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Abstract 
This paper proposes a highly reliable fault diagnosis scheme for incipient low-speed rolling 

element bearing failures, which consists of fault feature calculation, discriminative fault feature 

analysis, and fault classification. The proposed approach first computes wavelet-based fault features 

including the relative wavelet packet node energy and wavelet packet node entropy by applying 

wavelet packet transform to an incoming acoustic emission (AE) signal. The proposed approach then 

sorts out the most discriminative fault features from the originally produced feature vector by using 

discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed 

approach employs one-against-all multi-class support vector machines (OAA MCSVMs) to identify 

multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based 

dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of 

classification performance. Experimental results show that the proposed methodology is superior to 

other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 

95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 

140 RPM, respectively. 
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1. Introduction 

Bearings have played a significant role in low-speed machines that are widely utilized in heavy 

industries, such as paper mills, steel pipe foundries, and wind-turbine power plants, in order to support 

heavy loads and provide stationary rotational speeds [59]. Thus, unanticipated bearing defects can lead 

to severe motor breakdown and significant economic losses. To address this issue, reliable fault 

diagnosis for incipient bearing failures is important. Vibration signal analysis has been widely utilized 

for bearing fault diagnosis because it provides the most intrinsic information about diverse bearing 

defects [3, 4, 7, 26, 39, 48, 50, 53]. Likewise, current signature analysis has been an alternative for 

condition monitoring of bearings, offering two advantages [18, 23, 35, 46, 68, 69]: 1) high sensitivity to 

diverse mechanical failures with its non-intrusive monitoring ability, and 2) low-cost failure diagnosis, 

because it needs no special devices to be installed on the motor. Although these analysis methods have 

shown satisfactory performance for diagnosing diverse bearing failures, they focused only on identifying 

bearing faults under high rotational speeds, which are hundreds to thousands of revolutions-per-minute 

(RPM). This is because these methods have problems capturing useful descriptions about low-speed 

bearing failures from very feeble vibration and current signals. To address this problem, acoustic 

emission (AE) has been attractive for fault diagnosis in low-speed bearings, because AE is highly useful 

for capturing low-energy signals [6, 10–13, 44, 47, 57, 59, 60, 63]. More specifically, according to 

Tandon et al. [57] and Yoshioka et al. [63], AE can capture intrinsic symptoms of diverse bearing 

defects before they appear on the bearing’s surface. Hence, in this study we exploit AE signals for early 

identification of incipient defects in low-speed rolling element bearings. 

During the past few decades, signal processing-based fault diagnosis methodologies have been 

popular studies for identifying bearing failures, such as a crack or spall on raceways of a bearing. The 

following three steps are crucial for bearing fault diagnosis: fault feature calculation, discriminative fault 

feature analysis, and fault classification. In the fault feature computation phase, calculation of statistical 

parameters including mean, standard deviation, kurtosis, and skewness is performed in order to describe 

diverse symptoms of bearing defects by exploring time domain analysis [26, 44, 47, 48, 59, 60], 

frequency domain analysis [4, 7, 10, 24, 54, 59, 60], and time-frequency domain analysis [1, 5, 6, 14, 17, 
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19, 21, 22, 27–29, 33, 35, 37–39, 49, 53, 56, 58, 65, 67, 71]. Due to the fact that signals (e.g., vibration, 

current, AE) acquired for bearing defect diagnosis have non-stationary property, time-frequency domain 

analysis has been recently of increasing interest in research on revealing the most informative description 

about bearing failures. Hence, fault feature extraction has been performed via the time-frequency domain 

analyses including wavelet transform (WT) and empirical mode decomposition (EMD). Specifically, 

wavelet-based fault features have been extensively utilized for failure diagnosis [14, 16, 27–29, 33, 49, 

56, 58, 62].  

In general, the dimensionality of a feature vector including these wavelet-based fault features is 

high. However, this high-dimensional feature vector may have unuseful fault features which can 

increase the number of misclassifications among different bearing failures, and thus dimensionality 

reduction of the feature vector is required while keeping the most useful information about diverse 

bearing failures. To address this issue, several methods such as principal component analysis (PCA) 

[8, 15, 20, 26, 45, 59, 72] and linear discriminant analysis (LDA) [9, 26, 59, 66, 70] have been 

introduced to reduce the dimensionality of the feature vector. PCA, which is one of the unsupervised 

analysis methods, is good for dimensionality reduction, and the resultant principal components via 

PCA can be alternatives to optimal fault features for early diagnosis of bearing defects. However, 

PCA has a shortcoming when it comes to preserving discriminative properties of bearings, because it 

lacks an inter-class separability estimation process. On the other hand, LDA, which is one of the 

supervised analysis techniques, can preserve discriminative information by exploiting within-class 

and between-class scatter matrices. As a result, it generally offers better classification results for fault 

diagnosis than those obtained by the PCA-family approaches, such as PCA and kernel PCA [26, 66]. 

In addition, Jin et al. [26] and Zhao et al. [66] presented trace ratio linear discriminant analysis (TR-

LDA) which is an orthogonal variant of LDA and eliminates redundant information from the scatter 

matrices in LDA. While the TR-LDA yielded satisfactory performance for identifying various bearing 

defects, it has a shortcoming for analyzing fault features not having Gaussian distribution. In practice, 

non-Gaussian fault features are often observed in many machinery diagnosis problems. Accordingly, 

the TR-LDA has been extended to effectively analyze non-Gaussian fault features. The extended TR-
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LDA exploits two new scatter matrices characterizing the inter-class separability and the intra-class 

compactness, which are generated from intrinsic and penalty graphs. However, the extended TR-LDA 

often has a problem characterizing the inter-class separability as the penalty graph cannot reflect the 

neighborhood relationships among various classes, and this property inherent in the extended TR-

LDA can be a major cause for degrading classification performance. To overcome these shortcomings 

in conventional dimensionality reduction approaches, this paper proposes a discriminative fault 

feature analysis based on a binary bat algorithm (BBA), which cooperates well with one-against-all 

multi-class support vector machines (OAA MCSVMs), where the SVM is a binary classifier using 

labeled information. The proposed discriminative fault feature analysis identifies an optimal set of 

fault features in an initially produced feature vector for diagnosing low-speed bearing failures. 

Finally, this proposed methodology discriminates various bearing defects by using an optimal set of 

fault features as an input of OAA MCSVMs, which are generally effective for achieving higher 

classification performance with limited training data [61]. 

The rest of this paper is organized as follows. Section 2 introduces diverse bearing defects and 

illustrates a test rig for experiments. Section 3 presents the proposed fault diagnosis methodology 

using fault feature analysis based on a BBA, and Section 4 evaluates its effectiveness in terms of 

classification performance, and compares the classification accuracy of the proposed approach with 

that of other state-of-the-art methods. Finally, Section 5 concludes this paper. 

 

2. Diverse Rolling Element Bearing Defects and Experimental Setup 

To identify incipient rolling element bearing defects, data obtained from a low-speed machinery 

fault simulator that enables modeling of bearing faults under different load conditions at different 

rotational speeds developed by CRC-IEAM, Queensland University of Technology (QUT) was used in 

the tests, as shown in Fig. 1(a) [34]. The test rig allows a range of bearing and gear faults to be 

simulated at low speeds with loads applied radially and by hydraulic devices. The test rig can record 

both vibration and Acoustic Emission (AE) signals, with the sensors mounted on top of the bearing 

housing, as shown in Fig. 1(b). In this paper, only AE data obtained using a wideband AE sensor 
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(Physical Acoustics Corp PAC R3a sensor) with a frequency range of 25-530 KHz was used. Fig. 1(c) 

illustrates a data acquisition system which is capable of 18-bit, 10-MHz analog-to-digital conversion, 

where a laptop was connected to a PCI board. To diagnose multiple bearing defects, various seeded 

bearing defects developed by QUT by using a diamond bit and a grinder with an air-grinding tool were 

used in this paper [31, 32]. Fig. 2 shows cracks and spalls on either raceways or the roller of cylindrical 

roller bearings (i.e., SKF NF307). In addition, a defect-free bearing was utilized as a reference case in 

this study. In total, this paper used six different types of AE signals under different load conditions (i.e., 

500-N and 2-kN) at different rotational speeds (20, 80, and 140 RPM) and 90 records of 1.5-second AE 

signals sampled at 500 kHz for each case. 

 

 

Fig. 1. (a) A low-speed machinery fault simulator developed by QUT [31, 32], (b) an AE sensor to record 

continuous AE signals, and (c) the data acquisition system used in this study. 

 

 

Fig. 2. Various seeded bearing failures [31, 32]. (a) Hair-line crack on inner raceway (CIR, 0.1 mm), (b) small-

line spall on inner raceway (SIR, 0.6 mm), (c) hair-line crack on outer raceway (COR, 0.1 mm), (d) small-line 

spall on outer raceway (SOR, 0.7 mm), and (e) medium-line spall on roller (MSR, 1.6 mm). 

 

In real industry, we can often observe overhung machines whose shafts are generally supported by 

two bearings (e.g., spherical or cylindrical roller bearings), and the bearings are one of the most 
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frequently failed components due to high vibration caused by mass unbalance and excessive loads. 

Specifically, the two bearings are differently loaded in overhung machines: a slight load is applied to 

the drive-end bearing while a relatively heavy load is applied to the non-drive-end bearing with 

approximately 3 times as much load as the drive-end bearing. Hence, it is significant to conduct 

research on diagnosing various bearing failures under different load conditions in order to offer a 

guideline for recognizing which bearing (i.e., the drive-end bearing or the non-drive-end bearing) is 

defective and what kinds of bearing failures are detected at either the drive-end bearing or the non-

drive-end bearing in overhung machines. In this study, we totally identify 10 different bearing defects 

and two defect-free bearings: six (i.e., five bearing failures and a defect-free bearing) under a 500-N 

load and another six (i.e., five bearing failures and a defect-free bearing) under a 2-kN load. 

 

3. Proposed Fault Diagnosis Methodology for Rolling Element Bearings 

As mentioned in Section 1, the proposed fault diagnosis methodology includes fault feature 

extraction, fault feature analysis based on a BBA, and fault classification using OAA MCSVMs. This 

section details each step in the proposed scheme. 

 

3.1. Fault Feature Extraction 

To effectively capture AE signals for diagnosing various bearing failures, an AE sensor should be 

placed on a non-rotating element in machinery, such as the bearing housing. Although the bearing 

housing is the nearest non-rotating element when acquiring the signals for diagnosis, signal 

attenuation occurs due to its distance from the source of bearing defects. This signal attenuation calls 

a signal decomposition tool to explore intrinsic symptoms of various bearing defects in mid- and high-

frequency regions. Discrete wavelet transform (DWT) is effective for analyzing defective information 

in AE signals owing to its decomposition ability, splitting signals into different frequency regions. In 

particular, wavelet packet transform (WPT) decomposes signals into uniform frequency bands, and 

thus it is more effective for achieving intrinsic information of bearing failures in mid- and high-
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frequency bands than DWT [36]. Thus, we utilize WPT for the purpose of fault feature extraction, 

such as the relative wavelet packet node energy (RWPNE) and wavelet packet node entropy (WPNE). 

Both RWPNE and WPNE are used to effectively reveal disorder behaviors in signals, which are 

useful for representing symptoms of bearing failures [62]. In this study, we first perform three-level 

WPT to decompose a 1.5-second AE signal, resulting in eight terminal nodes. As previously 

mentioned, since the most useful information revealing various bearing defects mostly exists in mid- 

and high-frequency bands, we exploit the last six terminal nodes in order to calculate fault features 

such as RWPNE and WPNE. When analyzing the signals with wavelet transform-based 

decomposition tools, we should carefully choose a mother wavelet function because it greatly 

influences the analysis result. In this study, Daubechies 20 (or db20), which is one of Daubechies 

wavelet family, is used to decompose signals because it well matches to the recorded AE signals for 

diagnosis, as depicted in Fig. 3. 

 

 

Fig. 3. (a) Waveform of an AE signal and (b) a Daubechies 20-tap wavelet (db20). 

 

As fault features for identifying various bearing failures, this study first computes RWPNEs as 

follows: 

( )
2
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1 1
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i j
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∑ ∑
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where Ncoeffs is the number of wavelet coefficients, Ntnodes is the number of terminal nodes considered 

for computing fault features in this study, and wi,j is the ith wavelet coefficient in the jth terminal 
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node.  

Then, this study calculates WPNEs as follows: 
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∑
. Because this study concentrates only on mid- and high-frequency bands 

which correspond to the last six terminal nodes, 12 fault features including six RWPNEs and six 

WPNEs are used to construct an initial feature vector for identifying various failures of bearings. 

 

3.2. Dimensionality Reduction based on a Binary Bat Algorithm 

For discriminative fault feature analysis, the proposed fault diagnosis approach employs a BBA 

[43], a heuristic method using the echolocation behavior of bats. The proposed BBA-based approach 

selects the most discriminative fault features to achieve the highest fault classification performance 

for low-speed rolling element bearings, where the BBA can identify an optimal feature vector for 

highly accurate low-speed bearing failure diagnosis by using the position vector of a bat, where each 

element of the position vector corresponds to the absence or presence of fault features (or statistical 

parameters) describing symptoms of rolling bearing defects. To select discriminative fault features, 

the BBA efficiently represents the position vector by using a set of binary values and an nf-bit 

encoded position vector (i.e., 0 or 1), which is used to construct an optimal feature vector, where nf is 

the total number of fault features. In this study, nf is set to 12 because the proposed approach utilizes 

six RWPNEs and six WPNEs as fault features. For instance, if the value of the ith element of the 

position vector is 1, we consider the ith statistical parameter of fault features as one of the most 

discriminative fault features for identifying bearing failures, and vice versa. 

In general, the BBA works with a set of initially generated position vectors (or solutions) called a 

population, and generates the best solution after a series of iterative computations. Fig. 4 presents the 

overall process of the BBA for analyzing fault features, consisting of the following five steps. 
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Fig. 4. The overall process of the binary bat algorithm for analyzing fault features, which sorts out the most 

discriminative fault features in a given feature vector for identifying incipient low-speed bearing defects. 

 
 Step 1: Initialization 

The BBA sets an initial population, P, by randomly generating a certain number of position vectors 

(i.e., one position vector for each bat). The size of P is np×nf, where np is the number of position 

vectors (or the number of bats). As depicted in Fig. 4, the initial population P is the result of Step 1, 

and is used for all the remaining steps. Moreover, the BBA is based on the aforementioned 

echolocation behavior of bats, which is idealized by describing their behavior as they find prey. In 

general, a bat randomly flies with an arbitrary velocity at its position with a varying frequency, and it 

searches for prey by changing its velocity and frequency. Consequently, it is necessary to initialize the 

frequency and velocity of each bat in the population.  

 Step 2: Evaluation 

In Step 2, the ith position vector (or the position vector of bat i), Pi, is evaluated in the current 

population, where i=1, 2, …, np. An operator (&) in Fig. 4 is used to take a subset of fault features in 

the given feature vector by the ith position vector, and an nt×nk matrix X is constructed that consists 

of fault features resulting from taking the & operation between the ith position vector and each nf-

dimensional feature vector in a training dataset, in which nt is the total number of training samples 

and nk is the number of selected fault features by the ith position vector (or the number of 1’s in the 
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ith position vector). Finally, an objective function evaluates the quality (or fitness) of the ith position 

vector using the resultant matrix X. As shown in Fig. 4, fit is an np-dimensional fitness vector 

indicating the quality of position vectors in the current population, and it is further utilized in the 

next steps. Section 3.3 provides more details about designing a suitable objective function. 

 Step 3: Parameter updating 

As mentioned in Step 1, the BBA iteratively updates frequency and velocity information to 

idealize the bat’s echolocation behavior as follows [41]: 

( )min max min ,if f f fβ= + −      (3) 

( ) ( ) ( ){ }1 1 ,i i i iv t v t f P t best= − + − −     (4) 

where fi and vi(t) are a random frequency and the velocity of bat i at iteration t, respectively. Likewise, 

Pi(t-1) is the position vector of bat i at iteration t-1, and β is a random value within the interval [0, 1]. 

In addition, best is the position vector of the bat that yields the minimum fitness value. In summary, 

Step 3 outputs the np-dimensional velocity vector v (see Step 3 in Fig. 4), including updated velocities 

of each bat and the best solution in the current population (or best in Step 3 in Fig. 4). These two 

vectors are utilized to generate a candidate position vector for each bat in Step 4. 

 Step 4: Candidate population generation 

In the BBA, each artificial bat modifies its own position in order to find prey. To model this in 

the BBA, it is necessary to flip bits of the position vector. However, the BBA cannot perform 

position updating for bats by adding the updated velocities to the previous positions, since it can 

only change positions from 0 to 1 or vice versa. Hence, several researchers have investigated ways 

to change the positions of bats with the probability of their velocities by using a transfer function, 

which maps velocity values to probability values [30, 42, 51]. According to Mirjalili et al. [41], 

large absolute values of bat velocities mean that bats need to fly far away to find prey and to switch 

their positions. Thus, a transfer function should offer a high probability of changing the position for 

a large absolute value of the velocity, and vice versa. To mathematically formulate this, Mirjalili et 

al. proposed a v-shaped transfer function as follows: 
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( ) ( )12 tan .2V x xπ
π

−= ⋅ ⋅      (5) 

The position of bat i is then modified, which is expressed as follows: 
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i j
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P if rand r
P
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≥




     (7) 

where ,i jP


 is the jth element of the position vector of bat i, where j=1, 2, …, nk, vi,j is the jth element 

of the velocity vector of bat i, rand is a random value ranging from 0 to 1, and r is a fixed constant 

within the interval [0, 1]. In this study, we set r to 0.9 for a divergent search for solutions. Finally, an 

np×nk candidate position matrix is generated in Step 4. Then, Step 5 determines whether each 

element of the matrix should be switched or not, resulting in the final modified position matrix at 

iteration t. 

 Step 5: Population updating 

This step updates the population for the next iteration by accepting or rejecting each element of 

the previously generated candidate position matrix. Specifically, a new population including 

modified position vectors for the bats is generated with the following rule: 

,          
,

,      
i i i

i
i

P if fit fit and rand A
P

P otherwise
 < <= 


 

    (8) 

  where ( )ifit Obj X=


, and A is any constant value ranging from 0 to 1, which controls the 

acceptability of the modified position vectors. In this study, we define A as 0.9 in order to more 

frequently reflect the modified position vectors for bats, rather than preserve the previously 

generated position vectors in Step 2. Similar to the matrix X in Step 2, X


 is a new nt×nk matrix 

consisting of fault features resulting from taking the & operation between the ith candidate position 

vector produced in Step 4 and each nf-dimensional feature vector in the training dataset. 

Consequently, ifit


 is a fitness value to evaluate fault features selected by the candidate position 

vector of bat i. Finally, Steps 2 to 5 are repeated iteratively until the maximum iteration limit T is 
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reached. 

To precisely evaluate the solution by the BBA, a proper design of the objective function is needed, 

and in turn this study investigates a methodology to appropriately design the objective function by 

exploiting the property of the SVM. As mentioned in Section 1, the SVM is a binary classifier to 

separate two different classes by finding a hyperplane with the largest margin between them in high-

dimensional feature space. Based on this hyperplane, test samples are classified into one of the two 

classes. Let d
js R∈  and { }1, 1jl ∈ − + , ∀j=1, 2, …, n be a set of d-dimensional real valued training 

samples and labels corresponding to each training sample, respectively, where n is the number of 

training samples. To search for the optimal hyperplane when discriminating two classes, it is 

necessary to solve the following minimization optimal problem [2]: 

, 1

1arg min ,
2

j

n
T

j
w j

w w C
ξ

ξ
=

  + 
  

∑      (9) 

( )( )  1 ,    0,  1, 2,..., ,T
j j j jsubject to l w s b j nφ ξ ξ+ ≥ − ≥ ∀ =  

where w is a vector to the hyperplane, φ  is a function that maps the original feature space into the 

high-dimensional nonlinear feature space, b is a constant variable such that b
w  indicates the 

Euclidean distance from the origin of the high-dimensional nonlinear feature space to the hyperplane. 

Likewise, the slack variable jξ  controls the training errors and the penalty variable C tunes the 

generalization capability. By applying Lagrange optimization to (9), the minimization optimal 

problem is written as follows [2]: 

( ) ( )
1 1 1

1arg max ,
2

j

n n n T
j j k j k j k

j j k
l l s s

a
a a a φ φ

= = =

  − 
  
∑ ∑∑       (10) 

   1  0,  0 ,  1, 2,..., ,n
j j jjsubject to l C j nαα

=
= ≤ ≤ ∀ =∑  

where the jα ’s are Lagrange multipliers, and sj and sk are two different samples in the training 

dataset. According to Mercer’s theorem [55], a positive semi-definite kernel can replace with 

( ) ( )j ks sφ φ⋅  in (10), where ⋅  means the inner product between two vectors: 
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( ) ( ) ( ), .j k j kk s s s sφ φ= ⋅      (11) 

The Gaussian radial basis function (RBF) kernel is one of the most widely used kernels with SVMs 

due to its satisfactory performance, and it is defined as follows: 

( ) 2

2
1, exp ,

2j k j kk s s s s
s

 = − − 
 

       (12) 

where σ  is a parameter to be carefully turned because of 1) losing non-linear power if σ  is too 

small and 2) the lack of regularization if σ  is too large. 

Using the RBF kernel, the similarity can be measured between two input samples as expressed in 

(13) and (14): 

( ), 1,  , ,  1, 2,..., ,jk a b a b C j L≈ ∀ ∈ ∀ =     (13) 

( ), 0,  ,  ,  , 1, 2,..., ,  ,j kk a b a C b C j k L j k≈ ∀ ∈ ∀ ∈ ∀ = ≠    (14) 

where Cj is a set of samples in the class j, j=1, 2, …, L, where L is the number of classes. In this study, 

the results of (13) and (14) are treated as an inter-class RBF value and an intra-class RBF value, 

respectively. Figs. 5 and 6 show distribution of both intra-class RBF values and inter-class RBF 

values for two different sample sets, respectively. In the case where two classes are clearly separable 

as shown in Fig. 5(a), intra-class RBF values for each class are very high, while inter-class RBF 

values are close to 0. 

On the other hand, both intra-class RBF values and inter-class RBF values are extensively 

distributed in the range from 0 to 1 when the two different classes are not clearly separable, as shown 

in Fig. 6(a). In this study, we utilize these two criteria to design the objective function. The first 

criterion, ( )intraclassRBF X


, is an average value of intra-class RBF values resulting from X


, where X


 

is the resultant nt×nk matrix produced while the BBA analyzes fault features as mentioned in Section 

3.2: 

( ) ( )1 1( 1) ( 1)2 1 1 1

1

1 , ,
j k

j j

C CL

intraclass j C k j C lL
j k l

j
j

RBF X k X X
C

− −− × + − × +
= = =

=

= ∑∑∑
∑

  
  (15) 

where L is the number of classes and jC  is the number of samples in class j (i.e., t jn L C= × ). The 



15 

second criterion, ( )interclassRBF X


, is an average value of inter-class RBF values resulting from X


, 

which is calculated by: 

( ) ( )11 ( 1)( 1)
1 1 1 1

1 1

1 , .
j k

kj

C CL L

interclass k C mj C lL L
j k l m

j k k j
j k

k j

RBF X k X X
C C

−−
− × +− × +

= = = =
≠

= =
≠

= ∑∑∑∑
∑∑

  
  (16) 

According to (13) and (14), if ( )intraclassRBF X


 is large and ( )interclassRBF X


 is small, both intra-class 

compactness and inter-class separability are improved. Thus, the objective function is designed with 

these two criteria in order to sort out the most discriminative fault features in an originally produced 

feature vector, and is defined as follows: 

( ) ( ) ( )1 .intraclass interclassObj X RBF X RBF X= − +
  

    (17) 

The lowest value of the objective function corresponds to the minimal intra-class compactness and the 

maximal inter-class separability, and consequently this paper sorts out fault features in the given 

feature vector when the objective function yields the lowest value. 

 

 

Fig. 5. Distribution of both intra-class RBF values and inter-class RBF values for two distinguishable classes. 

 

 
Fig. 6. Distribution of both intra-class RBF values and inter-class RBF values for two indistinguishable classes. 
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3.3. Classification 

The SVM is a binary classifier to separate the test samples into one of two classes. Thus, the 

proposed approach utilizes multi-class SVMs (MCSVMs) to identify various (or multiple) bearing 

defects. In order to design MCSVMs, the following three approaches can be considered: one-against-

one (OAO), one-against-all (OAA), and one-acyclic-graph (OAG) [40]. Among these approaches, we 

employ the OAA method because it is one of the most powerful techniques for multi-class classifiers, 

showing the high classification performance while reducing the testing time. In MCSVMs, SVMj 

discriminates class j from the other classes, where j=1, 2, …, L and L is the number of classes as 

mentioned before, and all SVMs yield their own decision values during the classification process. In 

the OAA approach, the final decision is made by searing for an SVM structure that outputs the highest 

decision value. 

 

4. Experimental Results 

4.1. Training and Test Dataset Configuration 

This study employs the k-fold cross validation (k-cv) scheme in order to estimate generalized 

classification accuracy [52], and the classification accuracy can be achieved by testing and training 

OAA MCSVMs using randomly divided k mutual folds from the initial data, denoted as D1, D2, …, 

Dk. In other words, a new fold is reserved for training OAA MCSVMs and the remaining folds are 

used to test OAA MCSVMs. This process is repeated k times to compute the final classification 

accuracy, which is the average value of the classification results committed in each fold (i.e., k = 3 in 

this study). 

 

4.2. Classification Performance 

For highly accurate bearing failure diagnosis, this paper uses discriminative fault feature analysis 

based on the BBA and validates its superiority by comparing with four conventional component 

analysis techniques, such as PCA, independent component analysis (ICA), kernel ICA (kICA), and 
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extended TR-LDA, in terms of the classification performance. 

In general, an n-dimensional feature vector can be configured by using n components with the 

highest eigenvalues computed from a covariance matrix via these component analysis techniques. 

Although these approaches are effective for achieving satisfactory performance for bearing fault 

diagnosis, there is no general consensus as to the number of components that offers the maximum 

classification performance. This calls an exploration of the impact of discriminant (or principal or 

independent) components with regard to the classification performance, and finally this study builds 

an n-dimensional optimal feature vector with a set of n discriminant (or principal or independent) 

components providing the highest classification accuracy for the purpose of performance comparison. 

To do this, we randomly partition k mutual sub-folds from the fold that is reserved for training OAA 

MCSVMs in k-cv and explore the impact of varying numbers of discriminant (or principal or 

independent) components by training and testing OAA MCSVMs using these k mutual sub-folds, as 

shown in Fig. 7. For obtaining highly generalized classification accuracy, this study computes 

classification accuracy via 10 k-cv trials. Likewise, classification accuracy in this study is defined as 

follows: 

( ) 100 % ,
truepositives

L

samples

N
Classification accuracy

N
= ×
∑

   (18) 

where L is the number of classes (i.e., L = 12 as mentioned in Section 2), Ntruepositives is the number of 

true positives, and Nsamples is the total number of samples for experiments (i.e., Nsamples = 1800× 12). 

Moreover, the number of true positives indicates the number of bearing failures in class j that are 

correctly discriminated as class j in this study. 
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Fig. 7. Average classification accuracies with different numbers of principal, independent, or discriminant 

components under different bearing rotational speeds. 

 

At each iteration in k-cv, this study decides optimal numbers of discriminant (or principal or 

independent) components from the ford that is reserved as the training set and computes the final 

classification accuracy by testing OAA MCSVMs with these optimal discriminant (or principal or 

independent) components for performance comparison, as depicted in Fig. 8. In addition, this study 
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selects optimal pairs of (C, σ) for OAA MCSVMs because these parameters can affect classification 

accuracy, as mentioned in Section 3.2. To address this issue, we employ a grid search algorithm that 

trains each SVM structure with a pair of (C, σ) in the cross-product of the following two sets and 

evaluates its performance: { }5 3 1 3 5 7 9 11 13 152 ,2 ,2 ,2,2 ,2 ,2 ,2 ,2 ,2 ,2C − − −∈  and 

{ }2 1 2 3 4 5 6 72 ,2 ,1, 2, 2 , 2 , 2 , 2 , 2 , 2σ − −∈ . The grid search algorithm finally offers the best combination of 

(C, σ) for each SVM to obtain the maximum classification performance, and this study exploits the 

highest average classification accuracy of each approach for comparison. As we expected, both 

supervised (i.e., extended TR-LDA and the proposed approach) and unsupervised (i.e., PCA, ICA, 

and KICA) analysis methods decrease the average classification accuracy of bearing defects as 

rotational speed decreases, as shown in Fig. 8. This is highly correlated with both low-energy signals 

captured from bearings at low-speed and signal attenuation due to the distance between the AE sensor 

and the source of the bearing defects, as mentioned in Section 3.1. 

 

 

Fig. 8. Performance comparison between the proposed approach and other conventional methods with regard to 

average classification accuracy under various bearing rotational speeds. 

 

In this study, we present confusion matrices in order to show detailed classification results (see 

Tables 1 to 5), and use sensitivity and specificity to indicate classification performance for each class 

of the proposed approach and other conventional approaches. Sensitivity (or true positive rate) and 
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specificity (or true negative rate) are defined as follows: 

( )100 % .truepositives

truenegatives falsenegatives

N
Sensitivity

N N
= ×

+
    (19) 

( )100 % .truenegatives

truenegatives falsepositives

N
Specificity

N N
= ×

+
    (20) 

Nfalsepositives, Ntruenegatives, and Nfalsenegatives are the number of false positives, true negatives, and false 

negatives, respectively, and are defined as follows: 

 Ntruepositives: the number of bearing failures not in class j that are discriminated as class j, 

 Ntruenegatives: the number of bearing failures not in class j that are not discriminated as class j, 

 Nfalsenegatives: the number of bearing failures in class j that are not discriminated as class j. 

 
Table 1 

Classification results of the PCA-based bearing fault identification operating at 20 RPM. 

 CIR1 SIR1 NB1 COR1 SOR1 MSR1 CIR2 SIR2 NB2 COR2 SOR2 MSR2 

CIR1 1785 2 18 1 2 5 10 0 3 7 0 1 

SIR1 0 1696 43 0 4 6 7 3 5 21 0 1 

NB1 1 3 1321 1 5 305 4 0 415 3 10 11 

COR1 0 9 18 1788 10 2 3 2 16 9 0 3 

SOR1 0 0 5 0 1724 1 2 15 0 0 0 1 

MSR1 0 0 299 0 0 1465 0 0 3 1 0 16 

CIR2 14 13 0 0 1 0 1724 0 0 8 0 0 

SIR2 0 0 0 2 18 0 0 1723 0 13 1 0 

NB2 0 2 64 6 10 4 0 5 1345 2 0 3 

COR2 0 67 0 0 0 0 37 50 0 1736 0 0 

SOR2 0 8 31 2 26 1 13 2 13 0 1789 8 

MSR2 0 0 1 0 0 11 0 0 0 0 0 1756 

Sensitivity (%) 99.1 94.2 73.4 99.3 95.8 81.4 95.8 95.7 74.7 96.4 99.4 97.6 

Specificity (%) 99.8 99.6 96.2 99.6 99.9 98.4 99.8 99.8 99.5 99.2 99.5 99.9 

Accuracy (%) 91.9 

 



21 

Table 2 

Classification results of the ICA-based bearing fault identification operating at 20 RPM. 

 CIR1 SIR1 NB1 COR1 SOR1 MSR1 CIR2 SIR2 NB2 COR2 SOR2 MSR2 

CIR1 1637 7 9 0 5 2 18 0 2 39 0 2 

SIR1 0 1243 115 47 46 59 169 61 37 238 0 15 

NB1 1 20 1067 32 34 651 14 25 578 24 76 52 

COR1 0 9 8 1556 0 0 0 4 9 38 0 4 

SOR1 3 8 24 0 1545 2 16 76 8 3 74 0 

MSR1 0 5 431 1 0 1023 0 1 198 10 11 72 

CIR2 28 63 14 0 6 3 1410 0 0 18 0 0 

SIR2 0 12 6 3 107 0 2 1500 8 65 0 0 

NB2 0 5 48 2 6 2 2 14 943 1 0 4 

COR2 130 416 7 157 32 0 156 108 0 1348 12 0 

SOR2 0 11 53 2 19 5 13 12 15 14 1627 1 

MSR2 1 1 18 0 0 53 0 0 2 2 0 1650 

Sensitivity (%) 90.9 69.1 59.3 86.4 85.8 56.8 78.3 83.3 52.4 74.9 90.4 91.7 

Specificity (%) 99.6 96.0 92.4 99.6 98.9 96.3 99.3 99.0 99.6 94.9 99.3 99.6 

Accuracy (%) 76.6 

 

Table 3 

Classification results of the kICA-based bearing fault identification operating at 20 RPM. 

 CIR1 SIR1 NB1 COR1 SOR1 MSR1 CIR2 SIR2 NB2 COR2 SOR2 MSR2 

CIR1 1745 4 6 0 10 1 11 2 4 3 1 8 

SIR1 8 1184 10 2 15 4 57 15 5 50 0 3 

NB1 0 0 1416 2 10 342 12 8 751 7 7 14 

COR1 0 3 10 1433 5 3 0 7 7 10 0 4 

SOR1 2 1 4 0 1522 2 13 73 2 1 24 2 

MSR1 0 0 299 0 2 1437 3 5 1 2 3 55 

CIR2 38 191 2 0 11 0 1566 0 0 28 0 0 

SIR2 0 20 2 18 192 1 1 1633 2 22 0 0 

NB2 0 7 41 12 6 3 3 4 1019 0 0 3 

COR2 0 385 0 331 0 0 130 40 0 1673 0 1 

SOR2 0 5 9 2 27 1 4 13 9 1 1764 2 

MSR2 7 0 1 0 0 6 0 0 0 3 1 1708 

Sensitivity (%) 96.9 65.8 78.7 79.6 84.6 79.8 87.0 90.7 56.6 92.9 98.0 94.9 

Specificity (%) 99.8 99.2 94.2 99.8 99.4 98.1 98.6 98.7 99.6 95.5 99.6 99.9 

Accuracy (%) 83.8 
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Table 4 

Classification results of the extended TR-LDA-based bearing fault identification operating at 20 RPM. 

 CIR1 SIR1 NB1 COR1 SOR1 MSR1 CIR2 SIR2 NB2 COR2 SOR2 MSR2 

CIR1 1783 2 7 1 1 2 5 0 1 3 0 1 

SIR1 0 1720 20 0 7 4 41 4 9 14 0 3 

NB1 1 2 1348 5 5 270 4 1 179 0 1 11 

COR1 0 2 1 1769 3 0 0 0 2 5 1 0 

SOR1 0 1 8 0 1734 0 1 12 1 0 3 1 

MSR1 0 0 282 0 1 1491 1 0 0 1 2 13 

CIR2 15 28 0 1 0 0 1709 1 2 30 0 0 

SIR2 0 5 0 0 20 0 0 1758 0 9 0 0 

NB2 0 6 77 10 8 9 0 1 1585 1 0 5 

COR2 1 27 0 7 1 0 28 23 0 1737 0 0 

SOR2 0 7 49 7 19 6 10 0 20 0 1790 8 

MSR2 0 0 8 0 1 18 1 0 1 0 3 1758 

Sensitivity (%) 99.1 95.6 74.9 98.3 96.3 82.8 94.9 97.7 88.1 96.5 99.4 97.7 

Specificity (%) 99.9 99.5 97.6 99.9 99.9 98.5 99.6 99.8 99.4 99.6 99.4 99.8 

Accuracy (%) 93.4 

 

Table 5 

Classification results of the proposed BBA-based bearing fault identification operating at 20 RPM. 

 CIR01 SIR1 NB1 COR1 SOR1 MSR1 CIR2 SIR2 NB2 COR2 SOR2 MSR2 

CIR1 1800 0 2 0 1 0 1 0 0 0 0 2 

SIR1 0 1784 0 0 0 0 0 0 0 0 0 0 

NB1 0 0 1310 0 11 264 3 0 73 0 4 99 

COR1 0 0 4 1793 2 0 2 0 0 0 0 0 

SOR1 0 0 7 0 1764 0 5 0 0 0 3 1 

MSR1 0 0 278 0 0 1487 0 0 3 0 0 12 

CIR2 0 12 0 0 0 1 1773 0 0 14 0 0 

SIR2 0 0 0 2 0 0 0 1800 0 0 0 0 

NB2 0 0 58 0 0 1 0 0 1717 0 0 0 

COR2 0 4 0 5 0 0 7 0 0 1786 0 0 

SOR2 0 0 21 0 22 2 9 0 1 0 1792 3 

MSR2 0 0 120 0 0 45 0 0 6 0 1 1683 

Sensitivity (%) 100.0 99.1 72.8 99.6 98.0 82.6 98.5 100.0 95.4 99.2 99.6 93.5 

Specificity (%) 100.0 100.0 97.7 100.0 99.9 98.9 99.9 100.0 99.7 99.9 99.7 99.1 

Accuracy (%) 94.9 
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As shown in Tables 1 to 5, all the fault feature analysis methodologies have difficulties analyzing 

extracted fault features of both NB1 (NB under a 500-N load) and MSR1 (MSR under a 500-N load) 

operating at 20 RPM, resulting in a number of misclassifications between NB1 and MSR1. To 

investigate performance degradation, this paper uses one-dimensional visualization for an input vector 

of OAA MCSVMs configured by both supervised approaches (i.e., PCA, ICA, and kICA) and 

unsupervised approaches (i.e., extended TR-LDA and the proposed approach). Analysis of the results 

is summarized as follows: 

 Although it is possible to achieve higher classification accuracies by utilizing low-dimensional 

feature vectors for a few bearing defects in the PCA-based approach, rather than using high-

dimensional feature vectors, this paper utilizes a 10-dimensional feature vector including 10 

principal components for early identification of diverse bearing defects. A 10-dimensional feature 

vector offers the highest classification accuracy, which can be interpreted to mean that the PCA-

based fault diagnosis method identifies as many bearing defects as possible with this feature 

vector (see Fig. 7). This is the primary reason why the PCA-based approach has difficulty in 

distinguishing NB1 from MSR1, and vice versa. Specifically, most fault features (i.e., from PC4 

to PC10) are tightly overlapped between the two classes, as shown in Fig. 9. Thus, these features 

do not contribute much for identifying NB1 and MSR1. On the other hand, several PCs (i.e., PC1, 

PC2, and PC3) preserve discriminative properties of these two classes well, which are primary 

factors in achieving sensitivity of 73.4%. 

 Similar to the PCA-based approach, the other methodologies also have problems classifying these 

two classes, since most of the fault features are not distinguishable, as shown in Fig. 9. 

While other conventional component analysis approaches yield low sensitivities for distinguishing 

between NB2 and NB1, as shown in Tables 1 to 5, the proposed feature analysis methodology is 

highly effective, resulting in sensitivity of 95.4%. More specifically, the lack of measuring intra-class 

compactness and inter-class separability in both PCA and ICA-family approaches is the main reason 

why they cannot preserve discriminative properties of these two defect-free bearings, resulting in 

unclear and heavily overlapped features, as shown in Fig. 10. In contrast, extended TR-LDA reduces 
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the number of misclassifications from NB2 to NB1 by exploiting intra-class compactness and inter-

class separability information. Although the extended TR-LDA achieves a satisfactory level of 

sensitivity for NB2, the proposed approach yields a much higher sensitivity than that of extended TR-

LDA by extracting the most discriminative fault features in the given feature vector, as shown in Fig. 10. 

 

Fig. 9. One-dimensional visualization of inputs for MCSVMs configured by both the proposed BBA-based 

approach and other conventional methods. Overlapped features are shown in red dotted rectangles, which do not 

contribute to distinguishing between NB1 and MSR1, and vice versa. Likewise, input values are normalized 

from 0 to 1 by using min-max normalization in order to show feature distribution in the same range. 
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Fig. 10. One-dimensional visualization of inputs for MCSVMs to distinguish between NB2 and NB1. 

 

5. Conclusions 

This paper proposed a reliable fault diagnosis methodology for low-speed rolling element 

bearings, which is composed of fault feature extraction, BBA-based discriminative fault feature 

analysis, and fault classification. The proposed approach first computes wavelet-based fault features 
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(i.e., the relative wavelet packet node energy and wavelet packet node entropy) by applying WPT to 

AE signals. The proposed comprehensive diagnosis approach then sorts out the most discriminative 

fault features in the given feature vector in order to improve classification performance, and finally 

identifies multiple bearing defects by employing OAA MCSVMs. Experimental results indicated that  

the BBA-based feature analysis is superior to other conventional component analysis methods for the 

purpose of reliable bearing failure diagnosis, achieving an average classification accuracy of 94.9%, 

95.8%, and 98.4% at rotational speeds of 20 RPM, 80 RPM, and 140 RPM, respectively. 
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Table captions: 

 

Table 2 

Classification results of the PCA-based bearing fault identification operating at 20 RPM. 

 

Table 2 

Classification results of the ICA-based bearing fault identification operating at 20 RPM. 

 

Table 3 

Classification results of the kICA-based bearing fault identification operating at 20 RPM. 

 

Table 4 

Classification results of the extended TR-LDA-based bearing fault identification operating at 20 

RPM. 

 

Table 5 

Classification results of the proposed BBA-based bearing fault identification operating at 20 RPM. 
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Figure captions: 

 

Fig. 9. (a) A low-speed machinery fault simulator developed by QUT, (b) an AE sensor to record 

continuous AE signals, and (c) the data acquisition system used in this study. 

 

Fig. 10. Various seeded bearing failures [31, 32]. (a) Hair-line crack on inner raceway (CIR, 0.1 mm), 

(b) small-line spall on inner raceway (SIR, 0.6 mm), (c) hair-line crack on outer raceway (COR, 0.1 

mm), (d) small-line spall on outer raceway (SOR, 0.7 mm), and (e) medium-line spall on roller (MSR, 

1.6 mm). 

 

Fig. 11. (a) Waveform of an AE signal and (b) a Daubechies 20-tap wavelet (db20). 

 

Fig. 12. The overall process of the binary bat algorithm for analyzing fault features, which sorts out 

the most discriminative fault features in a given feature vector for identifying incipient low-speed 

bearing defects. 

 

Fig. 13. Distribution of both intra-class RBF values and inter-class RBF values for two 

distinguishable classes. 

 

Fig. 14. Distribution of both intra-class RBF values and inter-class RBF values for two 

indistinguishable classes. 

 

Fig. 15. Average classification accuracies with different numbers of principal, independent, or 

discriminant components under different bearing rotational speeds. 

 

Fig. 16. Performance comparison between the proposed approach and other conventional methods 

with regard to average classification accuracy under various bearing rotational speeds. 
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Fig. 9. One-dimensional visualization of inputs for MCSVMs configured by both the proposed BBA-

based approach and other conventional methods. Overlapped features are shown in red dotted 

rectangles, which do not contribute to distinguishing between NB1 and MSR1, and vice versa. 

Likewise, input values are normalized from 0 to 1 by using min-max normalization in order to show 

feature distribution in the same range. 

 

Fig. 170. One-dimensional visualization of inputs for MCSVMs to distinguish between NB2 and 

NB1. 
 

 


