may indicate
a security threat.

The complementary interests of security and operations gives rise to the
surveillance framework presented in Figure 1. The main components of this
framework are outlined in the following Sections:

1. Data Capture Layer (Section 3.1),

2. Intelligence Layer (Section 3.2),

3. Aggregation Layer (Section 3.3),

4. Reporting and Monitoring (Section 3.4).
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Figure 1: Diagram of the Proposed Surveillance Framework - Captured data is collected
and stored, and also analysed by the intelligence layer. These results can be combined to
produce both security and operational information, across both an individual site and a
complete enterprise.

3.1. Data Capture Layer

Within a modern transportation environment there are many potential
sources of data, from building access control systems to CCTV networks to
mobile devices carried by staff and customers alike. Ideally, all these sources
of data should be captured by a common framework, allowing both security
and operational analytics algorithms to share the multiple data sources to
improve results. Data sources that could be captured include: video feeds,
audio feeds, satellite positioning systems (GPS) (Bandini et al., 2007), RFID
inventory and asset management systems, WiFi and Bluetooth device ID’s
and locations, wireless cellular access device ID’s and locations, building ac-
cess control, and fire/heat alarm systems. Of these data sources, we consider
the video feeds to be the richest source of data for the capture of detailed
operational measures of interest.

There exists a large body of research concerned with the development of
video analytics to extract information from video data, and there are several
commercial systems that incorporate video analytics. We consider the other
sources of data as complementary, and useful as a means to trigger an action
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within the video analytics (i.e. a door alarm being activated may result
in a video analytic being used to locate and track the person who set the
alarm off), or to provide support to the video analytics (i.e. a person may
be tracked by both the video analytics, and other signals such as WiFi or
BlueTooth through their mobile phone).

3.2. Intelligence Layer

Within current commercial systems, many (if not all) of the data sources
outlined in Section 3.1 can be captured and stored, albeit not necessarily
within the one system. However, at present there is very little automated
processing of the data streams, aside from some video analytics typically fo-
cused on security (see Section 2). There is the potential for a great deal more
data to be extracted from these diverse input streams, leading to increased
situational awareness.

From an image processing standpoint, there is significant overlap between
security and operational analytics in terms of the image processing tasks that
are required. Figure 2 shows how a variety of video analytics can be built
on a common set of underlying algorithms. Many object tracking algorithms
(Tang et al., 2015; Ben Shitrit et al., 2014; ?; Denman et al., 2010; Ottlik and
Nagel, 2008; Zhao and Nevatia, 2004) rely on motion segmentation and/or
optical flow, as well object detection. Similarly, other algorithms such as
super-resolution (Lin et al., 2005, 2007; Fookes et al., 2012) or crowd counting
algorithms (Ryan et al., 2010; Chan et al., 2009) also make use of techniques
such as motion segmentation and optical flow, as well as additional cues such
as edges. Further, many biometric acquisition systems require the person and
their face/gait to first be detected which can be achieved using a wide variety
of techniques including object detection, motion or colour segmentation. It
should also be noted that at a lower level still there are large overlaps as many
of these techniques also make use of gradient information (for example, the
motion segmentation of Denman et al. (2009b), optical flow of Black and
Anandan (1993); Zach et al. (2007), feature information of Lakemond et al.
(2009), object detection of Dalal and Triggs (2005), and colour segmentation
of Rother et al. (2004) all utilise image gradients).

These algorithmic tasks can also inform one another, for example, soft
biometrics can be extracted once a person has been tracked for a sufficient
time period (Denman et al., 2011), or a detected event can trigger an alarm
and initiate object tracking.
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Figure 2: Many video analytics build on a common set of low-level computer vision al-
gorithms. For example object tracking and crowd counting can both make use of motion
segmentation, while in both object tracking and biometric extraction object detection is
required.

At a higher level, the outputs from these algorithms can be used to gen-
erate measures and alarms, once again with significant overlap. For example
the output from the crowd counting can provide an operational measure of
the number of people in an area, but could also trigger an alarm based on
overcrowding. Similarly, object tracking and soft biometrics could be used
to track a person of interest through the environment, or monitor the trajec-
tories of all patrons, and record the times taken to move between different
areas.

Within this section we will examine two sets of techniques that are prin-
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cipally operational, but can also reinforce the security of an environment:

1. Techniques to count crowds and individuals;

2. Techniques to observe people and their movements.

In the following two subsections, we present an overview of both sets of
techniques, and demonstrate how they can be applied in a transportation
hub environment.

3.2.1. Counting Crowds and Individuals

Counting the number of people in a scene provides an important oper-
ational measure. The number of people in a space can inform operational
aspects such as staff allocations, and also detect abnormal events such as
over or under crowding. Current commercial systems typically require spe-
cially placed cameras (see Sensormatic (2012); OTOT (2012)) which while
potentially highly accurate, does incur an additional cost in infrastructure.
The majority of approaches proposed in the research space have sought to
use arbitrarily placed cameras, enabling existing surveillance infrastructure
to be utilised.

The majority of crowd counting approaches have used holistic features to
estimate the crowd size (Chan et al., 2009; Kong et al., 2006; Davies et al.,
1995; Marana et al., 1997; Zhang et al., 2015c,a). Such an approach provides
a count for the whole frame, but does not provide any information on the
distribution of people within the frame. Furthermore, due to the variations
possible in crowd size, distribution and appearance, very large training sets
(in the order of hundreds (Kong et al., 2006) or thousands (Chan et al.,
2009) of frames) are required; although recently the work of Zhang et al.
(2015c) has sought to reduce the training requirements through the use of
label distribution learning.

Approaches that use local features (Zhang and Zhang, 2014; Bondi et al.,
2014; Ryan et al., 2014, 2010, 2009; Lempitsky and Zisserman, 2010; Kilambi
et al., 2008) can overcome many of the limitations of holistic approaches. The
approaches of (Zhang and Zhang, 2014; Bondi et al., 2014) use a counting by
detection approach, where a learned detector for a a region such as the head
and shoulders is used to locate and count all people in the scene. While this
works well for uncluttered environments, it does not perform well in dense
crowds. Other approaches measure statistics for individual motion regions.
Ryan et al. (2010, 2009) extracts a set of features from each motion region
such as size, and an edge orientation histogram. Through regression an
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(a) Sparse groups in the UCSD data set. (b) Larger groups in the UCSD data set.

Figure 3: Screenshots of the crowd counting algorithm proposed by Ryan et al. (2012).

estimate of the size of each group is determined. Lempitsky and Zisserman
(2010) follow a similar approach, however, a feature vector is extracted for
each pixel rather than each motion region. Such approaches can be trained
from significantly less training data, with techniques such as Ryan et al.
(2010) able to be trained from as few as 10 frames.

We compare results from both local and holistic systems by evaluating
them on the UCSD benchmark data set. This data set was introduced by
Chan et al. (2008) and contains 2000 annotated frames of pedestrian traffic
moving in two directions along a walkway. The video is distributed at a down
sampled resolution of 238 × 158 pixels and 10 fps, grayscale. An example
frame is shown in Figure 3.

To assess the accuracy of these systems, the testing protocol of Chan
et al. (2008) is adhered to. Following this protocol, frames 601-1400 of the
UCSD data set are set aside for training, while the remaining 1200 frames
are used for testing. In keeping with the training protocol of Lempitsky
and Zisserman (2010), a subset of the training data was selected: in MAT-
LAB notation, the ten frames 640:80:1360 were used. Additional subsets,
610:80:1330 and 670:80:1390, were used to give a more representative picture
of the performance of local systems using just ten frames.

These results are tabulated in Table 1. The mean absolute error of the
holistic systems, Kong et al. (2006) and Chan et al. (2008), lie between
1.92 and 2.47. The local approaches proposed by Lempitsky and Zisserman
(2010) and Ryan et al. (2012) outperform the holistic methods significantly,
with a mean absolute error ranging from 1.28 to 2.02; supporting the recent

20



System Training subset Error MSE
Kong, linear all 1.92 5.60
Kong, neural network all 2.47 ± 0.41 9.53 ± 3.01
Chan, away+towards all 1.95 5.75
Chan, all all 1.95 6.06

Lempitsky
605:5:1400 1.70 -
640:80:1360 2.02 -

Ryan
610:80:1330 1.72 4.50
640:80:1360 1.28 2.74
670:80:1390 1.45 3.39

Table 1: Testing results on the UCSD data set. Frames 601-1400 were set aside for training,
and frames 1-600 and 1401-2000 were used for testing. Mean and standard deviation are
reported for the neural network based on five runs.

findings of Ryan et al. (2015) which clearly demonstrated the superior per-
formance offered by local approaches. Screen shots from one system (Ryan
et al. (2012)) during operation are shown in Figure 3. Blob perimeters are
drawn in red and the group size estimates are written on the centroid of each
blob, rounded to the nearest integer. In most cases the group estimate is
correct to within 1 of the ground truth. An advantage of the local features
based approach is that the system can provide a crowding estimate not just
for the holistic level, but for the regions occupied by each group within the
image. This could be used by a system to detect abnormal crowd distribution
patterns or local overcrowding situations, even when the holistic crowd size
is within normal ranges.

For a transport hub which potentially contains hundreds of cameras, hav-
ing to annotate hundreds of frames for each camera is not practical. Local
techniques offer a solution to this problem in that they can be implemented
in a view invariant manner (Ryan et al., 2014, 2012; Fu et al., 2014; Zhang
et al., 2015a). This means that a model can be trained on a set of standard
data and be deployed across multiple cameras without any further training,
ensuring improved utility within a real world environment.

Scene invariance can be achieved in a variety of ways. Fu et al. (2014)
achieves scene invariance through the use of overhead mounted depth cam-
eras, which although successful, requires the installation of specialist hard-
ware. Zhang et al. (2015a) uses deep-learning to learn how to count holisticly
in unseen images. While this is potentially a very powerful approach, holistic
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Test Set Mean abs. error Mean square error
PETS 2009, View 1 1.65 3.91
PETS 2009, View 2 1.23 3.31
PETS 2006, View 3 0.34 0.39
PETS 2006, View 4 0.79 1.15
QUT, Camera A 0.92 1.56
QUT, Camera B 2.06 9.37
QUT, Camera C 1.22 2.42
All tests 1.17 ± 0.57 3.16 ± 3.00

Table 2: Scene invariant testing results on seven data sets with camera calibration. When
testing each viewpoint, the system is trained on the six other viewpoints.

approaches are limited by only providing a single count for the entire frame,
and ignoring the distribution of people in the scene. The approaches of (Ryan
et al., 2014, 2012) use camera calibration to normalise features such that they
become scale invariant. This approach has the added advantage that by us-
ing camera calibration, the approach is inherently capable of counting across
multiple cameras, and we evaluate this approach here.

Seven benchmark data sets with camera calibration have been identified
for this purpose: PETS 2009 (Views 1 and 2), PETS 2006 (Views 3 and 4) and
the QUT data set introduced by Ryan et al. (2011b). Camera calibration
is used to normalise features between viewpoints in order to account for
differences in camera position and orientation with respect to the objects in
the scene. In each experiment one viewpoint was withheld for testing, and
the remaining six viewpoints were used for training. Ten frames from each
training viewpoint were selected, so that a total of sixty training frames were
used to train the system in each experiment. Testing was then performed on
the remaining viewpoint.

Results for these experiments are tabulated in Table 2. Across all exper-
iments, weighted equally, the mean absolute error was 1.17±0.57.

This local feature approach has a number of advantages, most notably
that it enables multi-camera crowd counting as outlined in (Ryan et al.,
2014), and that it allows for a true ‘turn-key’ solution. By removing the
requirement to train for a specific camera view this approach can be easily
deployed across a large camera network without compromising performance,
whilst also being able to make use of existing infrastructure.

An alternate counting problem is that of counting the number of people
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moving past a point, such as the number entering a queue, or entering a
shop. This task is quite different from crowd counting, in that it concerns
itself with the number of people passing a specific point in space over time,
rather than the total number of people in a space at any given instant.

Several approaches have sought to use used overhead cameras (Terada
et al., 1999; Kim et al., 2002; Chen, 2003; Chen et al., 2006; Velipasalar
et al., 2006; Barandiaran et al., 2008; Albiol et al., 2009), from which people
can be easily located and counted through motion segmentation. However,
a solution such as this is not appropriate for the vast majority of existing
CCTV infrastructure. Kim et al. (2008) proposed the concept of the ‘virtual
gate’ for counting crowds past a point. Kim et al. (2008) uses a single line
in the image, and observed optical flow perpendicular to line over time. The
observed flow is integrated and scaled by a learned coefficient to obtain a
count. Similar approaches have been proposed by Ma and Chan (2013), who
introduced a fixed-length sliding temporal window, generating a larger set of
samples to train a Bayesian Poisson regression model; and Mukherjee et al.
(2014) who used the concept of the influx and outflux count from a region of
interest to count people as they passed through a region by tracking pixels on
boundary of the ROI. A region based approach proposed by Denman et al.
(2015a) detects feature points corresponding to pedestrians and accumulates
them as they pass through the virtual gate. During each window of time,
the number of people who entered the gate is estimated. A small evaluation
of Denman et al. (2015a) is shown below. Two ‘virtual gates’ are trained to
measure the disembarkation rate from an aircraft. Approximately 3 minutes
of data is used to train each gate, during which approximately 50 people pass
through the region of interest. Figure 4 shows the region of interests for each
of the gates.

As can be seen from Figure 5, the approach of Denman et al. (2015a) is
able to accurately estimate the number of people passing through the gate
over time. A sample of the output from the algorithm of Denman et al.
(2015a) is shown in Figure 6, and it can be seen that the technique is able
to obtain an accurate estimate, despite the crowding and occlusions present.

While techniques such as the ‘virtual gate’ are highly useful for monitoring
entryways in retail spaces, they can also be combined with crowd counting
techniques in a complementary way. Such a combination could allow the total
people entering and exiting an area, as well as the overall number within the
area, to be counted with the results from the two processes combined to
achieve a more robust measure. A similar combination could be used to
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(a) Gate 77 (b) Gate 79

Figure 4: Configuration of two virtual gates. The non-shaded region is the ‘gate’ over
which people are counted.

(a) Gate 77 (b) Gate 79

Figure 5: Performance of the Virtual Gate for Two Sequences.

determine queue measures, as shown in Figure 7.
Within a queue, there are three parameters than can be measured: the

queue size (Q), the arrival rate (A), and the service rate (S). Measuring any
two of these allows the third to be estimated. We demonstrate how a queue
can be monitored using footage obtained from an international airport. For
this evaluation, Q is measured using the crowd counting algorithm of Ryan
et al. (2012), A is estimated using the virtual gate presented in Denman
et al. (2015a), and S is estimated from these two measurements. Two video
sequences are used in this evaluation:

• Sequence A, of length 12 minutes, containing 35 passenger arrivals,
27 passengers serviced and 26-32 people in the queue.

• Sequence B, of length 20 minutes, containing 37 passenger arrivals,
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(a) t = 0s (b) t = 15s (c) t = 30s (d) t = 45s (e) t = 60s (f) t = 75s

Figure 6: An example of correct operation of the virtual gate, for gate 77 with an interval
of 5 seconds. The green number indicates the estimated count, and the white number is
the ground truth.

Figure 7: Combining crowd counting and virtual gates to measure queue parameters.

57 passengers serviced and 19-38 people in the queue.

These sequences feature queues located at the check-in counter. They
contain both human and non-human objects, making crowd counting and
crowd flow monitoring particularly challenging. For each experiment, two
tests were run: the system was trained on Sequence A and tested on Sequence
B, and then vice versa.

In order to evaluate performance of the crowd counting component, the
mean absolute error per frame was used. The performance of the crowd
counting algorithm is tabulated in Table 3. The mean absolute error across
both sequences was 2.80, and the mean relative error was 9.74%. These
values indicate an acceptable level of error for queue length estimates.

The virtual gate algorithm was evaluated by monitoring a sequence of
arrivals at the end of a queue. Time windows of length 30 seconds were
considered, and the virtual gate module was evaluated using the mean abso-
lute error per 30 second window. Across both sequences, a mean error per
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Sequence Absolute error Percent error Square error (MSE)
Sequence A 2.59 8.95% 8.48
Sequence B 3.01 10.53% 11.35

Average 2.80 9.74% 9.91

Table 3: Performance of crowd counting on monitoring queue length.

Figure 8: Queue length, arrival rate and service rate for Sequence B. The queue length
decreases when the service rate exceeds the arrival rate.

window of 0.394 people was obtained.
Finally, all three parameters (Q,A,S) are plotted in Figure 8 for Sequence

B. Estimates are plotted alongside the ground truth for visual comparison.
This plot also illustrates the relationship between the three parameters: the
size of the queue decreases when service rate exceeds the arrival rate, for
example. Although the combined techniques are frequently in error by a few
people, overall trends (i.e. growth) are clearly visible and correctly aligned
to the ground truth.

As noted in (Denman et al., 2015a), the relationship between multiple
virtual gates and crowd sizes could also be exploited outside of a queuing
scenario to measure building utilisation, or even track passenger movements
across multiple locations. The use of GPR in both the demonstrated crowd
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counting and virtual gate methods also offers the possibility to model multiple
gates and even crowd size jointly by learning the relationship between the
different sites (Osborne et al., 2012).

3.2.2. Observing People and their Behaviours

While the techniques outlined in Section 3.2.1 outline how crowds can be
observed, there also exists a need to understand how an individual behaves.
Questions such as ‘How long does it take a person to get from A to B?’ and
‘What paths do people take through an environment?’ can’t be answered by
simply observing the crowd.

Soft biometrics (Reid et al., 2014; Tome et al., 2014; Dantcheva et al.,
2011; Denman et al., 2009a; Jain et al., 2004) are an emerging technology
that allow people to be coarsely identified through surveillance footage. Soft
biometrics use traits such as height, weight/build, skin and hair colour, and
clothing colour to identify people, albeit not uniquely. Using these models, it
is possible to repeatedly detect specific individuals, and capture time-based
metrics for these individuals as they move through the environment.

In many respects, soft biometrics are similar to the techniques used
in person re-identification in multi-camera networks. However many re-
identification techniques focus (at least partially) on texture based features
(Farenzena et al., 2010; Bak et al., 2010) which are not ideal as soft biometrics
as they are less likely to be view invariant. In an unconstrained surveillance
situation, it is important that a level of view invariance (tolerance to differ-
ent view points, i.e. front on, side on) is present, as people can look vastly
different from different viewing angles. Also, some modalities can only be
acquired from certain angles (i.e. depending on how the subject is dressed,
it may be difficult to capture skin colour when observing the subject from
behind).

Soft biometrics do not offer the same level of discriminablity found in
traditional biometrics (i.e. face (Anantharajah et al., 2014; El Shafey et al.,
2013; Thanh et al., 2012), voice (Kanagasundaram et al., 2015; Vogt and Srid-
haran, 2008), iris (Nguyen et al., 2013; Daugman, 2004)), and gait (Mart́ın-
Félez and Xiang, 2014; Sivapalan et al., 2013)) . In a crowded space where
there are hundreds or possibly thousands of people present, there are likely to
be a large number of people who share a very similar appearance (i.e. at an
airport there are likely to be a large number of people in dark suits) making
accurate matching across views challenging and error prone. However, recent
work (Denman et al., 2011) has shown that it is possible to use soft biomet-
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rics to determine what the ‘average’ appearance is, and thus locate people
who look unusual and can be more accurately re-detected. This information
can then be exploited to provide additional operational information. Figure
9 illustrates this process.

Figure 9: Detecting and re-detecting distinct looking people in an environment.

Through this continuous re-detection of a subset of people, parameters
such as the time taken to get between points as well as trajectories through
an environment can be continuously estimated. By incorporating additional
soft biometrics such as gender and age, it also becomes possible to measure
demographics.

We demonstrate how soft biometrics can be used to estimate dwell times
on data captured at the security screening point at an international airport.
The virtual gate of Denman et al. (2015a) is used to monitor entrances and
exits to the queue, and people are detected and extracted as they enter and
exit the queues. The soft biometric models of Denman et al. (2011) are built
to represent the people that are detected as they pass through the virtual
gate, and these models are compared to a global average, allowing people
that look distinct (and are thus easier to match) to be identified. These
‘distinct’ people are added to a watch list, and are re-detected as they exit
the system, allowing a dwell time for the person to be estimated. It should be
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noted that it is not possible to extract every person who passes through the
virtual gate, as people may be occluded (i.e. two people entering together),
which prevents accurate segmentation and localisation of the individuals.

The security screening point used in this evaluation is monitored by four
cameras (two at the entrances and two at the exits), and a diagram of the
proposed system is shown in Figure 10. This approach is able to estimate
the entry and exit rates from the screening area, the total number of people
waiting, and the average dwell time for people in the area.

Figure 10: Diagram of the System - Virtual gates are placed on the entrances to the security
screening queues (yellow zone), and the entrances to the customs outbound processing
queues (green zone). Distinct people are detected as they enter and are matched as they
exit to determine overall dwell time.

The system is evaluated on a two hour sequence, and separate footage
(approximately 30 minutes per camera) is used to train the virtual gates and
average soft biometric models. The entry and exit rates, and overall queue
size for the sequence (as well as a comparison to hand annotated ground truth
for a portion of the sequence) are shown in Figure 11. The mean absolute
error between the estimate and the ground truth (the error is calculated
based on the counts in each minute) for the entry rates and exit rates are
1.59 and 2.34 people. The mean absolute error for the queue size, is 1.52. It
can be seen that the observed errors are small, and the trends observed in
the ground truth are reflected in the system estimates.

Rates at which counted people are extracted, as well as the number of
unique subjects, are shown in Table 4.
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(a) Comparison to Ground Truth (first 45 minutes)

(b) Whole Sequence (2 Hours)

Figure 11: Evaluation of the Combined System. A comparison to hand annotated ground
truth for the first 45 minutes of the sequence is shown in (a), and the output across the
entire system is shown in (b).

From the unique people detected, 54 are matched and an average dwell
time of 3 minutes and 43 seconds is estimated. Figure 12 shows a plot of
the different dwell times detected, as well the likelihoods for each match. A
robust average is used to estimate the dwell time, so that those people that
are matched with a higher probability are given greater weight. Of the 54
matched people, 14 are matched correctly, 18 are matched incorrectly, and
the accuracy of the remaining 22 matches cannot be determined from the
video footage due to the low resolution nature of the footage, and changes
in pose between the entrances and exits. Despite the matching performance,
the estimated dwell time of 3:43 is very close to the ground truth dwell time
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Gate Count # Detected (%) # Distinct (%)
Before North 197 110 (55.8%) 57 (52.8%)
Before South 630 435 (69.0%) 99 (22.8%)
After North 173 133 (76.9%) N/A
After South 580 499 (86.0%) N/A

Table 4: Number of people counted at each gate, and the rate at which they are detected,
and are classified as distinct.

of 3:54, indicating that this approach can obtain accurate estimates for dwell
times, despite difficult conditions.

Figure 12: Dwell times for matched people, and the likelihoods of each match. The colour
of the bar indicates the likelihood of the match.

It is important to note however that performance could be further im-
proved by using better person re-detection techniques as a basis. The method
used in the proposed approach has advantages in that it is computationally
simple and lends itself well to locating unique people, however alternate per-
son re-detection methods such as (Bak et al., 2015; Bazzani et al., 2013) are
likely to yield further improvements.

Similar approaches to that shown can be used to monitor dwell times
across a multi-step process, or record coarse trajectories for a subset of people.
Soft biometrics are also a potentially powerful tool for security, as there exists
the potential to use them to track a person through a crowded, disjoint
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camera network, and locate a specific person of interest given a previous
sighting.

3.3. Aggregation Layer

Traditionally, sub-systems such as CCTV, building access and fire alarms
have been both physically and logically separated. When an alarm is trig-
gered by one sub-system, the onus is on the operators to check other sys-
tems, to verify the alarm and/or get additional information. Recent com-
mand and control packages are beginning to facilitate the integration of these
sub-systems, through features such as enabling relevant CCTV feeds to be
displayed when an alarm is triggered. However, this integration is still lim-
ited.

There are two possible ways to integrate these signals:

1. Through rules that reconfigure or initialise monitoring activities upon
a specific signal or event;

2. Through machine learning techniques that can detect events and anoma-
lies across multiple modalities.

The first of these approaches is, to a large extent, already possible. How-
ever, video analytics technologies can offer greater functionality. For exam-
ple, when access is denied to a security door, rather than simply switching
to a camera covering the doorway and allowing the operator to take action,
a single object tracking approach (see Section 2.1) could be engaged to track
the person, and during tracking biometric information (i.e. face, gait) could
be acquired to determine the identity of the person who was denied access.

Machine learning techniques can also be used to integrate multiple signals
to detect events across a diverse range of inputs. Probabilistic topic models
(Blei et al., 2010, 2003) have been shown to be capable of combining data
sources such as images and key-words describing the images to classify un-
known images (Wang et al., 2009b), detect multi-agent events (Wang et al.,
2009a) (i.e. traffic events), or actions in video Umakanthan et al. (2014).
Such techniques could also be used to combine diverse signals such as video,
audio and building access to detect events and anomalies. Similarly, Gaussian
Process Regression can be used to combine multiple related signals (Osborne
et al., 2012) to obtain improved estimates by learning and exploiting the
relationship between the signals. Other recent research (Wu et al., 2014)
has shown how surveillance outputs can be combined with ‘static’ forms of
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data, such as staff or flight schedules to monitor and predict performance of
airport processes.

Techniques such as (Wu et al., 2014) can also support partial data, al-
lowing comparisons to be made to historic data, and data from other sites
within the broader network (i.e. incorporate data from other transport hubs).
Integration such as this can allow abnormalities to be detected through com-
parisons to previous conditions, and allow for prediction of future behaviour
and conditions, enabling improved forward planning and staff scheduling.
Analytics could also be developed that operate on historic data, looking for
differences or anomalies in performance of the system, or for anomalies across
multiple sites.

3.4. Enterprise-Wide Reporting and Monitoring

The integration of systems enables a single point of management for mul-
tiple facilities (e.g. the integrated solution employed at Stockholm Arlanda
and Stockholm Bromma Airports (Adrem et al., 2007); or the integration
required by multiple stakeholders to fully utilise common use and self service
technologies Rostworowski (2012)). However, such integration results in an
increase in complexity and the amount of data being delivered to operators.

Like the acquisition of data, which can come from a diverse set of sen-
sors, the output of any analysis can be disseminated to an equally diverse
set of devices. These include: video walls and command centres, personal
computers/laptops, tablet PCs, and mobile phones or PDAs.

The rise of Internet capable tablet PCs and mobile phones provides a
new avenue for distributing such data. Rather than simply relying on verbal
communication between the command centre and staff on-site, staff in the
field can interact with the data directly. Alternate interfaces to those used
in a command centre and video wall are required for such devices, however,
this is achievable and interfaces can be tailored to the role of the person so
that they only see assets and alarms in their area of responsibility.

Mobile devices also offer the advantage of allowing on-site staff to ac-
cess and enter information directly, rather than relaying information to an
operator at the command centre. A staff member could potentially pull up
additional information as they need it, enter further details as they are un-
covered, or initiate an event. For example, a staff member could report a
suspicious person and enter a description (i.e. 1.85m tall, brown hair, fair
skin, wearing a red shirt and jeans) through their phone, from which a soft
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biometric query could be executed to locate the person in the system. Other
staff who are nearby the suspect could then be alerted to their location.

4. Case Study: The Future for Automatic Surveillance in Airports

In this section, we assess the modern airport as a case study, and de-
tail how the automatic surveillance framework presented in Section 3 could
be perceived to provide a secure, responsive and efficient airport environ-
ment. In Section 4.1 we discuss the continued support for traditional airport
and aircraft security, and highlight the emergence of capabilities which can
support timely and effective incident response management. In Section 4.2
we look at new capabilities for monitoring airport operations which will im-
pact on both airport and enterprise reporting of Key Performance Indicators
(KPI) into the future.

With a move away from security-only applications of video analytics, the
concepts and applications discussed in these sections should provide insight
to the design and installation of CCTV camera networks in airports into
the future so that they are able to fully harness the potential that has been
described in this paper.

4.1. Security and Incident Response Management

While the potential for organisation-wide performance monitoring is an
important factor in the innovative use of CCTV systems, added capability
enhancement is not limited to this area. Incident response capability and
more broadly safety management within airport contexts can also be en-
hanced by the integration of automatic surveillance frameworks with other
systems whose functionality might be seen as unrelated to conventional us-
age of CCTV (video-analytic) usage. For example if this capability is com-
bined with existing security system components such as Identity Management
(access control), emergency evacuation systems and spatial building plans,
significant expansion of incident response and management capabilities are
possible. An important element of such an emergent capability in the visuali-
sation of human activity in relation to ‘as-built’ space is enhanced situational
awareness of the extent of a loss of function or damage (Boehm et al., 2005),
or in extreme contexts, a security crisis.

The scale of consequences from incidents in such complex settings is often
difficult to anticipate. Furthermore, because of the potential for the rapid
flow of impacts throughout the many public and private spaces of an airport,

34



management may be unlikely to face single incidents but rather a series of
incidents within and across functional areas, often appearing concurrently.
The potential for this type of cascading effect may lead to decisions to evacu-
ate parts or all of an airport. If both land and airside spaces in an airport are
involved, the consequences of escalation of a response to such a level will be
significant. The ability to create a ‘common operating picture’ of security in-
cidents at a team level is an important factor in response and recovery. Such
ability is aided greatly by sophisticated use of CCTV and video analytics.

An outcome of this integration of video analytics with emergency recogni-
tion and response mechanisms is a nascent ability to rapidly assess the nature
of an incident and to enhance evacuation where needed. This is an important
issue in instances where conventional alarm systems such as for smoke or fire
are activated as these systems alone cannot differentiate between emergency
incidents caused by accident or from human intent (Boswell and Gwynne,
2007).

While they may be considered by some to be cost prohibitive, higher-end
video analytic systems, if used in a dual function context of business-as-usual
and business-not-as-usual can transform the agility of airport operations in
respect to both security and incident response.

Benefits would include:

• Enhancement of early threat recognition via rapid situational aware-
ness;

• Protection of critical infrastructure(s) if used in combination with com-
prehensive building design information detailing the position and na-
ture of at-risk building components;

• Support of protocols for the rapid escalation of response by capability
and capacity.

A Managed Response capability aided by the integration of in-situ CCTV
camera networks and video analytics, as described here, allows the combina-
tion of functions such as the estimation of crowd density and numbers within
specific airport locations as well as determination of best routes for evacu-
ation and location and directions of movement of self-evacuees within the
complex spaces of a modern airport. The use of ‘virtual gate’ crowd count-
ing capabilities enabled by the video analytic functionality is an obvious aid
in safe evacuation. Additionally, when re-occupancy of airport is delayed due
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to post-incident forensic assessments, use of video data can assist in damage
estimation and planning for remediation and repairs.

4.2. Real-Time Monitoring of Terminal Status and KPI Measurement

In addition to the ability to monitor the security and safety levels in the
airport as described in the previous section, the advance of surveillance sys-
tems has the ability to allow for more sophisticated operational monitoring.

In terms of operations monitoring, airport operators typically have very
good data for airside operations (in particular aircraft movements), but have
limited – often aggregated – data at the level of passenger flows on an hourly
basis (de Neufville and Odoni, 2003). With the advancements in video
analytic technology and the supporting framework, airport operators (and
other airport stakeholders such as government agencies, airlines, retail own-
ers, ground handlers etc) will be able to collect data with greater fidelity in
order to assist with operations management. Such data can also be used as
a gauge in the planning and design phase, complementing (and potentially
improving) peak-hour analysis.

In particular, such video analytics will provide the capability to perform
real-time monitoring of a wide range of indicators which are linked to internal
and external stakeholder key performance indicators, including widely estab-
lished Level Of Service (LOS) metrics. Typical LOS metrics which are used in
airports are related to space and time. Examples include the space provided
for passengers in different facilities (e.g. check-in or baggage reclaim), and in
passageways. These metrics often have associated LOS standards which are
defined by industry-wide bodies such as the International Air Transportation
Association (IATA), or by individual airports. These standards are based on
the premise that the greater the amount of space passengers have, the higher
the perceived level of service (de Neufville and Odoni, 2003).

Other commonly used levels of service are based on time (de Neufville
and Odoni, 2003; Correia and Wirasinghe, 2004). Examples include waiting
times in queues, service times for an individual process (i.e. check-in), or
aggregated service times such as the total time to be processed through all
landside areas (i.e. check-in, security and immigration). These metrics are
also linked with the levels of service standards for space, since passengers
only occupy space for a finite length of time (de Neufville and Odoni, 2003).

For both space and time levels of service, there can easily be a discrep-
ancy between the LOS used during the planning and design phase, and the
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actual LOS during operations. Through the emerging capabilities of the In-
telligence Layer (refer to Fig. 1), there is now an ability to understand the
real-time relationship between designed LOS and actual LOS. In particular,
space-defined LOS can be obtained through crowd counting analytics (Sec-
tion 3.2.1) and knowledge of the physical area of the space. Alternatively,
waiting times in queues can be calculated using queue-based metrics such as
measurement of arrivals and departures to queues through “virtual gates”.
These types of analytics provide the ability to determine average wait times,
but variations in times could also be captured with the addition of other
analytics techniques such as soft biometrics.

Crowd counting and space utilisation analytics can also be used to identify
bottlenecks and cross-flows (i.e. restrictions on passenger flows) which arise
during operation, and were not perceived in the design of the space. The
analytics have the ability to highlight where difficulties may be arising, and
the data warehousing capability provides a means by which the root cause
of the problem can be identified.

There are other less-formal levels of service which can be captured through
the use of video analytics and the proposed framework. For example, from
the review of LOS by Correia and Wirasinghe (2004) and the discussion
presented by Fodness and Murray (2007) around perceptions of airport ser-
vice quality, other LOS metrics which are not formally measured may now
be easily captured. Metrics such as the availability of seating and baggage
carts can be obtained through object detection and tracking, whilst advanced
behaviour monitoring could be used to provide indications of passenger ori-
entation, in particular identifying passengers who seem ‘lost’. Soft biometrics
could also be used to capture passenger walking distances.

Having this real-time capability for monitoring the performance of the
facility can be used to provide accurate information back to the passenger
(through the visualisation module of the proposed framework) in relation to
travel times and expected delays. Making this type of information available
to passengers may help to lessen the stress of navigating the airport in a
timely manner. Some airports already provide this type of information, either
through static walking times, or through delay indicators.

The advancement of video analytics has advantages for other airport
stakeholders aside from the operator themselves. For instance, government
agencies (who run immigration controls) will have the ability to monitor their
service rates in order to ensure they are meeting their required KPIs (as is
the case in Australia). Airlines will have the ability to monitor their service
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rates at check-in, and to monitor passenger boarding and deboarding which
are key elements to ensuring fast turn-around times of aircraft (Fricke and
Schultz, 2009).

The enterprise-wide reporting capabilities that have been included in the
proposed surveillance framework is important for benchmarking operations
across multiple facilities. Whilst this includes airport operators who manage
multiple airports (e.g. Queensland Airports Limited who operate Gold Coast,
Townsville and Mt Isa airports, or NT Airports who operate Darwin, Alice
Springs and Tennant Creek airports, both in Australia), this capability is
envisaged to be of greater benefit to stakeholders such as security contractors
and government agencies.

The proposed surveillance framework also provides the ability to report
KPIs to a common framework which is measuring airport performance. Given
the number of stakeholders present in the airport, it is often difficult to
assign accountability of the passenger movement to any one stakeholder.
Having the ability to monitor individual queues (e.g. check-in, security, im-
migration), spaces (e.g. baggage reclaim) and processes (e.g. aircraft board-
ing/deboarding) enables the development of a true performance framework
in which each stakeholder has full responsibility over their own operations,
and can identify the effects of their own performance on other areas of the
airport, and the overall airport level of service.

The data management aspects of the surveillance framework can also
provide a historical snapshot of the airport’s operations, which could provide
more detailed information to validate the data used to guide airport design.
Likewise, the video analytics capabilities can provide more advanced data for
airport passenger simulation models which require significantly more data
than is required for airside models (de Neufville and Odoni, 2003).

In summary, the introduction of operational analytics has the potential
to completely change, and ultimately improve, the way airport operations
are managed and reported. The proposed framework is able to support this
through an Intelligence Layer which includes new algorithms for tracking
passengers, counting crowds in spaces, and monitoring demand and service
of queues. The data warehousing aspects enable the collection of additional
data to improve future airport planning and design, and also enables stake-
holders who operate in multiple airports to benchmark their performance
across all facilities.
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5. Conclusion

In this paper, we have explored how intelligent surveillance is becoming
increasingly focussed on operational analytics, and the implications of this
for transport hubs and other large infrastructure. We have outlined two
particular areas of operational analytics: crowd counting (including counting
everyone in a scene, measuring pedestrian throughput and estimating queue
size) and dwell time estimation; and have shown how valuable operational
information can be obtained using these techniques. We have also discussed
the wider ramifications of these analytics, including how multiple analytics
can be combined, and how they can be combined with static information, to
provide a richer understanding of the infrastructure’s performance.

Despite the promise shown by these techniques and by the approaches
outlined in this paper, there are a number of problems that are yet to be
overcome. Whilst some techniques presented here such as the scene invariant
crowd-counting are ‘turn-key’ type approaches in that they can be deployed
with minimal set-up, other techniques such as the virtual gate require training
for each instance. While the annotation and training requirements are not
particularly onerous (training data can generally be annotated much faster
than real-time, and as little as 30 minutes is sufficient to train a model),
this requirement becomes more demanding as the number of cameras scales
up. The integration of such diverse sets of data streams across very large
sites is still an open problem, and although progress has been made, whether
through Bayesian approaches such as (Wu et al., 2014), or large scale data
collection such as (Denman et al., 2015a), there is as yet still no complete
system to integrate multiple operational analytics with other data sources.

To overcome these limitations and further develop operational analyt-
ics, a number of possible avenues exist. The joint modelling of multiple
data streams (i.e. counting multiple ‘virtual gates’ simultaneously) has the
potential to improve accuracy by incorporating observations where there is
mutual information (Osborne et al., 2012). Similarly, the integration with
other sources of data, such as passenger manifests or data from check-in or
border security terminals, may provide a way to further improve accuracy
by providing a secondary estimation of crowd size. Reducing the need for
data annotation and training for all camera views is also highly desirable.
While this can be achieved through camera calibration for techniques such
as crowd counting, the solution for other problems such as throughput esti-
mation (i.e. the ‘virtual gate’) is less clear, although using other techniques
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(such as crowd counting) to effectively boot-strap the system by automat-
ically generating a training set may yield one solution. The recent success
achieved by applying deep learning to crowd counting (Zhang et al., 2015a)
offers another direction that is also worth exploring.

Finally, there also exist a number of other security analytics that are yet
to be exploited for operational tasks. For instance, event recognition is pri-
marily focused on detecting specific or abnormal events in a security context,
but is equally applicable to monitoring processes in an operational scenario.
By incorporating event detection within a state machine (such as Bayesian
network), processes such as security inspections could be monitored and de-
tailed information on time taken could be gathered. Similarly, abnormal
events within the process (or even steps being performed out of order) could
be detected and personnel could be notified.
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