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Abstract 

Heavy metal pollution of sediments is a growing concern in most parts of the world, and 
numerous studies focussed on identifying contaminated sediments by using a range of 
digestion methods and pollution indices to estimate sediment contamination have been 
described in the literature.  The current work provides a critical review of the more 
commonly used sediment digestion methods and identifies that weak acid digestion is more 
likely to provide guidance on elements that are likely to be bioavailable than other traditional 
methods of digestion.  This work also reviews common pollution indices and identifies the 
Nemerow Pollution Index as the most appropriate method for establishing overall sediment 
quality.  Consequently, a modified Pollution Index that can lead to a more reliable 
understanding of whole sediment quality is proposed.  This modified pollution index is then 
tested against a number of existing studies and demonstrated to give a reliable and rapid 
estimate of sediment contamination and quality. 
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1.0 Introduction 

Heavy metal contamination is of growing concern around the world, particularly in South 
East Asia where stringent regulation of pollution emission is emerging or naturally high 
concentrations of heavy metals can be found in groundwaters (Karim, 2000; Mandal et al., 
1996; Smedley, 2003; Welch & Stollenwerk, 2003).  Due to this growing concern, numerous 
studies that examined heavy metal contamination in marine and estuarine environments have 
been published in recent years (Abrahim & Parker, 2008; Birch & Taylor, 1999; Dung, 
Cappuyns, Swennen, & Phung, 2013; Gao et al., 1998; Kaushik, Kansal, Kumari, & Kaushik, 
2009; Pengthamkeerati et al., 2013; Tang, Shan, Zhang, & Mao, 2010; Thuong, Yoneda, 
Ikegami, & Takakura, 2013). Many of these studies have also been driven by the fact that 
toxic heavy metals (such as Hg, Cd and As) are non-essential to the human body (Toffaletti, 
2005) (Table 1) and their presence in the body can interfere with human biochemistry (Gaw, 
Cowan, O'Reilly, Stewart, & Shepherd, 1999; Pier & Bang, 1980; Toffaletti, 2005).   

Table 1. Table of selected trace metals and their importance to good human health,  
adapted from (Toffaletti, 2005) 

 Toxic Metals Probably 
Essential 

Proven 
Essential 

Trace 
(mg kg-1)   Fe, Zn, Cu 

Ultratrace 
(μgkg-1) 

As, Cd, Au, Pb, 
Hg, Si Ni, V, Sb Mn, Co, Se, 

Mo, Cr 
 

Although it is widely recognised that heavy metals are an ambiguous group of metals and 
metalloids, there is still a significant lack of consensus about the definition and the exact 
membership of this group of elements. Consequently, a number of reviews have set out to 
define heavy metals in different ways (Bhat & Khan, 2011).  Because of this lack of 
consensus about the definition of heavy metals, they will be defined in this paper as:   
any metal (or its ion), emitted from any source, that has been shown to have either a negative 
ecological impact or negative impact on human wellbeing and will typically have its release 
into the environment controlled by either agreement or legislation.  One advantage of this 
definition is that it covers most metals that could be considered members of the heavy metals 
group. 

The sources of heavy metals in the environment have been broadly accepted to be either 
lithogenic (natural in origin) or anthropogenic (a product of human activity).  Thus, in an 
urban environment, the major sources of anthropogenic pollution are industrial discharges 
(Ahdy & Youssef, 2011; De Wolf, Backeljau, & Blust, 2000; Liu, Zhao, Ouyang, Söderlund, 
& Liu, 2005; Mitra, Chowdhury, & Banerjee, 2012; Suh, Birch, Hughes, & Matthai, 2004; 
Tang, et al., 2010); storm water runoff (Birch & Taylor, 1999; Mitra, et al., 2012) and vehicle 
emissions (Ahdy & Youssef, 2011; Kim, Myung, Ahn, & Chon, 1998; Li, Poon, & Liu, 2001; 
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Suh, et al., 2004; Wright & Mason, 1999) while lithogenic sources include geological 
weathering due to exposure to water (Ahdy & Youssef, 2011; Kim, et al., 1998; Wilber & 
Hunter, 1979); volcanic activity (Ahdy & Youssef, 2011); decomposition of plant and animal 
remains (Ahdy & Youssef, 2011; Wilber & Hunter, 1979; Wright & Mason, 1999).  The 
main mechanisms of deposition of heavy metals into marine environments can be distilled to 
point source deposition, such as stormwater drains (Birch & Taylor, 1999; Wilber & Hunter, 
1979), discharge from wastewaters (Deng, Zhang, Wang, Chen, & Xu, 2010; Singh, Müller, 
& Singh, 2002; Sörme & Lagerkvist, 2002; Suh, et al., 2004; Tang, et al., 2010; Wright & 
Mason, 1999) , leachates from landfills (Ahdy & Youssef, 2011; Deng, Zheng, Fu, Lei, & Li, 
2010; Wright & Mason, 1999) and direct discharge from industry sources (Ahdy & Youssef, 
2011; Dinescu et al., 2004; Mitra, et al., 2012; Romic & Romic, 2003; Suh, et al., 2004; 
Tang, et al., 2010).  Atmospheric deposition (such as dust fall and precipitation) is the other 
major mechanism of heavy metal enrichment (Dinescu, et al., 2004; González-Fernández, 
Garrido-Pérez, Nebot-Sanz, & Sales-Márquez, 2011; Gunawardena, Egodawatta, Ayoko, & 
Goonetilleke, 2012, 2013; Romic & Romic, 2003; Tang, et al., 2010; Wilber & Hunter, 1979; 
Wright & Mason, 1999).   This deposition of heavy metals into marine sediments has resulted 
in an increase in interest on how heavy metals (and other pollutants) interact with sediments. 

1.1 Heavy metals and their fate in sediments 

Heavy metals undergo a number of complex interactions with sediments (Fig. 1) before being 
sequestered into cohesive sediments (Grecco et al., 2011; Shilla & Dativa, 2011).  This 
sequestration may be useful in limiting long term impacts of heavy metals on marine 
environments (Ahdy & Youssef, 2011), but partitioning effects result in higher 
concentrations of heavy metals in the sediment than the accompanying water column 
(González-Fernández, et al., 2011), which in turn leads to increased risk of inclusion into the 
food chain through benthic organisms. 

Another long term risk of sequestration of heavy metals into sediments is that long residence 
times (Imperato et al., 2003) and biogeochemical recycling processes (Liu et al., 2003) can 
allow for re-suspension and re-entry into the biosphere long after the source has been 
removed (Keskin, 2012; Williamson & Morrisey, 2000) (Fig 1). 

Re-suspension of sediments in estuarine environments is of concern as estuarine systems 
have been demonstrated to show non-conservative sedimentary behaviour such as dilution 
(Chapman & Wang, 2001) and there is significant evidence that fine clay particles act as 
adsorption sites for heavy metal ions (Gómez-Parra, Forja, DelValls, Sáenz, & Riba, 2000).  
Once adsorbed to fine clay particles, heavy metal ion behaviour is then controlled by the 
chemical and physical properties of the water column in which they  are dispersed . 

The major physical properties that control the dispersion and dilution of heavy metals in 
estuarine environments include biotic assimilation and excretion (Chapman & Wang, 2001; 
Romic & Romic, 2003) and inclusion into the food chain (Romic & Romic, 2003) which 
subsequently results in bioaccumulation and toxicity.  One important controlling factor of 
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biotic accumulation and excretion is the impact of microbial activity (Liu et al., 2011), which 
can enhance bioavailability and promote bioaccumulation.  Dilution of heavy metals in 
marine estuarine environments is a vital link in the sequestration of heavy metals in 
sediments.  This is because many heavy metals adsorb to clay particles (<63 µm) (Binning & 
Baird, 2001; Tam & Wong, 2000; Wilber & Hunter, 1979), with a strong correlation between 
decreasing particle size (increased surface area) and increasing adsorption (Riba, DelValls, 
Forja, & Gómez-Parra, 2002).  Assuming that there are no changes to the conditions under 
which sedimentation occurred, these particles settle in areas of low flow energy (Grecco, et 
al., 2011).  In addition to sorption to fine clay particles, organic carbon content distribution 
affects heavy metals distribution (Baptista Neto, Smith, & McAllister, 2000). 

 
Fig. 1 Fate of metals in marine and estuarine environments 

The widely accepted explanation for the correlation of heavy metal concentrations  with 
organic carbon is chelation by organic matter to immobilise heavy metals before flocculation 
and precipitation (Kumar et al., 2010; Shilla & Dativa, 2011).   In addition to the chelation 
effect of organic matter, scavenging of heavy metal ions by clay minerals is dependent on the 
adsorption of heavy metal ions to iron and manganese hydroxides and oxides, whose areas of 
negative dipoles provide active sorption sites for heavy metal ions (Singh, et al., 2002; 
Wilber & Hunter, 1979). 

Chemical factors controlling the sequestration of heavy metals in estuarine environments 
include chemical properties of the water body, such as pH, temperature, salinity and redox 
potential of the system (Che, He, & Lin, 2003).  These factors can have major effects on 
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processes such as adsorption and desorption (Chapman & Wang, 2001), as well as chelation, 
coagulation, flocculation; precipitation and sedimentation (Chapman & Wang, 2001; Che, et 
al., 2003; Liu, et al., 2011). 

1.2 Methods of assessing the availability of heavy metals in contaminated sediments 

A method for extracting the concentrations of the elements of interest is required before a 
sediment quality index to a sample (or set of samples) can be applied.  There are a number of 
methods for determining the concentrations of heavy metals in sediment samples which cover 
a range of techniques and objectives. 

The first method for determining heavy metal concentrations is to measure the total metal 
concentrations.  This can be done in a number of ways, ranging from aqua regia digestions 
(the use of a hot solution of nitric acid and hydrochloric acid at 90 °C to solubilise elements 
not in the silicate lattice of minerals) to hydrofluoric and hydrofluoric/peroxide/hypochloric 
acid digestions at elevated temperatures to break down the silicate crystal lattice and 
accurately determine the total metal concentrations (Baptista Neto, et al., 2000; Cox & Preda, 
2005; Jones & Turki, 1997; Martin, Nirel, & Thomas, 1987; Preda & Cox, 2001; Preda & 
Cox, 2002) and the use of microwave extraction methods (Tam & Wong, 2000). 

The use of acids such as aqua regia, hydrofluoric acid and strong oxidising agents such as 
hydrogen peroxide to extract metals from sediment samples is limited by their abilities to 
break down the silicate lattice and the risk factors of using such harsh chemical methods.  
One method that can be used to obtain the trace metal concentrations without the use of harsh 
chemical extraction techniques is to use X-ray fluorescence (XRF), which is a non-
destructive analytical method that relies on characteristic X-rays emitted by elements when 
they are excited by X-ray radiation. 

X-ray fluorescence has advantages over other chemical techniques.  However, the use of total 
metal concentrations to evaluate sediment quality is a simplistic and unrealistic method of 
determining bioavailable metals concentrations (Ahdy & Youssef, 2011; Lee, Kang, Jo, & 
Choi, 2012; Shikazono, Tatewaki, Mohiuddin, Nakano, & Zakir, 2012; Shilla & Dativa, 
2011) as they do not take into consideration potential toxicity or environmental impact 
(Beltrán, de la Rosa, Santos, Beltrán, & Gómez-Ariza, 2010). 

The major limitation in the use of total metal concentrations is that this method does not take 
into account the fact that heavy metals, such as chromium, may only be toxic in certain 
chemical forms (Zhong, Zhou, Zhu, & Zhao, 2011).  Because of this limitation, it is 
important to identify not only what metals are present in sediments, but also the chemical 
species in which they are present, in order to develop an accurate understanding of the impact 
that they have on the sediments (Sundaray, Nayak, Lin, & Bhatta, 2011; Zhong, et al., 2011). 

A number of sequential extraction methods are available to identify the sediment fraction that 
metals are present in (Chapman & Wang, 2001).  The most commonly used method is that 
developed by Tessier, Cambell and Bisson (Tessier, Campbell, & Bisson, 1979) (commonly 

Page 5 of 28 

 



referred to as Tessier’s method) and then adapted by others (Albores, Cid, Gomez, & Lopez, 
2000; Ruiz, 2001).  Many of these modified Tessier methods examine fractions such as the 
weakly-bound acid-soluble fractions (the chlorides and carbonates), the REDOX available 
fractions (the reductive and oxidative fractions) and the residual fraction (the mineral lattice). 

Tessier’s method, (Tessier, et al., 1979) examines five fractions to assess the overall sediment 
concentrations of heavy metals.  This method is reliable because it examines the different 
fractions of sediment that can contain heavy metals and extract the heavy metals from each 
fraction separately, allowing the development of an accurate picture of the heavy metals 
loadings in a sediment sample. 

Although the Tessier, Campbell and Bisson method has become the most widely used method 
for sequential extractions for heavy metals in sediments, there are a number of criticisms that 
have been noted with the underlying chemical approaches.  For example, the extraction of the 
exchangeable metals (those bound to clay particles) uses magnesium chloride and has been 
noted to be susceptible to changes in the ionic strength of the extractant. This can be 
disrupted by re-adsorption of heavy metal ions to clay particles during the extraction or the 
precipitation of heavy metals as oxides and hydroxides if the solution is too alkaline (Martin, 
et al., 1987). 

The oxide fraction is the last of the common anthropogenic sources of heavy metals identified 
by Tessier et al. (Tessier, et al., 1979) and this extraction step relies on reduction at elevated 
temperatures to reduce the heavy metals from oxides and hydroxides to their ionic forms.  A 
major limitation of this step is that this reduction also solubilises the manganese and iron 
hydroxides that are naturally occurring in clays and this can lead to the erroneous conclusion 
that these elements have an anthropogenic source.  It has been suggested that it would be 
appropriate to perform the reducible extraction in two steps; the reducible and moderately 
reducible to resolve this issue (Martin, et al., 1987). 

The major issue with using a sequential extraction method is that it does not necessarily 
identify the bioavailable heavy metals in a sample.  A number of other options exist.  Among 
these, the use of dilute hydrochloric acid to both desorb (via ion exchange) and break down 
metal carbonate has been suggested for rapidly identifying the bioavailable heavy metals 
present in a sample (Hu, Yu, Zhao, & Chen, 2011).  The use of a such a simple method for 
the determination of heavy metals has merit as it examines the heavy metals that are available 
in the chloride (or adsorbed) phase, the carbonate phase and those elements that are weakly-
bound (or reactive) to hydroxides.  These elements are considered to be the most likely to 
react to changes in water conditions. 

Another available method for the estimation of bioavailability is the determination of 
simultaneous extractable metals -acid volatile sulphides (SEM-AVS) (Casas & Crecelius, 
1994; De Jonge, Blust, & Bervoets, 2010; Di Toro et al., 1992; Di Toro et al., 1990).  These 
methods rely on identifying what metals can be extracted from a sediment using weak acid 
digestion (typically 1 M HCl) and then determining which metal sulphides are less soluble 
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than iron sulphide.  The major advantage of using these methods is that they allow the 
determination of metals that are not precipitated as sulphides and are therefore bioavailable.  
It is noteworthy that the current Australian sediment quality guidelines (Simpson et al., 2005) 
use sequentially extractable metals -acid volatile sulphides as one of the methods for 
determining sediment quality. 

Generally, small benthic organisms are used to examine the bioavailability and toxicity of 
heavy metals to organisms (Bryan, 1971; Ofiara & Seneca, 2006).  Several studies have used 
biotic indicators as water body and sediment quality indicators (Abal & Dennison, 1996; 
Jones, O'Donohue, Udy, & Dennison, 2001; Ofiara & Seneca, 2006; Pantus & Dennison, 
2005; Park et al., 2010; Riosmena-Rodríguez, Talavera-Sáenz, Acosta-Vargas, & Gardner, 
2010).  The use of biological monitoring has also been identified in the Australian sediment 
quality guidelines as a useful tool for the determination of heavy metals contamination 
(Simpson, et al., 2005) through the use of benthic organisms.  The major advantage of 
bioavailability testing is that it assesses the metals that are available to benthic organisms and 
are therefore available to the rest of the food chain (Abdolahpur Monikh, Maryamabadi, 
Savari, & Ghanemi, 2013; Ali, Elazein, & Alian, 2011; Blasco, Arias, & Sáenz, 1999; Park, 
et al., 2010; Soto, Kortabitarte, & Marigomez, 1995).  However, the major disadvantages of 
the use of benthic organisms for sediment quality monitoring include the facts that the testing 
takes time as the organisms need to be cultivated, and some benthic organisms adapt to high 
concentrations of some metals better than other species, which can lead to an inaccurate 
assessment of sediment toxicity. 

1.3 Methods for assessing heavy metal contamination 

A large number of single and multi-element methods are available for assessing heavy metal 
contamination in sediments.  These indices generally strive to provide a qualification of 
contamination rather than a quantification of contamination due to a number of factors.  The 
most important factor is that it is generally very difficult to determine what the original 
composition of the sediment was in terms of the elements of interest, unless historical data is 
available and this tends not to be the case.  Also of concern is that if there is no historical 
data, then there is a requirement for an analogue of non-contaminated sediment.  This implies 
sampling from a site outside of the contaminated area. This raises issues of accounting for 
sedimentary and lithogenic inputs of heavy metals.   

Several studies have identified the average crustal elemental composition for continents (de 
Caritat & Cooper, 2011; Gao, et al., 1998; Hans Wedepohl, 1995) as well as the average 
composition of specific sedimentary rocks, such as shales (Dung, et al., 2013).  Such studies 
effectively provide an analogue of unpolluted and historical sediments, although these 
analogues are not specific to the catchment of interest, which is a limitation. 

Single and multiple element contamination indices can be used to qualify the quality of 
marine sediments.  The simplest and most direct method of qualifying sediment quality is to 
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use a contamination factor (Equation 1), which provides a ratio between an element at the 
sampling site and the same element at a background site (some examples are listed later). 

𝐶𝐸𝐸 = 𝐶𝑠𝑖𝑡𝑒
𝐶𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

          (1) 

Although the contamination factor is easily determined and provides information about how 
an element has been concentrated between the site of interest and a background site, it does 
not take into consideration lithogenic and sedimentary inputs of the element of interest.  This 
could be a source of error when estuarine environments are considered, as they are areas of 
intense sedimentation with significant input from terrestrial waterways. 

Geoaccumulation indices (Equation 2) were proposed by Muller (1969) in describing metal 
accumulation in the sediments of the Danube River.  To minimise the impact of lithogenic 
enrichment and enrichment caused by sediment inputs from multiple sources, the background 
concentration of the element of interest is multiplied by 1.5.  The primary advantage of 
geoaccumulation indices in the qualification of sediments is that Muller (1969) identified six 
classes of contamination in sediments (Table 2) which can be used to qualify the 
contamination of an index by any particular element. 

𝑀𝑀𝑔𝑒𝑜 = 𝑙𝑜𝑔 � 𝐶𝑥
1.5×𝐵𝑥

�           (2) 

Table 2. Sediment quality thresholds for the geoaccumulation index, enrichment factors and 
Hakanson's modified degree of contamination indices 

Class Qualification of sediment Igeo
a
 

(Muller, 
1969) 

EF Valueb 
(Qingjie, Jun, 
Yunchuan, 
Qingfei, & 
Liqiang, 2008) 

mCd Valuec 
(Hakanson, 
1980) 

0 Unpolluted ≤ 0 EF < 1 mCd < 1.5 
1 Slightly polluted 0-1 1  < EF < 3 1.5  < mCd < 2 
2 Moderately polluted 1-2 3 < EF < 5 2 < mCd < 4 
3 From moderately polluted to 

strongly polluted 
2-3 5 < EF < 10 4 < mCd < 8 

4 Strongly polluted 3-4 10 < EF < 25 8 < mCd < 16 
5 From strongly polluted to 

extremely polluted 
4-5 25 < EF < 50 16 < mCd < 32 

6 Extremely polluted ≥ 5 EF > 50 mCd > 32 
aEquation 2 
bEquation 3 
cEquation 4 

Geoaccumulation indices are logarithmic, and this implies that they would be best used to 
qualify sediments that have significant enrichment due to major urbanisation or 
industrialisation; this in turn reduces their sensitivity to minor contamination.  In addition, the 
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multiplication of the background concentration of the element of interest by a factor of 1.5 
appears to be arbitrary and does not take into account situations where a large number of 
sediments interact in a complex manner (such as in estuarine environments) and the processes 
that may be occurring (some examples will be given later). 

In order to negate the effect of terrestrial sedimentary input, it is possible to use Enrichment 
Factors (Equation 3) to standardise the impact of terrestrial inputs by normalising the element 
of interest against an element that has no anthropogenic source, such as aluminium (Qingjie, 
et al., 2008). 

𝐸𝐸𝐸𝐸 =
� 𝐶𝑥
𝐶𝑟𝑒𝑓

�
𝑆𝑎𝑚𝑝𝑙𝑒

� 𝐶𝑥
𝐶𝑟𝑒𝑓

�
𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 

          (3) 

 

The advantage provided by normalisation against an element is that non-conservative 
sediment behaviour (such as concentration rather than dilution) is accounted for by the ratio 
of the element of interest against the normalising element.  Normalisation using an element 
that has no anthropogenic source or is present in high enough concentrations that 
anthropogenic sources have little effect is that natural variations in the sediment are 
minimised, resulting in the enrichment factors ideally identifying anthropogenic pollution 
sources. 

Enrichment Factors can be used to qualify sediment quality (Table 2) and it is generally 
accepted that an Enrichment Factor greater than one indicates an anthropogenic source of the 
element of interest (Çevik, Göksu, Derici, & Fındık, 2009). 

Although Enrichment Factors, have found significant use in the past for assessing sediment 
contamination (Çevik, et al., 2009; Kaushik, et al., 2009; Pengthamkeerati, et al., 2013; 
Qingjie, et al., 2008; Thuong, et al., 2013), they can be limited by the choice of the 
normalising element.  For example, aluminium is often used as a normalising element as it is 
recognised as an element without an anthropogenic source (Qingjie, et al., 2008).  The use of 
aluminium in urban and industrial areas has the potential to be misleading as acidification of 
soils from anthropogenic sources has been linked to mobilised aluminium (Driscoll et al., 
2001).  However, the chemistry of aluminium in the environment is poorly understood, with 
little work available on the environmental behaviour and toxicity of anthropogenic 
aluminium (Klöppel, Fliedner, & Kördel, 1997; Krewski et al., 2007). 

Sediments that are naturally aluminium poor, such as sands (which are essentially silicates) 
can result in elevated Enrichment Factors when compared against terrestrial sediment 
sources.  The same issues can be encountered with iron (Fe), which is a major clay element 
that may be significantly enriched or depleted due to sediment sources and industrial 
contamination.  A similar argument can be made for other major sediment elements (Qingjie, 
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et al., 2008) such as manganese (Mn), titanium (Ti) and Vanadium (V).  Silicon is not a 
viable normalising element due to the stable nature of the silicate lattice of many minerals 
and the difficulty in dissolving the silicate lattice using extreme acid digestions (such as HF).  
In addition, the large variability in the silicon concentration of sediments can also be a 
limiting factor. 

The high variability of sediments can also be a limiting factor in using trace elements to 
normalise heavy metal concentrations and calculating Enrichment Factors.  For example, 
tantalum (Ta) and other ultra-trace metals have been considered as normalising elements in 
calculating Enrichment Factors (Pengthamkeerati, et al., 2013; Thuong, et al., 2013).  
However, they are not widely used because the use of normalising elements is dependent on 
estuarine sediments exhibiting conservative behaviour (such as simple dilution), which may 
not always be the case as re-suspension of sediment can occur (Chapman & Wang, 2001). 

Although a number of single element pollution indices are available, there are a number of 
limitations to their use.  The most obvious limitation is that they are only applicable to a 
single element, which means that they do not take into consideration the complex nature of 
heavy metal contamination in urban and industrial environments, where a number of 
contaminants are present together.  There are also issues in accounting for the background 
concentrations and the complex, non-conservative behaviour of sediments. 

Limitations with single element pollution indices have led to the development of multiple 
element indices which have been presented in the research literature to assess sediment 
quality.  The two most common multiple element indices are the modified contamination 
index developed by Hakanson (Hakanson, 1980) and more recently, the Nemerow Pollution 
Index (Nemerow, 1991), which is becoming more widely accepted. 

Hakanson’s modified degree of contamination index (mCd) (Hakanson, 1980) uses a suite of 
elements to take a more integrated look at the contamination of a site by heavy metals 
(Equation 4).  By using the contamination factors (CF, Equation 1) for individual sites and 
taking their average (dividing by the number of elements, n), it is possible to easily qualify 
the quality of sediment based on a number of elements (as evident in Table 3) (Abrahim & 
Parker, 2008). 

𝑚𝑚𝐶𝑑 = ∑ 𝐶𝑓𝑖𝑛
𝑖=1
𝑛

           (4) 

Using a suite of elements is a good starting point for assessing the contamination of 
sediments.  However, the modified degree of contamination index is slightly skewed when 
one element is heavily contaminated.  This is because the contribution of one element is 
averaged over the suite of elements and the impact of this element is then reduced to the 
average impact of all of the elements across the sediment.  An example would be the 
comprehensive contamination by an element such as mercury in sediment that is otherwise 
pristine. The sediment could be toxic to all organisms, but the mCd index could indicate that 
the sediment has a low degree of contamination. 
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One approach to overcome the problems identified with the modified degree of 
contamination index is to use the Nemerow Pollution Index (PI) (Nemerow, 1991) to indicate 
the quality of sediment.  The index is similar to the modified degree of contamination index 
in that it uses the average of the contamination factors (see Equation 1) (CFaverage) of a suite 
of elements. However, it also takes into consideration the impact of contamination of one 
element by using the maximum contamination factor (CFmax) to develop a weighted average 
according to Equation 5.  By using a weighted average, the Nemerow Pollution Index allows 
the qualification of sediment quality that is much more considerate of the effect of a single 
element. 

𝑀𝑀𝑀𝑀 = ��𝐶𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒�
2
+(𝐶𝐹𝑚𝑎𝑥)2

2
         (5) 

The Nemerow Pollution Index also uses much lower trigger points (Table 3) than the 
modified degree of contamination index, with a value greater than 3 indicating that the 
sediment of interest is heavily contaminated.   

The Nemerow Pollution Index has some disadvantages in that it uses contamination factors, 
which are limited by not accounting for the behaviour of sediments within estuaries and the 
possibilities of multiple sediment sources.  However, the use of the Nemerow Pollution Index 
has been considered to be the most comprehensive method of assessing sediment quality.  For 
this reason, the Nemerow Pollution Index has been increasingly used in recent years (Cheng, 
Shi, & Zhu, 2007; Guang, Jian, Yue, Caiyun, & Qing, 2010; He, Wang, & Tang, 1998; Jing, 
2006; Mohammed, Loganathan, Kinsela, Vigneswaran, & Kandasamy, 2012; Nemerow, 
1991; Qingjie, et al., 2008; Wen-qiang, 2008). 

2.0 Developing a modified Pollution Index for use in estuarine and marine 
environments 

Although the Nemerow Pollution Index has been increasingly used in recent years, there are 
some limitations relating to its use.  The first limitation is that, compared to other pollution 
indices, the thresholds for the Nemerow Pollution Index trigger are very low, giving potential 
false positives for heavily contaminated sediments similar to the modified degree of 
contamination index (Equation 4), which can potentially result in over-reporting of 
contamination.  The second limitation is the use of contamination factors (Equation 1) to 
determine the index.  This does not consider the possibility that sediment behaviour is non-
conservative in many estuarine environments. 

Due to these limitations, an improved method for determining the Pollution Index is proposed 
by using Enrichment Factors (Equation 3) to calculate a modified pollution index according 
to Equation 6 which would allow for the non-conservative behaviour of sediments due to 
normalisation against an element such as Al or Fe. 
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         (6) 

Another advantage of using a modified Pollution Index (MPI) is that the sediment 
qualification thresholds can be adjusted to give a more accurate qualification of sediment that 
is unlikely to overstate sediment contamination.  A proposed set of thresholds for sediment 
quality is presented in Table 3, along with a comparison with the current Nemerow Pollution 
Index thresholds. 

Table 3. Trigger values for the Nemerow and Modified Nemerow pollution indices 

Class Sediment Qualification Nemerow 
Pollution Indexa 
(PI) (Nemerow, 
1991) 

Modified 
Pollution 
Indexb 
(MPI) 

0 Unpolluted PI < 0.7 MPI < 1 
1 Slightly Polluted 0.7 < PI < 1 1 < MPI < 2 
2 Moderately polluted 1 < PI < 2 2 < MPI < 3 
3 Moderately-heavily polluted -- 3 < MPI < 5 
4 Heavily polluted 2 < PI < 3 5 < MPI < 10 
5 Severely polluted PI > 3 10 < MPI 
aEquation 5 
bEquation 6 
 

Because the derivation of the Modified Pollution Index (MPI) is calculated from enrichment 
factors (EF), it is possible to use the EF thresholds as a basis for sediment quality assessment.  
The advantage of using EFs to calculate thresholds is twofold.  First, the Enrichment Factor 
thresholds are well established in the literature and second, the use of EF thresholds gives a 
realistic assessment of sediment quality and account for complex sediment behaviour. 

2.1 Comparison of pollution indices for selected studies 

In the example discussed in this paper, five recent studies on heavy metals contamination in 
soils and sediments were examined and the reported concentrations were used to calculate 
Geoaccumulation indices (Table 4), Nemerow Pollution Indices and modified Pollution 
Indices (Table 5).   

These studies included work by Cevic et al. (2009) assessing heavy metals in Seyhan Dam in 
Turkey,  Pengthamkeerati et al (2013) examining heavy metals contamination in the Mae 
Klong estuary in Thailand, Thuong et al (2013) looking at contamination in Hanoi, Vietnam.  
Kaushik, et al. (2009) examining contamination in the Yumana River in India and Abrahim 
and Parker (2008) near Auckland, New Zealand.  As shown by Table 4, there is an overlap of 
some of the elements examined in each of these studies and the levels of contamination 

𝑀𝑀𝑀𝑀𝑀𝑀 = �(𝐸𝐸𝐸𝐸����)2 + (𝐸𝐸𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )2

2
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indicated by the geoaccumulation indices (Table 4) are low for most elements, with the 
exception of Cd.   

The geoaccumulation indices (Table 4) tend to under-report the more seriously polluted sites, 
which is evident for the values for Ni and Cd in the study by Kaushik et al. (2009). In this 
case, the enrichment factors sediment qualification is high, however, the geoaccumulation 
index sediment quality guidelines suggest that the sediments are not as polluted for Ni. This 
is reflected by all elements in the study by Abrahim and Parker (2008).  This suggests that the 
use of geoaccumulation indices can under-report the contamination of a site by an element, 
which is of concern given the risk assessment approach now favoured when assessing 
sediment quality. 

Table 4. Geoaccumulation indices (Equation 4) for a range of elements  

 Element 
Study Fe Mn Ni Pb Cu Zn Cd Cr As 
Çevik, et al. (2009) -0.8 -0.7 -- -- -1.8 -1.9 2.3 -0.2 -- 
Kaushik, et al. (2009) -2.1 -- 2.7 -- -- -- 3.4 0.7 -- 
Pengthamkeerati, et al. 
(2013) 

-1.3 -0.2 -3.1 -1.1 -2.4 -0.9 -- -- -- 

Thuong, et al. (2013) -1.0 -1.3 -0.7 1.2 0.4 1.7 3.3 -0.3 2.1 
Abrahim and Parker 
(2008) 

   1.3 -1.0 0.5 -0.1   

 

In each of the studies examined, the multi-element pollution indices (Table 5) suggest that 
there is cause for concern, as the Nemerow Pollution Indices show severe enrichment, with 
the exception of Pengthamkeerati et al. (2013).  

Table 5. Comparison of the Modified Pollution Indices and Nemerow Pollution Indices of 
elements  

Study PIa MPIb 
Sediment 
Qualityc 

PI MPI 
Cevic et al. (2009) 5.2 6.3 5 4 
Kaushik et al. (2009) 12 36.0 5 5 
Pengthamkeerati et al. 
(2013) 

1.1 1.7 2 1 

Thuong et al. (2013) 10.7 14.5 5 5 
Abrahim and Parker 
(2008) 

3.0 8.5 5 4 

aEquation 5 
bEquation 6 
cFrom Table 3 
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The Nemerow Pollution Indices all indicate severe contamination (a value of 3), with the 
exception of Pengthamkeerati et al. (2013), who reported moderate contamination.  The study 
by Kaushik et al. (2009) in particular show a high degree of contamination.  There are two 
major reasons for these high values.  The first is that the Nemerow Pollution Index is a 
weighted average rather than just the average contamination factor, making a higher value for 
the index more likely, and the second is that the trigger thresholds are lower than those for the 
other indices.  This makes the Nemerow Pollution Index more likely to identify high levels of 
contamination for a suite of elements.  In the context of sediment quality assessment, this is 
an advantage over the other indices, as a high value for the Nemerow Pollution Index is more 
likely to result in further examination to identify the sources of contamination. 

Table 5 above indicates that there is a difference between the two pollution indices, with the 
Modified Pollution Indices reporting equal or lower trigger values for sediment quality when 
compared to the standard Nemerow Pollution Indices for each of the studies.  Although the 
modified Pollution Indices are still high, this is most likely due to the high enrichment factors 
of some elements. 

To further expand on this, a larger sample of studies were analysed and their Enrichment 
Factors were calculated and can be seen in Table 6 below.  The Modified Pollution Index and 
the average Enrichment were also calculated and the results demonstrate that generally, the 
Enrichment Factors for the studies reported earlier (Cevic et al., (2009) Kaushik et al., 2009; 
Pengthamkeerati et al., 2013; Thuong et al., 2013; Abrahim and Parker, 2008) show that 
when compared to Geoaccumulation indices, the Enrichment Factors tend to point towards 
more heavily polluted sediments.  This is particularly true of the work of Kaushik et al. 
(2009), who found elevated Ni and Cd, but the Igeo under-reported the extent of 
contamination.  This is also true for all elements in the study by Abrahim and Parker (2008), 
providing further evidence that the Geoaccumulation index may be limited in application to 
complex environments. 

When the average Enrichment Factor and the Modified Pollution Indices are compared 
against each other in Table 6, it is clear that the MPIs indicate greater overall contamination 
for the suites of elements studied in each paper.  This gives a clear indication that the use of 
Modified Pollution Indices is more likely to give a better assessment of risk than a single 
element index or an average of Enrichment Factors.  The use of an MPI provides an 
advantage of the Nemerow Pollution Index as it takes into consideration complex sediment 
behaviour that are likely to occur in marine and estuarine environments. 
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Table 6. Enrichment Factors, average EF and Modified Pollution Indices from a number of 
recently published works 

 Enrichment Factorsa   

Study Fe Mn Ni Pb Cu Zn Cd Cr As Co Hg Average 
EF MPIb 

Cevic et al 
(2009) -- 1.1 -- -- 0.5 0.5 8.5 1.3 -- -- -- 2.4 6.2 

Kaushik et al 
(2009) -- -- 9.4 -- -- -- 8.5 1.4 -- -- -- 6.4 8.1 

Penthamkeerati 
et al (2013) -- 2.2 0.5 1.4 0.9 5.5 -- -- -- -- -- 2.1 4.2 

Thuong et al 
(2013) -- 0.8 1.3 4.5 2.6 6.8 19.9 1.6 8.7 -- -- 5.8 14.7 

Abrahim (2008) -- -- -- 10.6 2.2 6.4 3.8 -- -- -- -- 5.8 8.5 
Ghrefeat & 
Yusuf (2006) -- 0.36 -- -- 1.3 3.6 30 -- -- -- -- 8.8 22.1 

Chen et al 
(2007) -- -- -- 8 3.9 8.3 16.5 2.5 -- -- 41.8 13.5 31.1 

Ghrefat, Abu-
Rukah & Rosen 
(2010) 

-- 1.4 3.4 17 1.6 2 85 2.7 -- 13.6 -- 15.8 61.1 

Pempkowiak 
(1991) -- -- 1 2.1 2.1 1.8 1.6 1.1 -- 1 4.8 1.9 3.7 

Zhang et al 
(2009) -- 1.6 2 1.7 1.5 1.6 3.3 2.8 -- -- -- 2.1 2.8 

Lee, Fang & 
Hsieh (1998) -- -- 1.5 4.4 0.8 2.8 1.3 0.6 -- -- -- 1.9 3.4 

Singh et al 
(2002) 1 0.9 1 2 2 2.1 4.4 2.4 -- 1 -- 1.9 3.4 
aSee Equation 3 
bSee Table 3 and Equation 6 

3.0 Conclusions 

Estuarine environments are complex areas where a number of simultaneous processes occur.  
These processes impact the behaviour and bioavailability of heavy metals suspended in water 
and sediments.  A number of pollution indices have been proposed to identify contamination 
by heavy metals in these environments. Many of these cover single and multiple elements. 
Some of the indices also attempt to account for lithogenic sources of heavy metals and 
changes in the background concentration as well as the non-conservative behaviour of 
sediments that frequently occur in estuarine environments. 

Among these sediment quality indices, the use of enrichment factors was determined to be 
the preferred single element index for assessing contamination at a site by a particular metal, 
while the Nemerow Pollution Index was identified as the preferred multi-element index for 
assessing sediment quality when a suite of elements are the focus.  From this, a Modified 
Pollution Index was developed using enrichment factors rather than contamination factors in 
order to develop an improved method for assessing sediment quality, that takes into 
consideration complex sediment behaviour when a suite of elements are investigated, as 
compared to the pollution indices currently used. 
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