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Abstract 

Dependence on car use generates adverse effects on the sustainability of our urban 

environment due to air and noise pollution and global warming. Along with 

technological and infrastructure improvements, an overall solution to this problem 

would require dramatic change to the way we chose to travel. Behavioural change of car 

users to have them move to other sustainable travel options making less impact to our 

environment is crucial. Behavioural change of car users is not straightforward given the 

huge range of factors governing their travel decisions. Local authorities with constrained 

budgets require evidence to help them introduce policies that will have significant 

impact on car use. Therefore, we need to understand which specific groups of car users 

are more inclined to change to sustainable modes so that ultimately targets can be met. 

 

The global aim of this research is to characterise target groups of car users (as a driver 

or passenger) who are more likely to switch from private transport to sustainable 

modes. A comprehensive analysis of the British Social Attitudes (BSA) survey data 

collected during 2011 to 2014 was used in this research. The research identified: 

important attitudinal factors through dimension reduction analysis; groups of car users’ 

travel mode choice decisions based on socio-demographic variables; relationships between 

car users’ groups and attitudinal factors which relate to modal shift potential and finally 

deriving a mathematical model to predict the likely uptake of sustainable modes. The 

statistical analysis techniques included Descriptive Analysis (DA), Factor Analysis (FA), 

Cluster Analysis (CA), Multiple Correspondence Analysis (MCA), and Multinomial 

Logistic Regression (MLR) coupled with a Multivariate Probit Model (MPM). When 

developing MPM, Bayesian inference was taken into consideration because it allows the 

uncertainty in the parameters to be incorporated in the model. Finally, the MPM was 

used to investigate the relationships between the responses of car users to the different 

attitudinal questions.  

 

The FA is particularly useful to reduce a wide range of variables into a smaller number 

of factors and three main factors labelled as Attitudes to transport and the environment; 

Traffic awareness; and Modal shift potential emerged from 14 attitudinal variables. The 

CA is a method to group the car users based on their socio-demographics and travel 

related variables. Five clusters emerged namely middle–aged (35-44), female, full–time 
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employee (Cluster 1); middle–aged (35-44), male, full–time employee (Cluster 2); mature 

adults (45-54), male, full–time employee (Cluster 3); older–aged (65+), male, retired 

(Cluster 4); and middle–aged (35-44), female, looking after the home (Cluster 5). Whilst 

the majority of respondents are strongly car-orientated either as a driver or as a 

passenger, the car users associated with Cluster 2 were found to be more likely to cycle 

once a week already (29%) and travel by train less often than once per month (39%) 

compared to other car users in other clusters.  

 

The MLR investigates the relationships between the factors and the clusters exploring 

the details of the change of attitudes over the years, for instance from 2011 to 2014. The 

outcome of the results show that Cluster 2 has considerably higher environmental 

awareness compared to other groups of respondents. Therefore, this group is likely to 

have potential to switch travel modes. The MPM was developed in this study specifically 

for ordinal responses and enabled responses to several questions, which can be 

correlated to be considered in a single model. This approach is different to MLR, which 

does not consider these correlations.  

 

The MPM suggested that younger and older cohorts are the least likely to be susceptible 

to change whilst the middle-aged population is more likely to mode shift to cycling or 

public transport. However, the reverse is true for respondents with larger household 

size. The willingness to switch from the car to walking and cycling for short journeys of 

less than 2 miles appears to increase depending on the increasing number of people 

living in the household. Females will be less likely to switch mode from cars to cycling 

for short journeys. However, switching to walking and going by bus were more or less 

equally acceptable for both males and females. In addition, there was a greater tendency 

to agree to use cars with lower CO2 emissions for the sake of the environment among 

respondents with one car per household compared to respondents with four or more. 

This research demonstrated that fitting MPM using Bayesian inference is both a practical 

and effective way to analyse ordinal survey data and is a novel aspect in this study.  
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Chapter 1 Introduction 

1.1 Background 

Climate change is a major environmental challenge that currently confronts civilisation 

(Stern, 2006; Hensher, 2008; Koetse and Rietveld, 2009; Liu et al., 2016). The effect of 

greenhouse gas (GHG) emissions on climate has given rise climate change issues 

including extreme temperatures, flooding and air pollution (IPCC, 2015). From 1950 to 

2011, the USA, European Union, China, Russian Federation and Japan were considered 

to be the five largest emitters of carbon dioxide (CO2), which together contributed to 67% 

of the world’s CO2 emissions (Muradov, 2013). According to a more recent report by Le 

Quéré et al. (2016), the world pumped an estimated 39.8 billion tons (36.1 billion metric 

tons) of CO2 into the air in 2016 by burning coal, oil and carbon based gases. This 

amounted to 778 million tons (706 metric tons) or 2.3% more than in the previous year, 

despite increasingly crucial warnings over the need to reduce GHG emissions. 

 

When it comes tackling climate change, the transport sector in the UK is still failing to 

play its part (Anable et al., 2006; Chapman, 2007; Koetse and Rietveld, 2009). The 

increasing needs of people have led to a higher demand for transportation services. 

Many countries, such as the USA, UK, China, Russia and India have been struggling to 

cope with this challenge of an increasing demand for transport over several decades 

(Tight et al., 2005; Stern, 2006; Hensher, 2007; Koetse and Rietveld, 2009; Van et al., 

2014). As a result, a range of transport modes have emerged in the transport system 

(public and private) making roads more congested. Many countries, and especially those 

with well-developed or expanding economies, experience chronic traffic congestion due 

to increasing travel demand and vehicle ownership (O'Flaherty, 1997; Hensher, 2008; 

Dissanayake and Morikawa, 2010). Transport was considered as the second largest 

contributor after those from energy supplies (35%) in the UK (DfT, 2014) where 21% of 

GHG emissions were attributable to road transport. Despite the efforts of governments 

to mitigate these problems, the car still dominates the modal choice for many people, 

especially in developed countries.  
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Cars represent a fast, door to door, convenient and comfortable mode of transport. 

Hence, travellers prefer to use their cars over other public transport modes. Jakobsson 

(2004) stated that car use for work, shopping and other purposes has increased over the 

years due to its flexibility in performing activities in different places. The car also acts as 

a status symbol for many (Dissanayake and Morikawa, 2001), where its ownership is a 

reflection of status beyond any other benefit (Bergstad et al., 2011). Even though the car 

is a popular mode choice among travellers, there are adverse impacts due to car use, for 

example travel delays, longer journey times due to traffic congestion, consequential tail 

pipe emissions causing deterioration to the urban environment and associated 

detrimental health impacts. In addition, car use contributes to urban sprawl, excessive 

noise and accidents. Based on statistics published by the UK Department for Transport 

(DfT, 2014), cars and taxis comprise a greater proportion at 40% of transport emissions 

compared to other transport options such as aeroplanes (21%), heavy goods vehicles 

(HGVs)(15%), vans (10%) and others (13%). More than half (64%) of people travel by 

private cars in the UK, whilst in the USA, 87% of daily trips take place in private vehicles 

(Bureau of Transportation Statistics, 2012). 

 

Current trends in mobility and their adverse impacts on the environment and peoples’ 

health and well-being are of increasing concern. In order to minimize these problems, 

the transport authorities in the UK have been making an effort to improve public 

transport facilities and services over the past few decades to maintain and increase 

patronage. This is also common in other developed countries; for instance, in Australia 

where public transport modes including light rapid transit (LRT), mass rapid transit 

(MRT) and monorail have been introduced to cater for people’s travel needs and to 

improve accessibility (Hensher, 2007). This thesis is expected to generate new 

knowledge to support the review by Anable et al. (2006), Schwanen et al. (2011), and 

Skinner et al. (2011). Also it will provide scientific evidence to help support local 

authorities, particularly their target setting for future mobility plans by introducing 

policies that will have significant impact on car use and cutting down carbon for a 

greener future (DfT, 2011).  

 

Local transport plans (LTPs) are important part of transport planning in the UK to 

reduce the problems of traffic and inequality in transport. For example, in Newcastle 

upon Tyne, four initiatives have been introduced to reduce the city's carbon footprint by 

https://en.wikipedia.org/wiki/Transportation_planning
https://en.wikipedia.org/wiki/England
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encouraging peoples to travel by more sustainable modes. These initiatives are Go 

Smarter to School, Go Smarter to Work, Go Zero, and Newcastle Park and Ride.  

 

On the other hand, the Climate Change Committee, set a mandatory target for the UK of a 

67% reduction in CO2 emissions by 2050 over 2010 levels (CCC, 2010). In order to meet 

the carbon target, it is necessary to reduce the numbers of VKT by motorised vehicles by 

achieving a shift towards sustainable modes. Therefore, the specific groups of car users 

are more inclined to change to sustainable modes should be addresed in future policies, 

so that ultimately targets can be met. 

 

Researchers suggest that policies need to be formulated and targeted to address the 

issues related to traffic congestion and its impact on the environment (Stradling et al., 

2000; Hull, 2008; Santos et al., 2010; Geng et al., 2017). It is fair to say that, future 

policies should be informed by the results of investigation into how car users’ attitudes 

and perceptions can be changed. Because of various concerns associated with car use, 

more attention has recently been paid to environmental awareness and encouraging 

travellers to use more sustainable modes including public tranport and non-motorised 

forms such as walking and cycling. The emphasis in the policies has been changing, with 

more attention paid to environmental aspects and modal shift has become much higher 

on the agenda in recent years. However, despite these efforts, car ownership and the use 

of cars continues to rise (DfT, 2017). In order to address the reasons why people prefer 

cars over other transport modes or vice versa there is a need to investigate using a 

carefully designed methodological approach to provide scientific evidence to reverse the 

trend.  

1.2 Motivation of Study 

Whereas many studies have attempted to develop theories and to investigate the 

practicality of a potential shift from private to sustainable modes, little attention has 

been given to investigating attitudes and behaviour towards environmental issues, 

especially climate change, as a driver for change. An evidence based review found that 

attitudes, climate change and travel behaviour have not been comprehensively 

examined in any consistent, robust and integrated way which warrants a comprehensive 

analysis of the links between them (Schwanen et al., 2011; Skinner et al., 2011).  
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An attempt to investigate which cohort are more likely to change travel behaviour was 

carried out by Curtis and Headicar (1997), who found that those who were susceptible 

to mode change are more likely to be male, in their 30s. In contrast, Miralles-Guasch et al. 

(2016) found that women's mobility knowledge and practices are typically related to the 

most sustainable means of transport. Furthermore, gender differences were found by 

Waygood and Avineri (2016) to be an influence in general environmental concern and 

knowledge suggesting that women were more willing to pay to reduce their personal 

impacts and proposed that women are either more willing to change their behaviour or 

that their response to information on climate change is stronger. These two results 

suggest that over a period of 18 years, the target group for modal shift has changed from 

male to female. This raises an interesting research question to be answered in this Ph.D. 

thesis. Moreover, other characteristics such as age, employment status, household size 

and car ownership not considered together previously, will also be taken into account to 

complement the investigation in this study. 

 

In the context of attitudes and travel behaviour studies, the author found a lack of 

empirical evidence from mathematical modelling to support the idea of incorporating 

the car users with socio-demographic and attitudinal factors, which requires research 

with a comprehensive and sound methodological approach. Therefore, this study 

attempted to fill this research gap by employing carefully planned methodological 

process that gave due consideration to their attitudes to and perceptions of 

environmental factors and sustainability. The evidence obtained from this study is 

expected to inform future policies and inform the decisions of local authorities (LAs), 

national governments and associated industries to formulate strategies to achieve 

targets related to sustainability. 

 

Previous research used frequentist probability methods to make inferences, but these 

do not rely on specific prior data but only conditional distributions of data depending on 

particular hypotheses. For example, using maximum likelihood estimator, researchers 

worked with data without considering personal information and therefore had no 

chance to consider their prior belief before the analysis of actual data was taken into 

account. In order to come up with effective models, the inference method must be 

capable of incorporating uncertainties in parameters to identify significant inferences 



5 

which is essential to quantify the strength of the findings. Such models are addressed by 

this study. 

1.3 Research Questions 

Given this gap in knowledge, four overarching research questions to be answered by this 

research can be posed:   

 

1. What are the attitudinal factors that characterise the uses of sustainable 

transport modes? 

2. What are the key socio-demographic variables that affect travel mode choices 

and decisions within the cohort of car users? 

3. Which car users’ groups should be targeted in campaigns that promote the 

uptake of non-car transport alternatives? 

4. Can key factors be used to derive a model to predict the likely uptake of 

sustainable modes? 

 

These research questions were answered by carrying out detailed state-of-art-review 

and carefully planned multi-faceted analyses. As part of the review, the relevant datasets 

were examined to be used in the data analysis. 

1.4 Research Aim 

This study aims to provide insights into which target groups of individuals within the 

car user population are more likely to switch from private transport to sustainable 

modes in order to present scientific evidence to support the decision making of LAs and 

policymakers who are responsible for the design of marketing strategies and new green 

transportation policies. 
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1.5 Research Objectives 

The specific objectives of the study were as follows: 

 

1. To investigate important attitudinal factors through dimension reduction analysis; 

2. To examine and form groups of car users’ travel mode choice decisions based on 

socio-demographic variables; 

3. To investigate the relationships between car users’ groups and attitudinal factors 

which relate to modal shift potential; and 

4. To derive a mathematical model to predict the likely uptake of sustainable modes. 

 

The objectives stated above were achieved by conducting an initial search for relevant 

datasets at the early stage of research. Accordingly, the British Social Attitudes (BSA) 

dataset was identified as the most appropriate to achieve the aim and objectives in this 

study. This is a survey representative of adults aged 18 and above. The BSA survey used 

random probability sampling to select respondents to participate in the survey to ensure 

that the data are not biased and representative of the British population. The samples 

were collected from a large population over a given time period and classified as cross-

sectional data. 

1.7 Research Tasks 

In order to achieve the research objectives, the following tasks were proposed: 

 

1. Conduct a critical literature review of previous studies of sustainable transport, 

which includes mathematical approaches to modelling travel behaviour, modal shift 

potential and travel demand management policies so as to  be  able  to  identify  the  

gap  in  knowledge  and  to  inform the design  of a  structured methodological 

framework to fill the gap. 

 

2. Assemble and explore a range of statistical methods (such as descriptive, factor and 

cluster analysis) to establish the characteristics of sample populations of 

respondents, using the existing British Social Attitudes (BSA) survey datasets. 
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3. Specify the role of the existing dataset in addressing the research gap, identifying any 

shortfalls, and formulate the approach to mathematical modelling to be used. 

 

4. Investigate attitudinal variables with regard to environmental issues to establish 

factors that are important in and may govern modal shift from private to sustainable 

transport. 

 

5. Characterise potential target groups using a clustering method and examine the 

relationships between factors and clusters to quantify their potential to lead to shifts 

in modes of travel based on environmental awareness. 

 

6. Validate the model developed using an independent source or data timeframe and 

constantly review the data’s suitability to deliver the objectives. 

 

7. Draw conclusions and recommendations for further research into the delivery of 

sustainable mobility targets.  

 

Tasks underpin the delivery of all objectives. Objectives 1 and 2 were delivered by Tasks 

2 and 3, whilst objectives 3 and 4 were delivered respectively by Tasks 4, 5 and 6. Task 7 

brings together the results achieved by objectives 1 to 4.  

1.8 Thesis Outline 

As an introduction to the key concepts of travel behaviour and its relationship to 

sustainable transport and modal shift, an extensive literature review is presented in 

Chapters 2 and 3. Chapter 2 focuses on identifying the gaps in knowledge in the topics 

considered. The discussion includes overviews of the transport demand management 

(TDM), transportation and environmental issues, travellers’ attitudes to the 

environment, addressing behavioural changes through transport policies, attitudes 

towards and behaviour in travelling, and achieving a sustainable transportation system. 

Chapter 3 focuses on finding a structured methodology for the research to fill the gaps in 

knowledge identified. Furthermore, a critical review is presented of an extensive 

collection of methodologies used in previous related studies. 

 



8 

Background information on the gaps in knowledge found and the limitations of methods 

used in previous studies is provided and forms a sound foundation for the 

methodological approach used in this research as described in Chapter 4. A flow 

diagram is used to explain the methodological framework in detail. 

  

The general characteristics of the BSA respondents are described in Chapter 5. In this 

chapter, a preliminary data analysis looks into the detail in the data in order to gain an 

understanding of the BSA dataset. The data cleaning, coding and preparation processes 

used are also explained. An exploration of the structure of data and the factors obtained 

from the exploratory factor analysis is presented in Chapter 6, including details of 

respondents’ attitudes towards and perceptions of transport and the environment, 

traffic awareness, current travel behaviour and willingness to switch travel modes. 

 

Chapter 7 provides an investigation of differences among respondents in their 

perceptions of environmental issues. An investigation into the structure of the data 

using multiple correspondence analysis (MCA) and hierarchical cluster analysis (HCA) is 

discussed. Multinomial logistic regression models resulting from the relationships found 

between factors and clusters are identified and the evaluation of the statistical 

performance of the models is explained. 

 

The use of the Bayesian inference approach to a log-linear model for categorical data 

and multivariate probit models is described in Chapter 8. The results estimated from 

these models are then presented. The car user groups who demonstrate a higher 

propensity to take action to adjust their mode choice or activity to address 

environmental issues are discussed. 

 

Finally, the thesis concludes with the main findings of the study presented in Chapter 9. 

The policy implications of this research, the limitations of the study, and directions for 

further work are also discussed. 
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Chapter 2 Transport Attitudes and Travel Behaviour – Critical Review 

2.1 Introduction 

This chapter provides a critical review of the literature from previous studies to 

determine the direction of this research. The literature review uses a top to bottom 

approach where the topic is viewed from a broader perspective and then the discussion 

is narrowed down as the core issues are revealed. The sequence of the topics reviewed 

begins by elaborating on Transport Demand Management (TDM) strategies as described 

in Section 2.2, followed by a discussion of challenges in transport management, 

including environmental issues, in Section 2.3. An overview of travellers’ behavioural 

change with respect to environmental issues is then presented in Section 2.4, followed 

by a discussion of policy interventions in Section 2.5. Section 2.6 describes a recent 

study on travel attitudes and travel behaviour, and Section 2.7 explains ways of 

achieving a sustainable transportation system. Finally, the research gap in this study is 

presented in Section 2.8 along with a conclusion of this chapter. 

2.2 Transport Demand Management (TDM) 

Since the 1970s, Transport Demand Management (TDM) has been a popular tool to 

promote changes in travel patterns in transport planning contexts.  Consequently, many 

policies and conceptual frameworks have been developed over the years (Litman, 2003; 

Habibian and Kermanshah, 2011; Habibian and Kermanshah, 2013). More recently, 

researchers have placed emphasis on Modal Shift Potential (MSP) to understand the 

influence on travellers’ choices when presented with sustainable options so that travel 

creates only a minimal impact on the environment (Nilsson and Küller, 2000; Beirão and 

Cabral, 2007; Cairns et al., 2008; Cass and Faulconbridge, 2016). 

 

TDM, also known as mobility management, is a common term used for programmes and 

strategies that inspire more efficient consumption of transport resources such as road 

space, parking bays, vehicle capacity, funding and energy. TDM includes measures that 

improve the transport options available to travellers, offers inducements that encourage 
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travellers to use more efficient and less polluting transport alternatives, more accessible 

land use patterns, and designs planning transformation policies (Litman, 2003). An 

example can be seen in Gärling and Schuitema (2007) of how TDM is applied in targeting 

reduced private car use in terms of three factors: effectiveness, public acceptability and 

political feasibility.  

 

By managing traffic demand more efficiently by mode shift to public transport, 

numerous benefits are achieved. These include reduction in congestion, travel time 

savings, less need for parking facilities, fewer road accidents and less vehicle emissions 

(Litman, 2003; Litman and Fitzroy, 2009). As highlighted by the DREDF (2014), the 

advantages of the TDM measures to consumers are improved access to transportation, 

more reliable public transport services, provision of real-time information, alternative 

mode choice option and improved transportation performance.  

2.3 Transportation and Environmental Issues: The Challenges 

Transport is considered to be a driver for economic growth given its role in moving 

people and goods across regions and cities (DfT, 2014), and yet transport is a major 

source of greenhouse gas emissions (GHG). The transport sector was responsible for 

14% of global GHG in 2010 and accounted for approximately 23% of overall energy-

related emissions (SKTP, 2016). Emissions from transport have increased rapidly 

despite significant carbon dioxide (CO2) reduction measures implemented to different 

degrees across the world (Bharadwaj et al., 2017). Low-carbon transportation systems 

offer significant mitigation potential, enabling growth in travel and the development of 

urban areas and regions, while reducing the economic, environmental and social costs 

(Davison and Knowles, 2006; Chapman, 2007; Jochem et al., 2016). The SKTP (2016) 

emphasised that transportation and mobility are essential components of the economic 

and social development of any area and recommended that municipal governments, and 

local and regional authorities, need to be proactive in initiating sustainable transport 

systems when developing a vision for the reduction of carbon emissions. 

 

With the passing of the Climate Change Act 2008, the UK became the first country in the 

world to set up a long-term target for reducing GHG emissions, for example, pursuing at 

least 80% reductions by 2050 compared to 1990 levels (Boardman, 2005).  While 
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changes to the climate can occur due to natural processes, the effect of man-made GHG is 

responsible for recent upward shifts in global temperature, and transport use plays a 

major role. 

 

In 2017, 26% of the UK domestic GHG emissions were due to road transport (DfT, 2017). 

This high proportion means that no climate action plan can be successful without the 

inclusion of transport plans. In order to reduce vehicle kilometres travelled (VKT) by 

motorised vehicles, delivering a modal shift towards sustainable modes will be 

necessary to meet the carbon target (DfT, 2009). Undoubtedly the growth in car 

ownership, demand for personal mobility and traffic congestion all generate negative 

impacts on the environment (Susilo et al., 2012). In addition to car use, road freight and 

aviation are perceived to be major contributors to GHG (Chapman, 2007).  

 

Increasing awareness and nurturing an understanding of climate change and other 

environmental issues, and their effect on each individual in our society, is a great 

challenge. On the other hand, it is questionable whether raising awareness alone would 

be sufficient to change travel behaviour. Previous research gives mixed answers to this 

question, for example Anable et al. (2006), Susilo et al. (2012), and Ho et al. (2017), 

which will be discussed in Section 2.4.  

 

The ‘Stern Review’ of the economics of climate change emphasised the need for 

immediate action to alleviate GHG emissions as the benefits of bold, early action 

considerably outweigh the costs if delayed (Stern, 2006). Accordingly, the total cost of 

climate change was estimated to be equal to a fall of at least 5% in global Gross Domestic 

Product (GDP) each year if no further action was taken. Climate change is one of the 

biggest challenges that we face today with the UK taking the lead in setting mandatory 

limits.  

 

Waterson et al. (2003) identified a significant modal shift to public transport as an 

option to reduce CO2 emissions from road transport, and ‘zero-carbon’ alternatives such 

as walking and cycling are worthy alternatives. However, Waterson et al. (2003) 

acknowledged that changing attitudes concerning the dependency on private transport 

will be a great challenge. 
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In the UK, a quarter of all car trips were short distance journeys under two miles 

(Mackett, 2000). Such short trips can easily be made by a high proportion of the 

population in a more sustainable way by walking and cycling. Ryley (2001) stated that 

89% of drivers surveyed agreed with the statement, ‘‘I would find it very difficult to 

adjust my lifestyle to being without a car”. This statement suggests that behavioural 

change is a great challenge as society has largely become over-dependent on car use.  

 

Integrating transport policy and social psychology are recognised as being important to 

help drivers move away from their cars onto more sustainable transport modes 

(Stradling et al., 2000). While technological solutions offer ways to achieve climate 

change targets over the longer term, there is a pressing need to achieve change in 

behaviour and travel habits in the short-term through current policies (Anable, 2005; 

Boardman, 2005; Chapman, 2007). 

2.4 Travellers’ Attitudes to Environmental Issues: Do They Influence 

Behavioural Change? 

In order to achieve the GHG emissions targets from the standpoint of transport, 

behavioural change brought about by suitable policies will be vital (Chapman, 2007). 

People may fail to achieve anticipated behavioural changes if they have no relevant 

beliefs or perceptions. Perceptions lead to attitudes which ultimately influence 

behaviour. Schade and Schlag (2003) found that there were positive associations among 

those that view urban transport pricing approaches acceptable according to social 

norms, personal effect potentials and perceived effectiveness. Besides that, Beirão and 

Cabral (2007) and Shiftan et al. (2008) examined the relationship between mode choices 

and travellers’ attitudes, and found that potential users were attracted to the services 

that could accommodate the travellers’ needs, such as punctuality and reliability.  

 

Researchers have paid particular attention to the habit of using a car, as this is 

fundamental in understanding mode choice behaviour (Anable, 2005; Susilo et al., 2012; 

Susilo and Cats, 2014; Ho et al., 2017). Anable (2005) demonstrated that psychological 

variables should be considered when studying the propensity to switch travel mode 

because awareness of environment issues and concerns and car dependency are 

increasing. In addition, in order to promote sustainable transport, such as encouraging 
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walking and cycling, it is imperative to raise awareness of available sustainable mobility 

services, including public transport, with emphasis on key aspects such as accessibility 

constraints, basic safety and security, convenience and cost, and enjoyment, all of which 

were identified as important by Schneider (2013). Meanwhile, Nkurunziza et al. (2012) 

and Li et al. (2013) demonstrated that bicycle commuting, in particular, is strongly 

related to personal motivation and attitudes to environment. 

 

Some people think that they must change their behaviour in order to use more 

sustainable alternatives, whereas others do not (Steg and Vlek, 2009). However, in a 

study by Susilo et al. (2012) almost all respondents to a questionnaire agreed that all 

people are required to change their actions to guarantee a sustainable future rather than 

only themselves taking action. Travellers are aware of environmental problems, but 

their interpretations do not necessarily match their travel behaviour (Tertoolen et al., 

1998; Anable et al., 2006; Susilo et al., 2012). This is consistent with studies which 

recommend that even though facts about the negative environmental effects of car use 

raises some consciousness, it is usually insufficient to change behaviour (Susilo and Cats, 

2014). 

 

According to Anable et al. (2006), there are certain car-owner groups of travellers 

whose environmental concerns, as well as sense of responsibility, is greater than others. 

This suggests that there is potential for mode choice behaviour change. A recent study 

by Ho et al. (2017) clearly pointed out the need to provide information to travellers such 

as the benefits of sustainable travel planning initiatives to raise awareness and to 

generate positive attitudes towards green travel initiatives. They also went on to 

recommend that targeting relevant segments in society would be more effective than 

adopting a generic approach aimed at the whole population (Ho et al., 2017). This was a 

key motivator to this research aiming to identifying cohorts of the population most 

likely to change behaviour. 

2.5 Addressing Behavioural Changes through Transport Policies: What is 

Lacking in the Current Process? 

The transport sector creates much environmental pressure. Many policies targeted at 

reducing the pressure on the environment have not been fully effective because the 
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behavioural characteristics of travellers are inadequately acknowledged (Urwin and 

Jordan, 2008). In this sense, different strategies targeting different segments in society 

are needed as different populations are inspired by different aspects and are affected in 

different ways by policy (Anable, 2005; Banister et al., 2012).  

 

Previous psychological studies conducted on this subject further confirm that policies to 

date have generally had only a limited effect as they target the entire population in a 

uniform way (Hunecke et al., 2010; Prillwitz and Barr, 2011). More recently, Semanjski 

et al. (2016) generated population segments with similar attitudes and monitored them 

separately for the behavioural changes of 3400 respondents using smartphones as 

mobility. According to their results, segments of the population behave differently in 

terms of modal shift and route choice decisions and those changes are often based on 

the purpose of their journeys.  

 

Advances in Information and Communication Technologies (ICT) may help enhance 

transport choices, as they respond to specific needs, improve the mobility, and create a 

safer environment for vulnerable groups such as women, people with limited mobility, 

and people with disabilities to engage in economic activities (Giannopoulos, 2004; 

Banister, 2008; Cohen-Blankshtain and Rotem-Mindali, 2016). Using increasingly 

widespread and affordable ICT, transport users can now check and report any delays or 

disruption before or during the journey (Harris et al., 2015). ICT can help the planning 

and accessibility of transport. Transport users can get information to assist them for 

better planning when making a journey. 

 

As reported by Chapman (2007), long-term technological solutions are given 

considerable attention when addressing transport and climate change concerns. 

However, short-term behaviour change is seen to be important if the advantages of new 

technology are to be fully realised (Chapman, 2007). Previously, Anable (2005) and 

Boardman (2005) confirmed that policies to change behaviour and travel habits are 

crucial and potentially more important than technological approaches in the short-term. 

This indicates that a shift to sustainable mobility is unlikely if technological 

enhancements and modifications in the built environment are not combined with 

behavioural change. 
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2.5.1 Current policies on behaviour change – do they work well?  

Several policies and interventions such as Travel Demand Management (TDM) have 

been introduced in the UK and overseas over recent years to minimise travel-related 

impacts on society and the environment. The emphasis in these policies has changed 

significantly in recent years with particular attention now being paid to environmental 

aspects (Tight et al., 2005; Chapman, 2007; Marsden and Rye, 2010). 

  

As the result, the modal shift towards sustainable alternatives, including cycling and 

walking, as well as public transportation, has gained more attention in policy proposals 

in the UK (DCLG, 2012). Under the Local Transport Plan (LTP) initiatives, the local 

authorities (LAs) in the UK work towards achieving emission reduction targets by 

promoting public transport alternatives, and supporting the market for low-carbon 

transport and encouraging travellers to move from fuel-hungry vehicles to low-carbon 

vehicles (DCLG, 2012). For example, Department of Environment, Transport, and the 

Regions (DETR) published information to Local Authorities London (LAL) about 

encouraging walking, walking and cycling action plan for sustainable travel guide. 

 

Previous research has placed much emphasis on exploring the undesirable side effects 

of car use, for instance traffic congestion, carbon dioxides (CO2) emissions and air 

quality issues, and health related impacts (Steg and Gifford, 2005; Graham-Rowe et al., 

2011) leading to suitable policies being recommended to minimise these effects by 

encouraging people to change their travel modes from private cars to public or non-

motorised transport (Davison and Knowles, 2006; Banister, 2008; Schneider, 2013). 

However, on many occasions the suggested policies have failed to meet the expectations 

of the policymakers in integrating climate change concerns to reduce CO2 pollution and 

traffic congestion (Rayner et al., 2008; Urwin and Jordan, 2008). One possible reason for 

this is that the policies were developed without paying adequate attention to travellers’ 

attitudes and perceptions. Policy execution is believed to be successful if implemented 

for the appropriate targeted groups (Curtis and Headicar, 1997; Campbell et al., 2012).  

 

This research suggests the promotion of modal shift needs a well-defined audience. The 

identification of a precise target individual or group implies the likely effectiveness of 

new policy implementations. Marketing strategies for travel behaviour have changed to 
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include segmentation techniques enriched with qualitative attributes to explore 

behavioural aspects. Needs, beliefs and expectations vary significantly between market 

segments and evidence suggests that well-designed policies should target specific 

groups (Jensen, 1999; Anable, 2005; Steg, 2005). Recent advances in travel market 

segmentation indicate the need for new user segments incorporating perceptions and 

attitudes (Jensen, 1999; Anable, 2005). 

 

These earlier studies suggest that in order to develop sustainable travel policies, it is 

useful to identify travellers who chose to use different modes to meet their travel needs. 

Of particular interest, in the research reported in this thesis is the identification of car 

users who also use public transport, bicycles, or walking, as this group is more likely to 

respond to policies that promote the use of those modes.  

2.6 Attitudes Towards and Behaviour in Travelling  

It has been argued that travel behaviour is not only influenced by peoples’ preferences 

but also results from compromises of many other factors, including individual, 

household characteristics, and socio-demographic factors (Curtis and Headicar, 1997; 

Susilo et al., 2012; Susilo and Cats, 2014). The influence of different factors on user 

preferences, satisfaction and decision-making processes has been given careful attention 

to investigate the key determinants of travel choices for multi-modal trips by different 

traveller groups. The results reported by Susilo and Cats (2014) indicate that, for certain 

groups of travellers such as women, young and low-income or unemployed, there are 

distinctive determinants of satisfaction with trip stages for various travel modes. 

 

Personalised Transport Planning (PTP) is a well-established method to encourage 

people to make more sustainable travel choices (Haq et al., 2008). Some cities supported 

PTP in the reduction of congestion, cleaner air, healthier nations, and reduced CO2 levels. 

In the Europe, the Changing Habits for Urban Mobility Solutions (CHUMS) project 

conducting research with strategic aim of car-pooler. The CHUMS expected the changes 

in travel behaviour mind-sets for commuting leading to more energy efficient transport, 

shift towards sharing the journey for the working population who currently drive alone 

to work and to attract more employees to use carpooling for their commute to work 

trips. However, Waterson et al. (2003) acknowledged that greater rates of walking and 
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cycling will only be achieved when car use becomes significantly more costly and less 

convenient. It can be argued that policies to increase walking and cycling do not require 

transport solutions but, rather, need more fundamental changes in society and urban 

structures that allow more flexibility in how and when people travel, so that walking and 

cycling can be more easily fitted into household routines. 

 

Researchers also have paid considerable attention to how people’s attitudes can be 

influenced through awareness-raising, social marketing and other interventions in order 

to change their travel behaviour (Nordlund and Garvill, 2003; Scheiner and Holz-Rau, 

2007; Ory and Mokhtarian, 2009). A major issue identified in relation to this is the 

extent to which people’s behaviour is actually influenced by their attitudes and whether 

changing people’s attitudes necessarily will lead to an associated change in their travel 

choices (Anable et al., 2006). 

 

According to Line et al. (2010) and Line et al. (2012), attitudes and transport behaviour 

intentions, from the perspective of climate change, ultimately develop from the 

knowledge and values held by young people. They prefer cars due to the freedom, and 

privacy they give, and as a symbol of status, even though they generally recognize the 

detrimental impact that this mode has on climate change in comparison to other modes 

(Line et al., 2012). On the other hand, Anable (2005) claims that many studies have used 

established psychological theories of attitude-behaviour relations, such as the theory of 

planned behaviour, to predict mode choice and concluded that the choice of travel mode 

is largely a reasoned decision related particularly to attitudes and perceived barriers to 

behaviour change. 

 

In terms of perceptions and attitudinal influences on travel behaviour, factors which 

have been considered in previous research include travel time and cost (Noland and 

Polak, 2002), beliefs about  safety and the health benefits of cycling (Heinen and Handy, 

2012) and psychological factors which have a relatively strong impact on mode choice 

(Heinen et al., 2011). The role of socio-demographic variables as factors influencing 

individual travel patterns was further examined and a summary is presented in Table 

2.1. Some variables have been shown to have a significant relationship with travel 

patterns, for instance, higher income level, increases in vehicle ownership, higher rate of 
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possession of driver’s licences, and more people working in a household, all of which 

were shown to lead to higher frequency of trips as well as an increase in miles driven.  

 

From previous investigations, certain factors, such as age and car ownership, have been 

found to have a significant relationship with travel patterns. Among studies of travel 

behaviour, the most frequently adopted research method was to analyse household 

travel survey data giving information about individuals’ characteristics alongside travel 

patterns (Domencich and McFadden, 1975). In the next section, the challenges faced in 

achieving sustainable transportation from the perspective of climate change and 

environmental issues are discussed. 
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2.7 Achieving a Sustainable Transportation System 

Travellers’ attitudes were found by Sunkanapalli et al. (2000) and Parkany et al. (2004) 

to have a close relationship with travel mode choice. Based on theory, attitude is a proxy 

indicator to assess behaviour, which in turn organises a person to act in a specific way 

(Ajzen, 1987). Attitudes have been described as part of the decision-making process and, 

therefore, have significant impact on travel choices (Outwater et al., 2003) and, 

predominantly, the choice of travel mode(s) (Domarchi et al., 2008). For example, when 

selecting public transportation services, demographics and travel needs were found to 

be less important compared to attitudes (Garling et al., 1998; Fujii and Garling, 2003).  

 

Ideas concerning sustainable transportation emerged from discussions of sustainable 

development, and relate to the need to focus on the modes of transport used and the 

transport planning system (Litman, 2009). The qualities defining a sustainable transport 

system would include social, economic and environmental characteristics (Zhou, 2012). 

In the literature, the research generally focuses on achieving broadly four qualities for a 

sustainable transport system; namely, accessibility, efficiency, equitability and 

environmental friendliness. These are as listed in Table 2.2.  

 

No. Qualities Focus  Literature  

1 Accessibility 

Meets the basic access and 
needs of individuals 

Goldman and Gorham (2006) 
Hull (2008) 
Habibian and Kermanshah 
(2013) 
Eriksson et al. (2008) 

2 Efficiency 

Operating efficiently, 
including support for a 
competitive economy 

Rietveld and Stough (2005) 
Litman and Fitzroy (2009) 
Hensher (2008) 
Goh (2002) 

3 Equitability 
Affordable and operating 
fairly for everyone 

Goldman and Gorham (2006) 
Stern (2006) 

4 
Environmental 
friendliness 

Uses less energy or 
renewable resources and 
limits emissions to 
minimize the impact on the 
environment 

Bertolini and Martin (2003) 
Rietveld and Stough (2005)  
Steg (2005)  
Anable and Gatersleben (2005) 

Table 2.2: Assessing a transport system for sustainability 
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It is clear that previous research has led to evidence that one or two of these qualities 

have emerged as important but none have identified all four. Previous research suggests 

that sustainable transport needs to meet user access (physical and economic) to an 

efficiently operated system which offers affordable travel in vehicles using renewable 

energy with limited toxic emissions. 

 

How to achieve sustainability in the way we travel has been widely discussed recently, 

especially among policy makers, due to the benefits offered to our society, economy and 

the environment. Various strategies have been designed to promote a shift from car use 

to more sustainable modes of transport (Stradling et al., 2000; Gärling and Schuitema, 

2007; Saleh, 2007). Stradling et al. (2000), in a study of behavioural change of English 

motorists in the UK, carried out “pull” and “push” measures to help motorists out of their 

cars. They advocate that if people are helped to change, rather than being forced, the 

resulting changes will be more sustainable. On the other hand, Gärling and Schuitema 

(2007) suggested in their review that incentives could be offered for the use of non-car 

transport in order to decrease car use. These include road pricing, which offers 

monetary incentives for reduction in car use (Saleh, 2007).  

 

Given the potential benefits that are offered to the environment, economy and public 

health, cities and regions around the world have set ambitious goals for increasing the 

use of such policies, including non-motorised and public transport focusing on 

commuter trips. In a study of Ho et al. (2017) to assess community awareness, interest 

and involvement with a number of green initiatives and to understand how sustainable 

travel planning has been absorbed, 378 residents aged 14 years or over in 2011 were 

used. The research, using zero-inflated ordered probit (ZOIP) models, emphasised that 

travel planning by employers that promotes more sustainable travel has delivered less 

car-dependent behaviour among commuters in New South Wales (NSW), Australia.  

 

Promoting sustainability has been seen as a core aspect in recent research in the 

transport domain (Prillwitz and Barr, 2011; Susilo et al., 2012; Schneider, 2013; Xenias 

and Whitmarsh, 2013). Prillwitz and Barr (2011), in their study, classified travellers into 

two different groups to explore attitudes and behavioural change towards sustainability, 

and found that ‘consistent green travellers’ who walk and cycle are mainly young 

professionals and more likely to use motorised sustainable modes than other 
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participants. The other group is named ‘persistent car users’, often belonging to middle-

aged cohorts who support and use cars most frequently. On the other hand, Susilo et al. 

(2012), in a study of individuals’ environmental attitudes using 659 completed 

questionnaires from residents of 13 developments with some sustainable features in the 

UK, emphasized that age, health, security, availability and household size are important 

factors for mode choice options including walking, cycling and using public transport.  

 

Shepherd et al. (2006) studied three types of policy instruments, including changes in 

fares and frequency of public transport, in the city of Edinburgh in order to identify 

optimal transport strategies. Eriksson et al. (2008) studied reasons to reduce car use for 

the work commute of 1218 employees in a Swedish city. Redman et al. (2013), in their 

review, contributed a better understanding of sustainable development aspects to 

attract car users to switch to public transport. These researches highlighted those 

aspects which are important in encouraging car drivers to use public transport. Among 

them, the introduction of discounted fares (Shepherd et al., 2006; Eriksson et al., 2008; 

Redman et al., 2013) and increased frequency of services (Shepherd et al., 2006; 

Eriksson et al., 2008) are highlighted. Moreover, Miralles-Guasch et al. (2016) examined 

the differences between gender mobility through age, modal split and trip purposes 

using mobility data from a large travel survey taken in 2006 in Spain and suggested that 

any strategy promoting sustainable growth and attempting to reduce the impact of air 

pollution should focus on gender. They found that females were using sustainable 

transport modes more often than males. 

  

Other researchers discuss different important factors that encourage people to 

participate in the support of sustainable transportation (Dickinson et al., 2003; Anable 

and Gatersleben, 2005; Beirão and Cabral, 2007; Schneider, 2013). Dickinson et al. 

(2003) investigated travel plan measures to improve cycling activities to work in terms 

of gender through 2065 completed questionnaires in the UK. Anable and Gatersleben 

(2005) examined factors influencing work and leisure journeys by different travel 

modes using 235 participants in an on-line questionnaire. Meanwhile, Beirão and Cabral 

(2007) conducted a qualitative study of public transport and car users in order to gain 

an in-depth understanding of travellers’ attitudes and perceptions of public transport 

service quality. Also, Schneider (2013) used in-depth interview responses from the San 

Francisco Bay Area to improve the sustainability of their transportation systems by 
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shifting routine automobile travel to walking and bicycling. The most crucial attributes 

to be taken into consideration when choosing travel modes emerged as flexibility, 

convenience, cost, environment, security, enjoyment, habits and health.  

 

From the transport provision perspective, Xenias and Whitmarsh (2013), in their study 

of sustainable transport policies and technologies using open-ended questionnaires of 

experts (N = 53) and British public (N = 40), identified three main approaches to 

fostering sustainable transport. These were improving efficiency and reducing the 

impact of vehicles by promoting more sustainable modes and reducing the need to 

travel. Additionally, a study of Banister (2008) reported that reducing the need to travel, 

land-use policy measures, and technological innovations were the main drivers of 

change towards sustainability.  

 

Kingham et al. (2001) suggested that one of the ways to reduce everyday commuting 

journeys to work is to increase fuel prices and introduce home-based or tele-working 

jobs. However, in the 4M project modelling, measurement, managing and mapping, 

funded by the EPSRC in 2010, 575 head of households in Leicester were interviewed and 

measured energy (gas and electricity) used and VKT by some 1400 individuals living in 

the homes. Estimates of CO2 emissions from the reported energy use demonstrated that 

an average of 25% more CO2 is emitted by working at home and using electricity and gas 

for heating, cooking, and appliances during the day, than was saved by not travelling to 

work (Lomas et al., 2010).  

 

In a study of the effect of transportation policies on modal shift from private car to 

public transport in Malaysia, Nurdden et al. (2007) developed a binary logit model for 

the three modes (car, bus, and train) using a survey of n=1200 respondents and 

proposed that appropriate incentives need to be provided for a successful 

implementation of a policy to switch from private to public transport. This is because 

the distance from home to workplace has been one of the biggest stumbling blocks in 

shifting the mode of travel for commuter journeys. Travelling over long distances, 

especially by public transport, can be difficult and time-consuming. As claimed by 

Chevalier and Lantz (2013), the longer the distance to travel, the more likely motorised 

modes are used with lower frequency of ride sharing. 
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It has been noted that walking and cycling improve general health and save money for 

those who substitute trips made by other transport modes. Non-motorised modes 

produce no pollution or CO2 emissions and ironically can be quicker than motorised 

forms of transport in congested conditions. Banister (2008) suggests that walking and 

cycling will become an integral part of a modernised transport environment. In addition, 

environmental concerns are a significant factor in encouraging individuals to walk 

within and between neighbourhoods (Susilo et al., 2012). 

2.7.1 Factors affecting mode choice decisions 

Researchers discuss different factors that affect mode choice decisions in relation to 

travel alternatives, including car and sustainable modes such as walking, cycling and 

public transport. Table 2.3 lists chronologically researches that study the factors 

affecting car use; for example Curtis and Headicar (1997), Steg (2005) and Beirão and 

Cabral (2007). Specifically, they focus on topics related to private cars including travel 

time, attachment, dependence, convenience and flexibility, status symbol and 

environmental concerns. On the other hand, factors that affect sustainable modes such 

as awareness and availability, safety and security, facility, convenience and cost, 

enjoyment and habit were discussed by other researchers (Anable and Gatersleben, 

2005; Shannon et al., 2006; Schneider, 2013). 

 

Example of studies Car 
Sustainable modes 

Walking Cycling Public transport 

Curtis and Headicar (1997) √    

Steg (2005) √   √ 

Anable and Gatersleben (2005) √ √ √ √ 

Shannon et al. (2006)   √ √ 

Beirão and Cabral (2007) √   √ 

Schneider (2013)  √ √ √ 

Fuller et al. (2013)  √ √  

Table 2.3: Factors affecting car and sustainable modes users 
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It is interesting to note that only Anable and Gatersleben (2005) considered car along 

with all other sustainable modes. Previous research on travel behaviour, including 

Hanson and Schwab (1986), has revealed that when conducting an in-depth analysis of 

the relevant factors for travel behaviour decisions there is a need to have several 

contrasting themes such as attitudes, the transport system and the characteristics of 

travellers. These factors can be considered as external and internal factors. External 

factors relate to the physical environment experienced by people whilst travelling and 

comprise built environment, infrastructure, transit service quality, transport policy and 

the economic situation.  

 

Whilst internal factors include the characteristics of travellers such as income, car 

ownership, employment status, gender, age group, level of education and household size, 

are discussed in earlier studies by researchers, for example in (Kingham et al., 2001; 

Anable, 2005; Beirão and Cabral, 2007; Nurdden et al., 2007; Habibian and Kermanshah, 

2013; Susilo and Cats, 2014). Table 2.4 provides a summary of which internal factors 

have been included in the earlier studies and worthy of note is the variability in the 

factors considered and that none have dealt with all six factors.   

 

Example of studies Income Age Gender Employment 
status 

Car 
ownership 

Household 
size 

Kingham et al. (2001)  √ √                            

Anable (2005) √  √  √  

Beirão and Cabral 
(2007) 

√ √  √ √ √ 

Nurdden et al. (2007) √ √ √  √ √ 

Habibian and 
Kermanshah (2013) 

 √  √  √ 

Susilo and Cats (2014) √   √   

Table 2.4: Internal factors affecting car users 
 

Beirão and Cabral (2007), Nurdden et al. (2007), Eriksson et al. (2008) and Bamberg et 

al. (2011), in studies of factors affecting sustainable modes users and more specifically 

public transport, considered travel time, cost, not having to drive and the opportunity to 

relax and socialise during bus travel and comfort, as shown in Table 2.5.  
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Example of studies 
Travel 
time 

Travel 
cost 

Travel 
distance 

Trip 
purpose 

Environment 

Dickinson et al. (2003)   √  √ 

Shannon et al. (2006) √    √ 

Nurdden et al. (2007) √ √    

Beirão and Cabral (2007) √ √   √ 

Banister (2008)  √ √ √ √ 

Eriksson et al. (2008) √ √    

Bamberg et al. (2011) √ √  √ √ 

Schneider (2013) √    √ 

Table 2.5: External factors affecting users of sustainable mode 

 

Travel time, travel cost, travel distance, trip purpose and the environment were found to 

be significant barriers for sustainable modes users. Reducing travel time, travel cost and 

subsidising fares would have the highest influence on travelling trends (Shannon et al., 

2006; Beirão and Cabral, 2007; Nurdden et al., 2007; Eriksson et al., 2008; Bamberg et 

al., 2011). On the other hand, reducing the distance from home to public 

transportation stations was discussed as an important variable by Nurdden et al. 

(2007) and  short journeys need to be improved so that cyclists are safe from 

traffic without incurring risk to their personal security Dickinson et al. (2003), as 

well as contributing to trip reduction to modal shift (Banister, 2008). 

 

Trip purposes and the practicalities of the journey were found to be other factors that 

influenced travellers to use sustainable modes (Banister, 2008; Bamberg et al., 2011). 

The key findings were that public transport not only serves environmentally friendly 

objectives, but also benefits travellers in productive use of time and emerged as a safer 

alternative. Economically, it is also a less expensive option in terms of fuel and parking 

costs which can potentially lower congestion and transport costs (Redman et al., 2013). 

It also helps overcome social isolation (Prillwitz and Barr, 2011) and generally enables 

community interaction, which will benefit social sustainability (Currie and Stanley, 

2008). 
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Measures to promote or encourage the use of cycling as a mode for the commute are 

suggested by the UK Government in its travel plan resource pack to increase cycling 

(Steer Davies Gleave and the Association for Commuter Transport, 2000). These include 

the provision of safe, secure and covered cycle parking; establishing bicycle user groups; 

providing pool bikes; providing lockers, changing/drying facilities and showers; offering 

financial incentives such as interest free bicycle loans, discounts for bicycle purchase 

and preferential cycle insurance rates; providing a cycle mileage allowance to enable 

financial reimbursement for staff cycling on company business; promoting and 

publicising cycling; liaising with the local authority to identify the potential for 

improving cycle links; and considering other initiatives such as a puncture repair service 

and provision of a spares box for cyclists (Dickinson et al., 2003). 

 

Ho et al. (2017) found that women and public transport commuters are more likely to 

give positive responses to sustainable options. In addition, people aged 30 or below, 

younger families and those attracted to active travel modes also tend to support cycling. 

On the other hand, households with greater earnings have a lower propensity to 

contribute to green initiatives (Ho et al., 2017). Susilo et al. (2012) found that a modal 

shift is dependent on the age of the population towards which the initiative is focused. 

This research is consistent with the observation that females and older groups 

contribute greatly to increasing annual car mileage even though average car use has 

dropped (DfT, 2015).     

 

Local authority policy dictates investment in transport and this in turn influences travel 

choices. Therefore, one of the key objectives of investigating travel behaviour is to help 

policy makers and other stakeholders to develop policies that make travel behaviour 

more sustainable (Banister, 2008). Among other things, this involves reducing car travel 

and reinforcing travel by public transport, bicycle and walking. In order to take relevant 

actions on behavioural change, it is important to understand travellers’ attitudes, the 

barriers, and preferences in mode choice decisions. Therefore, the next section presents 

a review of studies of the potential to switch transport modes from private to 

sustainable alternatives. 
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2.7.2 Recent studies of modal shift potential 

The increase in numbers of private vehicles has resulted in undesirable side effects, 

including congestion and air pollution (Hensher, 2008; Stanley et al., 2011). Based on 

transport statistics in Great Britain in 2014, 68% of people travelled to work by car, 240 

billion vehicle miles travelled by car were recorded and only one in ten people walk to 

work (DfT, 2014).   

 

In order to minimise traffic-related issues, governments in the UK and overseas have 

developed policies to encourage travellers to use their cars less and public transport 

more. Continuous on-going discussions as well as reports, guidelines and 

recommendations demonstrate the ongoing attempts of the UK government to 

encourage a modal shift from private cars to walking and cycling for short journeys (DfT, 

2004; DETR, 2005; DfT, 2010; DoH, 2010). Based on a report published by the UK 

Department for Transport (DfT, 2011), transport policies are progressively being 

directed towards shifting travel from car use to walking and cycling. 

 

It is unlikely that significant modal shifts will be achieved without more vigorous 

engagement to render walking and cycling easier and more attractive, as well as making 

the option of using cars less attractive (Semanjski et al., 2016). On the other hand, a 

study by Verplanken and Orbell (2003) suggested that reflections on past behaviour 

have proved that mode shift is initiated by changing habits. Meanwhile, Ho et al. (2017) 

points out that attitudes to sustainable transportation whilst also extremely important 

working to change them should also affect the design of greener travel initiatives. 

 

Effective modal shift should aim to contribute either directly or indirectly to the 

development of a sustainable urban environment. Modal Shift Potential (MSP) 

comprises either a variety of modes or a specific mode depending on the travellers 

considered, with a target of optimising temporal, environmental, social and economic 

benefits (Redman et al., 2013).  The indicators that can be used to define sustainable 

transport goals and to monitor whether or not the current transport system is moving 

towards sustainability are strongly related to the specific policies of a country.  The 

influences toward healthier and more sustainable patterns of behaviour in travel mode 
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choice research were found as the result why people travel as they do (Thomas and 

Walker, 2015). 

 

Previous studies appear not to have considered environmental concerns regarding 

private transport use perhaps because it was not deemed an important factor affecting 

the travel mode choices of respondents. However, some evidence shows that the 

combination of different measures of environmental awareness measures leads to views 

that can be targeted in order to change behaviour (Anable, 2005). Also, Thomas and 

Walker (2015) suggest that environmental global views are proportionate to the 

strength of an individual’s attitudes concerning environmental problems. Research into 

the problem of susceptibility to switching modes has begun to raise issues of the 

environment and the source of car-dependent attitudes, and thus a number of 

developments have applied psychology to the study of mode choice (Anable, 2005). 

However, Okushima (2015) and Juho et al. (2014) failed to investigate environmental 

awareness aspects in their study, even though it is one of the important elements that 

should be considered. It is clear from the literature reviewed above that different views 

concerning the environment found among travel mode user groups was neglected and 

the author believes this must be taken into account to help influence behaviour change. 

2.8 Research Gap 

This chapter has reviewed a wide range of research topics related to the main subject of 

this study, starting from transport demand management followed by the challenges in 

transport and environmental issues, travellers’ attitudes to environmental issues, 

behavioural changes through transport policies, and achieving a sustainable 

transportation system. These studies were considered in four areas: a) attitudes and 

travel behaviour; b) sustainable transportation; c) environmental issues and d) modal 

shift potential, acknowledging these areas are interconnected with each other as shown 

in Figure 2.1. However, in previous studies, researchers were found to focus their 

investigations in one or more, but not all of these areas as shown in Table 2.6. 
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Figure 2.1: Interconnected research areas in this study 
 

Previous research 

Topics 

Attitudes 
and 

behaviour 

Sustainable 
transport 

Environment
/ climate 

change issues 

Modal 
shift 

potential 

Curtis and Headicar (1997) √   √ 

Urwin and Jordan (2008)   √  

Thomas and Walker (2015) √  √  

Anable et al. (2006) √ √ √  

Schneider (2013) √ √ √  

Kingham et al. (2001) √   √ 

Clifton and Handy (2003) √    

Van Wee and Holwerd (2002) √    

Mikiki and Papaioannou (2012) √ √ √  

Hunecke et al. (2010) √  √  

Barr et al. (2011) √ √ √  

Prillwitz and Barr (2011) √ √ √  

Susilo et al. (2012) √ √ √  

Table 2.6: Comparison of the object of investigation of several studies on sustainable 
mobility targets. 

 

The study by Curtis and Headicar (1997) focused on attitudes and travel behaviour as 

well as modal shift potential, but did not consider environmental and climate change 

aspects in their research. Whilst, Urwin and Jordan (2008) investigated climate change 

and explored policy across different scales of government; however, the study did not 

explore the potential groups of travellers on modal shift. In addition, Thomas and 

Attitudes and 
travel behaviour 

Sustainable 
transportation 

Environmental 
issues 

Mode shift potential 
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Walker (2015) conducted a large-scale survey of drivers, walkers, bicyclists and bus 

users commuting to a UK university to determine levels of trip satisfaction and the 

strength of habits for different travel modes, but did not consider environmental issues 

and potential groups of people to switch modes. 

 

Nevertheless, a study of policy intervention was conducted to generate further cross-

mode assessments which consequently will be beneficial for enlightening travel mode 

involvements (Anable et al., 2006). A more comprehensive study was conducted by 

Schneider (2013) using the theory of routine mode choice decisions in aiming to 

increase sustainable transportation. This research suggested steps to increase 

pedestrian and bicycle users through the environmental benefits of walking or bicycling. 

However, the study did not investigate policy recommendations in the research on 

modal shift potential. Studies by Kingham et al. (2001) focused on modal shift, attitudes 

to travel and the segmentation of groups.  However, they did not attempt to investigate 

environmental and climate change issues in their research.  

 

Analyses consistently show that some attitudinal factors are often more significant 

predictors of travel behaviour than traditional variables (Clifton and Handy, 2003). 

Combining psychological, socio-demographic and infrastructural variables can enrich 

predictions (Van Wee and Holwerd, 2002) and including environmental and attitudes 

may permit the identification of relevant user profiles (Mikiki and Papaioannou, 2012). 

Such attitude-based approaches can provide important information on environmental 

measures and aspects of different mobility behaviour (Hunecke et al., 2010). They can 

thus contribute to the more effective promotion of sustainable behaviour (Barr et al., 

2011). 

 

Prillwitz and Barr, (2011) studied the combination of factor and cluster analyses on 

attitudes towards certain modes of transport, and attitudes towards the environment 

and sustainability, to enrich explanatory models for individual travel behaviour and 

deliver helpful additional information for potential policy and planning measures. In 

terms of attitudes toward and behaviours in relation to the environment, almost all 

respondents were aware of environmental issues, but their views did not necessarily 

‘match’ their travel behaviour (Susilo et al., 2012). 
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Although the evidence provided by those studies seems to support the background of 

this research, some issues still remain as the investigations were conducted separately 

and there remains a need for further research to be conducted. 

 

The LAs especially Passenger Transport Executives (PTEs) might gain valuable 

information from this study concerning whether to invest more money to provide more 

facilities to encourage the positive use of sustainable transport or to invest in public 

transport services. Driver and Vehicle Licensing Agency (DVLA) might use the result of 

this study to seriously consider alternatives to higher taxes (road users charging) for 

private transport and instead lower ticket prices for public transport and other 

sustainable incentive schemes. Eriksson et al. (2008) and Redman et al. (2013) present 

some evidence to suggest that travellers expect to pay less for tickets to encourage them 

to use train services more. Besides that, the targeted group could be a potential market 

for car companies to produce lower CO2 emissions cars. As well as it could be benefited 

for Department for Communities and Local Government (DCLG) together with DfT for 

national planning policy framework of future sustainability. 

2.9 Conclusions 

Numerous studies, as described in this section have attempted to explain the potential of 

modal shift to sustainable transport. Curtis and Headicar (1997) suggested that travel 

awareness campaigns should be taken up by LAs as a strategy to encourage people to 

switch their mode of travelling. Nurdden et al. (2007) discussed the efficiency of 

transport policies in promoting modal shift from private cars to public transport in 

Malaysia and found that age, gender, car ownership, travel time, travel costs, household 

size and income are significant factors in influencing the individual’s choice of 

transportation. However, whilst it is acknowledged that targeting initiatives at specific 

groups is important (Susilo and Cats, 2014), studies on the best groups or individuals to 

target for new sustainable policy implementations are scarce.  Thus, this study aims to 

develop a methodological approach and investigate which individuals or groups are 

more likely to move away from private transport and are therefore the best targets for 

marketing strategies and awareness campaigns to encourage modal shift, considering 

the UK as a case study. 
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The BSA dataset has been used to analyse public attitudes to environmental concerns 

since the early 1990s. Taylor and Brook (1998) showed as time has passed over a period 

of almost ten years, an improved level of acceptance of sustainable policies has begun to 

be witnessed. However, despite this observation, they reported that peoples’ attitudes to 

the environment tended not to be used to support policies designed to lessen 

environmental impacts. 

 

After careful investigation it has been identified that the BSA dataset is a suitable archive 

for analysis to enable policymakers to understand not only public attitudes to transport 

policy and how they vary between subgroups, but also why different people have 

specific attitudes, as this will be fundamental in influencing behavioural change. 

 

The above review has motivated the research proposed in this thesis. It is important to 

obtain a deeper understanding of the relationship between travel behaviour and the 

encouragement of sustainable travel. This research expects to obtain new evidence and 

develops a novel mathematical model as a complement to the evidence already available 

to move discussion about the topic forwards. In order to develop an effective method to 

achieve the research objectives, analytical methods applied to categorical research are 

reviewed and discussed in the next chapter.  
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Chapter 3 Analysing Attitudinal Data – Critical Review of 

Methodologies 

3.1 Introduction 

The previous chapter critically reviewed previous studies relating to attitudes and travel 

behaviour, transportation and environmental issues, sustainable transportation, and the 

potential of modal shift. This chapter will carry out a critical review of the 

methodologies that can be applied to analyse attitudinal, travel and demographic 

characteristics data. 

 

Attitudinal data generally is categorical. Therefore, a key challenge here is to identify a 

form of quantitative analysis which can be used to evaluate qualitative measures 

associated with categorical data. More specifically, any method devised needs to provide 

an assessment of car users’ perceptions and attitudes towards travel aspects, including 

modes, distances, traffic congestion and environmental issues.  

 

In this chapter, Section 3.2 provides an overview of research approaches. Section 3.3 

discusses methodological approaches for categorical data used in previous research. 

Mathematical methods of modelling travel behaviour are then discussed in Section 3.4, 

followed in Section 3.5 by a comparison of inferences applied in travel behaviour 

research. Finally, a conclusion of this chapter is drawn in Section 3.6.  

3.2 Quantitative and Qualitative Research Approaches 

In general, quantitative approaches place emphasis on developing an approximation of 

the situation based on a sample of subjects using survey methods and applying 

statistical techniques to distinguish overall patterns. Instead of drawing conclusions 

subjectively through perception, consideration or intuition, it is fairly easy to survey 

people using more scientific and objective methods. This leads to more quantitative 

approaches which have the potential to provide accurate measurements of people’s 

behaviour. Also, as people’s responses are in numerical form, various statistical 
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techniques and operations can be applied. Accordingly, clearer results can be obtained 

and generalizations can be made.  

 

Qualitative approaches on the other hand focus on understanding a particular situation 

and examining or interpreting the statistically significant factors that are difficult to 

quantify using traditional quantitative approaches. In most problems related to people’s 

perceptions, attitudes and behaviour, qualitative approaches are used as a 

supplementary method to a quantitative approach in order to understand more clearly 

the subject matter (Clifton and Handy, 2003; Ortúzar and Willumsen, 2011). Qualitative 

approaches include in-depth interviews, brainstorming, paired interviews, telephone 

interviews, participant observation, open-ended questioning and focus groups. Methods 

such as focus groups, interviews, and participant-observer techniques (Clifton and 

Handy, 2003) and ‘action research’ transport survey methods (Lucas, 2013) can be used 

in conjunction with quantitative approaches or on their own to fill the gaps left by 

quantitative techniques.  

 

Prior to the work of Grosvenor (2000), Pendyala and Bricka (2006), and Clifton (2013), 

studies focused on the development and application of social survey methods for 

understanding travel behaviour by using quantitative and qualitative survey 

instruments. Qualitative designs are more flexible and aim to explore what people think 

and how they behave and this usually involves knowledge-gathering and observation 

(Kumar, 2011). For instance, Beirão and Cabral (2007) and Line et al. (2010) used 

qualitative approaches to understand attitudes towards public bus transport and private 

car use. Meanwhile, Carrasco and Lucas (2015) suggested that when measuring 

attitudes concerning, and perceptions of, people’s travel choices, both quantitative and 

qualitative approaches are useful methods.  

 

It has been noted that this type of research can be designed using both the quantitative 

and qualitative types of methods, referred to as mixed methods. In many cases, 

quantitative and qualitative approaches are ultimately complementary techniques, 

rather than alternatives. However, considering the objective of this research, which 

seeks to investigate the characteristics of group(s) of people, based on their socio-

demographic characteristics, who may have more potential to shift towards sustainable 

transportation, both methods are equally important. The qualitative approach offers an 
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effective way to generate attitudinal perceptual data that are predominantly categorical 

in nature, whilst the quantitative method mostly deals with numerical data. Sections 

3.2.1 and 3.2.2 are used to explain the details of attitudinal variables and categorical 

data respectively. 

3.2.1 Attitudinal variables 

Attitudinal variables are collected by using questionnaire surveys or structured/semi-

structured interviews designed to measure respondents’ opinions on a particular 

subject, either products or services, or to identify their feelings about something (Morey, 

2006). The attitudinal variables are generally combined with other types of data, such as 

the socio-demographic characteristics of the respondents, in order to obtain a more in-

depth understanding of a subject.  

 

Qualitative research has long been criticised for its lack of scientific rigour and 

subjective interpretation (Sandelowski, 1986). In order to avoid these weaknesses, there 

is a growing trend of using attitudinal questionnaire surveys combined with numerical 

data to provide a richer understanding of “attitude-caused travel behaviour” (Clifton and 

Handy 2001). As suggested in psychological research, attitudes are powerful elements of 

people’s actions (Kollmuss and Agyeman, 2002; Howarth, 2006) and taking these into 

account is crucial for the success of new strategies designed to reduce private car 

driving and promote pro-environmental travel behaviour (Nilsson and Küller, 2000). 

3.2.2 Categorical data  

In many fields such as psychology, science and transportation, categorical variables are 

commonly used when designing surveys. A set of non-overlapping variables are called 

categorical variables (Salkind, 2010). In transportation research, multinomial or binary 

logistic regression seem to be popular, especially when analysing categorical data (Al-

Ghamdi, 2002; Li et al., 2016) and in log-linear modelling (Jang, 2006; Olmuş and Erbaş, 

2012; Samimi, 2012). User preferences for mode choice, journey related variables, socio-

demographic characteristics, and attitudinal factors have been used when analysing 

categorical data (Anable, 2005; Anable and Gatersleben, 2005; Steg, 2005). Categorical 

data can be divided into two types, ordinal and nominal. 
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A measurement scale is ordinal if the categories can be ranked, such as perception 

variables with options ranging from “strongly agree” to “strongly disagree”, or “not 

important” to “very important”. However, a measurement scale is nominal if the 

categories have no ordering, such as colour (for example: red, blue, and green) and 

gender (male and female). Rating scales are normally used to define categorical 

variables over a range from lower to upper values. Several kinds of evaluation measures 

have been developed to rate attitudes, and the most commonly used is the Likert scale. 

Accordingly, responses using Likert scales are usually treated as ordinal data (Bertram, 

2006), where respondents can give a numerical response within a range of incremental 

scores. These are often on a scale with a range of for example 1 to 5 or 1 to 7 where 1 is 

labelled “strongly agree” and the upper value “strongly disagree”. An odd number of 

intervals is given so that a respondent can be neutral in their responses. In general, this 

technique is easy to manage and adopt and is a suitable method for gathering numerical 

data for non-physical latent variables such as of respondents’ awareness, perceptions, 

opinions, attitudes, intentions and preferences.  

 

Latent variables are referred to as variables that cannot be directly observed. The 

variables of this type therefore are used in the questionnaires as the indicators to 

measure the perceptions and attitudes of respondents with respect to their preferences 

and intentions.  

3.3 Methods Used in Analysing Categorical Data 

Various methods have been employed to explore categorical data in travel behaviour 

research. A number of techniques have been developed to analyse categorical data such 

as factor analysis for dimension reduction and cluster analysis and multiple 

correspondence analysis to allocate respondents to groups. Multinomial logistic 

regression and multivariate probit model are generally used to explore any 

relationships that exist between dependent and independent variables. Each method is 

discussed in detail in the following sections. 
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3.3.1 Dimension reduction using exploratory factor analysis (EFA) 

Factor analysis is used to simplify large sets of data in order to reduce the number of 

variables and to explore in further detail any structures in the relationships between the 

variables, establishing those that are independent and those that are not independent. 

Variables highly correlated are collected together into a new variable called a factor 

(Costello and Osborne, 2005). So factor analysis is more “model based”. PCA can be seen 

as a first step in factor analysis. There is no rotation in PCA but rotation is used in factor 

analysis (Fabrigar et al., 1999). There are four requirements or assumptions for a 

dataset to be suitable for factor analysis which are normality, linear relations, 

factorability, and sample size. 

 

Two factor analysis methods were considered for use in this research, namely 

Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). EFA and 

CFA techniques are similar, but their purposes are different. EFA is used to provide a 

number of factors with specified variables that are assimilated into factors, whilst CFA is 

used to examine whether expectations concerning the factor structure are indeed 

present. EFA is briefly described in this section as it is more applicable to the objectives 

of this study. This is because EFA is data focussed, whereas CFA is based on theory or 

empirical research. In the initial steps of scale development, EFA is suitable since items 

loading on the non-hypothesised factors did not show in CFA. The origins of factor 

analysis can be traced back to Pearson (1901) and Spearman (1904), and the term was 

first introduced by Thurstone (1931). A review of the subject can be found in Gorsuch 

(1983). 

 

The seven steps involved in EFA, suggested by Yong and Pearce (2013) have been used 

to create a conceptual diagram for the approach adopted in this research as shown in 

Figure 3.1. 
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Figure 3.1: Steps involved in factor analysis 
 

EFA is conducted using the correlation coefficients between variables and factors 

referred to as factor loading (Field, 2009). The squared factor loading represents the 

percentage of variance explained by a factor. If the observed variables are 
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Each of these equations is a regression equation; EFA is used to find the coefficients 

 which best reproduce the observed variables from the factors. The 

coefficients  are weights in the same way as regression coefficients.  

 

In EFA, the coefficients are called factor loadings and when the factors are not correlated, 

they also show the correlation between each variable and a given factor. In the model 

above,  is the loading for variable  on ,  is the loading for variable  on  

and so on. 

 

The sum of the squares of the loadings for variable , labelled as

, shows the proportion of the variance of variable  which is accounted for by the 

common factors. This is called communality. EFA solutions are more successful if larger 

values of communality are obtained for each variable.  

 

There are various measures used to identify the inter-correlation among variables. The 

Kaiser Meyer Olkin (KMO) measure is used to assess the degree of correlation among 

variables (Field, 2009). Hair et al. (2006) recommended this measure as being 

appropriate to deliver a specific level of confidence of the prediction value ranging from 

0.9 – 1.00 to be perfectly predicted down to a value less than 0.50 for unacceptable 

results. The  minimum  sample  required  for  PAF  is  50 (Hair et al., 2006). 

 

Costello and Osborne (2005) argued that principal component analysis is one of the 

factor analysis techniques used for data reduction which produces “components” while 

principal axis factoring produces “factors”. However, both are acceptable and used 

depending on the research questions and ease of interpretation of the results (Yong and 

Pearce, 2013). Also, they pointed out that maximum likelihood extraction method is 

more suitable for CFA and is used to estimate the factor loading for a population.  

 

There are two rotation methods in factor analysis, orthogonal rotation and oblique 

rotation. In orthogonal rotation, factors are assumed not to be correlated and are 

rotated 900 from each other. Quartimax and Varimax are commonly selected in 

orthogonal method. In general, Quartimax rotation concentrates on variables, whereas 

Varimax focuses on factors. More specifically, Quartimax and Varimax rotations 

maximise the variance of the squared factor loadings in variable and factor, respectively. 
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In oblique rotation technique, factors are assumed to be correlated and are not rotated 

900 from each other. Oblimin and Promax are two common oblique rotation methods. 

Oblimin attempts to simplify the structure of the output. However, Promax is 

advantageous because of its speediness in raising the loading in a larger dataset to reach 

a simple structure (Gorsuch, 1983). 

 

In transportation studies, factor analysis has been widely applied to analyse categorical 

data, for example Anable (2005); Steg (2005); Van et al. (2014); Kamruzzaman et al. 

(2016); Molin et al. (2016); and Batool and Carsten (2017). Table 3.1 presents the 

differences in choice of extraction and rotation methods that have been applied in 

previous studies to conduct EFA. 
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Along the lines of the discussions from previous studies, it is clear from Table 3.1 that 

EFA is used in a wide range of areas that embrace, for example, attitudes, travel choices, 

driving behaviour and land use. All seek to reduce the number of variables measured in 

qualitative surveys such as questionnaires and interviews, to remove commonality and 

any inherent correlation. Interestingly the sample size and number of variables vary 

widely from 105 to 19 and 295 to 6 respectively. 

 

Based on previous research, PCA and PAF are among the popular dimension reduction 

techniques chosen by researchers. Steg (2005), Anable (2005), and Van et al. (2014) 

used PCA with Varimax rotation method. Whilst, Molin et al. (2016) and Kamruzzaman 

et al. (2016) selected PAF extraction method with Oblimin rotation method to conduct 

EFA in their studies. Whereas, recently, Batool and Carsten (2017) and Fatmi and Habib 

(2017) applied PCA with Promax to find factors involving driving behaviour and 

attitudes towards switching travel modes, respectively. 

 

Several attempts have been made, using PCA and PAF, to investigate attitudinal 

variables to obtain important factors regarding car use (Steg, 2005; Batool and Carsten, 

2017),  public transport (Molin et al., 2016), travel attitudes and behaviour (Anable, 

2005; Kamruzzaman et al., 2016) and travel mode shift (Fatmi and Habib, 2017). Based 

on previous research, this method demonstrated its suitability for the analysis of Likert 

scale survey data regarding travel attitudes and perceptions in order to investigate 

behavioural and attitudinal related factors (Kamruzzaman et al., 2016) and, more 

specifically, to investigate travel mode choice decisions (Fatmi and Habib, 2017).  

3.3.2 Exploring the data structures with socio-demographic and travel behaviour 

- data clustering 

Cluster analysis is an exploratory statistical tool to identify the existence of similarities 

or patterns in responses (Tabachnick and Fidell, 2013). It is used to create and identify 

groups that are homogeneous within the total dataset and to segregate respondents 

based on similar characteristics. In other words, cluster analysis groups respondents 

with particular characteristic(s) based on their socio–demographic and travel profiles. 

By identifying the sub-groups, it becomes simpler to analyse and reveal any statistically 

significant relationships which may or may not emerge among the sample but within 
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and between the groups. Homogeneity or similarity is measured using the strength of a 

relationship by using the distance between the pair of objects. The smaller the distance, 

the more similar the objects are within the cluster.  

 

In travel behaviour research, there are many studies conducted using cluster analysis to 

explore different groups of respondents by using socio-demographics and travel related 

variables. Table 3.2 shows examples of previous studies that have employed three 

different cluster analysis techniques: K-means, hierarchical, and two-step clustering 

predominantly using categorical data. 
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According to Mooi and Sarstedt (2011), the steps in conducting cluster analysis are as 

shown in Figure 3.2, these being the steps which are adopted in the research. 

 

Identifying variables 

Personal characteristics such as socio-demographic data (age, employment status, 

household size, car ownership, and gender) and travel behaviour data (frequency of 

using car as a driver or passenger, frequencies of using bus, train and bicycle). 

 

Select clustering procedure 

Variables used are ordinal and nominal, therefore hierarchical cluster analysis is the 

appropriate method. 

 

Deciding the number of clusters 

The number of clusters is decided differently depending on the clustering methods 

chosen. In the hierarchical method, the number of clusters is obtained by cutting a 

dendrogram at a certain level. K-Means method was not used because there was no 

reason/evidence to constrain the number of clusters. 

 

Validating and interpreting cluster solutions 

The stability and validity of the cluster analysis solution obtained needs to be 

examined. When the applications of different clustering techniques on the same data 

produce statistically significantly similar results, the cluster analysis solution is 

considered to be stable. Validation was achieved by running the K-means cluster 

analysis using the number of cluster ±1 defined by HCA. 

Figure 3.2: The steps in cluster analysis applied to the research  
 

Since attitudinal variables can be considered as categorical data, both K-means and 

hierarchical clustering methods have been applied in previous research instead of a two-

step clustering method. This is because two-step clustering methods are applicable for 

analyses with a combination of both categorical and continuous data. Given the 

application criteria of each clustering approach and mindful that this research uses 

categorical data, the decision was made that hierarchical cluster analysis is the most 

suitable approach to be used in this study when compared to K–means. This is because 

in K-means, the number of clusters have to be defined in advance and this is unknown. 

Hierarchical clustering method is a method which identified the number of statistically 

significant groups and is discussed in more detail in next section. 
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Hierarchical cluster analysis 

In the hierarchical clustering procedure, the objects consecutively form clusters. 

Hierarchical clustering has two categories which are agglomerative and divisive 

clustering. In agglomerative clustering a bottom-up approach, each object represents a 

cluster and then clusters are combined according to their similarity. In contrast, in 

divisive clustering, a cluster is produced top-down from a single cluster which 

subsequently is divided increasingly to create further clusters at lower levels.  The 

results of hierarchical clustering are usually presented in a dendrogram. Agglomerative 

clustering is more popular and is often used in market research (Everitt et al., 2011) 

whilst divisive clustering is used in scientific studies.   

 

Euclidean distance is used as a measurement of similarity in hierarchical cluster analysis. 

A straight line between two objects is used to measure their proximity in terms of a 

Euclidean distance, and G and H are two individual measures of a variable availability. 

The closeness, referred to as  of the variables  and is calculated using 

equation 3.1 (Liberti et al., 2014): 

 

 

 

where: 

  = Euclidean distance between individuals G and H 

and              = values of variable X  for individuals G and H respectively 

and                = values of variable Y for individuals G and H respectively 

 

The same computation method can be used to calculate the distance between all pairs of 

data and written by means of a distance matrix. City-block-distance and the Chebyshev 

distance are other methods used in assessing distance. The city-block-distance uses the 

sum of the variable’s absolute differences, as shown in the equation 3.2 (Souza and 

Carvalho, 2004): 

 

 

   

https://en.wikipedia.org/wiki/Dendrogram
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where: 

 

 = City block distance between i and j 

 = coordinate attribute k of point i 

 = coordinate attribute k of point j 

and  = coordinate G 

and = coordinate H 

 

The Chebyshev distance uses the maximum difference of the absolute 

difference in the clustering variables, as described in the equation 3.3 (Cantrell, 2000): 

 

 

  

Where  and  are the values of the ith variable at points  and respectively. 

 

The CA methodology adopted in this research is based on a statistical process that uses 

the parameters of distance and similarity, where ‘distance’ is a measure of how far apart 

two objects are, whilst ‘similarity’ considers how similar the two objects are. 

Multiple Correspondence Analysis (MCA) 

Multiple correspondence analysis (MCA) is particularly suitable to explore unpredicted 

dimensions and relationships in the tradition of exploratory data analysis. MCA is a data 

analysis technique for categorical data, used to detect and represent underlying 

structures in a data set by representing data as points in a low-dimensional Euclidean 

space (Costa et al., 2013; Greenacre and Blasius, 2006). MCA aid the visualision where 

the data represented individually, allowing improved understanding of each group of 

people surveyed. The MCA is based on positive integer data. All variables have the 

multiple nominal scaling levels and the data must contain at least three valid cases. The 

results of the MCA can be presented analytically (results tables) and visually (graphs 

and charts). In addition, MCA positions each variable as a point in a low-dimensional 

space and helps to describe patterns of relationships, particularly using geometrical 

methods. 
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In this context, the respondent’s answer to an attitudinal question is considered to be a 

categorical variable. Hence, a respondent is characterised into a cluster by the answers 

given. Two respondents are closer if they have given common answers in a higher 

number of categories. In MCA, the distance between two respondents  and  is given by 

equation 3.4 (Greenacre and Blasius, 2006): 

 

 

 

where:   

 

 is equal to 1 if the respondent  has taken the category  and 0 otherwise, 

 is equal to 1 if the respondent  has taken the category  and 0 otherwise, 

 is the total number of respondents, 

 is the number of respondents who are assigned to category  and 

 is the number of variables. 

 

The expression  is either equal to 0 or 1. The distance  increases with 

the number of different categories for both respondents. A category  takes part in this 

distance formula with a weight equal to , which corresponds to the inverse of the 

category’s frequency. This means that respondents having an uncommon category are 

separated from all other respondents. 

 

More recently, MCA has appeared in transport research covering the topics of vehicle 

accidents (Das and Sun, 2015; Xu et al., 2015; Billot-Grasset et al., 2016; Jalayer and 

Zhou, 2017), airline services (Wen and Chen, 2011) and public transportation (Grison et 

al., 2015; Truong and Somenahalli, 2015) which mostly deal with latent variables. Table 

3.3 shows example of studies related to transport that have used MCA and presents brief 

details of each study. 
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The MCA has been widely applied in a wide range of transport studies mostly to analyse 

latent variables from questionnaires and survey data. All seek to obtain a representation 

and the typology of the individuals based on the components. The MCA is important in 

those studies because it can deal with interactions among all the categorical variables 

straightforwardly and reduce the complicated interactions into two dimensions, which 

is helpful in explaining the relationships among the variables and guiding decision-

making directions. 

 

Abdi (2007) identified MCA as an extension of univariate correspondence analysis 

methods of managing and demonstrating the patterns of relationships among several 

categorical dependent variables from rows and columns of the data. It has been 

established that dimension reduction techniques applied to continuous and categorical 

data and latent variable models are strongly linked in the sense that they group 

variables according to patterns or relationships within them (Bartholomew et al., 2011). 

 

One important difference between dimension reduction technique (factor analysis) and 

the MCA is that factor analysis groups data into factors according to the variable and 

cannot allocate a specific individual data item to the factor. On the other hand, the MCA 

allocates specific individuals to a category/group identified by the characteristic of and 

relationship between the variables. In the research reported in this thesis, both of these 

approaches are applied given that all data is categorical. This will be discussed further in 

Chapter 4 methodology and in the results Chapter 7. 

3.4 Logit and Probit Models 

Logit and probit models are suitable to model either dichotomous dependent variables 

such as “yes” or “no”, “like” or “dislike” (also called binary logit/probit model) or more 

than two independent variables (called multinomial logit/probit model). However, logit 

and probit differ in how the function is defined to explain the range of values the 

variable can take to yield a predicted probability. Their outcomes are expressed in terms 

of odds ratio (for logit) or marginal effect (for probit).The logit and probit models use 

the cumulative function respectively of the logistic distribution and the standard normal 

distribution (Klieštik et al., 2015).  
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Table 3.4 is a useful overview showing the advantages and drawbacks of these models. 

In essence, the choice of logit and probit is a compromise between simplicity and failing 

to accommodate all variables and complexity leading to an outcome which is difficult to 

interpret.  

 

Logit Probit 

Advantages Disadvantages Advantages Disadvantages 

 Closed-form 

solution 

 Provides one set of 

globally optimal 

   parameter 

estimates 

 Simple calculation 

 Widely understood 

and used in practice 

 Easy to interpret 

parameter estimates 

 Easy to calculate 

probability outcome 

 Less demanding 

data quality 

requirements 

 Highly restrictive 

error assumptions 

 Ignores firm/specific 

observed and 

unobserved 

heterogeneity which 

can lead to inferior 

model specification 

and spurious 

interpretation of 

model outputs 

 Parameters are point 

estimates with little 

behavioural 

definition 

 Often provide good 

aggregate fits, but can 

be misleading given 

the simple form of 

the model 

 Tends to be less 

behaviourally 

responsive to 

changes in attribute 

levels 

 The link function 

for both the 

probit and the 

multivariate is a 

normal 

distribution 

 Can jointly 

estimate several 

response 

variables at a 

time and apply 

adjustments to 

the covariance 

matrix 

 Normal 

cumulative 

distribution 

function contains 

unquantified 

integral – 

complex model 

 Inverse 

transformation of 

probit has no 

direct 

interpretation 

Table 3.4: Advantages and disadvantages of logit and probit models
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The previous research uses both binary/multinomial logit/probit models as well as 

bivariate/multivariate logit/probit models (Linardakis and Dellaportas, 2003; Nurdden 

et al., 2007; Yamamoto, 2009; Habibian and Kermanshah, 2013). Therefore, it is worth 

clarifying the differences between them. Binary logit models are used to estimate the 

probability of a binary response (such as “yes” or “no” / “good” or “bad”) when those 

answers are governed by one or more independent variables. Whereas multinomial logit 

models are applied when the dependent variable is nominal with more than two levels, 

for example types of cars, colours and ethnic groups (Greene, 2003). Bivariate analysis 

uses two paired variables to investigate the association that occurs between them and 

multivariate analysis uses more than two variables to analyse whether they are 

predictive of a certain outcome (Greene, 2003). 

 

The following sections 3.4.1 and 3.4.2 discuss further the details of two different models: 

multinomial logistic regression and multivariate probit model which uses frequentist 

(likelihood) inference and Bayesian inference respectively. 

3.4.1 Multinomial logit (multinomial logistic regression) 

In previous research, multinomial logistic regression (MLR) was used as the next step of 

analysis after factors and clusters are obtained in the initial analysis (Zandvliet et al., 

2006). As discussed in Kwak and Clayton-Matthews (2002), MLR is suitable for a 

nominal dependent variable where the number of levels is more than two. Multinomial 

regression is a predictive analysis, similar to all linear regressions (Greene, 2003). 

However, MLR is used to describe data and to clarify the relationships between one 

dependent nominal variable and one or more continuous independent variables, which 

may be either interval or ratio.  

 

MLR models explain the association between a set of predictors and unordered multi-

category nominal outcomes. Consistent with common practice, a conditional probability 

of the logistic model, which is a generalisation of the multinomial outcome of standard 

logistic regression, is chosen as a reference against which others are compared.  

 

According to Ben-Akiva and Lerman (1985), the procedure of this model is as follows. 

Assume that an individual n is related to every travel mode of the choice set. Level 
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 and level  are two levels, such that 

level j is the reference level, and k is the selected level.  is the conditional 

probability that an individual chooses alternative k and is the reference 

conditional probability that an individual chooses the alternative j. The multinomial 

logistic regression model is defined by: 

 

 

 

 

 

where: 

 

 is the independent variable; 

is the number of independent variables;  

is the estimated intercept;  

 is the estimated coefficient. 

 

Table 3.5 provides brief details of examples of the application of MLR in travel behaviour 

research. These include Zandvliet et al. (2006), Geraghty and O’Mahony (2015), Wuerzer 

and Mason (2015), Geng et al. (2017), Gim (2017), Hamersma et al. (2017), Zhao et al. 

(2018) and Nutsugbodo et al. (2018).
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It can be seen from the table that MLR has been applied across the world in countries as 

diverse as Ghana, China, South Korea, Netherlands, Ireland and USA. They conducted 

investigations involving a wide range of modes for instance car, cycling, public transport 

and air travel. MLR was applied for impact assessments, highways, noise and other areas. 

Data for this research were collected by means of attitudinal surveys, questionnaires 

and direct measurement. 

 

MLR has been widely used in transport research: to analyse the combined effect of 

personal and household characteristics of car users (Zandvliet et al., 2006); to 

investigate impacts of traffic noise levels (Geraghty and O’Mahony, 2015); to examine 

demographic and personal characteristics together with distance travelled by cycle 

(Wuerzer and Mason, 2015); to study mode choice and more specifically the frequency 

of use of the automobile, public transit, and non-motorised on the year to year basis 

(Gim, 2017); to explore the comparison between before and after highway development 

(Hamersma et al., 2017); to observe the effects of different incentives, government 

measures, and demographic characteristics on residents’ travel mode choice behaviours 

(Geng et al., 2017); to analyse the perception of cycling environment, current travel 

behaviour, urban form and socio-demographic variables to forecast attitudes towards 

future cycling and car purchasing (Zhao et al., 2018) and to examine the relationships 

between tourists’ socio-demographic characteristics and their mode preference 

(Nutsugbodo et al., 2018). 

 

Previous research has demonstrated the value and appropriateness of this method to 

investigate the relationships between socio-demographic and travel related variables 

(Geng et al., 2017; Nutsugbodo et al., 2018; Zhao et al., 2018) and also to understand the 

association of socio-demographic with the environmental variables (Zandvliet et al., 

2006; Hamersma et al., 2017). In addition, among all the studies mentioned above, none 

have used clustered groups as dependent variables and factors as independent variables 

to investigate relationships between them. Given the above evidence and underlying 

benefits, MLR was chosen to study the relationships between factors obtained in EFA 

and the clusters obtained in HCA, as illustrated in Figure 3.3. Hence, this is a novel area 

pursued in the research reported in this thesis. 
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Figure 3.3: MLR approach in this study 
 

 

The practical advantages of using multinomial logistic regression, as claimed by 

Tabachnick and Fidell (2013), are as follows:  

 

i. more robust to violations of assumptions of multivariate normality and equal 

variance-covariance matrices across groups, 

ii. similar to linear regression, but gives more easily interpretable diagnostic 

statistics. 

 

Furthermore, advantages of this analysis that have increased its reputation come from 

the following assumptions:  

 

i. a linear relationship between the dependent and independent variables is not 

assumed; 

ii. independent variables need not be interval; 

iii. no requirement that the independent variables to unbounded, and finally; 

iv. normally distributed error terms are not assumed. 

3.4.2 Multivariate probit model (MPM) 

An ordered probit model can be estimated by the maximum likelihood technique from 

the frequentist perspective. In contrast, a Bayesian analysis by using a Markov Chain 

Attitudinal  Socio-demographic  Travel behaviour  

Factors Clusters GROUPS 

MODEL 
MLR 

VARIABLES 
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Monte Carlo (MCMC) approach which develops latent variable representation is another 

option. 

 

A number of studies have made use of the MPM approach in transport research by using 

frequentist inference. Frequentist inference is a form of statistical inference that draws 

conclusions from sample data by emphasising the frequency or proportion of the data. 

Under the frequentist approach, parameters and hypotheses are viewed as unknown 

but fixed (non-random) quantities, and consequently there is no possibility of making 

probability statements about these unknowns (Wakefield, 2013). Maximum likelihood 

estimator is an example of frequentist inference (Choo and Mokhtarian, 2008; Ferdous 

et al., 2010; Milioti et al., 2015; Becker et al., 2017). The application of MPM in 

transportation research has been adopted due to its capability of predicting choices on 

an individual-specific basis. However, these choices are assumed to be certain. In reality, 

there can be uncertainty in these choices. Bayesian inference approach has become 

popular in recent research due to the advantages attached to it. 

 

Choo and Mokhtarian (2008) developed a multivariate probit model with the aim of 

exploring the relationships between the consideration and adoption of three travel-

strategy bundles, namely travel maintaining/increasing, travel reducing and major 

location/lifestyle change, and linking them to a variety of explanatory variables using 

1,300 commuting workers living in three distinct San Francisco Bay area 

neighbourhoods in May 1998. Whilst Ferdous et al. (2010) proposed a multivariate 

ordered-response structure to deliver significant perceptions into the factors of adults’ 

weekday activity behaviour. Whereas Milioti et al. (2015) applied the equation proposed 

by Greene (2003) in their study regarding the passengers’ influencing factor of airline 

choices using a sample of 853 respondents and developed a multivariate probit model. 

The common description for the MPM with dependent variables is given in equation 3.6. 
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where: 

 the latent utility or propensity for considering alternative , 

 vector of observed characteristics determining choice alternative , 

 vector of unknown coefficients to be estimated, 

vector of error terms that are normally distributed with zero mean and constant 

variance. 

 

Milioti et al. (2015) found that fare and safety are the two most important factors in 

choosing an airline. Others included reliability and, friendly helpful staff during flight. 

These factors were found to be influenced by socio-demographic (income, age, 

nationality, education level and gender) and trip characteristics (booking method, final 

destination, purpose of the trip and cost of the ticket). 

 

Becker et al. (2017) studied a combined model of the ownership of car-sharing and 

other different mobility tools, such as public transport by using data from Swiss national 

travel surveys of 2005 and 2010. They proved that the multivariate approach is 

significantly more efficient than univariate approaches due to its ability to investigate 

the effects of the explanatory variables. 

 

As stated earlier, Bayesian inference is becoming popular due to its capability of 

handling uncertainties in the models. It is well known and there are good explanations 

of theory and applications published (Congdon, 2005; Congdon, 2006; Lee, 2012; 

Gelman et al., 2013; Kruschke, 2015; Bolstad and Curran, 2016).  

 

Linardakis and Dellaportas (2003) used a stated preference data to explain and predict 

passengers’ behaviour towards three main types of transportation (metro, car, bus) in 

the city of Athens. In order to determine whether a policy has positive or negative net 

benefits, there are several key evaluation factors such as walking, waiting, and journey 

time, and 95% credible intervals of the probability of selecting a specific mode of 

transportation. The MPM was estimated using Bayesian inference in their study as 

specified in equation 3.7. 
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where: 

 is a latent vector of dimension , 

 is the matrix of dimension , 

is a vector of dimension , 

is the error term of dimension . 

 

The traditional approach uses the maximum likelihood technique and focuses on the 

likelihood  where  is conditional probability without introducing a prior 

distribution, whereas Bayesian analysis uses the prior information about  coupled with 

the information contained in the data in an iterative way. Wang and Kockleman (2009) 

also obtained a broad understanding of the practical benefits of a Bayesian context over 

a frequentist method. The Bayesian method proved to be more straightforward, 

advanced and much easier to apply compared to maximum likelihood estimation 

specifically for complicated models. By using “conditional” distributions, the Bayesian 

approach decomposes the joint estimation of many variables into much simpler and 

sequential simulations. Furthermore, an efficient Bayesian inference approach to 

multivariate probit models with sparse inverse correlation matrices, taking into account 

the associational structure between binary observations, was proposed by Talhouk et al. 

(2010). 

 

In addition, MPM estimated with a Bayesian approach allows for the remaining 

uncertainty in the model parameter. However, the use of a Bayesian multivariate probit 

modelling approach to study attitudes and travel behaviour, which consists of ordinal 

categorical data, is very scarce in research, in sustainability research in particular. 

 

In MPM, Just Another Gibbs Sampler (JAGS) uses Markov chain Monte Carlo (MCMC) to 

generate a sequence of dependent samples from the posterior distribution of the model 

parameters (Plummer, 2016). Specifically, the “rjags” package is used which provides an 

interface from R to the JAGS library for Bayesian data analysis (R Core Team, 2017).  
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3.5 Bayesian Vs Frequentist (likelihood) Inferences Applied to Travel 

Behaviour Research 

Bayesian and frequentist (likelihood) inferences are two different approaches used to 

evaluate evidence about competing hypotheses or models. Bayes formula can be used to 

compute the posterior if the prior and likelihood are known for each hypothesis. 

However, on many occasions, the prior probabilities on hypotheses are not known. 

Therefore, the options here would be to use Bayesian with prior belief or to use only the 

frequentist (likelihood) to make an inference.  

 

The capability to make inferences based on Bayesian subjected to the significance level 

in the preferred prior and the alternative prior distributions may be significant and 

essential to the strength of the findings. On the other hand, the frequentist inference 

does not rely on a specific prior and only uses conditional distributions of data given 

particular hypotheses. In-depth discussions of the pros and cons of Bayesian analysis 

have been published by other researchers (Berger, 1985; Bernardo and Smith, 1994; 

Carlin and Louis, 2000; Robert, 2001).  

 

In recent years, there has been an increasing amount of literature on the use of Bayesian 

approaches in travel behaviour research because of the benefits that they offer. Bayesian 

statistics help people to make decisions under uncertainty, allow for the remaining 

uncertainty in the model parameter, and to quantify the strength of our beliefs when 

actual data have been taken into account. Table 3.6 shows the wide range of applications 

of the use of Bayesian in travel behaviour research such as mode choice decisions, travel 

behaviour, modal shift, and electric vehicles. All sought to analyse variables measured in 

qualitative surveys such as questionnaires and interviews to aid decision process. 

However, none of them applied MPM for ordinal data in their study. Given that 

advantage Bayesian inference was chosen for this study.  

 

 



6
8

 

N
o

. 
P

ap
er

 
T

o
p

ic
s 

D
at

a
 

M
et

h
o

d
 

A
p

p
li

ca
ti

o
n

 

1
.  

St
ar

k
 e

t 
a

l. 
(2

0
1

8
) 

M
o

d
e 

ch
o

ic
e;

 
C

h
il

d
re

n
;  

Sc
h

o
o

l t
ri

p
s;

  
N

o
n

-s
ch

o
o

l t
ri

p
s.

 

- 
1

8
6

 p
u

p
il

s 
in

 t
h

e 
7

th
 g

ra
d

e 
o

f 
ei

gh
t 

cl
as

se
s 

fr
o

m
 f

o
u

r 
se

co
n

d
ar

y 
sc

h
o

o
ls

 
in

 A
u

st
ri

a 
an

d
 

G
er

m
an

y
. 

- 
C

at
eg

o
ri

ca
l s

ca
le

 o
f 

re
sp

o
n

se
 v

ar
ia

b
le

s.
 

B
ay

es
ia

n
 a

p
p

ro
ac

h
 

fo
r 

n
o

n
li

n
ea

r 
St

ru
ct

u
ra

l E
q

u
at

io
n

 
M

o
d

el
li

n
g 

(S
E

M
) 

U
se

d
 b

in
ar

y 
re

sp
o

n
se

 v
ar

ia
b

le
s 

to
 a

ss
es

s 
th

e 
ef

fe
ct

s 
o

f 
ex

te
rn

al
 f

ac
to

rs
 o

n
 t

h
e 

ch
o

ic
e 

o
f 

tr
av

el
 m

o
d

es
. 

Sc
h

o
o

l t
ri

p
s 

ar
e 

q
u

it
e 

af
fi

n
e 

to
 t

ra
n

si
t 

ev
en

 i
n

 r
u

ra
l 

ar
ea

s,
 g

iv
en

 a
 s

u
ff

ic
ie

n
t 

se
rv

ic
e 

q
u

al
it

y.
 L

o
n

g
 s

ch
o

o
l 

tr
ip

s 
in

cr
ea

se
 t

h
e 

fr
eq

u
en

cy
 o

f 
tr

an
si

t 
u

se
. N

o
n

-
sc

h
o

o
l t

ri
p

s,
 h

o
w

ev
er

, a
re

 m
u

ch
 m

o
re

 a
ff

in
e 

to
 c

ar
 

ri
d

er
sh

ip
, i

f 
tr

ip
 le

n
g

th
 e

xc
ee

d
s 

th
e 

ra
n

g
e 

fo
r 

w
al

k
in

g 
an

d
 c

yc
li

n
g.

 
2

. 
X

io
n

g
 a

n
d

 
Z

h
an

g
 (

2
0

1
7

) 
M

o
d

e 
ch

o
ic

e;
  

H
id

d
en

 M
ar

k
o

v;
 

M
o

d
al

 
p

re
fe

re
n

ce
; 

D
ec

is
io

n
 

p
ro

ce
ss

. 

- 
M

em
o

ry
-r

ec
al

l 
su

rv
ey

. 
- 

1
4

6
 r

es
p

o
n

d
en

ts
 

fr
o

m
 t

h
e 

U
n

iv
er

si
ty

 
o

f 
M

ar
yl

an
d

 . 
 

- 
3

 y
ea

r 
p

er
io

d
 f

ro
m

 
2

0
0

9
-F

al
l t

o
 2

0
1

2
-

Su
m

m
er

. 

B
ay

es
ia

n
 

es
ti

m
at

io
n

 w
it

h
 

M
ar

k
o

v 
ch

ai
n

 
M

o
n

te
 C

ar
lo

 
(M

C
M

C
) 

E
st

im
at

ed
 t

h
e 

H
id

d
en

 M
ar

k
o

v 
M

o
d

el
 (

H
M

M
) 

an
d

 
d

es
cr

ib
ed

 t
h

e 
h

et
er

o
ge

n
ei

ty
 o

f 
th

e 
in

fl
u

en
ce

 o
f 

th
e 

lo
ca

l m
o

d
e 

sh
ar

e.
 D

ri
v

in
g

 li
ce

n
ce

 p
o

ss
es

si
o

n
 m

ak
es

 
ca

rp
o

o
l/

tr
an

si
t-

lo
vi

n
g 

in
d

iv
id

u
al

s 
m

o
re

 s
en

si
ti

v
e 

to
 t

ra
ve

l t
im

e 
an

d
 a

s 
su

ch
, i

t 
si

g
n

if
ic

an
tl

y 
en

co
u

ra
ge

s 
tr

av
el

le
rs

 t
o

 s
w

it
ch

 t
o

 a
 c

ar
-l

o
vi

n
g 

st
at

e.
 I

t 
is

 a
ls

o
 f

o
u

n
d

 t
h

at
 l

o
w

er
-i

n
co

m
e 

tr
av

el
le

rs
 

ar
e 

m
o

re
 s

en
si

ti
v

e 
to

 t
ra

ve
l c

o
st

 w
h

il
e 

fe
m

al
e 

tr
av

el
le

rs
 a

re
 m

o
re

 s
en

si
ti

v
e 

to
 t

ra
v

el
 t

im
e.

 
3

. 
Y

an
g

 e
t 

a
l. 

(2
0

1
7

) 
R

es
id

en
ti

al
 

re
lo

ca
ti

o
n

; 
T

ra
ve

l 
b

eh
av

io
u

r;
 

M
o

d
al

 s
h

if
t.

 
 

2
5

8
 r

el
o

ca
te

d
 

re
si

d
en

ts
 in

 N
an

ji
n

g,
 

C
h

in
a 

in
 2

0
1

4
. 

B
ay

es
ia

n
 n

et
w

o
rk

 
E

xp
lo

re
d

 t
h

e 
re

la
ti

o
n

sh
ip

s 
b

et
w

ee
n

 r
es

id
en

ti
al

 
re

lo
ca

ti
o

n
 a

n
d

 s
h

if
ts

 in
 t

ra
n

sp
o

rt
 m

o
d

e 
ch

o
ic

e 
fo

r 
th

e 
w

o
rk

 c
o

m
m

u
te

 r
es

p
o

n
d

en
ts

 w
h

o
 w

er
e 

w
al

k
in

g 
o

r 
b

ik
in

g
 t

o
 w

o
rk

 b
ef

o
re

 t
h

ei
r 

re
lo

ca
ti

o
n

. T
h

e 
re

su
lt

s 
sh

o
w

 t
h

at
 b

et
te

r 
tr

an
si

t 
ac

ce
ss

ib
il

it
y 

an
d

 
se

rv
ic

es
, w

al
k

in
g 

d
is

ta
n

ce
s 

to
 s

u
b

w
ay

 s
ta

ti
o

n
s 

an
d

 
th

e 
co

n
v

en
ie

n
ce

 o
f 

su
b

w
ay

 c
o

m
m

u
ti

n
g

 h
av

e 
a 

si
g

n
if

ic
an

t 
ef

fe
ct

 o
n

 t
h

e 
m

o
d

al
 s

h
if

t.
 P

u
rc

h
as

e 
o

f 
a 

se
co

n
d

 (
n

ew
) 

ca
r,

 c
u

rr
en

t 
ca

r 
o

w
n

er
sh

ip
, a

n
d

 
p

er
so

n
al

 in
co

m
e 

st
ro

n
gl

y 
in

fl
u

en
ce

 a
 m

o
d

al
 s

h
if

t 
to

 
th

e 
ca

r 
af

te
r 

th
e 

re
lo

ca
ti

o
n

. 
C

o
n

ti
n

u
ed

 o
n

 t
h

e 
n

ex
t 

p
ag

e 



6
9

 

T
ab

le
 3

.6
 (

co
n

ti
n

u
ed

) 

N
o

. 
P

ap
er

 
T

o
p

ic
s 

D
at

a
 

M
et

h
o

d
 

A
p

p
li

ca
ti

o
n

 

4
. 

W
u

 a
n

d
 H

o
n

g
 

(2
0

1
7

) 
T

ra
ve

l m
o

d
e 

ch
o

ic
e;

 
Su

b
w

ay
 

ex
p

an
si

o
n

; 
M

u
lt

il
ev

el
 

m
o

d
el

. 

9
4

6
2

 v
al

id
 

re
sp

o
n

d
en

ts
’ s

u
rv

ey
s 

in
 B

ei
ji

n
g

 in
 2

0
0

5
 

an
d

 2
0

0
9

. 
C

ro
ss

-s
ec

ti
o

n
al

 d
at

a.
 

B
ay

es
ia

n
 m

u
lt

il
ev

el
 

b
in

ar
y 

lo
gi

st
ic

 
m

o
d

el
s 

w
it

h
 s

p
at

ia
l 

ra
n

d
o

m
 e

ff
ec

ts
 

E
xa

m
in

ed
 t

h
e 

p
o

te
n

ti
al

 e
ff

ec
ts

 o
f 

su
b

w
ay

 s
y

st
em

 
ex

p
an

si
o

n
 o

n
 c

o
m

m
u

ti
n

g
 b

eh
av

io
u

r.
 

T
h

e 
re

su
lt

s 
su

gg
es

t 
th

at
 t

h
er

e 
is

 a
 s

ig
n

if
ic

an
t 

ri
se

 in
 

su
b

w
ay

 c
o

m
m

u
ti

n
g

 t
ri

p
s 

w
h

il
e 

n
o

n
-m

o
to

ri
se

d
 a

n
d

 
b

u
s 

co
m

m
u

ti
n

g
 t

ri
p

s 
ar

e 
re

d
u

ce
d

 w
it

h
 t

h
e 

n
ew

 
su

b
w

ay
 e

xp
an

si
o

n
. T

h
e 

re
su

lt
s 

sh
o

w
 t

h
at

 y
o

u
n

g 
ad

u
lt

s 
(i

.e
., 

u
n

d
er

 4
0

) 
ar

e 
m

o
re

 li
k

el
y 

to
 t

ak
e 

th
e 

su
b

w
ay

 f
o

r 
co

m
m

u
ti

n
g

 w
h

il
e 

d
ri

v
in

g
 le

ss
 t

h
an

 o
ld

 
ad

u
lt

s.
 H

o
u

se
h

o
ld

 s
iz

e 
is

 s
ig

n
if

ic
an

tl
y 

as
so

ci
at

e
d

 
w

it
h

 a
u

to
m

o
b

il
e 

an
d

 o
th

er
 m

o
d

es
 u

se
d

, i
n

d
ic

at
in

g
 

th
at

 p
eo

p
le

 f
ro

m
 a

 la
rg

e 
h

o
u

se
h

o
ld

 a
re

 le
ss

 li
k

el
y 

to
 

d
ri

v
e 

an
d

 m
o

re
 li

k
el

y 
to

 u
se

 o
th

er
 m

o
d

es
 s

u
ch

 a
s 

w
al

k
in

g,
 c

yc
li

n
g 

an
d

 b
u

s.
 M

id
d

le
-i

n
co

m
e 

p
eo

p
le

 
te

n
d

 t
o

 u
se

 t
h

e 
su

b
w

ay
 m

o
re

 f
o

r 
co

m
m

u
ti

n
g

 a
n

d
 

ri
ch

 p
eo

p
le

 t
en

d
 t

o
 u

se
 p

ri
v

at
e 

ca
rs

 m
o

re
 f

o
r 

co
m

m
u

ti
n

g
 t

h
an

 t
h

e 
p

o
o

r.
  

5
. 

B
ra

d
y 

an
d

 
O

’M
ah

o
n

y
 

(2
0

1
6

) 

E
le

ct
ri

c 
v

eh
ic

le
s;

 
C

h
ar

gi
n

g 
p

at
te

rn
s.

 

R
ea

l w
o

rl
d

 e
le

ct
ri

c 
ve

h
ic

le
 d

ri
v

in
g

 
d

at
ab

as
e

 

St
o

ch
as

ti
c 

m
o

d
el

li
n

g,
 

B
ay

es
ia

n
 i

n
fe

re
n

ce
 

Sy
n

th
es

is
es

 p
re

ci
se

 jo
u

rn
ey

 s
ch

ed
u

le
s 

an
d

 m
o

d
el

s 
ch

ar
gi

n
g 

d
ec

is
io

n
 m

ak
in

g 
b

eh
av

io
u

r.
 C

o
n

tr
ar

y 
to

 
si

n
gl

e 
re

al
is

at
io

n
s,

 c
h

ar
gi

n
g 

p
ro

fi
le

s 
w

o
u

ld
 b

e 
u

se
fu

l t
o

 e
le

ct
ri

c 
v

eh
ic

le
 g

ri
d

 in
te

gr
at

io
n

 s
tu

d
ie

s 
su

ch
 a

s 
ag

gr
eg

at
ed

 p
o

w
er

 d
em

an
d

, p
o

w
er

 s
ys

te
m

s 
se

rv
ic

es
 a

n
d

 c
h

ar
gi

n
g 

o
p

ti
m

is
at

io
n

 a
n

al
ys

es
. 

T
ab

le
 3

.6
: R

ec
en

t 
B

ay
es

ia
n

 a
p

p
li

ca
ti

o
n

s 
in

 t
ra

ve
l b

eh
av

io
u

r



70 

3.6 Conclusions 

The analytic methods that have been used in previous research have been reviewed in 

this chapter, including mathematical approaches to modelling travel behaviour. Cluster 

analysis and factor analysis were found to be the most common approaches applied 

when analysing attitudinal data. The choice of a specific technique such as cluster and 

factor analysis will be dependent on the data types such as continuous or categorical 

and other aspects including the purpose of the study.  

 

Descriptive, factor, and cluster analyses were popular methods to investigate 

relationships and patterns in socio-demographic and travel behaviour data  (Anable, 

2005; Prillwitz and Barr, 2011; Kamruzzaman et al., 2015; Kandt et al., 2015; Thigpen et 

al., 2015). In this study, a multi-faceted approach was used including factor, cluster, MCA, 

MLR and MPM analyses to investigate the link within attitudes, travel behaviour and 

environmental aspects.  

 

Previous research demonstrated that PCA and PAF are the most popular methods when 

it comes to factor extraction. A rotated factor loading should not be less than 0.32 and 

the sample size should be greater than 300 to be considered statistically meaningful 

(Costello and Osborne, 2005). Most studies suggest that all factors with eigenvalue 

greater than 1 should be retained (Kaiser, 1960; Costello and Osborne, 2005; Yong and 

Pearce, 2013). According to Costello and Osborne (2005) and Yong and Pearce (2013), 

the number of factors to be retained should be above the “break” in the scree plot. 

 

It is clear that previous studies have not dealt with associations of the five main methods 

as mentioned above. Therefore, in this study, MPM with Bayesian inference has grown in 

importance in the light of recent investigation as it considered to be a potentially 

advantageous approach. All the studies reviewed in this chapter support the 

appropriateness of MLR and MPM analysis as the most suitable method in developing a 

model with categorical data to achieve the objectives of the study. 
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Based on the review of methodology in this chapter, a methodological framework which 

adopts several methods has been developed to achieve the study’s objectives. This is 

presented in the next chapter. 
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Chapter 4 Methodological Framework 

4.1 Introduction 

A critical review of methods for analysing categorical data was covered in Chapter 3. 

Factor analysis, cluster analysis, multiple correspondence analysis, logistic regression 

and multivariate probit model have been applied in previous research into attitudes and 

travel behaviour. However, previous research has not combined these techniques. 

Therefore, in this chapter, the discussion is focused on the methodological framework 

for the proposed multi-faceted approach designed for this study. The most appropriate 

techniques for categorical data analysis were identified and explored to achieve the aim 

and objectives of this study.  

 

The methodological framework that explains all stages of the research is presented in 

Section 4.2. This is followed by a description of data collection in Section 4.3. Section 4.4 

focusing on the preliminary data analysis. Section 4.5 describes the steps in the main 

data analysis that consists of exploratory data analysis (EFA), data clustering using 

multiple correspondence analysis (MCA) and hierarchical clustering analysis (HCA), 

multiple logistic regression (MLR), and multivariate probit model (MPM) with a 

Bayesian inference approach. Finally, conclusions of this chapter are presented in 

Section 4.6.  

4.2 Methodological Framework 

A methodological framework developed to achieve the objectives of this study is 

illustrated in Figure 4.1. Each section in the diagram was mapped according to the 

chapters of the thesis. As part of the data search at the beginning of the research, three 

datasets were identified as being relevant; these included the Tyne and Wear Household 

Survey (TWHS), the National Travel Survey (NTS) and the British Social Attitude (BSA) 

survey.  

 

The NTS is the primary source of data on personal travel patterns in Great Britain. It is 

an established household survey which has been running continuously since 1988 and is 
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reported annually. It is designed to monitor long-term trends in personal travel. The 

survey collects information on how, why, when and where people travel as well as 

information of day, household, individual, long distance journey, stage, ticket, trip, and 

vehicle. In 2013, the survey coverage changed from sampling residents across all 

residents of Great Britain covering England only.  

 

The TWHS survey complements other transport monitoring collected across Tyne and 

Wear in order to provide essential knowledge regarding travel patterns and thus better 

inform the planning of long-term transport strategies. First introduced in February 2003, 

the household survey is a rolling programme of person-to-person interviews giving 

details of travel movements. In the TWHS and NTS dataset, there were no attitudinal 

questions towards travelling and environment that can be used to achieve the objectives 

of the research. Therefore, the BSA datasets from 2011 – 2014 were identified as being 

the most suitable to conduct the analysis in this study.  

 

Four years is a short period of time to investigate attitudinal change. However, the 

relevant questions regarding climate change and the environment, and peoples’ 

attitudes toward them, were only introduced for the first time in 2011 and therefore, 

four years of data covering 2011-2014 were considered in the study. 

 

The BSA dataset covers several decades of data since 1983. The BSA survey is designed 

to yield a representative sample of adults aged 18 or over. Interviewers called at each 

address selected from the list of addresses compiled by the post office and listed all 

those qualified for inclusion in the BSA sample – that is, all resident at the selected 

address. The interviewer then selected one respondent using a computer-generated 

random selection procedure. Where there were two or more dwelling units at the 

selected address, interviewers first had to select one dwelling unit using the same 

random procedure. They then followed the same procedure to select a person for 

interview within the selected house unit. 

 

The methodological framework is divided into four sections: data collection and 

preparation, preliminary data analysis, main data analysis, and conclusions. Each step of 

this process is explained in detail in the following sections. 
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Figure 4.1:  Methodology framework of this study 
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4.3 Data Collection and Preparation 

As mentioned earlier, data from the British Social Attitudes (BSA) survey was used in 

this study. The datasets that were collected during 2011 to 2014 were chosen for the 

analysis. The BSA survey has been carried out annually since 1983 in Great Britain to 

collect a wide range of information and facts in different areas such as politics, health, 

education, and social factors (Social and Community Planning Research, 1983). Attitudes 

towards and behaviour with regards to travelling are among the information collected 

through the BSA survey in order to examine the changes of attitudinal trends over time. 

 

In 2010, the transport section in the BSA questionnaire was changed so as to collect data 

regarding people’s attitudes towards, and opinions on, climate change and the 

environment. Therefore, the BSA data collected after 2010 were considered in this study 

and all data records appertaining to car users, whether as drivers or passengers, were 

selected from the BSA using a filter.  

 

Before preliminary analysis was conducted, the data was cleaned, coded and prepared in 

the appropriate formats needed for the analysis. These formats include IBM-SPSS 

version 23 (IBM, 2013) and the Rstudio package (R Core Team, 2017). At the initial stage 

of this analysis, incomplete samples were removed during the data cleaning process, 

bringing the final dataset to a total of 1509 respondents of adults aged 18+ who were car 

users whether as drivers or passengers or both.  

 

According to Alison Park et al. (2013), in assembling the BSA data the collection 

methods adopted were a combination of face-to-face interviews and self-completion 

questionnaires. A random sampling technique was used to select people to participate in 

the survey to ensure that everyone had an equal chance of being selected to take part 

and therefore, the results are representative of the British population (Alison Park et al., 

2013). The transportation part of the BSA survey was funded by the UK Department for 

Transport (DfT). 



77 

4.4 Preliminary Data Analysis 

The preliminary data analysis was conducted to discover patterns in the data using basic 

statistics to provide information that describes the characteristics of the sample taken 

from the BSA survey. After careful screening for errors or missing values, all categorical 

data from the 1509 car users were divided into three parts, namely socio-demographics, 

attitudinal, and travel behaviour variables as listed below:  

 

A. Socio–demographic variables: 

 

1. Age 

2. Gender 

3. Number of people living in the household, including respondent 

4. Number of cars owned and regularly used in the household 

5. Employment status 

 

B. Travel behaviour variables: 

 

1. How often nowadays do you usually travel by car as a driver? 

2. How often nowadays do you usually travel by car as a passenger? 

3. How often nowadays do you usually travel by local bus? 

4. How often nowadays do you usually travel by train? 

5. How often nowadays do you usually travel by bicycle? 

 

C. Attitudinal variables: 

 

1. How serious a problem for you is congestion on motorways? 

2. How serious a problem for you is traffic congestion in towns and cities? 

3. How serious a problem for you are exhaust fumes from traffic in towns 

and cities? 

4. Next time I buy a car, I would be willing to buy a car with lower CO2 

emissions. 

5. I am willing to reduce the amount I travel by car (to help reduce the 

impact of climate change). 
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6. View on climate change and causes. 

7. Many of the short journeys that I now make by car I could just as easily 

walk. 

8. Many of the short journeys that I now make by car I could just as easily go 

by bus. 

9. Many of the short journeys that I now make by car I could just as easily 

cycle. 

10. For the sake of the environment, car users should pay higher taxes. 

11. People should be allowed to use their cars as much as they like, even if it 

causes damage to the environment. 

12. For the sake of the environment, everyone should reduce how much they 

use cars. 

13. There is no point in reducing my car use to help the environment unless 

others do the same. 

14. People who drive cars that are better for the environment should pay less 

to use roads. 

 

Socio-demographic variables were coded as nominal data, whereas travel behaviour and 

attitudinal variables were ordinal data. More detail is provided in Chapter 5. The next 

step was to bring these data together and to understand whether or not any correlations 

or links between attributes existed in the dataset by carrying out correlation analysis. 

Firstly, the normality test was conducted on each variable to establish whether or not 

parametric or non-parametric tests should be used in statistical testing. Furthermore, 

the descriptive analysis gives a basic understanding of the population based on the data 

gathered from the sample such as percentages, mean, median and mode. Statistical 

tables, graphs and charts consisting of information regarding car users are presented 

and discussed in detail in Chapter 5.  

4.5 Main Data Analysis 

Based on the framework shown in Figure 4.1, there are four main steps in analysing 

categorical data that are mapped directly onto each thesis chapter as follows: 
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1. Dimension reduction using principal axis factoring (PAF) and principal 

component analysis (PCA); 

2. Data clustering using multiple correspondence analysis (MCA) and hierarchical 

clustering analysis (HCA); 

3. Multinomial logistic regression (MLR) to explore the relationship between 

clusters and factors; 

4. Log – linear and multivariate probit models (MPM) with a Bayesian inference 

(BI) approach.  

 

Each of these analyses is discussed in detail in the following sections. 

4.5.1 Dimension reduction by using exploratory factor analysis (EFA) 

EFA was used to reduce the number of variables. In this study, data from 14 attitudinal 

variables were used to examine the factors. These were based on the questions and 

statements provided in the BSA dataset and listed in Section 4.4. In coding the data, they 

labelled Q1 through Q14.  

 

As a result of the EFA the number of variables (in this study that relate to attitudes) is 

reduced to fewer factors. A name or label was identified to distinguish factors made up 

of variables that were grouped to go together (Yong and Pearce, 2013). There are four 

main components or steps in conducting EFA as shown in Figure 4.2. 
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Figure 4.2 : Components or steps in conducting EFA 

Factor extraction 

•Most common factor extraction methods are unweighted least 
squares, generalized least squares, maximum likelihood, 
principal axis factoring (PAF), principal component analysis 
(PCA), alpha factoring, and image factoring. Previous research 
demonstrated that PCA and PAF are most popular methods 
when it comes to factor extraction. 
 

•PAF and PCA were selected to check the most suitable for 
this study and decide the right approach. 

Rotation method 

•The aim of the rotations is to aspire to achieve a correlation 
close to 1 to reveal the variables which indicate significant 
contribution to the reduced factors. There are two types of 
rotation, namely orthogonal and oblique. Orthogonal rotation 
is when the factors are rotated through 900 and it is assumed 
that the factors are uncorrelated. Conversely, oblique rotation 
is when the factors are not rotated 900 from each other, and 
the factors are considered to be correlated (Costello and 
Osborne, 2005).  
 

•The most appropriate rotation method will be decided 
when analysing the data in Chapter 6. 

Interpretations of 
factor loadings 

•The strength of the relationship of each factors can be decided 
by observing the loadings when interpreting the factors 
obtained in EFA. A rotated factor loading should not be less 
than 0.32 and the sample size should be greater than 300 to 
be considered statistically meaningful (Costello and Osborne, 
2005). 
 

•In this study, 1509 samples were used in the analysis. The 
rotation factor loading will be carefully checked to make a 
meaningful set of factors. 

Number of factors 
to retain 

•After extraction, decision have to be made for number of 
factors to retain. The number of factors are extracted based 
on the scores from the factor analysis (Costello and Osborne, 
2005). The eigenvalue and scree plot are used to determine 
how many factors to retained. Most studies suggest that all 
factors with eigenvalue greater than 1 should be retain 
(Kaiser, 1960; Costello and Osborne, 2005; Yong and Pearce, 
2013). According to Costello and Osborne (2005) and Yong 
and Pearce (2013) the number of factors to be retained 
should be above the “break” in the scree plot. 
 

•The scree plot will be carefully examined after analysing 
the data and the number of factors to be retained will be 
decided considering recommendation of previous research. 
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4.5.2 Data clustering using multiple correspondence analysis (MCA) and 

hierarchical clustering analysis (HCA) 

MCA and HCA were chosen to examine the structure of the dataset. MCA is particularly 

suitable to explore unpredicted dimensions and relationships. MCA positions each 

variable as a point in a low-dimensional space and helps to describe patterns of 

relationships, particularly using geometrical methods (LeRoux and Rouanetm, 2010). 

Whilst cluster analysis is an exploratory statistical tool to identify the existence of the 

similarity patterns in responses (Tabachnick and Fidell, 2013), it is used to create and 

identify groups that are homogeneous within the data. In the research reported in this 

thesis, cluster analysis is used to segregate car users based on similar characteristics. By 

identifying the sub-groups, it becomes simpler to analyse and reveal any relationships 

among the sample within and between groups.  

Multiple correspondence analysis (MCA) 

The next stage of analysis is Multiple Correspondence Analysis (MCA). MCA is one of the 

statistical techniques used to discover and represent basic structures in a dataset, 

especially for categorical data (Murtagh, 2007). Data is represented as points in a low-

dimensional Euclidean space. 

 

The main application of MCA in this study is to visualise the interrelationships between 

response categories for each question. For this purpose, socio-demographic (age, gender, 

household size, employment status and car ownership) and travel behaviour (frequency 

of travel by car as a driver, frequency of travel by car as a passenger, frequency of travel 

by local bus, frequency of travel by train and frequency of travel by bicycle) variables 

have been selected to classify the car users with similar characteristics. 

 

As discussed previously in Chapter 3, equation 3.4, the distance between two individuals 

 and  can be calculated by the following equation according to Greenacre and Blasius 

(2006): 
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where: 

 is equal to 1 if the individual  has taken the category  and 0 otherwise, 

 is equal to 1 if the individual  has taken the category  and 0 otherwise, 

 is the total number of individuals, 

 is the number of individuals who have taken the category  and 

 is the number of variables. 

 

In this study, correlation with categorical variables to reveal behaviour trend was 

investigated and the categories were illustrated in a 2-dimensional discrimination plot 

and MCA factor maps. Three main steps are involved in MCA as shown in Figure 4.3. 

 

 

Figure 4.3: Steps in conducting MCA 
 

The data obtained from the BSA survey is in .sav format, which is a file extension type 

used to store data for SPSS analysis. Hence, the data was reconstructed, as this study 

used both SPSS and R studio to visualize the results of MCA. The input for .sav files 

required the survey data to be reformatted as comma separated values (.csv), given that 

the original datasets were represented in numeric codes.  

 

The discrimination measure and joint plot were obtained by using SPSS. Subsequently 

the R studio package was used to enrich the cluster classification. MCA follows Ward’s 

criterion in conducting hierarchical clustering for categorical data. In this study by using 

MCA, clearer cluster visualisation was achieved when car users were segregated by 

groups in different colours. The detailed results of MCA are presented in Chapter 7. 

Step 1 
• Investigate car users with similar socio-demographic 

characteristics. 

Step 2 • Review categories of travel behaviour variables.  

Step 3 
• Associate the correlation of both socio-demographics 

and travel behaviour variables. 
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Hierarchical cluster analysis (HCA) 

Following MCA, HCA was carried out to investigate the data organisation and to group 

the car users according to their similarity in socio-demographics and travel behaviour 

variables. There are five steps in conducting HCA as suggested by Yim and Ramdeen 

(2015) and shown in Figure 4.4. 

 

 

Figure 4.4: Steps in conducting HCA 
 

Step 1: Choosing 
Cluster Variables 

•HCA was conducted using socio–demographic and travel 
behaviour data with 10 variables chosen to be relavant to this 
study as follows: 
• Age 
• Gender 
• Household size 
• Employment status 
• Car ownership 
• Frequency of travel by car as a driver 
• Frequency of travel by car as a passenger 
• Frequency of travel by local bus 
• Frequency of travel by train 
• Frequency of travel by bicycle 

Step 2: Selecting 
Cluster Method 

•All categorical variables were either ordinal (frequencies of 
each modes choice) or nominal data (socio-demographics), 
therefore, as mentioned above, HCA was used. This was 
achieved using the SPSS software tool and "EnquireR" package 
using R programming. 

Step 3: Specifying 
Parameters 

•Following to the MCA method in previous analysis, Ward’s 
criterion was selected to conduct HCA. This criterion allows to 
decompose the total inertia or total variance in between and 
within-group variance (Husson et al., 2010).  

Step 5: Organising 
Data into Subgroups 
and Interpreting the 
Output 

•The number of clusters was decided by cutting the dendogram 
plot at the point of inflection. The characteristics of each 
cluster/ group was examined. The agglomeration display an 
output from HCA aids the interpretation.  

•In order to classify the data into the cluster groups, cluster 
memberships single solution was saved in SPSS analysis steps. 
This step will produce a new variable in data view window 
which assigns each case into one of the cluster groups. Next, 
each different cluster groups was analysed and organised by 
examine the proportion of each variables. The highest shares 
is linked in to the cluster classification. 
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4.5.3 Multinomial logistic regression (MLR) to explore the relationship between 

clusters and factors  

After the attitudinal factors were obtained from the EFA and the car users were 

clustered into groups depending on a combination of their socio-demographic and 

travel-related characteristics from the HCA, the next step was to take a closer look at 

how the clusters were linked to the factors in a model. Therefore, the next step in the 

data analysis was to conduct MLR to investigate the significant relationships between 

clusters and for each of the four successive years in the period from 2011 to 2014. This 

enabled any changes in the relationships between clusters and factors over time to be 

identified. The MLR analysis was carried out using IBM SPSS Statistics V23 (IBM, 2013). 

 

According to Long (2012), the equation for the model is written in terms of the logit of 

the outcome, which is a comparison of a particular category to the reference category, 

denoted by  and  as follow: 

 

 

Therefore, the model for this study would be: 

 

 

 

where: 

 is the independent variable ; 

 is the dependent variable ; 

 is the baseline variable ; 

is the estimated intercept;  

 is the estimated coefficient. 

 

As discussed previously in Chapter 3, the MLR model in equation 3.5, as defined by Ben-

Akiva and Lerman (1985), was used and reproduced here for completeness. 
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where: 

 is the conditional probability that an individual chooses alternative k; 

is the reference conditional probability that an individual has chooses the 

alternative j; 

 is the independent variable; 

is the number of independent variables;  

is the estimated intercept;  

 is the estimated coefficient. 

 

In SPSS, cluster variables were used as the categorical dependent and attitudinal factor 

scores were used as the explanatory variables. One of the cluster variables was selected 

as the baseline or reference category. This exposed significant changes in peoples’ 

attitudes from 2011 to 2014 and the results obtained by the MLR analysis is based on 

the baseline category chosen. The detail and results of MLR analysis are discussed in 

Chapter 7. 

 

MLR uses a maximum likelihood estimator, where researchers have no chance to 

consider their prior belief before the actual data is taken into account in the analysis. 

Therefore, Bayesian inference approach was chosen as the next step of analysis because 

Bayesian combines two separate sources of information (prior and actual data) to obtain 

the posterior distribution.  

4.5.4 Log – linear and multivariate probit models (MPM) with Bayesian inference 

approach  

The final step of the analysis in this study was to develop a log–linear model using only 

one variable and a multivariate probit model using 14 attitudinal variables with 

Bayesian inference approach. Bayesian analysis lets us compute exactly how much our 
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beliefs have changed after the actual data is taken into account. There are four main 

reasons why Bayesian inference approach was selected in the research: to produce a 

statistical model to link data to parameters; to formulate prior information about 

parameters; to combine the two sources of information using Bayes’ theorem; and to use 

the resulting posterior distribution to derive inference about the parameters. 

 

In this procedure, two models are constructed: the log-linear model and the multivariate 

probit model. Firstly, one attitudinal variable (q12 = “for the sake of the environment, 

everyone should reduce how much they use cars”) is chosen to construct a log-linear 

model to observe groups of people of different age and gender. Age and gender were 

found as significant factors in influencing an individual's choice of transportation 

(Nurdden et al., 2007). 

 

This model consists of two parts: 

 

1) Separate models for age and gender, and 

2) Model with interaction between age and gender effect. 

 

Secondly, the probit model for ordinal responses is constructed with a mean structure, 

allowing for covariates. The model was extended to consider more than one question by 

introducing a multivariate normal vector latent variable, which then generates a 

multivariate probit model (MPM).  

 

Five socio-demographic variables were chosen to construct this model: age, gender, 

household size, car ownership and employment status; whilst 14 variables were 

selected from the attitudinal variables. Chapter 8 gives further explanation of, and the 

results obtained from the multivariate probit analysis. 

4.6 Conclusions 

This chapter has presented the methodological framework used and outlined the data 

collection, preparation and processing employed in order to achieve the research 

objectives. The appropriate applicable methods of data analysis used in this research 

have been presented. These include factor analysis, multiple correspondence analysis, 
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cluster analysis, multinomial logistic regression, and Bayesian inference approach 

methods.  

 

Factor analysis reduces the attitudinal variables into a smaller number of variables and 

groups them as factors. Whereas, cluster and multiple correspondence analyses are used 

to segregate the car users into groups, and then explore differences between groups of 

car users to investigate the structure of the data. 

 

After factors and clusters were obtained from EFA and HCA, the next step was to 

investigate the significant relationships between them using MLR. From the model, 

perceptions and attitudes of travelling can be investigated for possible change over a 4 

year period.  

 

Log-linear and multivariate probit models, using Bayesian inference approach for 

categorical data, were developed for exploring relationships between and within the 

data, consisting of 14 attitudinal and socio-demographic variables. This model has the 

potential to provide insights into transport mode choice decisions according to socio-

demographic characteristics and is also useful to demonstrate the reliability and aptness 

of the BSA information. 

 

Finally, after all the analyses mentioned above are successfully conducted, the 

interpretation and discussions are presented in Chapter 9. The output of the MLR 

models and MPM models are brought together in the interpretations, discussion, and 

conclusions. The discussion is expected to answer the research questions posed in 

Chapter 1. In addition, limitations of the study are discussed and future research is 

addressed to complement the findings. Furthermore, the implication of the results to 

inform future policy implementations for LAs are highlighted. 



88 

  



89 

Chapter 5 Preliminary Data Analysis 

5.1 Introduction 

A step by step description of the multi-faceted analysis presented in the context of the 

methodological framework proposed for this research was presented in Chapter 4. This 

study uses the BSA dataset collected during 2011-2014. The first step was to collect, 

clean and code the data before carrying out simple descriptive statistics. 14 attitudinal 

variables were reduced to factors in parallel with cluster analysis which allowed for 

grouping of data considering 5 socio-demographic and 5 travel related variables. 

Multinomial logistic regression and multivariate probit models with Bayesian inference 

were used to explore and investigate the relationships. In this chapter, the preliminary 

data analysis using descriptive statistics is designed to gain a fundamental 

understanding of and develop knowledge from the BSA dataset.  

 

In Section 5.2, the data cleaning, coding and manipulation of the data in preparation for 

analysis is explained, followed by descriptions and comparison of the characteristics of 

car users for each year from 2011 through to 2014 inclusive, in terms of their socio-

demographic variables and travel behaviour in Section 5.3. The responses to the 

attitudinal questions involved in this study are detailed in Section 5.4. This is followed 

by the correlation analysis using Spearman's rank-order correlation in Section 5.5. 

Finally, a summary of this chapter is presented in Section 5.6. 

 

 

Figure 5.1: Steps involved in Chapter 5 
 

Step 1: Data cleaning, coding and manipulation 
Step 2: Descriptive statistics 

- Proportion of car users by years 
- Proportion of car users by socio-

demographic background 
- Proportion of car users by travel behaviour 

Step 3: Exploring attitudinal variables 
- 3, 4 and 5 Likert scales 
- Mean, median and mode 

Step 4: Correlation analysis 
- Spearman correlation coefficient 
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5.2 Data Cleaning, Coding and Manipulation 

There was a sizeable proportion of respondents in the BSA datasets from 2011 to 2014 

who declared as non-car users at the time of completing the survey, which created some 

redundancy in the datasets. Therefore, those samples were removed as this research 

focussed on the attitudes of car users, whether as a driver or passenger. The data 

available for the car users were grouped into three types, namely socio-demographic 

characteristics, travel behaviour, and travel attitudes, based on the questionnaires 

completed during the annual surveys. At the initial stage of this analysis, responses such 

as “not answered”, “skip this question” and “can’t choose” were removed during the data 

cleaning process, bringing the final dataset to a total of 1509 car users for the period of 

four years commencing in 2011. Removal of data was considered not to cause bias, 

based on the assumption that they occurred at random. Table 5.1 shows the coding 

system that was used for each variable in the dataset and, once each questionnaire was 

checked, they were assigned a serial number. These records were retained in a database 

which formed the basis for all statistical analyses. 
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Coding Variables /Questions Categories /Answer coding 

Serial Serial Number - 

HH# 
Number living in household, including 
respondent 

1 = One, 2 = Two,  
3 = Three, 4 = Four or more 

Gender Gender 1 = Male, 2 = Female 

Age Age 
1 = 18-24, 2 = 25-34, 3 = 35-44,  
4 = 45-54, 5 = 55-64, 6 = 65+ 

EmpStatus 
Current economic position of 
respondents 

1 = Employee (FT),  
2 = Employee (PT),  
3 = Self-employed (FT),  
4 = Self-employed (PT),  
5 = In work (status not known),  
6 = Waiting to take up work,  
7 = Unemployed,  
8 = Looking after the home,  
9 = Retired, 10 = In FT education,  
11 = Other. 

Car# 
How many, if any, cars or vans does 
your household own or have the 
regular use of? 

1 = One,  
2 = Two,  
3 = Three,  
4 = Four or more. 

Income Household pre-tax income quartiles 

1 = less than £1,200 p.m,  
2 = £1,201 - 2,200 p.m,  
3 = £2,201 - 3,700 p.m,  
4 = £3,701 or more p.m. 

Drive 
May I just check, do you yourself drive 
a car at all these days? 

1 = Yes,  
2 = No. 

Cong_MWs 
How serious a problem for you is 
congestion on motorways? 

1 = A very serious problem,  
2 = A serious problem,  
3 = Not a very serious problem,  
4 = Not a problem at all. 

Cong_cities 
How serious a problem for you is 
traffic congestion in towns and cities? 

1 = A very serious problem,  
2 = A serious problem,  
3 = Not a very serious problem,  
4 = Not a problem at all. 

Exhaustfumes 
How serious a problem for you are 
exhaust fumes from traffic in towns 
and cities? 

1 = A very serious problem,  
2 = A serious problem,  
3 = Not a very serious problem, 
4 = Not a problem at all. 

Car_driver 
How often nowadays do you usually 
travel by car as a driver? 

1 = Every day or nearly every day,  
2 = 2-5 days a week,  
3 = Once a week,  
4 = Less often but at least once a month,  
5 = Less often than that,  
6 = Never nowadays. 

Car_passenger 
How often nowadays do you usually 
travel by car as a passenger? 

1 = Every day or nearly every day,  
2 = 2-5 days a week,  
3 = Once a week,  
4 = Less often but at least once a month,  
5 = Less often than that,  
6 = Never nowadays. 

Bus_usage 
How often nowadays do you usually 
travel by local bus? 

1 = Every day or nearly every day,  
2 = 2-5 days a week,  
3 = Once a week,  
4 = Less often but at least once a month,  
5 = Less often than that, 
6 = Never nowadays. 

Continued on the next page 

 



92 

Train_usage 
How often nowadays do you usually 
travel by train? 

1 = Every day or nearly every day,  
2 = 2-5 days a week,  
3 = Once a week,  
4 = Less often but at least once a month,  
5 = Less often than that,  
6 = Never nowadays. 

Bike_usage 
How often nowadays do you usually 
travel by bicycle? 

1 = Every day or nearly every day,  
2 = 2-5 days a week,  
3 = Once a week,  
4 = Less often but at least once a month,  
5 = Less often than that,  
6 = Never nowadays. 

BuyLowEmi 
Next time I buy a car, I would be 
willing to buy a car with lower CO2 

emissions. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

ReducTravCar 
I am willing to reduce the amount I 
travel by car (To help reduce the 
impact of CC). 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

CCView View on climate change and causes. 

1 = I don t believe that CC is taking place,  
2 = I believe that CC is taking place but  
       not as a result of human actions,  
3 = I believe that CC is taking place and  
       is, at least partly, a result of human   
       actions. 

CartoWalk 
Many of the short journeys that I now 
make by car I could just as easily walk. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

CartoBus 
Many of the short journeys that I now 
make by car I could just as easily go by 
bus. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

CartoBike 
Many of the short journeys that I now 
make by car I could just as easily cycle. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

HiTaxforCarUse 
For the sake of the environment, car 
users should pay higher taxes. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

AllowCarUse 
People should be allowed to use their 
cars as much as they like, even it is 
cause damage to the environment. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly 

ReducCarUse 
For the sake of the environment, 
everyone should reduce how much 
they use cars. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

ReducCarUse_NP 
There is no point in reducing my car 
use to help the environment unless 
others do the same. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

CarBetterPayLess 
People who drive cars that are better 
for the environment should pay less to 
use roads. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly 

CycDang 
It is too dangerous for me to cycle on 
the roads. 

1 = Agree strongly, 2 = Agree,  
3 = Neither agree nor disagree,  
4 = Disagree, 5 = Disagree strongly. 

Bike_own Bike ownership. 

1 = Own bicycle yourself, 2 = Have  
regular use of a bicycle owned by 
someone else,  

3 = Have no regular use of a bicycle. 

Bike_ride 
Have you ridden a bicycle during the 
last 12 months? 

1 = Yes,  
2 = No. 

*CC = Climate change, FT = Full time, PT = Part time 

Table 5.1: Data coding 
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Being mindful that it is important not to over-parameterise the model when setting up 

the multivariate probit model (MPM) in Chapter 8. Therefore, to overcome this problem, 

the employment status variables were grouped and allocated new codes into 4 

categories. Table 5.2 presents the new codes for employment status and the description 

of each category are as follows: 

 

1. In work: this should take the value 1 if the person is in work (current categories 1 – 

5), and -1 otherwise (current categories 6 – 11) 

 

2. Employee: takes the value 1 for current categories 1 and 2 and takes the value of -1 

for current categories 3 and 4. Those in current category 5 – 11 should get a value of 

0 for this.  

 

3. Full time: takes the value 1 for current categories 1 and 3 and takes the value -1 for 

current categories 2 and 4. Those in current category 5 – 11 should get a value of 0 

for this.  

 

4. Non-employed status: treat this as a 3-category variable. Category 1 would be 

current categories 6 and 7 (unemployed and waiting to take up work). Category 2 

would be current categories 8 and 9 (looking after the home and retired). Category 

3 would be current categories 10 and 11 (in full-time education and other). 

Respondents in current categories 1 – 5 get the value 4. 
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No. Variable Coding  Description 
1 In work 

1 
 

 FT employee 
 PT employee 
 FT self-employed 
 PT self-employed 
 In work (status not known) 

-1 

 Waiting to take up work 
 Unemployed 
 Looking after the home 
 Retired 
 In FT education 
 Other 

2 Employee 
1 

 FT employee 
 PT employee 

-1 
 FT self-employed 
 PT self-employed 

0 

 In work (status not known) 
 Waiting to take up work 
 Unemployed 
 Looking after the home 
 Retired 
 In FT education 
 Other 

3 Full time 
1 

 FT employee 
 FT self-employed 

-1 
 PT employee 
 PT self-employed 

0 

 In work (status not known) 
 Waiting to take up work 
 Unemployed 
 Looking after the home 
 Retired 
 In FT education 
 Other 

4 Non-employed 
1 

 Waiting to take up work 
 Unemployed 

2 
 Looking after the home 
 Retired 

3 
 In FT education 
 Other 

4 

 FT employee 
 PT employee 
 FT self-employed 
 PT self-employed 
 In work (status not known) 

            *FT = Full time, PT = Part time 

Table 5.2: Manipulation of employment status variable 
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5.3 Descriptive Statistics Analysis 

The purpose of descriptive analysis was to present the frequency distribution and 

characteristics of car users and to gain a fundamental understanding of the responses in 

the BSA dataset. Tables and graphs were used to present the results, including statistical 

parameters of the data such as mean, median, mode and percentages. 

5.3.1 Proportion of car users by years 

The data from 2011 to 2014 were specifically selected to allow sufficient elapsed time so 

that attitudinal changes may have occurred and could be investigated with a measure of 

statistical confidence. However, the descriptive statistical analysis first studied the 

characteristics aggregated over four years. All of the data were collated together in a file 

and reconstructed into two types of format: SPSS (.sav) and R studio (.csv) in 

preparation for all steps of the analysis. Table 5.3 shows the proportion of car users in 

the four successive years.  

 

Year Frequency Percentage 

2011 365 24.19 

2012 400 26.51 

2013 341 22.60 

2014 403 26.71 

Total 1509 100.0 

Table 5.3 Car users’ distribution according to year 

 

The lowest percentage was recorded in 2013 at 22.60%, whilst the highest percentage 

was reported in 2014 with 26.71%. The BSA dataset does not have variable such as 

geographic locations of the respondents, for example city, region, and postcodes. It 

would have been better if the study would be able to relate such variables when 

interpreting the research results but this is one of the limitations of the BSA dataset. 

However, to be able to make sure the car user data sample drawn from the BSA dataset, 

Chi-square test was conducted. Chi-square  test with contingency table was 
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conducted to demonstrate whether the data selected (sample) was representative of 

each year in the BSA.  

 

Year 
Sample BSA population 

Total 
O E O E 

2011 365 386.00 2279 2257.99 2644 

2012 400 385.28 2239 2253.72 2639 

2013 341 383.82 2288 2245.18 2629 

2014 403 353.89 2021 2070.11 2424 

Total 1509 8827 10336 

*O: Observed value, E: Expected value 

Table 5.4: Contingency table 

  
The result shows that 15.57 > 7.81 (critical value) at 95% significant level. 

Therefore, this indicates that the distribution of car users in the BSA dataset who 

participated in the questionnaires survey and interviews is similar to the distribution for 

all car users in the sample (2011–2014). This outcome indicates that car users in the 

sample are representative of the all car users in the BSA dataset with respect to the year 

in which data was collected.  

5.3.2 Proportion of car users by socio-demographic background 

It can be seen from the data distributions in Table 5.5 that 17.5% of the car users were 

in the younger age group in the range of 18 – 34 years old, 41.88% in the middle-aged 

group (35–54 years old), and 40.63% in the older group (55 years old and above). From 

the perspective of gender, 50.17% of car users were male, whilst 49.83% were female. 

The employment status of the car users was divided into 4 categories, as mentioned 

above: in work (63.75%), employee (54.41%), full time (48.51%), and non-employment 

(36.25%). It is shown that half of the car users (50.10%) owned one car per household, 

40.03% owned 2 cars, 7.42% owned 3 cars, and only 2.45% owned four or more cars in 

a household. However, 90.13% of the male and female respondents owned either one or 

two cars per household. Detailed breakdowns of each characteristic, including 
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household incomes and household size, are presented in Table 5.5 and illustrated in 

Figure 5.2. 

 

Characteristics Interval 
Male Female Total 

Count % Count % Count % 

Household size 

One 152 20.08 180 23.94 332 22.00 

Two 332 43.86 254 33.78 586 38.83 

Three 104 13.74 141 18.75 245 16.24 

Four or more 169 22.32 177 23.54 346 22.93 

Age 

18-24 19 2.51 30 3.99 49 3.25 

25-34 89 11.76 126 16.76 215 14.25 

35-44 130 17.17 185 24.60 315 20.87 

45-54 159 21.00 158 21.01 317 21.01 

55-64 153 20.21 129 17.15 282 18.69 

65+ 207 27.34 124 16.49 331 21.94 

Income 

Less than £1,200 p.m. 115 15.19 152 20.21 267 17.69 

£1,201 – 2,200 p.m. 157 20.74 194 25.80 351 23.26 

£2,201 – 3,700 p.m. 239 31.57 204 27.13 443 29.36 

£3,701 or more p.m. 246 32.50 202 26.86 448 29.69 

Car ownership 

One 344 45.44 412 54.79 756 50.10 

Two 322 42.54 282 37.50 604 40.03 

Three 70 9.25 42 5.59 112 7.42 

Four or more 21 2.77 16 2.13 37 2.45 

In work 
In work 492 64.99 470 62.50 962 63.75 

Not in work 265 35.01 282 37.50 547 36.25 

Employee 

Employee 398 52.58 423 56.25 821 54.41 

Self-employed 94 12.42 46 6.12 140 9.28 

Others 265 35.01 283 37.63 548 36.32 

Full time 

Fulltime employee 453 59.84 279 37.10 732 48.51 

Part time employee 39 5.15 190 25.27 229 15.18 

Others 265 35.01 283 37.63 548 36.32 

No 

employment 

Unemployed / waiting 

to take up work 
32 4.23 26 3.46 58 3.84 

Looking after the 

home / retired 
204 26.95 207 27.53 411 27.24 

In FT education / 

Other 
29 3.83 49 6.52 78 5.17 

In work 492 64.99 470 62.50 962 63.75 

Total 757 100.0 752 100.0 1509 100.0 

Notes: Bold figures represent the highest proportion  

Table 5.5: Characteristics of car users belonging to the dataset selected for the study 
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Figure 5.2: Socio-demographic characteristics of car users belonging to the dataset 
selected for the study 

 

It can be seen clearly from Figure 5.2 that the highest proportion of number of 

respondents belong to a two members household. Respondents aged more than 18 years 

old were divided into 6 groups and the highest proportion were from male 65+ years old, 

whilst the lowest proportion was the younger group (18 – 24 years old). This is 

probably because they didn’t have driving licences or didn’t own or use the cars. It is 

reported that the majority of respondents (90%) were active car users. They owned and 

used one or two cars per household either as a driver or as a passenger. In addition, 

59.05% of the respondents earned  ≥ £2201 per month and it is noted that almost half 

(48.51%) of respondents were in full-time employment. 

5.3.3 Proportion of car users by travel behaviour 

This study is concerned with identifying cohorts of car users most likely to be persuaded 

to use their cars less and to use other sustainable travel alternatives. Therefore, those 

who have no car had been excluded from the analysis. Table 5.6 shows that half of the 

car users (50.1%) owned only one car or van in their household, 40.03% indicated that 

they owned two, and 7.42% three. Only 2.45% of the car users had four or more cars or 

vans in their household.  
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No. of car Count % 

One 756 50.10 

Two 604 40.03 

Three 112 7.42 

Four or more 37 2.45 

Total 1509 100 

Table 5.6: Car or van availability in the households with respect to the car user 
respondents belonging to the sample selected for the study 

 

With regards to travel behaviour patterns, the BSA questionnaire has 5 questions to 

collect information on how car users currently travel. It can be seen in Table 5.7 that for 

each question, there were six options from which car users could choose: “every day or 

nearly every day”, “2-5 days a week”, “once a week”, “less often but at least once a 

month”, “less often than that” and “never nowadays”. The essential step in investigating 

peoples’ perceptions of, and attitudes towards travelling, as well as to identify who is 

likely to switch their choice of travel modes, is to first understand their current travel 

behaviour.  

 

It is noted that daily travel by car as the driver was the most frequent option selected by 

respondents (68.99%), followed by never use bike to travel (64.68%), and never use 

local bus to travel (58.65%). The results demonstrate that very few (0.53%) never 

travelled by car as the driver, suggesting that most adults in respect of age own and use 

a driving licence. In contrast, only 0.8% of the car users travelled by train every day.  

 

Conversely, other modes of transport (bicycle, trains and local buses) were used less 

frequently. Only 5.7% of car users said that they travelled by local bus at least once a 

week, 1.99% by train at least once a week, and 6.76% by bicycle at least once a week. 

Moreover, public transport and bicycles were often not an option for travel as some 

respondents reported that they never used local buses (58.65%), trains (36.65%), or 

bicycles (64.68%) for their journey. Bicycles showed the highest percentage of non-use 

compared to other modes. The frequencies and percentages with respect to travel 

behaviour characteristics are shown in Table 5.7. 
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Responses Frequency % 

How often nowadays do you usually travel by car as a driver? (Car_driver) 

Every day or nearly every day 

2-5 days a week 

Once a week 

Less often, but at least once a month 

Less often than that 

Never nowadays 

1041 

374 

61 

11 

14 

8 

68.99 

24.78 

4.04 

0.73 

0.93 

0.53 

How often nowadays do you usually travel by car as a passenger? 

(Car_passenger) 

Every day or nearly every day 64 4.24 

2-5 days a week 323 21.40 

Once a week 412 27.30 

Less often, but at least once a month 272 18.03 

Less often than that 215 14.25 

Never nowadays 223 14.78 

How often nowadays do you usually travel by local bus? (Bus_usage) 

Every day or nearly every day 22 1.46 

2-5 days a week 55 3.64 

Once a week 86 5.70 

Less often, but at least once a month 166 11.00 

Less often than that 295 19.55 

Never nowadays 885 58.65 

How often nowadays do you usually travel by train? (Train_usage) 

Every day or nearly every day 12 0.80 

2-5 days a week 30 1.99 

Once a week 30 1.99 

Less often, but at least once a month 245 16.24 

Less often than that 639 42.35 

Never nowadays 553 36.65 

How often nowadays do you usually travel by bicycle? (Bike_usage) 

Every day or nearly every day 27 1.79 

2-5 days a week 63 4.17 

Once a week 102 6.76 

Less often, but at least once a month 127 8.42 

Less often than that 214 14.18 

Never nowadays 976 64.68 

Total 1509 100.0 

Table 5.7: Car users’ travel behaviour related characteristics 
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Figure 5.3: Car users’ travel behaviour related characteristics 
 

Figure 5.3 is a plot of the data in Table 5.7 which show clearly a trend of decreasing car 

use as a driver, from every day to never use nowadays. In contrast, the use of public 

transport, such as buses and trains, shows a reverse trend with a significant rise above 

daily use to never use for cycling. This data illustrated the car users’ reluctance towards 

and unwillingness to use sustainable modes exposing the challenges of encouraging 

mode shift. This is discussed in Chapter 6. 

5.4 Exploring Attitudinal Variables 

This section sets out to gain an insight into the attitudes of car users towards 

environmental and climate change issues by analysing responses to the attitudinal 

variables. In the large scale of the BSA dataset, only specific questions from the transport 

section were selected as relevant to conduct this study.  

 

Figure 5.4 shows the attitudinal questions extracted from the BSA datasets along with 

the proportion of respondents who returned response options one of 4 (questions 1-3) 

or 5 (questions 4–10) except question 6. These questions used a specified Likert scale to 

measure the respondent’s perception and attitude to a particular statement or question.  

For 4 options these were scale 1 “A very serious problem”, scale 2 “A serious problem”, 

scale 3 “Not a very serious problem” and scale 4 “Not a problem at all”; and for the 5 

options, scale 1 means ‘strongly agree’, scale 2 implies ‘agree’, scale 3 represents ‘neither 
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agree nor disagree’, scale 4 illustrates ‘disagree’, and scale 5 represents ‘strongly 

disagree’. Individual responses using Likert scales are usually treated as ordinal data 

(Likert, 1932). 

 

 

(a)  

 

 

(b) 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Q3. How serious a problem for you are exhaust fumes
from traffic in towns and cities

Q2. How serious a problem for you is traffic
congestion in towns and cities

Q1. How serious a problem for you is congestion on
motorways

A very serious problem A serious problem Not a very serious problem Not a problem at all

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Q9. Many of the short journeys that I now make by car I
could just as easily cycle

Q8. Many of the short journeys that I now make by car I
could just as easily go by bus

Q7. Many of the short journeys that I now make by car I
could just as easily walk

Q5. I am willing to reduce the amount I travel by car
(To help reduce the impact of CC)

Q4. Next time I buy a car, I would be willing to buy a car
with lower CO2 emissions.

Agree strongly Agree Neither agree nor disagree Disagree Disagree strongly

Q1. How serious a problem for you is 
congestion on motorways 

 
 
Q2. How serious a problem for you is traffic 

congestion in towns and cities 
 
 
Q3. How serious a problem for you is traffic 

congestion in towns and cities 

% 

Q4. Next time I buy a car, I would be willing to 
buy a car with lower CO2 emissions 

 
 
 
Q5. I am willing to reduce the amount I travel 

by car (to help reduce the impact of CC) 
 
 
 
Q7. Many of the journey I now make by car, I 

could just as easily walk 
 
 
 
Q8. Many of the journey I now make by car, I 

could just as easily go by bus 

 

Q9. Many of the journey I now make by car, I 
could just as easily cycle 
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(c) 

Figure 5.4: Attitudinal variables (a) Questions 1 – 3 with 4 Likert-scale options; (b) 
Questions 4 – 9 except 6 with 5 Likert-scale options; (c) Questions 10 – 14 with 5 Likert-

scale options. 
 

Figure 5.4 (a) demonstrates that car users acknowledged that traffic congestion on 

motorways, in towns and cities is a serious problem. Furthermore, Figure 5.4 (b) 

indicates that car users were aware of the importance of reducing carbon dioxide 

emissions and very keen to buy a lower emissions vehicle in the future. However, there 

were some who were reluctant to give up cars and change behaviour from car to 

walking, cycling or use local buses. It can be seen clearly in Figure 5.4 (c) that charging 

taxes is definitely not something that car users were in favour of. They were very hostile 

towards paying taxes, even for the sake of environment. 

 

Question 6 was approached quite differently in the sense that there were three unique 

options for assessing an individual’s view on the causes of climate change. These were: 

option 1, “I believe that climate change is taking place and is, at least partly, a result of 

human actions (81.7% of respondents); option 2, “I believe that climate change is taking 

0.0 20.0 40.0 60.0 80.0 100.0

Q14. People who drive cars that are better for the
environment should pay less to use roads

Q13. There is no point in reducing my car use to help
the environment unless others do the same

Q12. For the sake of the environment everyone
should reduce how much they use cars

Q11. People should be allowed to use their cars as
much as they like, even if it causes damage to the

environment

Q10. For the sake of the environment, car users
should pay higher taxes

Agree strongly Agree Neither agree nor disagree Disagree Disagree strongly

Q10. For the sake of the environment, car 
users should pay higher taxes 

 
 
Q11. People should be allowed to use their 

car as much as they like, even if it causes 
damage to the environment 

 
 
Q12. For the sake of the environment 

everyone should reduce how much they 
use cars 

 
 

Q13. There is no point in reducing my car use 

unless others do the same 

 

Q14. People who drive cars that are better 
for the environment should pay less to 
use roads 
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place but not as a result of human actions” (13.5%); and option 3, “I don’t believe that 

climate change is taking place” (4.8%). It is clear that the majority of the car user 

population acknowledge that climate change results from human actions. However, little 

more can be added by analysing this question in isolation of users of other modes. This 

is outside the scope of this thesis. 

 

For ordinal data with descriptive codes without numerical value, both the median and 

the mode can be used as measures of the average. The median is the value which 

occupies the middle position when all the observations are arranged in increasing or 

decreasing order, whereas the mode is the most frequently occurring value in a set of 

nominal data (Sundar Rao and Richard, 2012; Onunwor et al., 2014). Whilst some 

authors (Aristodemou, 2014) consider the median to be the most suitable measure for 

ordinal data, others believe that the mode is the only appropriate measure for nominal 

data. 

 

Using the Shapiro-Wilk (n<2000 samples) statistic to test for normality, it was found 

that in all cases the distributions were not normally distributed at the 95% statistical 

significance level. Therefore, non-parametric tests were used throughout the analysis in 

this thesis. The medians and mean Likert scores over all car users for the attitudinal 

variables which were designed to reflect perceptions are given in Table 5.8.  

 

The mean for each variable, presented for completeness, assumes that the Likert Scale 

scores are interval data (Knapp, 1990) although known to be not normally distributed. 

The reason for providing the mean as well as the median is to allow a more complete 

discussion regarding the relative differences between the attitudinal variables, because 

the mean better reflects the distribution. Also, as can be seen from Table 5.8, the 

medians are mostly the same showing little granularity. It should be noted that standard 

deviations of data are not presented in the table because the distributions are not 

normal and therefore, are not used in any of the formal statistical tests which were 

carried out. 
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No. Attitudinal variables Mean Median Mode 

Q1 How serious a problem for you is congestion on 

motorways? 
2.87 3.00 3.00 

Q2 How serious a problem for you is traffic congestion 

in towns and cities? 
2.55 3.00 3.00 

Q3 How serious a problem for you are exhaust fumes 

from traffic in towns and cities? 
2.53 3.00 3.00 

Q4 Next time I buy a car, I would be willing to buy a 

car with lower CO2 emissions. 
2.11 2.00 2.00 

Q5 I am willing to reduce the amount I travel by car 

(To help reduce the impact of climate change). 
3.09 3.00 4.00 

Q6 View on climate change and causes. 2.77 3.00 3.00 

Q7 Many of the short journeys that I now make by car 

I could just as easily walk. 
2.85 2.00 2.00 

Q8 Many of the short journeys that I now make by car 

I could just as easily go by bus. 
3.37 4.00 4.00 

Q9 Many of the short journeys that I now make by car 

I could just as easily cycle. 
3.05 3.00 2.00 

Q10 For the sake of the environment, car users should 

pay higher taxes. 
3.81 4.00 4.00 

Q11 People should be allowed to use their cars as much 

as they like, even if it is a cause of damage to the 

environment. 

2.98 3.00 3.00 

Q12 For the sake of the environment, everyone should 

reduce how much they use cars. 
2.59 2.00 2.00 

Q13 There is no point in reducing my car use to help 

the environment unless others do the same. 
2.60 2.00 2.00 

Q14 People who drive cars that are better for the 

environment should pay less to use roads. 
2.33 2.00 2.00 

Table 5.8: Descriptive analysis of attitudinal responses from car users selected for the 
study 

 

Based on the results presented in Table 5.8, the following observations can be made:  

 

i. Car users generally were not willing (mean=3.09, median=3 and mode=4) to 

reduce the amount they travel by car in order to help reduce the impact of 

climate change. In addition, they were reluctant (mean=3.37, median=4 and 

mode=4) to switch from car to bus for a short journey of less than 2 miles. 

Furthermore, car users showed hostility (mean=3.81, median=4 and mode=4) 

towards paying higher taxes, even for the sake of the environment. 
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ii. Interestingly, car users considered that congestion and exhaust fumes on 

motorways as well as in towns and cities was not a very serious problem 

(median=3 and mode=3). Moreover, they were neutral with the statement 

that people should be allowed to use their cars as much as they like 

(mean=2.98, median=3 and mode=3), even when acknowledging that it 

damages the environment. Also, car users are of the belief that climate change 

is taking place and is, at least partly, a result of human actions. 

 

iii. Car users were willing (mean=2.11, median=2 and mode=2) to buy a car with 

lower CO2 emissions in the future and showed an inclination to switch mode 

from car to either walking (mean=2.85, median=2 and mode=2) or cycling 

(mean=3.05, median=3 and mode=2) for a short journey of less than 2 miles. 

For the sake of the environment, they showed willingness (mean=2.59, 

median=2 and mode=2) to reduce how much they use cars, whilst at the same 

time indicating that there is no point in reducing car use unless others do the 

same (mean=2.60, median=2 and mode=2) and users of lower emission 

vehicles should pay less to use roads (mean=2.33, median=2 and mode=2). 

5.5 Correlation Analysis 

A correlation between variables is a measure of how closely the variables are related. 

The most common measure of correlation in statistics is the Pearson Correlation for 

normally distributed data, which shows a linear relationship between two variables 

(Kinnear and Gray, 2000; Rumsey, 2007). Since the dataset is not normally distributed, 

based on the Shapiro-Wilk normality test conducted, the Spearman's rank-

order correlation  also denoted by ) for the non-parametric analysis was chosen to 

measure the strength and direction of association between two variables. Spearman's 

coefficient is appropriate for both continuous and discrete ordinal variables (Myers and 

Well, 2003; Lehman et al., 2005).  

 

Spearman’s correlation coefficient is a statistical measure of the strength of a monotonic 

relationship between paired data. The formula for the Spearman’s correlation coefficient 

is as follow: 

 

https://en.wikipedia.org/wiki/Continuous_variable
https://en.wikipedia.org/wiki/Ordinal_variable
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where: 

 is the coefficient of Spearman correlation (rho), 

 is the difference in rank between paired values of X and Y,  

 is the sample size or the number of paired values X and Y in the selected sample. 

 

 lies between −1 and 1 , where −1 means that there is a perfect negative 

correlation between the two variables, and a result of +1 means that there is a perfect 

positive correlation between them. The closer the value of  gets to zero, the greater the 

variation of the data points around the line of best fit. While a positive correlation means 

that the other variable has a tendency to increase with the first variable, a negative 

correlation means that the other variable has a tendency to decrease.  

5.5.1 Correlation analysis of socio-demographic variables 

The correlation analysis of socio-demographic variables, which are number of people 

living in the household (HH#), gender, age, number of cars in the household (Car#) and 

employment status (EmpStatus), is shown in Table 5.9. 

 

Classification HH# Gender Age Car# EmpStatus 

HH# 

Correlation 1 0.01 -0.40** 0.42** -0.22** 

p-value 
 

0.58 0.00 0.00 0.00 

N  1509 1509 1509 1509 

Gender 

Correlation  1 -0.16** -0.10** 0.07** 

p-value  
 

0.00 0.00 0.01 

N   1509 1509 1509 

Age 

Correlation   1 -0.09** 0.49** 

p-value   
 

0.00 0.00 

N    1509 1509 

Car# 

Correlation    1 -0.16** 

p-value    
 

0.00 

N    
 

1509 

EmpStatus 

Correlation     1 

p-value     
 

N     
 

**Correlation is significant at the 0.01 level (2-tailed) 

Table 5.9: Correlation analysis of socio-demographic variables 
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As can be seen from Table 5.9, ‘Age’ is significantly correlated at the 99% significance 

value 0.000 (<0.01) with ‘Employment status’ ( =0.49), and “Household size” ( =-0.40), 

whilst “Household size” also correlated with “Car ownership” ( =0.42). There is a 

negative correlation between age and household size, suggesting that older people tend 

to live in smaller households, perhaps because their children have left home or, in some 

cases, spouses have died. There is a positive correlation between household size and 

number of cars. This is perhaps not surprising now that households often have more 

than one car. There is also, apparently, a positive correlation between age and 

employment status. This result indicates that different age distributions are associated 

with different employment statuses. These relationship can be considered fairly strong 

(Posavac, 2015). Therefore, since the values of correlations for the rest of the variables 

are less than 0.4, it can be concluded that they exhibit weak correlations. 

5.5.2 Correlation analysis of attitudinal questions 

In Table 5.10 the Spearman’s correlation values for the attitudinal variables are 

presented. The correlation signs between Q11 (People should be allowed to use their 

cars as much as they like, even if it causes damage to the environment) and the other 

variables were negative except for Q1 (How serious a problem for you is congestion on 

motorways?) and Q6 (View on climate change and causes). This means that there were 

inverse relationships. 

 

On the other hand, there were significant positive correlations (0.54) between Q1 and 

Q2 (How serious a problem for you is traffic congestion in towns and cities?), as well as 

Q2 and Q3 (How serious a problem for you are exhaust fumes from traffic in towns and 

cities?) which is 0.50. This indicates the existence of positive relationships between 

aspects of traffic congestion and exhaust fumes.  

 

Meanwhile, the correlations between Q7 (Many of the short journeys that I now make by 

car I could just as easily walk) with Q8 (Many of the short journeys that I now make by 

car I could just as easily go by bus), and Q9 (Many of the short journeys that I now make 

by car I could just as easily cycle) are positive 0.40 and 0.58 respectively. This positive 

relationship suggests that there is potential to use incentives or provide facilities to 

overcome barriers for not using sustainable transport options. 
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An interesting indication is that the sign of the correlation between Q11 and Q13 (There 

is no point in reducing my car use to help the environment unless others do the same) is 

weakly positive 0.17, whereas the sign of the correlation between Q11 and Q12 (For the 

sake of the environment everyone should reduce how much they use cars) is negative (-

0.35). It can be understood that car users who have negative perceptions on 

environmental issues tend to acknowledge similar statements, but deny the importance 

of reducing car use and are reluctant to do so for the sake of environment. This 

correlation is understandable. The majority of sample Spearman’s Correlation 

coefficient ( ) between the variables are less than 0.4 which suggests that correlations 

between these variables are generally weak. 
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5.6 Conclusions 

This chapter focuses on carrying out descriptive analysis of the BSA data from 2011 to 

2014 to obtain a better understanding of the characteristics of car users, the proportion 

of responses, and preparation of the data for further analysis. In terms of the yearly 

distributions of car users, the sample represents a similar proportion each year from 

2011 to 2014 and is representative of the BSA population. 

 

From the socio-demographics variables, the distributions of age, gender, car ownership, 

and household size were presented. It is noted that car users in the younger-aged (18-24 

years old) group were the lowest proportion of participants in this study (3.25%). It can 

be assumed that they didn’t have a driving licence or didn’t own any car at this age. This 

is because at this age they are normally in full-time or part-time education. On the other 

hand, the assessments of travel patterns show that car was by far the most commonly 

used mode compared to other transportation modes. Hence, the opinions and responses 

of the subjects will give insight into how to persuade people to use their cars less and 

switch to alternatives modes to reduce the road burden and the impact of 

environmental problems.  

 

The correlation analyses of socio-demographic and attitudinal variables were conducted 

separately. These analyses demonstrated the relationships between and the levels of 

dependency of each variable. Essentially, an overview of general feelings of car users can 

be obtained by descriptive statistics of attitudinal variables. However, that information 

alone cannot be used to identify characteristics of specific cohorts that have potential for 

behavioural change. Therefore, the next step is to conduct factor and cluster analyses. 

The structure of the attitudinal variables is investigated in further detail using factor 

analysis in the next chapter.  
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Chapter 6 Exploration of the Structure of Data by Factors 

6.1 Introduction 

Preliminary analysis and general characteristics of respondents were discussed in 

Chapter 5 showing an insight into the general characteristics of car users using 

descriptive statistics. This analysis revealed a fundamental understanding of socio-

demographics, travel behaviour and attitudinal variables of car users. However, in order 

to explore patterns of attitudes of car users, the next step is to conduct a dimension 

reduction technique. Therefore, this chapter investigates the structure of data by factors, 

using principal axis factoring (PAF) and principal component analysis (PCA). The 

following Section 6.2 investigates the normality of 14 attitudinal variables. Section 6.3 

discusses the method used for dimension reduction. Section 6.4 determines changes 

evident between 2011 and 2014. Section 6.5 explores the details of attitudes and 

perceptions of transport and the environment. Section 6.6 presents the perceptions and 

attitude to traffic awareness. Next, in Section 6.7, respondents’ willingness to switch 

travel behaviour is presented followed by a summary to conclude the chapter in Section 

6.8.  

 

 

 

 
 

 

 

 

 

Figure 6.1: Steps involved in Chapter 6 

 
 
 

 

Dimension Reduction 
Step 1: Normality test for 14 attitudinal data 

- Kolmogorov-Smirnov 
- Shapiro-Wilk tests 
- Skewness and Kurtosis 

 

Step 2: PAF 
- Kaiser-Meyer-Olkin  (KMO) 
- Bartlett’s test of Sphericity 
- Promax rotation 
- Scree plot 
 

 
 

Step 3: PCA 
- Kaiser-Meyer-Olkin  (KMO) 
- Bartlett’s test of Sphericity 
- Varimax rotation 
- Scree plot 
 

 

 
Step 4: For a) year by year and b) sum over years. 
Exploring each factor obtained from the PAF 
-  Factor 1: Attitudes to Transport and the Environment 
-  Factor 2: Traffic Awareness 
-  Factor 3: Mode Shift Potential 
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6.2 Normality Test 

Firstly, the attitudinal variables were analysed to investigate whether the data are 

normally distributed. This was achieved in four ways: using the Kolmogorov-Smirnov 

test (p<0.05) (Razali and Wah, 2011); the Shapiro-Wilk test (p<0.05) (Shapiro and Wilk., 

1965; Razali and Wah, 2011) along with a visual inspection of their histogram; a normal 

Q-Q plots and box plots. 

6.2.1 Kolmogorov-Simornov 

The Kolmogorov-Smirnov test is a non-parametric test to determine whether the dataset 

differs significantly. The Lilliefors significance correction was used to improve or for 

correcting the Kolmogorov-Smirnov test for small values at the tails of probability 

distributions. With reference to Table 6.1, p-values are <0.05. This indicated that the 

variables were not normally distributed. 

6.2.2 Shapiro-Wilk 

In terms of the Shapiro-Wilk test, the null hypothesis for this test of normality is that the 

data are normally distributed. Based on Table 6.1, p-values are <0.05, therefore the null 

hypothesis is rejected and it can be assumed that attitudinal variables are not normally 

distributed. The results of the Kolmogorov-Smirnov and Shapiro-Wilk tests both show 

clearly that the distribution of responses for the attitudinal variables were statistically 

significant by difference at the 99.99% significant level.  
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No. Variables 
Kolmogorov-Smirnova 

df = 1509 
Shapiro-Wilk 

df = 1509 
Statistic Sig. Statistic Sig. 

1 Cong_MWs 0.26 0.00 0.86 0.00 

2 Cong_Cities 0.25 0.00 0.87 0.00 

3 Exhaustfumes 0.22 0.00 0.88 0.00 

4 BuyLowEmi. 0.32 0.00 0.81 0.00 

5 ReducTravCar 0.23 0.00 0.88 0.00 

6 CCViews 0.49 0.00 0.49 0.00 

7 CartoWalk 0.28 0.00 0.86 0.00 

8 CartoBus 0.26 0.00 0.87 0.00 

9 CartoBike 0.25 0.00 0.87 0.00 

10 HiTaxForCarUse 0.31 0.00 0.84 0.00 

11 AllowCarUse 0.20 0.00 0.90 0.00 

12 ReducCarUse 0.30 0.00 0.84 0.00 

13 ReducCarUse_NP 0.29 0.00 0.87 0.00 

14 CarBetterPayLess 0.31 0.00 0.84 0.00 

df: degree of freedom 
a: Lilliefors Significance Correction 

Table 6.1: Tests of normality for attitudinal data 

6.2.3 Skewness and kurtosis 

Regarding skewness and kurtosis, Table 6.2 shows the attitudinal variables are skewed 

and kurtotic for all 14 variables differ 

significantly from normality. Therefore, these independent tests confirm that the 

distribution of responses to all 14 attitude questions are not normally distributed. As 

can be seen in Table 6.2, the z-score values of the skewness and kurtosis were outside 

the range of  (Cramer, 1998; Cramer, 2004; Doane and Seward, 2011) 

for most of the variables except for “ReducTravCar” (skewness 0.17),  HiTaxForCarUse 

(kurtosis 1.54) and ReducCarUse  (kurtosis 0.03) variables.  
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No. Variables 
Statistics z-score 

Skewness 
SE = 0.06 

Kurtosis 
SE = 0.13 

Skewness Kurtosis 

1 Cong_MWs -0.45 -0.51 -7.50 -3.92 

2 Cong_Cities -0.15 -0.57 -2.50 -4.38 

3 Exhaustfumes -0.05 -0.70 -0.83 -5.38 

4 BuyLowEmi. 1.06 0.86 17.67 6.62 

5 ReducTravCar 0.01 -1.13 0.17 -8.69 

6 CCViews -2.22 3.95 -37.00 30.38 

7 CartoWalk 0.33 -1.06 5.50 -8.15 

8 CartoBus -0.25 -1.15 -4.17 -8.85 

9 CartoBike 0.12 -1.28 2.00 -9.85 

10 HiTaxForCarUse -0.74 0.20 -12.33 1.54 

11 AllowCarUse -0.88 -5.36 -14.67 -41.23 

12 ReducCarUse 0.73 0.004 12.17 0.03 

13 ReducCarUse_NP 0.46 -0.63 7.67 -4.85 

14 CarBetterPayLess 0.83 0.28 13.83 2.15 

*SE = standard error 

Table 6.2: Standard error, skewness and kurtosis for attitudinal variables 

6.3 Method used for Dimension Reduction 

As discussed earlier in Chapter 3, dimension reduction is a technique to reduce the 14 

attitudinal variables to a smaller number. First, the results of the exploratory factor 

analysis (EFA) by using principal axis factoring (PAF) are presented, followed by 

principal component analysis (PCA).  

6.3.1 Principal axis factoring (PAF) 

Figure 6.2 shows the framework of PAF where F is the factor;  are 

observed variables;  are the random errors; and  

represent the factor loadings of . 
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Figure 6.2: Principal axis factoring 
 

PAF evaluates a factor or latent variable which is found to have influence on observed 

variables. PAF, in identifying a factor, considers common variance of each variable and 

separating the common variance from the unique variance accounts for co-variation. 

 

PAF was used to capture any relationships that might exist between attitudinal variables. 

By using PAF, an independent analysis of the data is conducted in an attempt to confirm 

similarity in the patterns in the data to those revealed by the other statistical 

approaches. Oblique rotation  was  used  to  reduce  the  14  attitudinal  variables  of  

perceptions and attitudes concerned with travelling  listed  in  the BSA dataset by 

exposing commonalities within variables. PAF is widely used to simplify large sets of 

data into reduced numbers of factors by grouping data in a statistical way.  

 

As  discussed  earlier  in Chapter 3, the  minimum  sample  required  for  PAF  is  50 (Hair 

et al., 2006). This research has a total sample of 1509 respondents which was found to 

be sufficient to give statistical significance in the results. PAF is a technique that can 

accommodate commonality in attitudinal variables and reveals multicollinearity 

between variables. Therefore, by identifying the correlations between factors, variables 

can be combined into fewer factors and, from the analysis, the 14 attitudinal variables 

can be reduced in number.  

 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy using Bartlett’s test of 

sphericity was used to test whether the variables are suitable for structure detection 

(Hotelling, 1933; Bartlett, 1950; Field, 2009; Hair et al., 2010). Sarstedt and Mooi (2014) 

highlighted that a KMO value of less than 0.5 is considered unacceptable and over 0.80 is 
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preferable in determining the sampling adequacy of the correlations. Given a KMO of 

0.74 (see Table 6.3) in this research, the adequacy of the correlation is considered 

meritorious, being so close to a value of 0.80.  

 

The Bartlett’s test of sphericity was used to find the statistical significance of all the 

correlations within the correlation matrix as an indicator of the strength of the 

relationships among variables. This test was used to test the null hypothesis that the 

variables in the population correlation matrix were uncorrelated. Bartlett’s test of 

sphericity was applied with the Chi-square  critical value of 3742.51 for a statistical 

significant level of 99%, p<0.001, as shown in Table 6.3. This result indicates that there 

was a redundancy between variables that can be summarised with some factors. 

 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.74 

Bartlett's Test of Sphericity 

Approximate  3742.51 

Degree of freedom 91 

Statistical significance 0.00 

Table 6.3: KMO and Bartlett’s test 

 

In this study, because the variables were not-normally distributed, EFA follows a 

principal axis factoring (PAF) approach to obtain the best results (Osborne and Castello, 

2005) with some specific types of rotation methods (either Promax or Varimax), with 

the constructs based on those that exceed an eigenvalue of one. Tabachnick and Fidell 

(2013) suggested that, if any of the absolute values of the factor correlation matrix are 

greater than 0.32, Promax rotation should be selected for oblique rotation. In contrast, if 

the absolute value is smaller than 0.32, Varimax rotation should be selected. When 

applied to these data, the absolute value of the correlation between two factors 

considered in the analysis was 0.37, as shown in Table 6.4. Since this is greater than 0.32, 

Promax rotation is recommended and initially was selected for the PAF to identify the 

absolute value of a factor correlation matrix. 
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Factor 1 2 3 

1 1 0.37 0.10 

2 0.37 1 0.10 

3 0.10 0.10 1 

Extraction Method: Principal Axis Factoring. 
Rotation Method: Promax  

Table 6.4: Factor correlation matrix 
 

The scree plot is a sliding curve displaying an output of the eigenvalues on the y-axis and 

the number of factors on the x-axis. The number of factors that should be produced by 

the analysis depends on the point where the slope of the curve is levelling off (Yong and 

Pearce, 2013). The scree plot in Figure 6.3 shows clearly how the eigenvalues drop 

sharply after the first four factors, suggesting the extraction of four factors.  

 

 

Figure 6.3: Scree plot of PAF with the initially selected factors (Eigenvalue >1) in the 
oval shape 

 

Based on the Kaiser Criterion (Kaiser, 1960) and the scree plot (Cattell, 1996), the 

number of factors extracted was decided. All components with eigenvalues below 1.0 

were dropped because the first four factors adequately represent the variance in the 

dataset (Salkind, 2010). However, factor 4, contains only one variable (People who drive 

cars that are better for the environment should pay less to use roads - 

CarBetterPayLess) which is not acceptable because there is no covariance to consider 

Factor number 
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except the item's own variance (Raubenheimer, 2004; Osborne and Castello, 2005). 

They also recommended to use at least 3 items per factor. Based on this advice, the PAF 

was run again constraining the number of factors to 3; with three factors 34% of 

variance in the data being accounted for, as shown in Table 6.5. 

 

Factor 
Initial Eigenvalues 

Extraction Sums of 
Squared Loadings 

Rotation Sums 
of Squared 
Loadingsa 

Total 
% of 

Variance 
Cum % Total 

% of 
variance 

Cum 
% 

Total 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

2.98 

1.91 

1.57 

1.12 

0.86 

0.85 

0.78 

0.75 

0.69 

0.62 

0.56 

0.51 

0.41 

0.40 

21.30 

13.65 

11.19 

8.00 

6.16 

6.05 

5.58 

5.33 

4.91 

4.41 

4.03 

3.62 

2.93 

2.85 

21.30 

34.95 

46.14 

54.15 

60.30 

66.35 

71.93 

77.26 

82.16 

86.58 

90.60 

94.22 

97.16 

100.00 

2.35 

1.45 

1.02 

16.75 

10.31 

7.24 

16.75 

27.06 

34.30 

2.03 

1.76 

1.54 

Extraction Method: Principal Axis Factoring. 

a. When factors are correlated, sums of squared loadings cannot be added to obtain a 
total variance. 

Table 6.5: Percentage of variance explained 
 

Table 6.6 presents the output from the PAF, identifying the variables along with factor 

loadings and Cronbach alpha values. These factors will be analysed in greater depth in 

the next section. Based on the dataset of the Likert scale responses of all respondents, 

the oblique rotation converged in four iterations and three factors emerged from the 

PAF. These factors were labelled as “Attitudes to transport and the environment”, 

“Traffic awareness” and “Mode shift potential”. 
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The first factor consisted of a willingness to change travel behaviour, to buy cars with 

low emissions in the future and to pay higher taxes for the sake of the environment; the 

second factor embraced awareness of traffic congestion and exhaust fumes in towns and 

cities; and the third consisted of the potential for switching travel modes for short 

journeys of less than 2 miles.   

 

New factor Variables 
Factor 

1 2 3 

Attitudes to 
transport and the 

environment 
 

α=0.16 

ReducCarUse 0.635   

AllowCarUse -0.512   

BuyLowEmi 0.505   

ReducTravCar 0.468   

HiTaxforCarUse 0.442   

CarBetterPayLess 0.433   

CCView -0.384   

ReducCarUse_NP -0.246   

Traffic 
awareness 

 
(α=0.73) 

Cong_MWs  0.849  

Cong_cities  0.658  

Exhaustfumes  0.588  

Mode shift 
potential 

 
(α=0.70) 

CartoWalk   0.862 

CartoBike   0.703 

CartoBus   0.459 

α: Cronbach’s alpha 

Extraction method: principal axis factoring.  

Rotation Method: Promax  

Table 6.6: Pattern matrix (convergence in 4 iterations) 

 

In order to evaluate the reliability of the factors identified in the PAF, Cronbach’s alpha 

is calculated to consider the internal consistency of the grouped statements (Cronbach, 

1951). Internal consistency is a method to compute the correlation of each test item 

with the total score test; items with low correlations (approaching zero) are deleted. If 

alpha is too high it may suggest that some items are redundant as they are testing the 

same question but in a different guise. By using Cronbach’s alpha, the internal 

consistency could be measured, that is, how closely related a set of items are as a group. 
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It is considered to be a measure of scale reliability. Cronbach’s alpha is not a statistical 

test but it is a coefficient of reliability (or consistency). Peterson (1994) indicated that 

acceptable alpha scores range from 0.5 for a preliminary analysis to 0.9 for applied 

research. The higher the inter-correlation among the scale items, the greater the 

reliability of the scale and this can be supported by a high value of Cronbach's alpha. In 

this study, Cronbach’s alpha has been calculated for each new factor identified in the 

analysis. The Cronbach’s alpha values for factors 1. Attitudes to transport and the 

environment, 2. Traffic awareness and 3. Mode shift potential were 0.16, 0.73, and 0.70 

for each factor respectively.  

 

The reason for the low Cronbach’s alpha value for the first factor was because it consists 

of three attitudinal variables with negative factor loading (i. People should be allowed to 

use their cars as much as they like, even if it causes damage to the environment; ii. There 

is no point in reducing my car use to help the environment unless others do the same; 

and iii. View on climate change and causes). After removing these three variables, 

Cronbach’s alpha value was improved to 0.63. In addition, Cronbach alpha is not 

concerned with factors that this research created, but more with the way that a 

questionnaire is designed. Since data from a secondary source is used in this study, there 

was no control over the formulation of the questions.  

6.3.2 Principal component analysis (PCA) 

Figure 6.4 shows the rather different framework of PCA, where the observed variables 

use the weights, to provide a principal component 

score C which is a combination of linear variables. The components are selected based 

on the highest variance scores. PCA is in fact a dimensional reduction technique. A key 

difference between PAF and PCA is that the variable’s variance in PCA is a measure of 

total variance without separation into a common and unique variance, as is the case in 

PAF. PCA also accounts for the highest proportion of the variance observed in the 

variables and breaks down the correlation matrix to discover the principal components. 
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Figure 6.4: Principal component analysis 
 

In order to add credibility to the three factors emerging from the PAF, an independent 

analysis of the data using PCA was conducted to simplify the 14 attitudinal variables of 

perceptions and attitudes concerning travelling into a reduced number of factors. PCA is 

a technique to convert a set of observations of feasibly correlated variables into a set of 

values of linearly uncorrelated variables (Hotelling, 1933). In essence PCA identifies the 

correlated variables which can then be combined into fewer factors. Varimax orthogonal 

rotation is by far the most common choice to simplify and clarify the data structure and 

produces the results which make it as easy as possible to identify each variable with a 

single factor (Osborne and Castello, 2005). 

 

The rules in PCA were tested using the Bartlett test of sphericity (Field, 2009; Hair et al., 

2010) in the same way as PAF above, employing the  value  of  3742.51 at a statistical 

confidence level of 99% (p<0.001) as shown in Table 6.7. These results were the same 

by using PAF and PCA.  

 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.74 

Bartlett's Test of Sphericity 

Approximate  3742.51 

Degree of freedom 91 

Statistical significance 0.00 

Table 6.7: KMO and Bartlett’s test 
 

All components with eigenvalues below 1.0 were dropped. Thus, four factors were 

recognised which accounted for 54% of variance in the data, as shown in Table 6.8. The 
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scree plot in Figure 6.5 demonstrates that the eigenvalues drop sharply after the first 

four factors, suggesting the extraction of four factors as before.  

 

Component 
Initial Eigenvalues 

Extraction Sums of 
Squared Loadings 

Rotation Sums of 
Squared Loadings 

Total 
% of 

Variance 
Cum 

% Total 
% of 

Variance 
Cum 

% Total 
% of 

Variance 
Cum 

% 

1 2.99 21.36 21.36 2.99 21.356 21.36 2.05 14.61 14.61 

2 1.91 13.67 35.03 1.91 13.670 35.03 2.03 14.47 29.08 

3 1.57 11.19 46.22 1.57 11.191 46.21 1.96 13.98 43.06 

4 1.12 7.99 54.21 1.12 7.994 54.21 1.56 11.16 54.21 

5 0.86 6.17 60.38             

6 0.85 6.06 66.44             

7 0.78 5.60 72.04             

8 0.74 5.30 77.34             

9 0.69 4.91 82.25             

10 0.61 4.36 86.61             

11 0.56 4.02 90.63             

12 0.51 3.63 94.26             

13 0.41 2.92 97.17             

14 0.40 2.83 100.0             

Extraction Method: Principal Component Analysis. 

Table 6.8: Total variance explained 
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Figure 6.5: Scree plot of PCA with the selected factors in the oval shape 
 

However, unlike PAF, in PCA the orthogonal rotation converged in six iterations and four 

components instead of the three factors that emerged. Table 6.9 presents the output 

from the PCA of those variables with component loadings. The first three components, 

as before, were labelled as “Environmentally sensitive”, “Traffic awareness” and “Mode 

shift potential” because they consisted of the same variables. However, in PCA a fourth 

component emerged and was labelled as “Attitudes to car use”, consisting of a 

willingness to change travel behaviour and to pay higher taxes for the sake of the 

environment. 

 

New component Variables 
Component 

1 2 3 4 

Environmentally 
sensitive 

 
 

 

CarBetterPayLess 0.765    

BuyLowEmi 0.617    

ReducCarUse 0.572    

CCView -0.529    

Model shift potential 
 

 

CartoWalk  0.850   

CartoBike  0.810   

CartoBus  0.672   

Traffic awareness Cong_cities   0.863  
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Cong_MWs   0.804  

Exhaustfumes    0.742  

Attitudes to car use 
 

 

ReducCarUse_NP    -0.819 

ReducTravCar    0.494 

AllowCarUse    -0.489 

HiTaxforCarUse    0.412 

Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax  

Table 6.9: Rotated component matrix (convergence in 6 iterations) 

 

A Cronbach’s alpha test was carried out on the new factors obtained in the PCA. The 

higher the inter-correlation among the scale items, the greater the reliability of the scale 

and this can be supported by a high value of Cronbach's alpha. In order to evaluate the 

reliability of the factors identified in the PCA, Cronbach’s alpha is calculated to consider 

the internal consistency of the grouped statements (Cronbach, 1951). The Cronbach’s 

alpha values for the four factors were 0.334, 0.730, 0.703 and -0.336 for each factor 

respectively. Even though the negative components were removed, the Cronbach’s alpha 

values in the first and fourth factors did not improve. 

 

After considering both the PAF and PCA outputs, a detailed scrutiny of results was 

performed. Table 6.10 lists the comparison of results obtained in both the PAF and PCA 

dimension reduction methods. Based on the comparison presented in Table 6.10, it was 

concluded that PAF evidenced better outcomes compared to PCA. Therefore, in the 

following sections, based on result obtained by using the PAF method, these factors will 

be analysed in greater depth. 
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No. Principal Axis Factoring Principal Component Analysis 

1 The method produced “factor” The method produced “component” 

2 The method took the measurement 

errors into account 

The method did not take into account 

the measurement errors.  

3 The variance was not linked 

specifically to the factor of an 

observed variable  

Each variable was assumed to be 

perfectly reliable  

4 The method does not produce initial 

communalities as 1 

The method produced initial 

communalities as 1 

5 The method was able to recover 

weaker factors 

The method was not able to discover 

weaker factors 

6 The method aimed to gain an 

understanding of the structure 

The method aimed to determine the 

structure 

7 The results were much more reliable 

because PAF retained both the unique 

and error variance 

The method removed the unique 

variance, but did not consider the 

error variance 

Table 6.10: Comparison of PAF and PCA 

6.4 Changes Evident Between 2011 and 2014 

The analysis carried out so far in this thesis has treated the data collected during the 

period 2011 to 2014 inclusive as one dataset. Having identified three factors, evidences 

of changes in attitudes and perceptions from year to year are explored. 

 

Attitudes to the environment: From 2011 to 2014, 81.7% of respondents believed that 

climate change is taking place and at least partly results from human activities. 

Questions related to climate change were asked for the first time in 2011 and, with 

reference to Table 6.11, the awareness was highest in 2011 (84.66%) with small but, 

based on the  test, statistically significant differences at the 95% level of confidence 

being found from year to year.  

 

 

 



128 

Year Count Total % 

2011 309 365 84.66 

2012 317 400 79.25 

2013 279 341 81.82 

2014 328 403 81.39 

Total 1233 1509 81.71 

Table 6.11: Proportion of respondents who believe that climate change is taking place 
and is, at least partly, a result of human actions 

 

However, no statistically significant difference within the 4 years’ timescale from 2011 

to 2014 was evident for those who did not believe climate change is taking place, albeit a  

much smaller proportion of the sample (3.84%, 4.75%, 3.81% and 6.70%) for 2011, 

2012, 2013 and 2014 respectively. 

 

Attitudes to congestion: A clear trend in opinions regarding serious congestion on the 

roads can be seen in Figure 6.6, with typically 13-15% more car users finding serious 

urban road congestion compared to motorways with a rise for both urban and 

motorways of about 6-8% between 2012 and 2014. Interestingly, car users’ concern 

regarding congestion on motorways and in urban areas reached its lowest point in 2012. 

These results were not statistically significantly different within the 4 years. Almost one 

in every two car users in 2014 considered traffic congestion in towns and cities was a 

very serious or serious problem. 

 

 

Figure 6.6: Concerns about congestion as a very serious or serious problem 
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Attitudes to Exhaust Fumes: Traffic is a major source of pollution and is responsible for 

the majority of air quality management areas declared across the UK road networks. 

Therefore, respondents’ attitudes towards exhaust fumes in towns and cities are an 

indicator of drivers’ awareness of the environmental impact of traffic. Table 6.12 shows 

how attitudes have fluctuated over time from 2011 to 2013, with increasing concern 

from 2013 to 2014. The lowest level of concern within the four years was seen in 2012 

(45%), and by 2014, half of the respondents (50.12%) considered exhaust fumes from 

traffic in towns and cities to be a very serious or serious problem.  

 

Year Count Total % 

2011 175 365 47.95 

2012 180 400 45.00 

2013 166 341 48.68 

2014 202 403 50.12 

Total 723 1509 47.91 

Table 6.12: Attitudes towards exhaust fumes in towns and cities as a serious or very 
serious problem, 2011 – 2014 

6.5 Factor 1: Attitudes to Transport and the Environment 

Transport and Climate Change: What stands out in Table 6.13, when considering age 

and gender along with their views on climate change and its causes, is that the youngest 

(18–24 years old) age group has the lowest percentages believing that climate change is 

taking place and is a result of human actions, while the middle-aged groups (35–54 year 

olds) are more likely to believe that climate change is taking place and is, at least partly, 

due to human actions. In contrast, the proportion of the oldest (65+ years old) aged 

group (1.99%) who don’t believe that climate change is taking place is much higher 

compared to the other age groups. There is also significant difference by gender, where a 

higher proportion of females believe that climate change is taking place as a result of 

human actions compared to males (42.74% compared to 38.97%).  
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Variable 

I don t 
believe that 

climate 
change is 

taking place 

I believe that 
climate change 
is taking place 

but not as a 
result of human 

actions 

I believe that 
climate change is 

taking place and is, 
at least partly, a 
result of human 

actions 

Total 

Count % Count % Count % Count % 

Gender 
Male 48 3.18 121 8.02 588 38.97 757 50.17 

Female 25 1.66 82 5.43 645 42.74 752 49.83 

Total 73 4.84 203 13.45 1233 81.71 1509 100 

Age 

18-24 3 0.20 8 0.53 38 2.52 49 3.25 

25-34 10 0.66 27 1.79 178 11.80 215 14.25 

35-44 11 0.73 35 2.32 269 17.83 315 20.87 

45-54 9 0.60 31 2.05 277 18.36 317 21.01 

55-64 10 0.66 44 2.92 228 15.11 282 18.69 

65+ 30 1.99 58 3.84 243 16.10 331 21.94 

Total 73 4.84 203 13.45 1233 81.71 1509 100 

Table 6.13: Variation by gender and age in proportions who believe that climate change 
is taking place and is, at least partly, a result of human action. 

 

From the  test, the results indicate that there was a statistically significant association 

between gender and climate change views and causes and that is, males and females 

have different thoughts regarding this issue. There was also a statistically significant 

association across different age groups. 

 

Regarding travel modes considered by car users to have the most impact on climate 

change aggregating responses over the period 2011 to 2014, the most commonly 

mentioned mode was cars (41.5%), whilst motorbikes are the lowest mode chosen with 

a proportion of 0.1% only. The second largest assumed contributor to climate change is 

aeroplanes (24.6%), followed by vans and lorries (19.3%), buses and coaches (9.6%), 

ships or ferries (2.1%) and trains (0.4%). There was no significant difference from the 

BSA population evident from the  test at 95% significant level.  

 

There were a few respondents who did not believe climate change was taking place or 

believed that climate change would happen anyway. However, the fact is that the 

transport sector contributes around 26% of all greenhouse gas (GHG) emissions in the 
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UK (DfT, 2009). The petrol and diesel used in road transport represents the main source 

of these emissions. In particular, domestic GHG emissions from cars accounted for 40%, 

and heavy goods vehicles and light vans for 15% and 10% of UK vehicle emissions 

respectively (DECC, 2016). 

 

Willingness to Change Travel Behaviour for the Environment: In this analysis, “agree 

strongly” and “agree” only were combined on the premise that those choosing “neither 

agree nor disagree”, “disagree” and “strongly disagree” were the section of the 

population unlikely to change behaviour. Attitudes towards a modal shift for 

environment reasons varied depending on the transport mode used, aggregating across 

all years 2011 to 2014. Figure 6.7 shows that over two-thirds of respondents (77.2%) 

reported a willingness to buy a car with lower CO2 emissions for their next purchase, 

whereas 56.8% thought that they should reduce the amount of car use for the sake of the 

environment. However, less than half of those surveyed (39%) reported that they were 

willing to reduce the amount they travelled by car to help reduce the impact of climate 

change. Changes from year to year from 2011 to 2014 exhibited a decreasing trend in 

these attitudes, although this was not found to be statistically significantly different 

using the  test within the 4 years. 

 

 

Figure 6.7: Willingness to change travel behaviour for the environment 

 

Considering aggregated data across all years from 2011 to 2014, there are in fact two 

aspects that are somewhat counterintuitive. Even though the respondents reported that 
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they were willing to take action towards climate change and acknowledge 

environmental problems, there was a considerable inconsistency with their actual 

behaviour. Certainly, whilst only 39% of respondents reported that they were willing to 

reduce the amount they travelled by car to alleviate the impact on climate change, over 

half of those respondents (57%) agreed that, for the sake of the environment, everyone 

should reduce how much they use their cars. This suggests that collective action prevails 

over individual action. 

 

Table 6.14 describes the proportions of respondents who were willing to reduce the 

amount of travel by car in order to help reduce the impact of climate change, according 

to age and gender. Middle-aged adults (35–44 years old) and oldest (65+ years old) 

seem to be the most willing to take action, with the youngest age group (18–24 years old) 

having the lowest concern. Interestingly, females (21.21%) were more likely to reduce 

car usage compared to males (17.76%).  

 

Variable 

"Strongly agree" or 
"Agree" 

Other responses Total 

Count % Count % Count % 

Gender 
Male 268 17.76 489 32.41 757 50.17 

Female 320 21.21 432 28.63 752 49.83 

Total 588 38.97 921 61.03 1509 100 

Age 

18-24 17 1.13 32 2.12 49 3.25 

25-34 94 6.23 121 8.02 215 14.25 

35-44 121 8.02 194 12.86 315 20.87 

45-54 115 7.62 202 13.39 317 21.01 

55-64 106 7.02 176 11.66 282 18.69 

65+ 135 8.95 196 12.99 331 21.94 

Total 588 38.97 921 61.03 1509 100 

Table 6.14: Willingness to reduce the amount of travel by car with respect to age and 
gender of the respondents 

 

The percentage of respondents who were willing to buy a lower CO2 emissions car as 

their next purchase was almost the same proportion as those willing to reduce the 

amount of travel by car in order to help reduce the impact of travel on climate change, 
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although there is no way in this analysis to suggest these are the same individuals. A 

gender difference was apparent, with 41.22% of females compared to 35.98% of male, 

whilst the age factor showed a similar pattern except for the oldest age group (65+ years 

old) recording the highest percentage (17.76%) and the youngest respondents (18 – 24 

year-old) the lowest percentage (1.86%) as shown in Table 6.15. 

 

Variable 

"Agree strongly" 
and "agree" 

Other responses Total 

Count % Count % Count % 

Gender 
Male 543 35.98 214 14.18 757 50.17 

Female 622 41.22 130 8.61 752 49.83 

Total 1165 77.20 344 22.80 1509 100 

Age 

18-24 28 1.86 21 1.39 49 3.25 

25-34 163 10.80 52 3.45 215 14.25 

35-44 235 15.57 80 5.30 315 20.87 

45-54 249 16.50 68 4.51 317 21.01 

55-64 222 14.71 60 3.98 282 18.69 

65+ 268 17.76 63 4.17 331 21.94 

Total 1165 77.20 344 22.80 1509 100 

Table 6.15: Willingness to buy a car with lower CO2 emissions in future with respect to 
age and gender of the respondents 

 

Opinions on the Environment and Car Travel:  Aggregating car users’ attitudes over 

the period 2011 to 2014, there was a similar proportion 31% agreeing and 31% 

disagreeing, with 38% giving neutral answers, when asked whether people should be 

allowed to use their cars as much as they like, even if it caused a damage to the 

environment. Surprisingly, there were small differences between attitudes to car travel 

and damage to the environment, even though people were willing to give up car use if it 

caused environmental damage. Nonetheless, this needs to be reconciled against 39% of 

respondents prepared to reduce their own travel by car and 57% who believe that 

everyone should act (see Figure 6.7).   

 

Figure 6.8 presents respondents’ attitudes towards car travel and the environment: just 

over two thirds, 68% of respondents, agreed that low emission vehicles should pay less 
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to use the roads. Whilst in contrast, 73% disagreed that, for the sake of the environment, 

car users should pay higher taxes. On the other hand, more than half (56%) felt there 

was no point in reducing their car use to help the environment unless others do the 

same. Taken together, these statements suggest that there is an association between 

attitudes towards environmental issues and transport policies.  

 

 

Figure 6.8: Attitudes towards car travel and the environment 

 

Collating together those responses relating to car users changing their behaviour to save 

the environment, Figure 6.9 illustrates the selfishness of drivers with reluctance to pay 

taxes to use private cars, tempted by financial incentives to drive low emissions vehicles 

with no point in reducing car use to help the environment unless others do the same, 

and with a belief that people should be allowed to use their cars as much as they like, 

even if it causes damage to the environment.  
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Figure 6.9: The proportion who strongly agreed or agreed among car-users 

6.6 Factor 2: Traffic Awareness 

Attitudes to congestion: Considering responses across all years 2011, 2012, 2013 and 

2014, different respondents gave different opinions on congestion and the response 

varied across demographics. Whilst 45.2% of respondents mentioned that traffic 

congestion in towns and cities is a serious or very serious problem compared to the 

lower proportion (30.5%) on motorways, see Figure 6.10, it is worth noting that 11.5% 

and 25.4% of car users strongly disagreed there was no problem of congestion in urban 

areas and on motorways respectively. This suggests that some roads at certain times of 

the day do have spare capacity. As mentioned before, only car-users were considered in 

this study. Therefore, attitude differences between drivers and non-drivers were beyond 

the scope of the study, even though they may have very different views on congestion 

problems.  
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Figure 6.10: Proportions reporting the seriousness of congestion problem in motorways, 

towns, and cities 

 

Males were more likely than females to consider motorway congestion to be a problem 

(17.69% compared to 12.79%) and more likely to consider congestion in towns and 

cities to be a problem (24.72% compared to 20.48%). Table 6.16 shows a clear trend of 

increasing opinion that the level of traffic congestion is more serious in towns and cities 

compared to motorways across all age groups from the younger to the older groups. 

0% 20% 40% 60% 80% 100%

How serious a problem for you is
congestion on motorways

How serious a problem for you is
traffic congestion in towns and cities

A very serious problem A serious problem

Not a very serious problem Not a problem at all
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Attitudes to exhaust fumes: Aggregating data over all years 2011 to 2014 inclusively, 

drivers were more likely to say that they considered exhaust fumes from traffic in town 

and cities to be very serious or a serious problem 12.66 % and 35.25% respectively, 

with 38.50% and 13.59% believing it was not a very serious problem and not a problem 

at all respectively. With reference to Table 6.17, 25.78% of female respondents were 

aware that exhaust fumes from traffic in towns and cities are a problem compared to 

22.13% of male. As can be seen in Table 6.17, the opinions on exhaust fumes vary across 

all age groups from younger to older. These trends reveal the similarities in attitudes 

obtained from the preliminary analysis of attitudes to congestion where mature groups 

acknowledged the seriousness of exhaust fumes in urban areas compared to younger 

groups, who did so to a much less degree. This observation was expected, given that 

congestion is a major source of air pollution emissions. 

 

Variable 

How serious a problem for you are exhaust 
fumes from traffic in towns and cities? 

Total "A very serious 
problem" or "A 

serious problem" 

"Not a very serious 
problem" or "Not a 

problem at all" 

Count % Count % Count % 

Gender 
Male 334 22.13 423 28.03 757 50.17 

Female 389 25.78 363 24.06 752 49.83 

Total 723 47.91 786 52.09 1509 100 

Age 

18-24 19 1.26 30 1.99 49 3.25 

25-34 115 7.62 100 6.63 215 14.25 

35-44 163 10.80 152 10.07 315 20.87 

45-54 135 8.95 182 12.06 317 21.01 

55-64 148 9.81 134 8.88 282 18.69 

65+ 143 9.48 188 12.46 331 21.94 

Total  723 47.91 786 52.09 1509 100 

Table 6.17: Proportions of opinion on exhaust fumes as a serious or a very serious 
problem by age and gender 
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6.7 Factor 3: Mode Shift Potential  

Willingness to Switch to Sustainable Modes of Transport: Public transport, walking, 

and cycling were discussed in detail in Chapter 2 as more sustainable modes of 

transportation compared to the car. In particular, identifying modal shift potential for 

short journeys of less than 2 miles (about 3km) made by car is one of the most 

important points, because of the additional emissions caused by cold starts to be 

considered in this study. Table 6.18 clearly shows that about 50% of car users made four 

or more short trips in a week, contributing to cold starts. 

 

Number of short journey Count % 

0 224 14.84 

1-3 546 36.18 

4-6 351 23.26 

7-9 78 5.17 

10 or more 310 20.54 

Total 1509 100 

Table 6.18: Number of journeys less than 2 miles made by car in a typical week 

 

For the 50% car users with less than four trips per week, there is potential for mode 

shift to public transport either by cycling or walking to a local bus stop or train station, 

or using park and ride. Given that 51% reported that they could just as easily walk (see 

Table 6.19), 45% just as easily cycle, and 32% just as easily use the bus, there is a clear 

indication that opportunity presents itself within existing services. However, the 

inconvenience or hostility towards modal shift was evident given that 56% of car users 

disagreed about using buses, as shown in Table 6.19. Also, there is considerable modal 

shift potential to enhance the minority of respondents (15%) who did not use cars for 

short journeys. 
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Response 
Walking Bus Cycling 

Count % Count % Count % 

Agree strongly 119 7.89 57 3.78 119 7.89 

Agree 655 43.41 427 28.30 566 37.51 

Neither agree nor disagree 205 13.59 185 12.26 169 11.20 

Disagree 400 26.51 587 38.90 426 28.23 

Disagree strongly 130 8.61 253 16.77 229 15.18 

Total 1509 100 1509 100 1509 100 

Table 6.19: Many of the journeys of less than 2 miles that I now make by car, I could just 
as easily walk, take the bus, or cycle. 

 

Figure 6.11, see also data in Table 6.20, shows differences in the potential for modal shift 

from private transport to sustainable transport modes according to socio-demographic 

characteristics such as age, gender, number of people living in the household, and car 

ownerships per household. In terms of gender (Figure 6.11a), males are more willing to 

switch from cars to cycling for short journeys compared to females (26.51% compared 

to 18.89%). This may be due to greater safety concerns amongst females about cycling 

on the road (Schneider, 2013; Susilo and Cats, 2014).  

 

Another reason may be that purchases of a second car in a household occur with life 

cycle changes (birth of children or taking up employment) and females are more likely 

to be involved with the school run and local activities, including shopping, making travel 

by car more practical (Clark et al., 2016). However, evidence to back this up is outside 

the scope of the research presented in this thesis. Males and females were more or less 

equally likely to use buses for short journeys instead of walking and cycling and 

willingness to switch from the car to green modes (walking and cycling) for short 

journeys appears to increase depending on the number of people living in the household 

(Figure 6.13b). 
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Figure 6.11: The proportion of respondents who agreed or strongly agreed that many of 
the journeys of less than 2 miles by car, could just as easily be made by walk, take the 

bus or cycle according a) age b) household size c) gender and d) car ownerships 

 

Figure 6.11c suggests that willingness to switch from the car to non-carbon modes 

(walking and cycling) for short journeys seems to decrease with age. The older age 

group is statistically significantly more likely than all others to disagree that they could 

switch to non-carbon modes. This could be due to mobility difficulties, security and 

health issues. Interestingly, car users aged 45 and above showed an increasing trend in 

willingness to switch from cars to buses for short journeys of less than 2 miles and 

certainly the availability of free bus passes for senior citizens encourages bus travel for 

the older group (Andrews, 2012). 

 

Respondents who owned one to three cars per household seemed to show an increased 

willingness to switch to cycling, although these differences are not statistically 

significant. However, the willingness to switch to local buses seems to decrease with car 

ownerships, which could be linked to both the affordability and the social acceptability 

of these modes (Davison and Knowles, 2006). Indeed, those who owned more cars and 

estimated to have higher incomes are significantly more likely to disagree that they 
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could switch to the bus compared to the group of respondents who owned one car only. 

This is consistent with the increase in trend of households with young adults purchasing 

cars when they take up employment and still remain at home in order to save capital for 

house purchases (Clark et al., 2016). However, evidence that this is the case is beyond 

the scope of this research. 

 
In terms of car ownership, respondents in households that owned and used one (50%) 

or two (40%) cars (see Table 6.20) reported a similar potential to switch to walking for 

short journeys rather than cycling. The most unpopular choice for this group was 

shifting from driving cars to taking buses, particularly among those who owned four or 

more cars in a household. It can be seen in Table 6.20 that only 0.4% of this group would 

switch from car to bus. Finally, there is a general trend for the willingness to switch from 

car to walk and cycle with increase in household income, with the reverse being true for 

mode shift to bus. 
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6.8 Conclusions 

In this chapter an independent analysis of 14 attitudinal variables using EFA (and more 

specifically PAF) and PCA was carried out. A comparison of the results showed that PAF 

produces a better solution provided that correlation and covariance between factors is 

considered to represent how strongly two factors are related. 

 

The PAF established multicollinearity among the attitudinal variables and reduced the 

number that were statistically significant from 14 attitudinal variables grouping into 

three factors: namely, attitudes to transport and the environment, traffic awareness, and 

modal shift potential.  

 

These three factors emerged from the PAF on the premise that a single variable factor is 

not acceptable (Raubenheimer, 2004; Osborne and Castello, 2005). The characteristics 

of the respondents who strongly agreed or agreed to the sentiments expressed in the 

questions grouped in each of the factors obtained from PAF were studied in more detail. 

The analysis revealed a statistically significant difference at a 95% level of confidence, 

found based on the test of the attitudes to the environment, attitudes to congestion, 

and attitudes to exhaust fumes from year to year analysis. 

 

It was clear from the in-depth analysis of the characteristics of the factors that there 

were interrelationships between travel choices, awareness of the environment and 

demographics; therefore, in the next chapter, relationships between these perceptions 

and attitudes to climate change and environmental issues are explored in more detail. 

The derived factors from PAF are further investigated using multinomial logistic 

regression and the results are discussed in Chapter 7.
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Chapter 7 Analysing Car Users’ Perceptions 

7.1 Introduction 

Descriptive analysis and an exploratory factor analysis of the socio-demographic and 

attitudinal variables were presented respectively in Chapters 5 and 6 and used to 

explore the characteristics of respondents current travel behaviour and attitudes 

towards changing modes of transport, the environment, congestion and exhaust fumes. 

The results suggested causal links and interdependency between variables, but did not 

identify specific relationships within groups of the total population.  

 

The next step was to carry out more detailed investigation to identify patterns in the 

perceptions towards climate change and environmental issues within the population. 

The analytical approach adopted used multiple correspondence analysis (MCA), 

hierarchical cluster analysis (HCA) and multinomial logistic regression (MLR). The 

following sections begin by analysing categorical variables, followed by presenting the 

results of each of the analyses and, in the final section, the conclusions drawn from the 

analysis are summarised.  

 

 

 

 

 

 

Figure 7.1: Steps involved in Chapter 7 

 

 Clustering 
- Software packages 
- Data formatting 
 

F1: Attitudes to Transport and 
the Environment 

F2: Traffic Awareness 
F3: Mode Shift Potential 

 

Step 1: MCA 
- Dimension 
- Eigenvalue 
- Inertia 
- Cronbach alpha 
- Discrimination measures 

Step 2: HCA 
- Cluster classification 
- Kruskal-wallis 

C1: Middle–aged (35-44), female, FT employee 
C2: Middle–aged (35-44), male, FT employee 
C3: Mature adults (45-54), male, FT employee 
C4: Older-aged (65+), male, retired 
C5: Middle–aged (35-44), female, looking after the home 

Step 3: MLR 
Dependent variable: Clusters 
Independent variable: Factors 
Reference category: Cluster 4 
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7.2 Clustering Categorical Variables 

In travel behaviour research, when conducting surveys, categorical variables are most 

commonly used. When dealing with categorical variables, the first task is to obtain an 

overall view of the dataset, including how individuals are distributed among the 

categories. This is because the aim of the questionnaire is to obtain a typology of 

surveyed people based on the answers they have provided. This section considers the 

use of MCA to present the scatter plot of the car users in factor maps and the use of 

hierarchical clustering to segregate the car users into the same cohorts with similar 

characteristics. 

 

Specifically, this section focuses on car users with attention to socio-demographics and 

travel behaviour variables and categories: 

 

1. Study of individual car users: two car users are close to each other if they 

answered the questions the same way. This study is interested in one car user 

and also in populations: Are there groups of car users who are similar?  

 

2. Study of variables and categories: Firstly, the relationships between variables 

and the associations between categories are observed. Two categories are close 

to each other if they often occur together. Secondly, the study seeks to 

characterise groups of car users by categories. 

Software packages 

In order to perform the analysis of categorical variables, the Rstudio software, 

specifically the EnQuireR package (Gwenaelle et al., 2010) and FactoMineR package 

(Sebastien et al., 2008), was used along with the IBM SPSS Statistics 23 software which 

provides many tools to automate the process of analysing survey data. It includes both 

univariate (each categorical variable separately) and multivariate (more than one 

categorical variable) analyses comprising MCA and hierarchical cluster analysis.  
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Data formatting 

The data obtained from the BSA survey is in .sav format, which is a file extension type 

used to store data for SPSS analysis. Hence, the data was imported as a Microsoft Excel 

spreadsheet, given that this study used both SPSS and Rstudio to visualise the results of 

MCA. Therefore, the survey data needed to be in comma separated value (.csv) format 

due to the original datasets being represented in numeric codes.  

 

Two subgroups of data were used for the formation of the clusters of car users, one 

representing variables related to socio-demographic characteristics and the other one 

representing the car users’ travel behaviour. Details of each of the variables, as shown 

respectively in Tables 5.5 and 5.7 in Chapter 5, consist of car users’ age, gender, number 

of people in the household, car ownership, employment status and daily travel 

behaviour. 

7.2.1 Multiple correspondence analysis (MCA) 

The routine used to perform MCA in the EnQuireR package (Gwenaelle et al., 2010) is the 

one implemented in the FactoMineR package (Sebastien et al., 2008), which provides a 

representation of individuals and their answers to questions. This routine has been 

enhanced in a questionnaire context where missing values are frequently encountered 

and where large numbers of people may be surveyed. The characteristics of travel 

behaviour and socio-demographic variables selected from the BSA to perform this 

analysis is shown in Table 7.1. However, after an investigation using discrimination 

measures, three variables (Bus_usage, Train_usage, and Bike_usage) were removed from 

the MCA analysis because these variables were contributing substantially less and 

redundancy issues were encountered when one car user could also be the same person 

who used bus, train and bicycle. After removing them, the percentage of variance 

increased in both dimensions 1 and 2. 

 

 

 

 

 



148 

Travel behaviour Socio-demographics 

Frequency of travel using car as a driver (Car_driver) Age 

Frequency of travel using car as a passenger (Car_passenger) Gender 

Frequency of travel using local buses (Bus_usage) Household size 

Frequency of travel using trains (Train_usage) Car ownerships 

Frequency of travel using bicycles (Bike_usage) Employment status 

Table 7.1: Variables selected for MCA analysis 

Dimensions 

A two-dimensional MCA solution was considered in the analysis. The first and second 

dimensions explained 7.46% and 5.05% variance of the principal inertia respectively. 

Hence, a two-dimensional plane representing 12.51% of the whole dataset was used to 

interpret the results from MCA, as shown in Table 7.2. A similar small proportion of total 

dimensional plane was found in Das and Sun (2015) where they reported 5.42% and 

4.68% variance explained in dimensions 1 and 2 respectively. The percentages of inertia 

in MCA are low and tend to be close to one another and this latter fact might lead to an 

assumption that individual axes might be unstable (Ayele et al., 2014).  

 

Dimension Inertia % of Variance Cumulative % of Variance 

1 0.34 7.46 7.46 

2 0.23 5.05 12.51 

3 0.21 4.54 17.05 

4 0.20 4.11 21.16 

5 0.19 4.06 25.22 

6 0.17 3.77 28.99 

7 0.16 3.57 32.66 

8 0.16 3.53 36.09 

9 0.16 3.44 39.53 

10 0.15 3.37 42.90 

Table 7.2: Inertia values for the first 10 dimensions 
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The inertias and percentages of variance of the first 10 dimensions obtained from the 

MCA are given in Table 7.2. Based on the results, the first ten dimensions may account 

for similar amounts of variance and it is expected that 57.1% percent of the inertia will 

be accounted for by the remaining dimensions. Furthermore, 95% of the association was 

found to be well represented in 28 dimensions.  

Inertia 

The percentages of inertia associated with dimensions are often quite low in MCA. Since 

inertia can be interpreted as the information associated with a dimension, it is 

important to check whether or not the percentages found really do reveal a meaningful 

structure of the dataset. In this study, the p-values associated with the test of the 

significance of the dimensions using “p_inertia” function are zero (see Table 7.3). This 

confirms that even though the percentages of inertia of the dataset are quite low, they 

are statistically significantly different from what would be obtained as the result of 

chance.  

 

 Inertia % of variance p-value 

Dimension 1 0.34 7.46 0.00 

Dimension 2 0.23 5.05 0.00 

Total 0.57 12.51 0.00 

Table 7.3: P-values associated with the test of the significance of the dimensions 

Eigenvalue 

An eigenvalue is an indication of the magnitude of information explained by each 

dimension in representing the whole dataset. In this study, the first and second 

dimensions respectively have the following features: eigenvalues of 2.39 and 1.62, as 

shown in Table 7.4. 
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Dimension 
Cronbach's 

Alpha 

Variance accounted for 

Total (Eigenvalue) Inertia % of Variance 

1 0.68 2.39 0.34 34.09 

2 0.45 1.62 0.23 23.08 

Total  4.01 0.57  

Mean 0.58a 2.01 0.29 28.59 

a. Mean Cronbach's Alpha is based on the mean Eigenvalue. 

Table 7.4: Model summary 

Cronbach’s alpha 

The MCA output from SPSS presents Cronbach’s alpha of 0.68 for dimension 1 and 0.45 

for dimension 2, which is equivalent to a mean Cronbach’s alpha coefficient of 0.58, as 

shown in Table 7.4. A satisfactory level for Cronbach’s alpha lies between 0.60 – 0.70, 

and a value smaller than 0.60 is acceptable in exploratory research, as explained by 

Johnson and Wichern (2007). The possible reasons behind the small value here include 

a limited number of questions, weak relationships between them or heterogeneous 

constructs (Loewenthal, 2001; Johnson and Wichern, 2007). In addition, Cronbach alpha 

is influenced by the design of the questionnaire but as this study used a third party data 

source, the Cronbach alpha values cannot be controlled. 

Discrimination measures   

The use of MCA in SPSS produced a table of discrimination measures in conjunction with 

the joint plot of the variable points. The discrimination measure consists of the square 

loadings of the variables which are equivalent to the percentages of variance explained 

by each variable in the dimension (Franco, 2015). The purpose of the discrimination 

measures shown in Table 7.5 is to indicate, by a comparison of the magnitude of the 

values, which variables can be discriminated between the first and second dimensions. 

By way of illustration, the embolden values indicate those variables showing higher 

discrimination in a given dimension and these indicate the variables with higher 

correlations with that dimension.  
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Variables 
Dimension 

1 2 

Number living in household, including respondent 0.50 0.09 

Gender 0.04 0.50 

Age 0.72 0.11 

Car ownerships 0.23 0.13 

Frequency of travel by car as a driver 0.10 0.19 

Frequency of travel by car as a passenger 0.12 0.17 

Current economic position of respondent 0.69 0.42 

Active Total 2.39 1.62 

% of Variance 34.09 23.09 

Table 7.5: Discrimination measures 

 

The variable categories with larger values contribute the most to the definitions of 

dimensions. The bold figures indicate the relevance of that variable when explaining 

dimensions 1 and 2. For example, age (0.72), employment status (0.69), number living in 

household (0.50) and car ownership (0.23) are the most highly correlated with 

dimension 1. Likewise, the variables of gender (0.50), frequency of using car as a driver 

(0.19) and frequency of using car as a passenger (0.17) are the most highly correlated 

with dimension 2. Accordingly, dimension 1 represents socio-demographic variables 

and dimension 2 represents level of car use with gender. 

 

MCA minimizes the sum of squared distances between category points and respondents. 

For each variable, a discrimination measure, which can be regarded as a squared 

component loading, is computed for each dimension. This measure is also the variance 

of the quantified variable in that dimension. A maximum value of 1 is achieved if the 

object scores fall into mutually exclusive groups and all object scores within a category 

are identical.  

 

The joint plots shown in Figure 7.2 (a) and (b) present alternative ways to visualise the 

discrimination of the variables on each dimension and to identify the correlation 

between the categories (points) of the variables. The internal consistency of the 

categories is identified by the coordination of the variable points, which are plotted on 

the joint plot in such a way that similar variables associated with each dimension are 

displayed close together. 
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Figure 7.2: Results obtained from MCA: (a) MCA dimensions discrimination measures; (b) 
joint plot of the categories for each variable illustrating the two dimensions of ‘Socio-

demographic variables’ (Dimension 1 black oval) and ‘Male and female car dependency’ 
(Dimension 2 brown oval). 

 

(a) 

“Male and 
female car 

dependency” 

“Socio-
demographics 

variables” 

(b) 
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In addition, the length and steepness of lines in the joint plot signify the degree of 

discrimination measures of each variable for the two dimensions considered (Costa et al., 

2013), where variable lines lying above an angle of 45-degrees are more correlated with 

dimension 2 and vice versa. In terms of the length, a longer line signifies a greater 

distance between the categories of variables, which is equivalent to a higher percentage 

of variance explained by a particular dimension (Das and Sun, 2015). 

 

From the results and their graphical visualisation in Figure 7.2 (b), the first dimension 

was labelled as “Socio-demographics” and the second dimension as “Male and female car 

dependency”. Figure 2 (b) illustrates the categories as different coloured symbols 

depending on their variable type and it can be seen that the location of the two ovals 

approximately map on to the two dimensions. The proportion of variation explained by 

dimensions 1 and 2 respectively were 34% and 23%, yielding a total variance of 57%, as 

discussed above and presented in Table 7.5. Clearer relationships among positive and 

negative centroid coordinates for both dimensions are explained in Figure 7.3 and show 

the characteristics of the two cohorts that emerge from this analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.3: Results obtained from MCA: positive and negative centroid coordinates for 

dimensions 1 and 2 
 

DIMENSION 2 DIMENSION 1 

1. HH# 
2. Age 
3. Car# 
4. EmpStatus 

 

1. Gender 
2. Car_driver 
3. Car_passen 

Dimension 1 > 0 Dimension 1 < 0 Dimension 2 < 0 Dimension 2 > 0 

1. Three or more 
2. 18 – 54 years old 
3. Two or more 
4. Employee 

1. One and two 
2. 55+ years old 
3. One 
4. Retired 

1. Female 
2. 2-5 days /week 

~ never 
3. Everyday ~ 2-5 

days/ week 

1. Male 
2. Everyday 
3. Once/week ~ 

never 

Stronger Poorer 

Socio – demographics 

characteristics 

Stronger 

Poorer 

Active car users 
Gender factor 
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The coordinate for a categorical variable in a dimension is a squared correlation ratio 

between the dimension and the categorical variable. The R2 and p-values of each variable 

along with statistical significance in dimensions 1 and 2 are detailed in Table 7.6. The 

first and second dimensions are significantly linked to socio-demographic variables. The 

strongest link in dimension 1 is with age, employment status, household size, and so on, 

in order of reducing influence. Whilst dimension 2 has the strongest link with gender. 

The variables are ranked from the most to least related and only the ones with a 

correlation ratio significantly different to zero are presented. 

 

Variable R2 p-value   Variable R2 p-value 

MCA Dimension 1   MCA Dimension 2 

Age 

EmpStatus 

HH# 

Car# 

Car_passen 

Car_driver 

Gender  

0.72 

0.69 

0.50 

0.23 

0.12 

0.10 

0.04 

0.00  

0.00  

0.00 

0.00 

0.00 

0.00 

0.00 

  Gender 

EmpStatus 

Car_driver 

Car_passen 

Car# 

Age 

HH# 

0.50 

0.42 

0.19 

0.17 

0.12 

0.11 

0.09 

0.00  

0.00  

0.00 

0.00 

0.00 

0.00 

0.00 

Table 7.6: Significance of key variables 

 

Table 7.7 lists the categories, showing each category and its coordinate values on the 

dimensions, along with the statistical significance test value. The variables’ categories 

used to describe the axes (x = Dim1, y = Dim2) are also provided. Figure 7.4 plots the 

output from the MCA for each individual irrespective of category. The points are 

scattered about (0, 0) according to whether the individual is associated more negatively 

or positively with one dimension or the other. This presentation of data is useful if the 

number of individuals or categories are small; however, in this analysis, the number 

(n=1509) considered is large, therefore some work is needed to aid interpretation, for 

example by plotting the individuals, variables and categories separately. 

 

 

 

 

 



155 

Variable Estimate p-value Variable Estimate p-value 

MCA Dimension 1 MCA Dimension 2 
HH_four or more 
Employee (FT)                                      
35-44                                              
Car_two                                            
Car_driver_Every day or 
nearly every day           
45-54                                              
HH_three                                           
Car_passen_Once a week                             
25-34                                              
Employee (PT)                                      
Looking after home                                 
Car_three                                          
Female 
Car_four or more                                   
18-24                                              
Self-employee (FT)                                 
Car_passen_Every day or 
nearly every day           
Car_passen_Less often but 
at least once a month 
55-64                                             
Car_passen_Never 
nowadays                         
Male   
Car_passen_Less often than 
that                  
HH_two                                            
Car_driver_2-5 days a week                        
HH_one                                            
Car_one                                           
65+                                               
Retired   

0.51 
0.25   
0.33   
0.03   
0.25 

   
0.27   
0.32   
0.28 
0.29  
0.33   
0.57   
0.25  
0.11   
0.19   
0.23   
0.18 
0.17 

 
-0.06  

  
-0.19 
-0.15 

 
-0.11 
-0.31 

   
-0.28 
-0.18 
-0.55  
-0.47   
-0.93 
-0.88   

0.00 
0.00 
0.00 
0.00 
0.00 

 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.04 

 
0.01 

 
0.00 
0.00 

 
0.00 
0.00 

 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

Female                    
Employee (PT)       
Car_one   
Car_passen_2-5 days a week 
Looking after home      
Car_driver_Once a week         
25-34                        
Car_passen_Every day or  
nearly every day      
Employee (FT)           
Car_driver_Less often than  
that      
Other                        
HH_one                    
HH_three      
18-24                  
Car_driver_Less often but at  
least once a month   
Car_driver_Never nowadays 
In work (status not known)  
35-44                        
Car_four or more  
Car_passen_Less often than  
that       
55-64                       
Car_three                        
Car_passen_Never nowadays  
Car_driver_2-5 days a week 
Car_passen_Less often but  
at least once a month  
45-54                                 
Car_two                             
HH_two                             
Self-employee (FT)        
Car_driver_Every day or  
nearly every day     
Employee (FT)      
Male   

0.34 
0.19 
0.27 
0.23 
0.39   
0.11 
0.20 
0.45 

   
0.58 
0.47 

   
0.18   
0.12 
0.14 
0.31   
0.17 

 
0.23  
0.88 

-0.01   
-0.07   
-0.15  

 
-0.20 
-0.15   
-0.23  
-0.36 
-0.24 

 
-0.26 
-0.05  
-0.19  
-0.73   
-0.62 

  
-0.47 
0.34 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

 
0.00 
0.00 

 
0.00 
0.00 
0.00 
0.00 
0.00 

 
0.00 
0.02 
0.03 
0.03 
0.00 

 
0.00 
0.00 
0.00 
0.00 
0.00 

 
0.00 
0.00 
0.00 
0.00 
0.00 

 
0.00 
0.00 

Table 7.7: Categories found to be statistically significant in their contribution to 
Dimensions 1 and 2 

 

One of the challenges in MCA is graphical display of the results to aid interpretation. The 

“FactoMineR” package provides a graphical representation of both individuals and the 

categories constructed by the MCA function (refer Figure 7.4). With a large number of 

respondents answering numerous questions, interpretation and decision making is 

difficult.  
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Figure 7.4: Graphical representation of the individuals and the categories 

 

Interpretation can be made easier by selecting individuals with the highest coordinates 

and for those categories that are significantly linked to the components (dimensions) 

provided by MCA using “ENlisib” function which plots separately (a) individuals and (b) 

variables as shown in Figure 7.5 and categories, see Figure 7.6. The plot in Figure 7.5 (a) 

of individuals provides little clarity due to the overlay of 1509 points, whilst the 

categories in Figure 7.5 (b) is rather oversimplified, but clearly reveals a similar 

distribution of points as in Figure 7.2, illustrating the consistency between the SPSS and 

R analysis. However, it could be argued that the discrimination analysis of SPSS allows 

for a clearer indication of these variables influencing dimensions 1 and 2 by considering 

their position relative to the 450 line. 
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Figure 7.5: MCA “ENlisib” plot for all the study assigned to: (a) individuals and (b) 
variables 

 

 

 

(a) individuals 

(b) variables 
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Figure 7.6 on the other hand is a compromise and shows the distribution of all 

categories in four different quadrants. Quadrant 1 consists of respondents between 18 

to 44 years old who were persons in full-time education, mainly at home, part-time 

employee and unemployed. They were using a car as a passenger every day or nearly 

every day with 3 or more people living in the household. In quadrant 2, respondents 

were mainly female, unemployed, single car ownership and living alone. Quadrant 3 

consisted mainly of males who rarely used the car as a passenger, were older aged and 

in retirement. Finally, quadrant 4 located respondents who have three or more cars and 

active car drivers. They were persons who were in full-time employment or self-

employed and mature adults (45–54 years old). Overall, this analysis suggests that the 

more sustainable groups emerge from quadrant 1 and 3 compared to quadrant 2 and 4.  

 

 

Figure 7.6: MCA “ENlisib” plot for all study categories 

 

 

 

 

 

Quadrant 1 Quadrant 2 

Quadrant 3 Quadrant 4 
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The quality of representation of the individual can be improved by the 

function which is used to draw labels for the 20 categories that are those best 

represented in the 2 dimensions aiding interpretation. The function 

 is then added to highlight 10 respondents which contribute the most to the 

dimensions, as can be seen in Figure 7.7. From this figure, the characteristics of those 10 

respondents can be traced and identified.  

 

 

Figure 7.7: The highest contribution of individual and categories  

 

Whilst there are clusters of points in the two dimensions’ plot, the overlaying of 

individual datasets masks potential structure in the data. Another way to avoid the 

problem of the superposition of the individuals due to their number, is to use density 

plots as shown in Figure 7.8. The “ENdensity” function provides a visualisation of the 

shape of the scatter plot of the distribution of the coordinates of the individuals within 

each category. 
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Figure 7.8: Scatter plot for categories of each variable 
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Output plots with confidence ellipses around the categories of some variables can be 

plotted. The function used here is called “plotellipses”. This function gives one plot per 

variable along with a confidence ellipse around each category of the variable. Figure 7.9 

(a) and (b) present the confidence ellipse around the categories that contribute to 

dimensions 1 and 2 respectively. 

 

 

 

(a) categories that contribute to Dimension 1 



162 

 
 

 
 

Figure 7.9: Confidence ellipses around the categories: (a) categories that contribute to 
Dimension 1; (b) categories that contribute to Dimension 2 

 

 

(b) categories that contribute to Dimension 2 
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The confidence ellipses are quite small. In effect, given 1509 respondents, the sub-

populations are quite distinct with little overlap, showing that the sub-populations are 

statistically significantly separated. All the graphs above were plotted using the MCA 

analysis which was proven to enhance the overall view of the dataset, including how 

individuals are distributed among the categories, based on the responses given to each 

question. In the following step, these variables were grouped based on the same 

characteristics.  

7.2.2 Hierarchical clustering analysis (HCA) 

The next step of the analysis was to visualise the coordinates of the scatter plots using 

the ENMCA function. This function allows a cluster analysis to be performed following an 

MCA in R. Many algorithms are available to perform cluster analysis on numeric 

variables, but it is difficult to find algorithms which perform cluster analysis directly on 

categorical variables. The basic principle of the ENMCA function is that it performs MCA 

on categorical variables, followed by the classification of the corresponding variables to 

the coordinates of the individuals.  

 

The ENMCA function provides outputs directly related to the clusters, allowing 

improved understanding of each group of people surveyed. MCA was then used as a pre-

processing stage for clustering, where categorical variables were transformed into a set 

of continuous variables. This allows the coordinates for each respondent, as shown in 

the scatter plot (Figure 7.8), to be assigned to relevant clusters based on inertia (Ward’s 

criteria). This has been identified as common practice, especially for the analysis of 

questionnaires with categorical data (Husson et al., 2010).  

 

Ward's criterion to aggregate clusters was chosen to be consistent with MCA itself, 

whose principle is to maximise the inertia of the cloud of the individuals. Indeed, Ward's 

criterion aggregates clusters by minimising the inertia within the cluster thus obtained, 

and so this fits perfectly with the objective of MCA. 
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Figure 7.10: Cluster maps from MCA known as dendrogram 

 

Figure 7.11: Scatter plot with the cluster visualisation 
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Figure 7.10 shows the results of hierarchical cluster analysis carried out in this study 

plotted as a dendrogram which illustrates the cut-off point for the retention for the 

number of clusters emerging from this data. The various levels of cut-off point on the 

dendrogram sort the data into different numbers of clusters. The MCA then assigns the 

individuals to different clusters segregated using different colours, as shown in Figure 

7.11. The choice of the number of clusters is a compromise given the descriptions of the 

clusters are more significant and consist of fewer individuals within the clusters when 

the cut-off point on the dendrogram is at a lower point. However, a lower cut-off point 

will lead to a higher number of clusters which in this study is not effective because a 

high number of clusters fails to distinguish groups of individuals.  

 

In depth scrutiny of different cut-off points was used to reveal the most optimum cut-off 

point, which resulted in five clusters to represent the data. A further check was made on 

the choice of 5 clusters by using the K-means clustering technique. Indeed, the results 

produced statistically significantly similar results on the same data. Therefore, 

validation was achieved and the solution obtained by HCA considered stable. 

Cluster classifications 

The demographic profiles of the combined datasets of car users from 2011 to 2014 for 

each of the five clusters identified in both by cluster analysis and the MCA were 

tabulated in Table 7.8. Since all clusters were dominated by car users, their level of use 

was used to separate them as follows: Car Engagement (CE–active/ frequent/ inactive 

use of car) and Sustainable Transport Consumption (STC–never/ infrequent/ 

occasional/ often types of travellers using public transport/bicycle). 

 

The five clusters are described in Table 7.9. This analysis revealed different groups of 

car users with different socio-demographic characteristics, car engagement and 

sustainable transport consumption. 
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Variables Categories 
Clusters 

1 
28.56% 

2 
11.07% 

3 
31.81% 

4 
20.94% 

5 
7.62% 

Age 
  

18-24 2.78 2.99 1.67 5.70 5.22 
25-34 2.78 19.16 8.75 33.54 20.00 
35-44 2.78 34.73 18.54 38.29 30.43 
45-54 5.57 28.74 31.04 22.15 22.61 
55-64 24.36 11.38 30.63 0.32 8.70 
65+ 61.72 2.99 9.38 0.00 13.04 

Gender 
Male 51.28 65.87 55.63 36.71 37.39 
Female 48.72 34.13 44.38 63.29 62.61 

Household size 

One 33.64 16.77 23.13 10.13 13.91 
Two 52.90 36.53 42.08 20.89 25.22 
Three 8.58 18.56 15.63 24.05 22.61 
Four or more 4.87 28.14 19.17 44.94 38.26 

Car ownership 
  

One 65.43 41.32 51.04 32.28 50.43 
Two 28.54 49.70 38.13 54.11 38.26 
Three 4.41 7.78 7.92 9.81 9.57 
Four or more 1.62 1.20 2.92 3.80 1.74 

Employment  
status 

Employee (FT) 0.00 69.46 64.38 62.97 0.00 
Employee (PT) 0.00 13.17 19.58 25.63 0.00 
Self-employed (FT) 0.00 12.57 11.88 9.49 0.00 
Self-employed (PT) 0.00 3.59 4.17 1.90 0.00 
In work (status not known) 0.00 0.60 0.00 0.00 0.00 
Waiting to take up work 0.23 0.60 0.00 0.00 2.61 
Unemployed 3.94 0.00 0.00 0.00 31.30 
Looking after the home 3.71 0.00 0.00 0.00 47.83 
Retired 74.48 0.00 0.00 0.00 16.52 
In FT education 4.41 0.00 0.00 0.00 1.74 
Other 13.23 0.00 0.00 0.00 0.00 

Car_driver 

Every day or nearly every day 52.20 57.49 81.46 79.43 67.83 
2-5 days a week 37.59 31.14 16.04 15.82 28.70 
Once a week 6.26 5.99 1.88 3.48 3.48 
Less often but at least once/month 0.70 2.99 0.42 0.32 0.00 
Less often than that 1.86 1.20 0.21 0.95 0.00 
Never nowadays 1.39 1.20 0.00 0.00 0.00 

Car_passenger 

Every day or nearly every day 4.64 4.19 1.04 7.91 6.09 
2-5 days a week 25.99 26.95 9.58 31.01 19.13 
Once a week 20.42 43.11 13.75 47.15 32.17 
Less often but at least once/month 18.10 19.76 21.67 13.29 13.04 
Less often than that 16.94 4.79 24.58 0.63 12.17 
Never nowadays 13.92 1.20 29.38 0.00 17.39 

Bus_usage 

Every day or nearly every day 1.86 6.59 0.63 0.00 0.00 
2-5 days a week 7.19 6.59 2.71 0.00 0.00 
Once a week 9.98 10.18 2.71 2.53 4.35 
Less often but at least once/month 13.46 9.58 9.79 10.76 9.57 
Less often than that 18.56 17.37 19.58 20.25 24.35 
Never nowadays 48.96 49.70 64.58 66.46 61.74 

Train_usage 

Every day or nearly every day 0.00 6.59 0.00 0.32 0.00 
2-5 days a week 0.23 14.37 0.63 0.32 0.87 
Once a week 2.55 5.99 1.25 0.95 0.00 
Less often but at least once/month 14.62 20.36 16.04 18.35 11.30 
Less often than that 34.80 39.52 45.63 48.10 45.22 
Never nowadays 47.80 13.17 36.46 31.96 42.61 

Bike_usage 

Every day or nearly every day 0.00 9.58 1.04 0.00 5.22 
2-5 days a week 0.46 22.75 1.67 0.00 13.04 
Once a week 2.09 29.34 3.96 2.22 15.65 
Less often but at least once/month 3.48 11.38 8.75 14.56 4.35 
Less often than that 6.73 4.79 18.13 23.10 14.78 
Never nowadays 87.24 22.16 66.46 60.13 46.96 

Total 100.00 100.00 100.00 100.00 100.00 

Note: The red figures are related to the highest shares that linked in to the cluster classification 

 

Table 7.8: Cluster characteristics for all respondents aggregated over 2011 to 2014
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An in-depth study of the clusters’ characteristics suggested that individuals are 

considered to be fairly homogenous in terms of travel behaviour, mainly because the 

majority of the individuals either drive a car or are car passengers in the cohort selected 

for study. Only the second cluster showed a slightly higher usage of bicycle. However, 

individuals in the different clusters showed differences in socio-demographic 

characteristics such as age, gender and employment status. These are discussed here in 

more detail, taking each cluster in turn. 

 

Cluster 1: Older respondents (65+), who were males and in retirement. Respondents in 

this group used cars every day or nearly every day as drivers, and often as passengers. 

What stands out in this group is that they never use public transport (buses or trains) or 

bicycles for travel.  

 

Cluster 2: Middle-aged males (35-44 years old) in full-time employment who mostly use 

cars as the driver and occasionally as passengers. Respondents in this group live in 

households of two people, own 2 cars per household and show a similar pattern in 

sustainable transport consumption as the first cluster.  Interestingly, respondents in this 

cluster reported the frequent use of bicycles.   

 

Cluster 3: Mature males (45–64 years old) in full-time employment recorded as active 

car drivers, and never car passengers. This cluster includes respondents living in two-

person households with single car ownership and use. Their sustainable transport 

consumption levels are low, given that they never use buses or bicycles. 

 

Cluster 4: Young and middle-aged females (25-44 years old) in full-time employment 

with larger household sizes of four or more people, who own and use two cars regularly 

as drivers every day or nearly every day, whilst using cars as passengers once a week 

only.  This group consumes quite low levels of sustainable transport and typically 

reported that they never used buses and bicycles, and infrequently used trains for travel.  

 

Cluster 5: Middle aged (35-44 years old), female, and unemployed (looking after the 

home) with larger families (4 or more members living in the household), owning only 1 

car per household. The travel behaviour for this group is the same as respondents in 

Cluster 1.  



168 

An overview of the five clusters is presented in Table 7.9. Cluster 4 (and Cluster 2) differ 

only in their use of bicycle never (often), gender female (male), and number in 

household ≥4 (2) respectively. The final Cluster 5 is one of the two mainly female groups 

and is the same in all respects to Cluster 4, except in that they look after the home, 

owning one car, probably because these households have less disposable income. These 

clusters are used in the next section to construct a multinomial logistic regression 

analysis. Car users aged 18-24 years old being 3.25% of the population did not emerge 

within clusters descriptive as an independent cluster. 

 

Cluster CE STC Descriptions 

One  Active-driver 

 Often-passenger 

 Never use bus 

 Never use of train 

 Never use bicycle 

 Older–aged (65+) 

 Male  

 Retired 

 2 people in the HH 

 Owned 1 car per HH 

Two  Active-driver 

 Occasionally -

passenger 

 Never use bus 

 Infrequent use of train   

 Often use bicycle 

 Middle–aged (35-44) 

 Male  

 Full–time employee 

 2 people in the HH 

 Owned 2 cars per HH 

Three  Active-driver 

 Never-passenger 

 Never use bus 

 Infrequent use of train 

 Never use bicycle 

 

 Mature adults (45-54) 

                                 (55-64) 

 Male  

 Full–time employee 

 2 people in the HH 

 Owned 1 car per HH 

Four  Active-driver 

 Occasionally -

passenger 

 Never use bus 

 Infrequent use of train 

 Never use bicycle 

 

 Middle–aged (25-34) 

                               (35-44) 

 Female  

 Full–time employee 

 4 people in the HH 

 Owned 2 cars per HH 

Five  Active-driver 

 Occasionally-

passenger 

 Never use bus 

 Infrequent use of train 

 Never use bicycle 

 Middle–aged (35-44) 

 Female  

 Looking after the home 

 ≥4 people in the HH 

 Owned 1 car per HH 

*HH = Household  
  CE = Car engagement (active/ frequent/ inactive) 
  STC = Sustainable transport consumption (never/ infrequent/ occasional/ often) 

Table 7.9: Cluster classifications 
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Kruskal-Wallis 

In keeping with this empirical method, a recognised hypothesis testing was carried out 

using a Kruskal-Wallis non-parametric, which is an assessment to certify that cluster 

differences are statistically significant at 95% level of confidence. Table 7.10 shows the 

results of the hypothesis testing for each variable and demonstrates that the five 

clusters are statistically significantly different. 

 
 Test Statisticsa,b 

Variable  df Asymp. Sig. 

HH# 248.95 4 0.00 

Gender 52.77 4 0.00 

Age 646.30 4 0.00 

Car# 80.59 4 0.00 

EmpStatus 1163.74 4 0.00 

Car_driver 120.36 4 0.00 

Car_passenger 324.30 4 0.00 

Bus_usage 63.16 4 0.00 

Train_usage 112.24 4 0.00 

Bike_usage 342.20 4 0.00 
   df: degree of freedom 
   a. Kruskal Wallis Test 
   b. Grouping Variable: Clusters 

Table 7.10: Independent samples Kruskal-Wallis 

7.3 Multinomial Logistic Regression Analysis with Clustered Data 

The next step of the analysis was to use multinomial logistic regression considering the 

5 clusters obtained from MCA and 3 factors from PAF. This analysis explores whether 

any relationships exist between clusters and factors and if any patterns and trends 

occur over 4 successive years (2011 to 2014). Given that Cluster 1 was unique in being 

solely of older car users, for this analysis, therefore, Cluster 1 was chosen as a baseline 

or reference category to investigate how attitudes towards and perceptions of 

environmental issues of other car users differed from older car users. Clusters were 

used as dependent variables, whilst the factors, discussed in Chapter 6, were used as 

independent variables. Table 7.11 presents the relationships between the clusters and 
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factors relative to the older male retired car users. The following text serves to identify 

key messages that emerged from this analysis presented in Table 7.11. 

 

The attitudes to transport and environment (factor 1), consisting of car users’ 

perception towards reducing the amount of car use and intention towards buying a car 

with lower CO2 emission in the future, of clusters 2, 3, 4 and 5 were statistically 

significant at 90% - 99% confidence level in 2011 only, but in 2012 to 2014 were seen as 

less important. In 2013, car users were found to be aware of the sustainability 

associated with owning or using sustainable modes such as public transport, cycling and 

walking for a short journey of less than 2 miles for the environmental benefits. This 

statistically significant relationship was observed for car users in cluster 2 with factor 3 

(modal shift potential), confirming middle–aged males in full–time employment have 

become more aware of the need for mode shift and the car users in this cluster are a 

favourable target for any campaign to encourage mode switch to sustainable modes. 

 

There was a high level of statistical significance between clusters 2, 3 and 4 with factor 

2 (traffic awareness) every year with statistical significance at 95% – 99% across all 

four years. The reason that all three factors are statistically significant for car users in 

cluster 3 in 2011 is possibly due to their maturity, being in a higher income bracket, in 

full–time employment and having a strong affinity towards car use which is exhibited by 

their attitudes to transport and environment, traffic awareness, and also travel mode 

shift. Unlike cluster 3, all factors are not significant for respondents of cluster 5 in 2012. 

 

Within cluster 5 (Middle–aged (35-44), female, looking after the home), traffic 

congestion and exhaust fumes in towns, cities and motorway (factor 2) became more 

significant from 2013 to 2014. Although the p-value does not change greatly (0.00 to 

0.01), it may represent a noteworthy change in attitudes among this particular group. 

Initially there was a statistically significant positive relationship with attitudes to 

transport and the environment in 2011. However, due to active use of cars and rare use 

of sustainable modes, this factor seems to be less important for middle–aged females 

who were looking after the home in cluster 5. This may be due to more responsibility 

for children putting them in situation of needing to travel by car at peak times. However, 

this is a conjecture as the data is not available in the BSA to explore this further.
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Back in 2011, all clusters were significantly more positive towards attitudes to 

transport and environment (factor 1) compared to the older male retired group who 

were really reluctant to give up their cars.  They were more likely to be thinking 

positively about transport and the environment in 2011, and then year on year that 

slowly waned. However, cluster 3 who were mature male adults in a small household 

with only one car, were also more positive than the retired group in 2012. Nevertheless, 

it was no longer statistically significant in the following years.  

 

This brings two messages: either the older generation has become more aware of 

environment and the need for sustainable transport and environment, given that the 

majority will possess a free bus pass, or as the population has aged over years, these 

factors become less important to them. They own cars so they use them. 

 

In 2011, all clusters were found to be more aware of traffic congestion (factor 2) than 

the older group. This could be because the older group travel less mileages by car 

compared to the other groups. Respondents in cluster 2 and cluster 3 who were males, 2 

person households, likely childless couples owning one or two cars, were statistically 

significantly consistently aware of traffic congestion throughout the year 2011 – 2014.  

This probably reflected the amount of travel (probably day-to-day commuting) and 

dependency on the cars of these two groups. Respondents in cluster 2 could be aware of 

traffic congestion of cycle users, as they were reported as frequent cycle users. 

 

Interestingly, respondents in Cluster 2 relative to the older group in 2011 were not 

statistically significant with modal shift potential (factor 3), but by 2013 had begun to 

accept the need for action to switch travel from private to sustainable modes for a short 

journey of less than 2 miles, with evidence of occasional use of cycles. Meanwhile, 

respondents in Cluster 3 show a reverse trend, accepting the need for action to switch 

transport modes in 2011 only. Therefore, the car users in Cluster 2 are a favourable 

target for any campaign to encourage mode switch to sustainable modes. They were 

estimated to be the most prone to take action to help reduce the impact on 

environmental and climate change problems and were the most likely groups to be 

willing to change travel modes. 
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7.4 Conclusions 

This chapter has presented an extensive analysis of the categorical variables using MCA 

and MLR, which aims to investigate the groups within the population with greater levels 

of concern and awareness of climate change and environmental problems. Changes in 

attitudes to and perceptions of climate change over time were also sought in order to 

decide which group of travellers would be willing to take action to help reduce their 

impact on climate change. 

 

By using MLR, each cluster within the population with the higher levels of mode shift 

potential over time (significant value) was sought in order to decide which group of car 

users can be used to produce targeted travel behaviour campaign and acknowledge 

which cluster is more susceptible for sustainability. The results confirm that the 

population is not uniform in terms of their attitudes and motivations in relation to 

reducing CO2 emissions from personal travel, therefore policies and universal solutions 

to encourage more sustainable transport behaviours are deemed unlikely to be 

effective. The results also show that the cluster groups that exist are not defined or 

differentiated by demographic features alone. Motivations and barriers to change in 

travel behaviour and to use alternative modes differed widely between the groups. A 

degree of influence from environmental concerns was found for all groups. 

 

When the datasets from 2011 to 2014 were combined together to gain further insights 

into groups with similar views, 5 clusters emerged from the analysis. Differences were 

found in each year, yet similar views were seen spread throughout the five clusters 

which differed in demographic characteristics and views. The evidence recommends 

that acknowledgement of the concept of climate change among the car users were high. 

The results demonstrated that different reasons could influence the same behaviour; 

however, different behaviours could lead to the same attitudes. 

 

MCA additionally identified various significant correlations of socio-demographic 

attributes with travel behaviour. The hierarchical cluster analysis distinguished 5 

clusters to represent all the individuals in this study. From an interpretation of the 

clusters, Cluster 2 represent groups of respondents who have moderate consumption of 

travel and dependency on sustainable transport. Furthermore, MLR analysis identified 
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that the respondents in Clusters 2 and 3 were more sensitive to factor 3 “modal shift 

potential”. On the other hand, even though almost all of the respondents from 2011 to 

2014 strongly agreed that human actions are partly responsible for the impact of 

climate change, the results also revealed an opposite trend, because almost all groups 

paid less attention to environmental problems in the later years during this period. 

 

The respondents’ demographic characteristics such as age, gender, employment status, 

household size and car ownership play an important role and are revealed to have a 

significant effect on travel behaviour patterns and the willingness to switch to other 

transportation modes. This is similar to Fatmi and Habib (2017) where they found that 

bigger household size and driver’s licence also influence travel modes switch decisions.  

 

In the next chapter we will describe the use of log-linear and multivariate probit models, 

fitted using Bayesian inference. 

 

The model so-far developed using multinomial logistic regression does not consider the 

correlations between responses to several questions. Therefore, in the next chapter, we 

will use a multivariate probit model (MPM) which will allow us to include the ordinal 

responses to several questions, which can be correlated, in a single model. This will 

allow us to look at the whole collection of responses from an individual and relate this 

collection to explanatory variables. 

 

Furthermore, in the next chapter, we will adopt Bayesian inference. This will allow us to 

do such things as computing predictive probabilities of responses, given particular 

values for explanatory variables, in a way which allows for both the sampling variation 

between individuals and the remaining uncertainty in the values of model parameters. 

 

The practicality of this approach will be demonstrated and show that the methodology 

could be applied to different datasets in the future. For example, the methodology could 

be applied to research conducted using datasets from developing countries to compare 

with the results from developed countries. 
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Chapter 8 Bayesian Inference Approach 

8.1 Introduction 

In Chapter 7, an investigation of the differences in their perceptions to the environment 

among respondents with dissimilar characteristics and travel behaviours was presented 

using MLR. This chapter further investigates car users’ attitudes in an attempt to 

demonstrate their potential to switch modes to more sustainable transport and thus reduce 

their environmental impact. Achieving objective 4 involves the following tasks:  

 

1. To develop log-linear models for categorical data with and without age and gender 

effects using question 12 (q12) only. 

 

2. To construct a multivariate probit model (MPM) using a Bayesian inference 

approach for ordinal responses, allowing for covariates for each question. 

 

3. To include responses to all 14 attitudinal questions by introducing a multivariate 

normal vector latent variable . 

 

4. To demonstrate the potential use of the BSA information more effectively for 

decision making in transport planning activities. 

 

In section 8.2, log-linear models for categorical data constructed in the study are discussed 

by exploring q12 to investigate age and gender effects. Attention is then directed to the 

development of the MPM with Bayesian inference using attitudinal data in Section 8.3. Next, 

the results are discussed in detail; and finally, Section 8.4 presents the outcomes of the 

analysis and conclusions drawn from the study. 
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8.2 Log-Linear Model for Categorical Data 

This section develops a model for categorical data. One specific question, q12 namely, “For 

the sake of the environment, everyone should reduce how much they use their cars”, was 

selected to carry out the analysis as an example. 

8.2.1 Separate model for age and gender groups 

This analysis develops separate models for q12 ignoring the interaction between age and 

gender. The respondents were divided into twelve age-gender groups and given six age 

groups each for males and females. The groups were labelled 1 to 12 as follows: 

 

1       Male  18 – 24 years old 

2       Male  25 – 34 years old 

3      Male  35 – 44 years old 

4      Male  45 – 54 years old  

5      Male  55 – 64 years old 

6       Male  65+ years old 

7      Female  18 – 24 years old 

8       Female  25 – 34 years old 

9      Female  35 – 44 years old 

10      Female  45 – 54 years old 

11      Female  55 – 64 years old 

12      Female  65+ years old   

 

Responses to the question were categorised into one of the five labelled 1 to 5 as follows: 

 

1       Agree strongly 

2       Agree 

3       Neither agree nor disagree 

4       Disagree 

5       Disagree strongly 
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It was assumed that the respondents in each group were a random sample of people in that 

group. For the population of people in group i , the proportion who would give response k  is 

given in equation 8.1. 

 

                          

 

So, we write: 

  

 

 

and: 

 

 

 

where ln stands for natural logarithm, so , except for the case that  

which means that the response 3, “neither agree nor disagree”, was chosen as the baseline 

response. It follows that: 

 

 

 

are the odds in favour of response k  compared to response 3. Then  is the corresponding 

log odds. So, if , then the response “Agree strongly” would be twice as likely 

as the response “Neither agree nor disagree” for members of group . Similarly, 

if , then the response “Disagree strongly” would be half as likely as the 

response “Neither agree nor disagree” for members of group . Furthermore, 
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So, if , then response k is twice as likely as response j for members of group . 

Normal prior distributions were given to the parameters , except for , 

for , which are fixed as equal to zero. A hierarchical prior specification induces 

prior correlations between the parameters. For  and for , given the 

values of , the conditional prior distribution of  given  is: 

 

 

 

where  is conditionally independent of given unless  and . Then, 

for  

 

 

 

with  independent of  unless . Thus, the marginal prior distribution of  for 

 is: 

 

 

 

and  and  have a prior correlation of: 

 

 

 

For this purpose, JAGS (Plummer, 2003), which is a program used for the analysis of 

Bayesian graphical models using Gibbs sampling, via the rjags package in R (R Core Team, 

2017), has been used to compute the posterior distribution by Markov Chain Monte Carlo 

(MCMC) sampling (Martin et al., 2011; Plummer, 2016). The model specification, R 

commands, and content of the data are shown in Appendix A. Table 8.1 presents the sample 

distribution for q12 according to age and gender variables that are used in this model. 
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Gender Age 
Responses to q12 

Total 
1 2 3 4 5 

Male 

18-24 

25-34 

35-44 

45-54 

55-64 

65+ 

3 

2 

12 

8 

7 

11 

7 

42 

55 

80 

74 

107 

5 

24 

39 

31 

37 

48 

2 

15 

20 

33 

25 

33 

2 

6 

4 

7 

10 

8 

19 

89 

130 

159 

153 

207 

Female 

18-24 

25-34 

35-44 

45-54 

55-64 

65+ 

1 

11 

12 

8 

8 

8 

12 

68 

99 

86 

66 

70 

10 

31 

56 

45 

34 

22 

6 

13 

12 

17 

17 

22 

1 

3 

6 

2 

4 

2 

30 

126 

185 

158 

129 

124 
                                    Note:  
                                    1=agree strongly, 2=agree, 3=neither agree nor disagree, 4=disagree, 5=disagree strongly 

Table 8.1: Gender and age groups for q12.  
 

 

Two parallel MCMC chains were used to fit the log-linear model. Convergence was checked 

with trace plots and found to be satisfactory, as can be seen in Appendix A. A burn-in1 for 

the MCMC sampler of 1000 iterations of both chains was used and samples of the values of 

were collected from 2000 further iterations in two chains. Summaries of the posterior 

distributions of the various  parameters were obtained, based on 4000 samples, from the 

posterior distribution, as shown in Table 8.2. The results are presented in Table 8.2, where 

 which is fixed at zero for all i , has been removed.  

 

 

 

 

 

 

 

 

                                                        
1 A colloquial term that describes the practice of throwing away some iterations at the beginning of an MCMC 
run. 
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Parameter Mean SD Parameter Mean SD 
Group 1 (Male, 18-24) Group 2 (Male, 24-34) 

 -1.28 0.32  -1.68 0.29 
 0.51 0.28  0.60 0.19 
 -0.66 0.31  -0.51 0.23 
 -1.84 0.34  -1.76 0.30 
Group 3 (Male, 35-44) Group 4 (Male, 45-54) 

 -1.28 0.24  -1.48 0.26 
 0.44 0.17  0.78 0.16 
 -0.61 0.21  -0.22 0.19 
 -2.04 0.29  -1.85 0.28 

Group 5 (Male, 55-64) Group 6 (Male, 65+) 
 -1.56 0.26  -1.48 0.24 
 0.65 0.16  0.75 0.14 
 -0.49 0.20  -0.46 0.18 
 -1.68 0.27  -1.91 0.27 

Group 7 (Female, 18-24) Group 8 (Female, 25-34) 
 -1.51 0.32  -1.24 0.25 
 0.51 0.25  0.77 0.17 
 -0.50 0.29  -0.76 0.23 
 -1.97 0.34  -2.06 0.30 

Group 9 (Female, 35-44) Group 10 (Female, 45-54) 
 -1.44 0.24  -1.53 0.25 
 0.68 0.14  0.75 0.16 
 -1.09 0.22  -0.77 0.21 
 -2.03 0.27  -2.21 0.29 

Group 11 (Female, 55-64) Group 12 (Female, 65+) 
 -1.44 0.26  -1.34 0.27 
 0.69 0.17  0.93 0.18 
 -0.64 0.22  -0.32 0.21 
 -2.01 0.29  -2.10 0.31 

Table 8.2: Posterior summaries: means and standard deviations 

 

The table above presents the posterior means and standard deviations of 12 groups for q12 

– “for the sake of the environment, everyone should reduce how much they use their cars”. 

Next, plots of the posterior probability functions were produced by extracting the sampled 

values first and then using the standard R plot functions to produce the plots. For 

illustration, group 3, male, 35-44 years old, “agree strongly” was chosen and a plot for  

was produced. The resulting graph is shown in Figure 8.1. 
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Figure 8.1: Probability density functions for , the log odds for “agree strongly" in q12 
males belonging to age group 35-44. 

 

 

Looking at Figure 8.1, it is apparent that the value of  is almost certainly negative. This 

finding suggests that members of this group were less likely to make the response “agree 

strongly” than to respond as “neither agree nor disagree” when they were asked to reduce 

how much they used their cars for the sake of the environment.  

 

More generally, two responses can be compared by looking at the difference between the 

log odds. For this case, the same group was chosen to compare their level of perceptions for 

the same question, q12, for the responses  (“agree”) with (“disagree”).  

Red: prior distribution 
Black: posterior distribution 



 

 

182 

 

Figure 8.2: Probability density functions for , the log odds for “agree" compared to 
“disagree" for males aged 35-44. 

 

The prior distribution for  is normally distributed assumed to have a mean 0 and 

variance 12.5 since they are independent in the prior. The standard deviation 

is thus . The resulting graph is shown in  

Figure 8.2. It can be clearly seen that a person in this group (male, 35-44 years old) was 

more likely to respond “agree” than “disagree” when they were asked to reduce the amount 

of car use for the sake of the environment. 

8.2.2 Model with interaction between age and gender effects 

In this section, the effect of age and gender on responses to q12 “For the sake of the 

environment, everyone should reduce how much they use their cars” was investigated. The 

respondents are categorised as either “males” or “females” associated with six age-groups. 

Interest lies in the effects of the respondents’ age and gender on the outcome for the 

Red: prior distribution 
Black: posterior distribution 
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responses. The effects of age and gender are introduced using six orthogonal contrasts, 

labelled as gender, , as shown in Table 8.3. 

 

Gender Age 
Responses to q12 

Total Gender      
1 2 3 4 5 

Male 

18-24 

25-34 

35-44 

45-54 

55-64 

65+ 

3 

2 

12 

8 

7 

11 

7 

42 

55 

80 

74 

107 

5 

24 

39 

31 

37 

48 

2 

15 

20 

33 

25 

33 

2 

6 

4 

7 

10 

8 

19 

89 

130 

159 

153 

207 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-1 

-1 

-1 

1 

-1 

0 

0 

0 

0 

-1 

-1 

2 

0 

0 

0 

0 

0 

0 

1 

-1 

0 

0 

0 

0 

-1 

-1 

2 

Female 

18-24 

25-34 

35-44 

45-54 

55-64 

65+ 

1 

11 

12 

8 

8 

8 

12 

68 

99 

86 

66 

70 

10 

31 

56 

45 

34 

22 

6 

13 

12 

17 

17 

22 

1 

3 

6 

2 

4 

2 

30 

126 

185 

158 

129 

124 

-1 

-1 

-1 

-1 

-1 

-1 

1 

1 

1 

-1 

-1 

-1 

1 

-1 

0 

0 

0 

0 

-1 

-1 

2 

0 

0 

0 

0 

0 

0 

1 

-1 

0 

0 

0 

0 

-1 

-1 

2 

Note:  
Responses to q12; 1= agree strongly, 2= agree, 3= neither agree nor disagree, 4= disagree, 5= disagree 
strongly 

Table 8.3: Cross tabulations of responses to q12 according to age and gender, and proposed 
orthogonal contrasts.  

 
In this analysis,  (neither agree nor disagree) was used as a baseline. The other four 

categories where ,  can be modelled in terms of an age effect , a gender 

effect  and an interaction effect between age and gender  as follows: 

 

Group 1:  

Group 2:  

Group 3:  

Group 4:  

Group 5:  

Group 6:  

Group 7:  

Group 8:  

Group 9:  
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Group 10:  

Group 11:  

Group 12:  

 

The covariate  takes the values (1, 1, 1, -1, -1, and -1) in the first six male groups, similarly 

for female groups. This list of contrasts can be extended to all 12 groups by taking 

 which in turn gives . In this way, 

the parameters are made relative to the baseline response category  (neither agree 

nor disagree). 

 

Apart from the baseline values , the coefficients of  in are orthogonal contrasts. 

Briefly, using such contrasts gives some useful structure upon which to develop the prior 

distribution for the The contrasts have a useful property if a particular type of prior is 

taken for the non-baseline : the same prior is used for each  as well as the 

same prior for each  but possibly different from that for the . Similarly, 

for   and for , and these blocks are independent of one another.  

 

More time could be spent looking at how to construct the various elements of the prior 

distribution in detail. However, for clarity, a fairly simple example is used here. There was 

no evidence that inferences were sensitive to changes in details of the prior. The prior 

distribution is taken to have independent components, for  as follows: 

 

,      

,  

,  

,  

,  

,  

,   

,  
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,  

,  

,  

,  

 

Next, plots of the posterior probability functions were produced by extracting the sampled 

values first and then using the standard R plot functions to produce the plots. In order to 

explain these, an example is presented and describes plots in detail. Group 3, male, 35-44 

years old, “agree strongly” was chosen and a plot for  was produced. The posterior 

means and standard deviations are presented Table 8.4 where  which is fixed at zero for 

all i , has been removed, and the resulting graphs are shown in Figure 8.3 and Figure 8.4. 
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Parameter Mean SD Parameter Mean SD 
Group 1 (Male, 18-24) Group 2 (Male, 25-34) 

 -0.76 0.55  -1.95 0.49 
 -0.36 0.51  0.57 0.25 
 -0.66 0.59  -0.51 0.32 
 -1.31 0.68  -1.48 0.43 
Group 3 (Male, 35-44) Group 4 (Male, 45-54) 

 -1.23 0.33  -1.40 0.36 
 0.35 0.21  0.93 0.20 
 -0.69 0.27  0.01 0.24 
 -2.24 0.47  -1.54 0.38 

Group 5 (Male, 55-64) Group 6 (Male, 65+) 
 -1.64 0.37  -1.49 0.33 
 0.70 0.20  0.81 0.17 
 -0.38 0.25  -0.37 0.23 
 -1.39 0.34  -1.83 0.38 

Group 7 (Female, 18-24) Group 8 (Female, 25-34) 
 -1.68 0.62  -1.18 0.35 
 0.27 0.40  0.78 0.21 
 -0.65 0.48  -0.84 0.311 
 -2.30 0.68  -2.26 0.49 

Group 9 (Female, 35-44) Group 10 (Female, 45-54) 
 -1.56 0.31  -1.74 0.36 
 0.57 0.17  0.66 0.18 
 -1.51 0.31  -0.95 0.27 
 -2.32 0.42  -2.81 0.50 

Group 11 (Female, 55-64) Group 12 (Female, 65+) 
 -1.50 0.37  -1.07 0.40 
 0.66 0.21  1.15 0.24 
 -0.72 0.29  -0.03 0.29 
 -2.24 0.47  -2.29 0.60 

                             Note: SD = standard deviation. 

Table 8.4: Posterior means and standard deviations.  

 

 

Figure 8.3 has two distributions, the flat red curve is the prior distribution and the sharper 

normal curve is the posterior. With reference to Table 8.4, it is apparent that the value of 

 of the posterior distribution is negative -0.90 and SD=0.24. This finding suggests that 

members of this group were less likely to respond “agree strongly” than to respond “neither 

agree nor disagree”, when they were asked to reduce how much they used their cars for the 

sake of the environment.  
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Figure 8.3: Probability density functions for , the log odds for “agree strongly" for males 
aged 35-44. 

 

 

Subsequently, the same group was chosen to compare their level of perceptions for the 

same question, q12 instead of relative to “neither agree nor disagree”, but instead  

(“agree”) is compared to (“disagree”). The resulting graph is shown in Figure 8.4. It can 

be clearly seen that a person in this group (male, 35-44 years old) was more likely to 

respond “agree” than “disagree”, when they were asked to reduce the amount of car use for 

the sake of the environment.  

Red: prior distribution 
Black: posterior distribution 
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Figure 8.4: Probability density functions for , the log odds for “agree" compared to 

“disagree" for males aged 35-44. 
 

 

It is worth noting that most of the posterior means were negatives in Table 8.2 except 

for . This seems to suggest that “agree” tends to be a popular choice for q12, whereas  

is sometimes positive, but did not always emerge when the interaction of age and gender 

effect was considered in the models, as shown in Table 8.4.  

 

In log linear modelling, the questions have to be dealt with one question at a time. 

Therefore, in the next section, MPM model is developed to consider all responses to all 

attitudinal variables in a single model. 

Red: prior distribution 
Black: posterior distribution 
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8.3 Developing a Multivariate Probit Model with Bayesian Inference for 

Categorical Data 

A multivariate probit model was proposed for use in this study because a probit model is a 

model for ordinal responses which will allow for consideration of the responses to several 

questions in a single model and the responses can be correlated (Congdon, 2005). The effect 

of responses to explanatory variables such as gender and age can also be related in this 

model. 

8.3.1 Methodology 

This model allows for the investigation of relationships between the responses of a car user 

to the different questions, where each response is a category on an ordinal scale. The basic 

idea is that, associated with each individual respondent i, there is a vector random variable 

 with a multivariate normal distribution, as shown in equation 8.10. 

 

 

 

Here,  is normally distributed with a mean vector and covariance matrix V. So:  

 

 

 

where  is a univariate normal random variable associated with individual i and question 

q, for  Let the number of categories be  then the number of thresholds or cut-

off points will be   ( .  
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Let the category selected by respondent i in question q be . Then: 

 

 

 

 

 

                                                                                                          (8.12) 

 

The cut-off points are parameters of the model. However, since the mean and variance of 

 are also model parameters, without loss of generality, two cut-off points were fixed, to 

avoid over-parameterising the model.  

 

Given that V is an inverse Wishart2 prior distribution, by choosing the multivariate normal 

distribution, modelling correlations is made relatively easy and there does not seem to be 

an obvious disadvantage to this choice compared to other distributions. In fact, the effect on 

the model of choosing one kind of distribution rather than another is probably slight. 

 

Thus, for  

 

 

 

where: 

 the standard normal cumulative distribution function (cdf),  

  

 the marginal variance of   

 

 

                                                        
2 A probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics, it is used 
as the conjugate prior for the covariance matrix of a multivariate normal distribution. 
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More generally, the element in row  and column  of   is  and  The mean  

is related to the explanatory variables of the linear model, as shown in equation 8.14. 

 

 

 

where  is the value of covariate  for subject . Thus  is related to the 

covariate values by the sigmoid function defined in equation 8.13. Other sigmoid link 

functions, such as a logistic function or a complementary log-log function, could be used, 

but the standard normal cdf is convenient because the multivariate normal distribution 

makes modelling correlations relatively easy and the differences between the shapes of 

these functions are not great. 

8.3.2 Application of the model using the BSA dataset 

Question q has Cq ordered categories for its response which have to be consistent across all 

data. The attitudinal variables, depending on the questions can have 3, 4 or 5 categories. In 

order to overcome this inconsistency, categories were combined as follows: strongly agree 

and agree, strongly disagree and disagree, a very serious problem and a serious problem. 

Therefore, the three categories in this study considered were labelled as 0, 1 

and 2. By doing so, there were no unknown threshold parameters. 

 

Five socio-demographic variables and 14 attitudinal variables from the BSA dataset were 

used to illustrate the fitting of a multivariate probit model to investigate car users’ attitudes, 

as presented in Table 8.5 and Table 8.6 respectively. The proportion of age, employment 

status, household size and car ownership according to gender, as well as 14 attitudinal 

questions selected for this model with the details of response options, can be seen in 

Chapter 5 (see Table 5.5).  
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No. Variable 

1 Age 

2 Gender 

3 Number of people living in the household, including respondent 

4 Number of cars regularly owned and used in the household 

5 Employment status 

Table 8.5: Socio-demographic variables 
 

No. Variable 

q1 How serious a problem for you is congestion on motorways? 

q2 How serious a problem for you is traffic congestion in towns and cities? 

q3 How serious a problem for you are exhaust fumes from traffic in towns and 

cities? 

q4 Next time I buy a car, I would be willing to buy a car with lower CO2 emissions. 

q5 I am willing to reduce the amount I travel by car (To help reduce the impact of 

CC). 

q6 View on climate change and causes. 

q7 Many of the short journeys that I now make by car I could just as easily walk. 

q8 Many of the short journeys that I now make by car I could just as easily go by 

bus. 

q9 Many of the short journeys that I now make by car I could just as easily cycle. 

q10 For the sake of the environment, car users should pay higher taxes. 

q11 People should be allowed to use their cars as much as they like, even it is cause 

damage to the environment. 

q12 For the sake of the environment, everyone should reduce how much they use 

cars. 

q13 There is no point in reducing my car use to help the environment unless others 

do the same. 

q14 People who drive cars that are better for the environment should pay less to use 

roads. 

Table 8.6: Attitudinal variables 

 

In the next section, the model obtained from the data analysis is described. 
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8.3.3 Model for latent variables 

The next step was to construct a model for the latent variables. A model for C probabilities 

has been built with C responses. However, these must sum to 1, so there are really only 

 free parameters. The normal distribution  requires two parameters, 

 and  and  cut-off points. Therefore, to avoid over-parameterising, without loss 

of generality, two cut-off points were fixed (-1 and 1).  

 

In addition, unlike the analysis in Section 8.2, the latent normal random variables 

 were allowed to be dependent on each other and their correlations were treated 

as unknown. It is more convenient to treat a covariance matrix as an unknown parameter 

rather than a correlation matrix, since we can give the covariance matrix an inverse Wishart 

prior distribution. Therefore, it is preferable to treat  as unknown. Then  is allowed 

to be dependent on covariates so that depends on the five covariates for each 

respondent i in a linear model.  These are: age, gender, household size, employment status 

and car ownership, as shown in the equation 8.15. 

 

 

                                                                                                                          (8.15) 

 

 

where  is the age in years of respondent i minus 50 (the approximate average age of 

the respondents). The advantages of centring by subtracting 50 are that it will tend to 

reduce the correlations in the posterior distribution and therefore improve the mixing of 

the Markov Chain Monte Carlo (MCMC) sampler. Also, it means that the intercept parameter 

 corresponds to a realistic case, a person aged 50. Without this "centring", the intercept 

would correspond to a person aged 0 and it is difficult to interpret such a parameter or to 

have sensible prior beliefs about how a new-born could answer the questions.  
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The coding system that was used is as follows: 

  -1 if the respondent is a male and 1 if the respondent is a female, 

  1 for a respondent in work and -1 otherwise, 

1 for employees, -1 for self-employees and 0 otherwise, 

  1 if the respondent is in full-time employment, -1 if the respondent is a part-

time employee and 0 otherwise, 

 1 if household category for respondent i is j and 0 otherwise, 

 1 if car category for respondent i is j and 0 otherwise, 

 1 if no employment category for respondent i is j and 0 otherwise. 

 

The category labels for household size h, car ownership c, and no employment status u 

(those who are not in work) of respondent i are defined in Table 8.7.  

 

Characteristics Interval 
Category 

label 

Household size, h 

One 1 

Two 2 

Three 3 

Four or more 4 

Car ownership, c 

One 1 

Two 2 

Three 3 

Four or more 4 

No employment, u 

Unemployed / waiting to take up work 1 

Looking after the home / retired 2 

In FT education / Other 3 

In work 4 

Table 8.7: Category label of latent variables 

 

In order not to over-parameterize the model, the following constraint was set in equation 

8.16. 
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Prior distributions were chosen as follows: 

 

 

 

 

 

                                                                                                         

(8.17) 

8.3.4 Model fitting 

For the computation of posterior summaries, the Markov Chain Monte Carlo (MCMC) 

method was used to draw samples from the posterior distribution of the model parameters. 

Specifically, the software rjags was used, which is an interface in R (R core team, 2015) to 

JAGS (Plummer, 2016). Data augmentation (Tanner and Wong, 1987), was used with the 

latent variables  treated as auxiliary data. 

 

The parameters for this model consist of  (age),  (gender),  (household 

size),  (car ownership), and 4 categories of employment status (  ,  , 

, and ). The precision matrix of  is  and V is the covariance matrix 

of  . The values -1 and 1 were chosen as the fixed cut-off points, without loss of generality. 

Summaries of the posterior distribution were found using rjags (Plummer, 2003). Two 

parallel MCMC chains were used. A burn-in3 of 2000 iterations was used and samples were 

collected from 10,000 further iterations, and so summaries are based on 20,000 samples 

from two parallel chains.  

 

Convergence was checked with trace plots and shown to be satisfactory, as illustrated in 

Figure 8.5 which shows examples of trace plots and density curves. The other trace plots 

                                                        
3 A colloquial term that describes the practice of throwing away some iterations at the beginning of an MCMC 
run. 
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and density curves for all of the parameters and rjags model specification can be found in 

Appendix B.  

 

 

Figure 8.5: Trace plots and posterior density curves for the parameter of actual age in two 
parallel chains 

 

 

The parameter trace plots were created to make sure that the sampler was mixing and 

moving well around the posterior distribution, and that the samples had “converged” so 

that they may be taken as a representative sample from the posterior distribution. It can be 

seen that the samples obtained from the two parallel chains have essentially the same 

properties and that mixing is good with little autocorrelation in the samples. Summaries of 

the means and standard deviations of the posterior for the coefficients of the socio-

demographic variables are shown in Table 8.8. This table has 14 sections, one for each 

question such that q=1,…, 14 respectively corresponding to questions 1 to 14. 
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P Mean SD P Mean SD P Mean SD P Mean SD 
Question 1 Question 2 

 0.22 0.11  0.00 0.00  0.03 0.10  0.00 0.00 

 -0.15 0.11  0.17 0.05  -0.06 0.10  0.13 0.05 
 -0.61 0.16  -0.14 0.09  -0.33 0.15  -0.06 0.08 

 0.54 0.23  -0.10 0.08  0.35 0.21  0.00 0.07 

 -0.00 0.11  -0.06 0.18  0.00 0.10  -0.06 0.07 
 -0.00 0.08  -0.06 0.18  -0.03 0.07  -0.16 0.16 

 0.02  0.11   0.04 0.14  0.00 0.09  0.12 0.12 

 -0.02  0.10  0.02 0.17  0.02 0.09  0.04 0.15 

Question 3 Question 4 
 -0.22 0.12  0.00 0.00  -0.60 0.25  -0.04 0.01 

 0.00 0.11  -0.13 0.06  -0.43 0.25  -0.58 0.13 
 -0.29 0.17  -0.06 0.09  0.30 0.36  -0.08 0.22 

 0.50 0.24  -0.07 0.08  0.73 0.47  0.37 0.22 

 0.19 0.11  -0.13 0.08  0.41 0.25  -0.23 0.18 
 -0.04 0.08  0.12 0.19  0.34 0.20  0.78 0.39 

 0.09 0.11  -0.18 0.14  -0.52 0.26  0.10 0.33 

 -0.24 0.10  0.07 0.17  -0.23 0.24  -0.88 0.39 

Question 5 Question 6 
 -0.52 0.27  0.01 0.01  -0.01 0.19  -0.01 0.01 

 0.03 0.26  -0.24 0.14  0.17 0.19  0.35 0.09 
 0.34 0.37  -0.02 0.23  -0.15 0.26  0.02 0.15 

 0.15 0.53  0.40 0.21  -0.01 0.39  0.12 0.14 

 0.57 0.25  0.15 0.19  -0.08 0.19  0.15 0.14 
 -0.16 0.21  0.06 0.41  0.07 0.14  -0.19 0.31 

 -0.21 0.28  -0.12 0.33  0.01 0.18  -0.19 0.23 

 -0.21 0.25  0.06 0.40  0.01 0.18  0.37 0.28 

Question 7 Question 8 
 -0.33 0.31  0.05 0.01  -1.14 0.33  0.00 0.01 

 -0.28 0.31  0.21 0.17  -0.13 0.31  0.01 0.18 
 0.33  0.42  -0.34 0.28  0.97 0.45  -0.16 0.29 

 0.28 0.57  -0.23 0.24  0.29 0.58  0.09 0.25 

 0.51 0.32  -0.54 0.23  0.77 0.32  0.37 0.24 
 -0.37  0.26  -0.45 0.49  -0.31 0.25  0.53 0.51 

 -0.37  0.26  -0.42 0.39  -0.66 0.32  -0.49 0.42 

 -0.06  0.30  0.87 0.46  0.20 0.32  -0.04 0.49 

Question 9 Question 10 
 0.73 0.34  0.10 0.02  -0.07 0.23  0.01 0.01 

 0.33  0.34  1.24 0.19  -0.13 0.21  -0.05 0.10 
 -0.53  0.51  -0.54 0.29  -0.28 0.28  -0.10 0.17 

 -0.53  0.64  -0.12 0.27  0.48 0.45  0.07 0.15 

 -0.18 0.35  -0.79 0.25  0.50 0.21  -0.01 0.15 
 -0.68  0.28  -1.09 0.55  0.00 0.15  0.95 0.37 

 0.33  0.36  -0.24 0.43  -0.59 0.20  -0.31 0.27 

 0.53  0.34  1.33 0.53  0.09 0.19  -0.64 0.33 

Continued on the next page 
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Table 8.8 (continued) 
P Mean SD P Mean SD P Mean SD P Mean SD 

Question 11 Question 12 
 0.05 0.13  0.02 0.01  -0.10 0.17  -0.01 0.01 

 -0.07 0.12  0.31 0.06  0.05 0.16  -0.22 0.09 
 0.21 0.18  0.03 0.10  0.19 0.24  0.37 0.14 

 -0.20 0.25  0.08 0.09  -0.14 0.32  0.24 0.13 

 -0.25  0.12  0.10 0.09  0.32 0.16  -0.27 0.12 
 -0.07 0.09  0.09 0.21  0.10 0.13  -0.23 0.27 

 0.19 0.12  -0.15 0.16  -0.24 0.17  0.04 0.21 

 0.13 0.11  0.06 0.19  -0.17 0.15  0.18 0.25 

Question 13 Question 14 
 0.24 0.21  -0.02 0.01  -0.20 0.22  -0.02 0.01 

 -0.14 0.21  0.19 0.11  -0.46 0.21  -0.15 0.12 
 -0.07 0.31  -0.43 0.18  0.00 0.29  0.25 0.19 

 -0.02  0.42  0.13 0.15  0.66 0.43  0.14 0.17 

 0.13 0.22  0.04 0.15  0.23 0.22  -0.54 0.16 
 0.02  0.16  0.31 0.35  -0.09 0.17  0.54 0.33 

 -0.50 0.22  -0.63 0.26  -0.56 0.24  -0.57 0.26 

 0.35 0.19  0.32 0.32  0.42 0.20  0.03 0.31 

* P: Parameter, SD: Standard deviation 

Table 8.8: Posterior means and standard deviations for coefficients of socio-demographic 
variables. Each prior mean was 0 and each prior standard deviation was 1.
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8.3.5 Results 

This section describes the development of the multivariate probit model using all of the 

attitudinal responses. Using the model, posterior distributions for the effects of the 

covariates on the responses can be computed. The posterior means and standard 

deviations are detailed in Table 8.8 for questions, q=1,…, 14. It is interesting to note that 

some of the responses show age and gender effects, such as for questions q = 3, 4, 7, 9, 

11, 13 and 14. 

 

The posterior distributions for  and  for  are shown in 

Figure 8.6. Figure 8.6 (a) shows that almost all of the posterior probability is in the 

region where , strongly indicating an age effect on responses to q7. This 

indicates that older adults were more likely to disagree with switching from using a car 

to walking for short journeys. This group also disagreed with changing their travel 

behaviour from cars to public transport, such as buses as well as to cycling. The reasons 

for such attitudes and behaviour have been discussed elsewhere (Fuller et al., 2013; 

Schepers and Heinen, 2013) where safety and health issues often feature.  

 

For q9, “Many of the short journeys less than 2 miles that I now make by car, I could just 

as easily cycle”, Figure 8.6 (e) and (f) show that both   . 

These values indicate the effect of age and gender on responses to q9 and suggests that 

older adults (above 50 years) who are males are more likely to disagree with switching 

from using a car to cycling for a short journey. 

 

In terms of gender, the evidence suggests that females will be less likely to switch mode 

from cars to cycling for short journeys. However, switching to walking and going by bus 

were more or less equally acceptable for both males and females.  
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(a) (b) 

(c) (d) 

(e) (f) 

 

Figure 8.6: Posterior (black) and prior (red) distributions of q = 7, 8, 9 according to 
 and  

 

Posterior distributions can be computed for other quantities in order to explore what 

the posterior distributions tell us about questions of interest. Figure 8.7 shows the prior 

and posterior distributions for the difference in effect between car-ownership groups 1 

(one car) and 4 (four or more cars) on q6 (views on climate change and causes). There is 
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little evidence of a difference, but this is to be expected since there were very few 

respondents in group 4.  

 

 

Figure 8.7: Probability density function for , belonging to group with car 

ownership “one” compared to “four or more” for variable “CCView” 
 

Similarly, Figure 8.8 refers to the difference between car-ownership groups 1 (one car) 

and 4 (four or more cars) with respect to q4 (Next time I buy a car, I would be willing to 

buy a car with lower CO2 emissions). Here the evidence suggests a negative difference, 

proposing a greater tendency to agree by group 1 (one car owning household) compared 

to group 4 (four or more car owning household) to buy a low emission vehicle in the 

next purchase. 

 

When q4, the willingness to buy a car with lower CO2 emissions in the future between 

(one car ownership) with  (four or more car ownership) is compared, the 

posterior distribution shows that the difference is almost certainly negative (see Figure 

8.8). These results suggest that respondents who have one car in the household are 

more likely to answer by agreeing to take this action in the future than those who have 

four or more cars. Moreover, the statistics show that over 70% of respondents (n=1509) 

were willing to reduce the impact of climate change and environmental problems. Not 

Red: prior distribution  
Black: posterior distribution 
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only were they willing to reduce the amount of travel by car but were also willing to 

reduce how much they used cars for the sake of the environment.  

 

 

Figure 8.8: Probability density function for , comparing the groups with 
car ownership “one” and “four or more” for variable “BuyLowEmi”. 

 

 

In terms of the employment status variable, Figure 8.9 refers to the difference between 

respondents who were in full-time employment and respondents who were in no 

employment (u = 2), either they were looking after the home or in retirement, with 

respect to q6 (view of climate change and causes). The results indicate a positive 

difference, suggesting a larger trend to believe that climate change is taking place and is, 

at least partly, a result of human actions in the group of respondents in full-time 

employment compared to respondents not in employment. 

Red: prior distribution  
Black: posterior distribution 
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Figure 8.9: Probability density function for , “full-time employee” 

compared to “non-employee (u = 2)” for variable “CCView”. 
 

In a comparison between two different questions, Figure 8.10 refers to the difference 

between responses to q12 “For the sake of the environment everyone should reduce 

how much they use cars” and q13  “There is no point in reducing my car use to help the 

environment unless others do the same” in relation to age. The results suggest a positive 

difference, suggesting a larger tendency to disagree among older respondents toward 

q12 compared to q13.  

 

Red: prior distribution  
Black: posterior distribution 
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Figure 8.10: Probability density function for  , “q12: ReducCarUse” 

compared to “q13: ReducCarUse_NP” for variable “ActAge”. 
 

In order to explore further what the posterior distribution indicates in terms of the 

relationship of the responses to covariates, the changes in the proportion of respondents 

giving a particular response was examined when the value of a covariate was changed 

while holding other covariate values constant. The population of respondents sharing a 

particular covariate profile was considered. The posterior mean of the proportion of 

such people who would respond “agree” to a particular question is the same as the 

posterior predictive probability that a randomly chosen person from this group would 

respond “agree”. For example, to investigate the relationship with age, the other 

covariates can be fixed, for example a person who is male, in work, in full time 

employement, has 1 car and household size of 1. Then, the summaries of the posterior 

distribution were computed for the “agree” proportion for such people aged 20, 25, 

30, …, 70. The model for  contains no interaction terms so, although the overall level 

depends on the choice of values for the other covariates, the dependence on age does 

not. The posterior median (blue solid line) against age, along with the 2.5% and 97.5% 

points (red dashed lines) giving a 95% credible interval, were constructed for each 

question. 

Red: prior distribution  
Black: posterior distribution 
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For each question, the next step was to explore the effect on age using a) linear, b) 

quadratic and c) cubic relationships with the linear predictor of the probability of that 

particular group agreeing with changing from 20-70 years. Figure a) in Appendix C 

clearly shows that, for each question, the relationship with age is quite smooth 

monotonically increasing, decreasing or remaining constant. This is because the model 

has a simple linear dependence of the transformed probability on age. 

 

Probability against age demonstrates an increasing trend from younger to older 

respondents to questions 2, 4, 12, 13, and 14. These attitudes are towards the level of 

traffic congestion problem in towns and cities, the willingness to buy a car with lower 

CO2 emissions in the future, the environmental awareness towards reducing car use, 

perceptions of “no point in reducing car use unless others do the same”, and “people 

who drive cars which are better for the environment should pay less to use roads”. 

Whilst responses to q7 (CartoWalk), q9 (CartoBike) and q11 (AllowCarUse) revealed a 

decreasing trend, the pattern is constant for the other questions.  

 

When the age effect was allowed to be quadratic Figure b) in Appendix C, some of the 

questions exhibited distinct curves, for example q2 (Cong_cities), q6 (CCView) and q7 

(CartoWalk) where the probability of agreeing increases from younger to middle aged, 

and then decreases to older aged. For congested cities it may be associated with the fact 

that the younger and older groups have lower levels of disposable income and, therefore, 

travel fewer urban miles. Next, the age effect was allowed to be cubic Figure c) 

(Appendix C). Some of the questions show flexibility, for example q9 (CartoBike).  

 

Obviously, the shape of the curve changes between linear, quadratic and cubic in a 

systematic way. However, considering the 95% credible interval, questions 1, 2, 3, 5, 8 

and 10 display no important differences between linear, quadratic and cubic. The graph 

illustrates a clear difference for q9 (Many of the short journeys that I now make by car I 

could just as easily cycle). The linear has a similar shape to the cubic suggesting the 

younger ages are more likely to agree to mode shift compared to the older group. 

However, by observing the quadratic plot, it is the middle-aged cohorts that tend to be 

more likely to agree compared with both younger and older adults. 
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However, the shapes for linear and cubic tend to provide a similar interpretation with 

the younger generation are more (or less depending on the question) likely to agree 

than the older group. Consistently, the quadratic has a shape that reflects the middle-

aged group systematically more or less likely to agree with the questions. 

 

Overarching conclusions of this sensitivity testing show that, in the majority of questions, 

the addition of quadratic and cubic terms makes little difference. However, when the 

choice of relationship is important it does have a significant influence on the 

interpretation of the results. Further research is needed to fully understand the age 

effect. 

8.4 Conclusions 

An analysis of the relationship between attitudes to travel and travel behaviour in 

relation to environmental issues was reported in Chapter 7, where 5 clusters were 

observed within 3 factors obtained using MLR. This chapter subsequently presented a 

wider and more in-depth analysis of the categorical variables using log-linear and 

multivariate probit models, aiming to characterise the target groups according to 

mathematical models shown to be significant and to quantify their potential to shift 

modes from private to sustainable transport. 

 

Overall, this chapter demonstrates how the novel approach presented here assists 

considerably in understanding the perceptions of individuals regarding environmental 

issues and their potential to switch modes. The results of the study have demonstrated 

that fitting a MPM using Bayesian inference is both a practical and effective way to 

analyse ordinal survey data. 

 

While the models could be fitted using frequentist inferential methods, such as 

maximum likelihood estimation, this would not be straightforward and would require 

special algorithms such as expectation-maximisation (EM) because of the presence of 

the latent random variables which characterize individuals (Dempster et al., 1977). In 

contrast, by using Bayesian software such as rjags, the need for complicated coding is 

avoided. 
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Furthermore, frequentist methods such as maximum likelihood estimation lead to point 

estimates of model parameters and do not allow the computation of quantities such as 

predictive probabilities which allow for all sources of uncertainty, including both 

random differences, or sampling variation, between individuals as well as uncertainty in 

the values of model parameters. The Bayesian approach, with the help of modern 

software such as rjags, makes this relatively straightforward. The approach makes 

possible the computation of predictive probabilities for any combination of responses to 

the fourteen questions by a hypothetical future respondent with a given set of 

sociodemographic characteristics. 

 

By using software such as rjags, the need for complicated coding is avoided. This is 

because the model includes correlations between responses and makes possible the 

computation of predictive probabilities for any combination of responses to the fourteen 

questions by a hypothetical future respondent with a given set of socio-demographic 

characteristics.  

 

This study successfully characterized sections of the population who increasingly 

demonstrated a higher propensity to take action to adjust their mode choice or activity 

to address environmental issues. The results indicate that significant differences exist 

among different age groups and that gender, employment status, household number, 

and car ownership are influential and should also be taken into account. 

 

Taking the seventh to ninth questions, the majority of respondents had not considered 

changing mode and there is surprisingly slight variation from this attitude assessed 

against socio-demographic indicators: non-workers and younger respondents (aged 18-

24 years) together with older groups (aged 50+ years) appear to be least likely to have 

considered a change. This is also the case for those in the full-time employment group. 

Investigation in terms of travel characteristics does, however, indicate some variation 

from the routine.  

 

There is some suggestion that susceptibility to change appears to be linked to age. Those 

in younger and older categories are the least likely to be susceptible to change, whilst 

those in their middle-age are the most susceptible. Females in full-time employment are 
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undifferentiated from males in full-time employment in terms of their susceptibility to 

change. Mode shift potential to buses was similar for males and females. 

 

It should be noted that, in this study, the females (<50 years) were found to be more 

aware and to show more willingness to switch modes for short journeys of less than 2 

miles. This finding is contrary to one previous study (Curtis and Headicar, 1997), which 

suggested that young travellers, who are more likely to be males in their 30s making 

short commuting journeys of 5 miles or less, are a minority group susceptible to mode 

change. The results in this chapter indicate that some people think that they may need to 

change their behaviour to become more sustainable, whilst others do not, and this 

stance varies according to their socio-demographic background. The next chapter, 

therefore, moves on to discuss the conclusions and recommendations of the study. 
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Chapter 9 Discussions, Conclusions and Recommendations 

9.1 Introduction 

This thesis has set out the aims, objectives and methodology developed to analyse the 

BSA dataset from 2011-2014 comprehensively. Several statistical approaches were 

adopted to provide different perspectives on the data.  

 

In this chapter, an overview and discussions of the results emerging from the descriptive 

analysis, factor analysis, multiple correspondence analysis, cluster analysis, multinomial 

logistic regression and Bayesian inference approach is given in Section 9.2 followed by 

Sections 9.3, 9.4, 9.5, 9.6 and 9.7 which address main findings, secondary findings, 

limitation, policy implications and, finally, directions for future research are suggested.  

9.2 Overview of Results 

Sustainable mobility targets, the question “What are the characteristics of the 

population who may switch from private transport to sustainable modes?”, have been 

discussed in many studies (Stradling et al., 2000; Hull, 2008; Schneider, 2013; Okushima, 

2015; Zacharias and X.Li, 2016). General concerns include environmental and climate 

change issues related to transportation which have attracted worldwide attention. 

Although some studies attempt to discuss and suggest the best solutions (Nilsson and 

Küller, 2000; Anable, 2005; Steg and Gifford, 2005; Anable et al., 2006; Barr et al., 2011; 

Banister et al., 2012; Mikiki and Papaioannou, 2012; Susilo et al., 2012; Kamruzzaman et 

al., 2016), the need for further research is commonly recognised, in particular the need 

to develop a more reliable  method  and  more  statistically  sound  evidence  to  support  

findings (Hickman and Banister, 2007; Rayner et al., 2008; Santos et al., 2010; Thomas 

and Walker, 2015).  

 

Therefore, the research presented in this thesis aims to provide an insight into which 

target groups of car users are more likely to switch from private transport to sustainable 

modes so as to provide scientific evidence to LAs decision and policy makers responsible 
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for the design of marketing strategies and new green transportation schemes. In the UK, 

there are mandatory targets set at 67% reduction in CO2 by 2050 over 2010 levels and 

current research (DfT, 2018) shows that the trend of CO2 and other GHG emissions has 

been predicted to increase over time. Therefore, it is argued that this knowledge could 

play an essential role in targeting sustainable policy initiatives in the future and making 

better use of public money. 

 

The aim of this research was inspired by the findings of three studies: 

 

1) Research into targeted travel awareness campaigns, exploring which car 

commuters are likely to be the best targets for promoting non-car modes for the 

journey to work, has found that males in their 30s were more likely to change 

their travel behaviour (Curtis and Headicar, 1997). 

 

2) There is evidence to suggest that, in terms of attitudes toward and behaviours in 

relation to the environment, almost all respondents were aware of 

environmental issues, but their views did not necessarily ‘match’ their travel 

behaviour (Susilo et al., 2012) and;  

 

3) and some indication that combining factor and cluster analyses of data on 

attitudes towards certain modes of transport and attitudes towards the 

environment and sustainability, on the other hand, enriches explanatory models 

for individual travel behaviour and delivers helpful additional information for 

potential policy and planning measures (Prillwitz and Barr, 2011). 

 

In this study, the perceptions of and attitudes towards travel, and travel behaviour of 

respondents were investigated using BSA datasets from 2011 to 2014. A sizeable 

proportion of respondents did not drive or own a vehicle and, given that this research 

focussed on car travel, this represented redundancy in the datasets. Therefore, such data 

were removed as it is important to consider only the attitudes of the respondents’ 

cohort who were drivers or passengers in a car to meet the study objectives. The data 

from respondents were grouped into three types; namely, socio-demographic 

characteristics, travel behaviour, and attitudinal data based on the completed 

questionnaire only. However, cluster analysis was conducted to assign respondents into 
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groups based on demographic characteristics and travel behaviour, whilst factor 

analysis was conducted to reduce the number of descriptors by identifying interrelated 

variables using attitudinal variables. Relationships between the attitudinal factors 

obtained from EFA for different clusters of travellers were investigated using 

multinomial logistic regression analysis. Multivariate probit modelling, using Bayesian 

inference, was then conducted to model all 14 attitudinal variables, allowing the 

investigation of relationships between the responses of individuals to different 

questions, where each response is considered to be a category on an ordinal scale. 

 

Traditionally in the investigation of travel behaviour, socio-demographic characteristics 

have been relied upon as correlates with behaviour. Similarly, attitudes, preferences and 

beliefs have been found to be dependent on such characteristics as gender and age. 

However, in order to prove or disprove the hypothesis that any changes in attitudes and 

differences in travel behaviour could simply be attributed to personal characteristics, it 

is necessary to investigate the demographic structure of samples along with the 

analytical method developed. This represents the originality in this research. 

 

This thesis therefore contributes to the sustainable transport planning field in three 

respects: 

 

1. Analysis of travel behaviour conducted from the impacts of travel attitudinal 

variables. This research presented a set of findings concerning travel behaviour 

with respect to travel attitudinal variables. Five groups were clustered based on 

their socio-demographic and travel behaviour patterns. Incorporating these 

clusters into the analysis of travel behaviour significantly increased the 

explanatory influence of the travel mode choice as well as the future trends when 

the demographic characteristics change.  

 

2. Methods for analysing travel attitudes and behaviour were investigated. This 

research used multinomial logistic regression to investigate the relationships 

between key attitudinal factors among respondents clustered into several 

distinct travel groups to explain their behaviour; and Bayesian inference was 

used to measure predictive probabilities for any combination of responses to all 
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attitudinal variables by a hypothetical future respondent with a given set of 

socio-demographic characteristics in a more comprehensive way. 

 

3. Recommendations on the propensity of groups of individuals switching from 

private transport to sustainable alternatives. Building on a critical review of 

previous work on travel behaviour and attitudes toward environmental issues, 

in-depth analysis characterised target groups providing evidence to LA to better 

inform, more cost effective and new developments in sustainable transport 

planning policy. 

9.3 Main Findings 

The main findings that can be drawn from the study are shown in Figure 9.1 mapped 

into the chapters (and therefore the analysis technique) from which the results emerged. 

The research question posed in this thesis was: 

 

1. What are the attitudinal factors that characterise the uses of sustainable transport 

modes? 

2. What are the key socio-demographic variables that affect travel mode choices and 

decisions within the cohort of car users? 

3. Which car users’ groups should be targeted in campaigns that promote the uptake 

of non-car transport alternatives? 

4. Can key factors be used to derive a model to predict the likely uptake of sustainable 

modes? 
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Figure 9.1: Results diagram 

Bayesian Inference Ch. 8 

Descriptive Analysis (DA) 

1. Car users in the BSA dataset who participated in the questionnaires survey and interviews are 
representative of all car users in the sample (2011–2014) – proven by  test. 

2. Younger-aged (18-24 years old) car users were the lowest proportion of participants in this 
study (3.2%) as expected. 

3. Normality test showed that in all cases the distributions of responses were not normally 
distributed at 95% statistical confidence. Non-parametric tests were used throughout the 
analysis. 

4. Car users acknowledged traffic congestion on motorways, in towns and cities as a serious 
problem.  

5. Car users were aware of the importance of reducing CO2 emissions and very keen to buy a 
lower emissions vehicle in the future.  

6. 35%, 43% and 56% car users were reluctant to change behaviour from car to walking, cycling 
or use local buses respectively.  

7. Charging taxes is definitely not something that car users were in favour of.  

Ch. 5 

Ch. 6 

1. With 14 attitudinal variables, 3 factors and 4 factors emerged from PAF and PCA respectively.  
2. Provided that correlation and covariance between factors is considered to represent how 

strongly two factors are related PAF performs better than PCA. 
3. In-depth analysis of the characteristics of the factors revealed interrelationships between travel 

choices, awareness of the environment and demographics. 
4. The 3 factors; namely, attitudes to transport and environment, traffic awareness, and modal 

shift potential were then used in MLR. 

 
Ch. 7 

1. Two cohorts emerged from MCA graphical visualisation was labelled as “Socio-demographics” 
and “Male and female car dependency” for dimensions 1 and 2, respectively. 

2. Graphical representation of the MCA analysis enhanced the overall view of the dataset, 
including how individuals are distributed among the categories, according to responses to each 
question. 

3. 5 clusters emerged from HCA: C1 (M, 65+, retired, 2 in HH and 1 car), C2 (M, 35-44yr, FT, 2 in 
HH and 2 cars), C3 (M, 45-54yr, FT, 2 in HH and 1 car), C4 (F, 45-54yr, FT, ≥4 in HH and 2 cars) 
and C5 (F, 45-54yr, looking after the home, ≥4 in HH and 1 car). 

4. Cluster 2 represent groups of respondents who have moderate consumption of travel and 
dependency on sustainable transport. 

5. MLR analysis identified that the respondents in Clusters 2 were statistically significant to 
“modal shift potential”. 

6. All groups paid less attention to environmental problems in the later years 2012 onwards. 

Factor Analysis (FA) 

MCA, HCA and MLR 

1. Fitting a multivariate probit model using Bayesian inference is a practical and effective way to 
analyse ordinal survey data. 

2. Log-linear models was developed dealing with one question at a time. MPM model consider all 
responses to all attitudinal variables in a single model was then developed. 

3. The investigation of whether relationships were linear or polynomial suggested that a cubic 
was more appropriate. 

4. Susceptibility to change appears to be linked to age. Younger and older groups are the least 
likely to be susceptible to change, whilst those in their middle-age are the most susceptible. 

5. Older adults were more likely to disagree for mode shift to walk, using PT, and cycling. 
6. Mode shift potential to buses was similar for males and females. 
7. One car owning household (group 1) had greater tendency to agree to buy a low emission 

vehicles compared to four or more car owning household (group 4). 
8. Respondents in full-time employment as opposed to unemployed tend to disbelieve that 

climate change is taking place, partly, a result of human actions. 
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The key messages answering the research questions posed in Chapter 1 were as follows: 

 

1. The descriptive analysis of the BSA dataset from 2011 to 2014 provided evidence 

of high proportions of people using their cars predominantly in daily travel 

activities. Through the analysis of travel attitude factors, the details regarding 

how people travel, how they actually behave, and their levels of environmental 

awareness and willingness to take action for the sake of the environment were 

identified. The three key factors characterising the attitudes of car users that 

emerged from the factor analysis were: F1, attitudes to transport and the 

environment; F2, traffic awareness; and F3, modal shift potential.  

 

2. The findings from cluster analysis demonstrate that, whilst the majority of 

respondents are strongly car-orientated, a statistically significant minority who 

were susceptible to change were found in Cluster 2. These were middle-aged 

male (35-44 years old) in full-time employment. Cluster 2 represents 

respondents who have moderate consumption of travel and dependency on 

sustainable transport and were found to have higher environmental awareness 

compared to other clustered groups of respondents. Therefore, this cohort was 

identified as appropriate car users who could be targeted with initiatives to 

promote sustainable travel.  

 

3. The investigation of the relationships between attitudes to travel and travel 

behaviour in relation to environmental issues, conducted using MLR analysis, 

found that respondents in Cluster 2 in 2011 showed no significant causal link 

with “modal shift potential” (F3). However, by 2013 this cluster had begun to 

accept the need for action to switch travel modes from private to sustainable 

modes for short journeys of 2 miles or less. Consistent with cluster analysis, this 

group was estimated to be the most prone to take action to help reduce the 

impact of travel on climate change and were the most likely to be willing to 

switch travel modes. 

 

4. By using Bayesian inference, 14 attitudinal and latent variables were successfully 

derived in a multivariate probit model. The prediction results from the model 

indicate that significant differences exist among different age and gender groups. 
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However, employment status, household size, and car ownership were also found 

to have little influence on perceptions, attitudes and travel behaviour. 

9.4 Secondary Findings 

Along with the main findings above, this study also provided a more in-depth 

understanding and secondary findings were as follows:  

 

1. The originality of the research conducted in this thesis was identified from the 

literature review which highlighted the need for further research to deliver more 

detailed evidence concerning sustainable mobility targets and, more specifically, 

in modelling attitudes to travel and travel behaviour in relation to environmental 

issues. 

 

2. After considering several data sources, the BSA dataset was identified as the most 

suitable to conduct this study given that it held data on socio-demographics, 

travel behaviour, and attitudinal information. Thus, the BSA presented the 

opportunity to investigate interrelationships between respondents’ perceptions 

and attitudes and opinions towards environmental issues and climate change. 

 

3. The Bayesian multivariate probit model was found to have advantages over other 

methods documented in the literature, as it is provides a natural and principle 

way of combining prior information with data. 

 

4. Significant positive correlations were found that suggested car users find 

congestion on both motorways and in towns and cities a serious problem. Also, 

traffic congestion in towns and cities was demonstrated to be statistically 

significantly linked to the problem of exhaust fumes from traffic in towns and 

cities. These confirm the existence of relationships between variants aspects of 

traffic awareness.  

 

5. Statistical evidence showed that many of the short journeys made by car could 

just as easily be made by walking, cycling or bus. This affirmative relationship 

suggests that modal shift would be acceptable.  
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6. The respondents considered cars to be the largest transport contributors to UK 

climate change overall, followed by aeroplanes, vans and lorries, buses and 

coaches, ships and ferries, and trains, whilst motorbikes were assumed to be the 

mode least responsible. 

 

7. The majority of the respondents claimed to believe that climate change is 

happening, and 81.7% of the population were convinced that climate change is 

linked to human activity. However, it is unclear whether the concern for climate 

change is currently rising or falling, due to the way the data was collected. 

 

8. Even though the respondents reported that they were willing to take action in 

response to climate change and environmental problems, an inconsistency 

existed with their actual behaviour. 

 

9. The results suggest that car dependency, which the government is hoping to 

tackle, is particularly strong among males and females in full-time employment 

and those aged 35-54 years old, whilst the results indicate that retired males over 

the age of 65 years never used public transport such as buses and trains, and 

never cycled. Hence they can be considered reluctant sustainable mode users. 

Given that only car users were studied in this thesis, it should be noted that 

potentially these represent senior citizens with a member of the household with 

a disability, but this is only conjecture. 

 

10. The one car-owning group displayed significant differences compared to the four 

or more car-owning group to the extent that they exhibited a willingness to buy a 

car with lower CO2 emissions, felt responsible for the environmental effects of 

their car use and perceived behavioural control over using alternatives. 

 

11. It seems reasonable to suggest from the evidence that a significant minority of 

the population express a desire to lead a ‘greener’ lifestyle, and some seem 

prepared to take action that lessens their impact on the environment. 
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9.5 Limitations of the Study 

The research reported here has drawn upon data collected from the British Social 

Attitudes (BSA) survey. Caution must be exercised when applying these results in 

practice. It should be noted that the study was conducted in Great Britain, and therefore 

the characteristics of the respondents are likely to be different from those in other 

countries. The issues considered of importance in this study, for example, may be less 

important in other countries or vice versa, and issues not highlighted here may be of 

importance in other studies. However, the methodological approach for the systematic 

analysis of the data is easily transferable. Therefore, scope exists for adopting this 

analytic procedure and methodology, and repeating the research in other countries on 

different timescales and with a wider range of variables. Also caution should be 

exercised given the potential under-representation of younger-aged respondents (18-24 

years old) in this study.  

 

Due to the limitations of the BSA data being third party, this study does not consider 

location (origin–destination). Analysis of the secondary data concerned with attitudinal 

variables, however, has enabled a detailed understanding of the travel patterns and the 

relevant socio-demographic backgrounds of respondents (in this case age, gender, 

household size and car ownership). 

 

Another limitation of this study is that the interviewer did not directly observe the 

respondents’ opinions. Therefore, very little genuine understanding can be gained of 

how people deal with the complexities of their knowledge of climate change, or how 

they might deal with it in different information environments. 

 

Difficulties have arisen when attempting to compare the perceptions of car users and 

non-car users in this study. As mentioned before, only car users were considered in this 

study. Therefore, differences in attitudes between drivers and non-drivers in this study 

were not investigated even though they may have very different views on congestion 

and environmental problems. The lack of knowledge of the perceptions and attitudes of 

non-drivers in the sample means that further caution is urged regarding the 

generalisability of these findings.  
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9.6 Policy Implications of the Study 

This study aimed to offer recommendations for evidence-based policy in the future. 

However, in applying the recommendations made in this section in practice, great care 

should be taken, as the study has certain limitations as discussed in section 9.5. A large 

proportion of respondents reported that they would be willing to buy cars with lower 

CO2 emissions in the future in order to help reduce the impact of climate change. This is 

a potential market for car companies to produce such cars and encourage more people 

to use cars with lower CO2 emissions for the sake of the environment. From the MPM, a 

greater tendency to agree to take this action was found among respondents with one car 

per household compared to respondents with four or more cars per household. This 

finding challenges car companies to be innovative in their manufacture in response to 

current issues concerning the environment.   

 

Another aspect that needs more attention from LA is to seriously consider alternatives 

to higher taxes (road users charging) for private transport and instead lower ticket 

prices for public transport and other sustainable incentive schemes. Eriksson et al. 

(2008) and Redman et al. (2013) present some evidence to  suggest that  travellers  

expect  to  pay  less for tickets to  encourage them  to  use  train  services more. Similarly, 

the research reported in this thesis found that a small increment in taxes is less 

acceptable. 73% of those who were interviewed disagreed that for the sake of the 

environment car users should pay higher taxes. On the other hand, more than half (56%) 

of respondents agreed that there is no point in reducing their car use to help the 

environment unless others do the same. Taken together, these statements suggest that 

there is an association between attitudes towards environmental issues and transport 

policies.  

 

A positive relationship was found in this study between agreement that people should 

be allowed to use their cars as much as they like, even if it causes damage to the 

environment, and agreement that there is no point in reducing car use to help the 

environment unless others do the same. Those who have negative perceptions on the 

environmental issue tended also to reinforce the same negative opinions as others and 

yet they deny the importance of reducing car use for the sake of the environment. 
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Age and gender were found to be the most influential attributes of modal shift potential. 

Middle-aged and mature males in full-time employment have the highest propensity to 

change to sustainable mode and elderly males in retirement and young people in no 

employment had the lowest, as expected. Since all of the respondents sampled were car 

users, the analysis concentrated on assessing their susceptibility to change mode, as 

from a policy perspective it is this group who need to be targeted most to maximise 

chances of success. The results that emerged are of value to those with responsibility for 

managing and marketing travel awareness campaigns. Therefore, when the concept of 

the log-linear relationship is used in estimating categorical variables, target 

segmentation of car drivers based on their age and gender has to be considered. Based 

on the evidence obtained from this study, older groups were found to rely more on cars 

to travel, and therefore this challenges LAs to work towards understanding and 

accommodating their needs in areas such as improving accessibility and comfort, and 

thus to encourage older people to use public transport. It is important to note that policy 

needs to be appropriately aligned with the different characteristics of travellers to affect 

travel behaviour choices, as well as to create realistic incentives.  

 

From the data collected, it can be recommended that policy should emphasise methods 

of making walking and cycling both easier and safer so that it can be more conveniently 

tailored to household routines. Most interventions to increase cycling, in particular, 

focus on infrastructure, whilst improvements in infrastructure for walking and cycling 

may include the removal of barriers and parked vehicles on pavements, better 

maintenance of pavements and the repair of uneven paving stones. The provision of 

dedicated cycle routes that are segregated from traffic is also important, and may make 

walking and cycling more acceptable for all household members. However, such 

strategies alone are unlikely to be sufficient to effect major change. Much more 

problematically, it can be argued that policies to increase walking and cycling do not 

require transport solutions but, rather, need more fundamental changes in society and 

urban structures that allow more flexibility in how and when people travel, so that 

walking and cycling can be more easily fitted into household routines. Furthermore, the 

LAs and policymakers might gain valuable information from this study concerning 

whether to invest more money to provide more facilities to encourage the positive use of 

sustainable transport or to invest in public transport services. 
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Finally, implicit in much of the above discussion is the suggestion that greater rates of 

walking and cycling will only be achieved when car use becomes significantly more 

costly and less convenient. Therefore, an integrated approach which initiates traffic 

capacity reducing policies simultaneously with incentives addressing and overcoming 

household (and other) constraints. 

9.7 Future Research 

Whilst this research has successfully contributed new knowledge, as with all research, 

there remain opportunities for further investigation, and potential areas would include 

modification to the questionnaire and changes in the methods of data collections with 

further analysis to demonstrate transferability of the method to obtain more robust 

results.  

 

This study should be repeated using the collection of primary data rather than using 

secondary data collected by a third party. This should be achieved through 

questionnaires or face-to-face interviews. However, this would require more manpower 

and, as a result, increased costs and time consumed processing the data. A combination 

of direct observation and face-to-face interviews may allow a useful comparative 

assessment of car and non-car users. Furthermore, insights of respondents provided 

would have enhanced the understanding of the interaction between travel behaviour, 

perceptions, and attitudes towards switching travel modes. 

 

It might also be useful to conduct further investigation into the possibility of targeted 

studies of campaigns aimed at mode shift to sustainable transport in collaboration with 

employers, since some institutional change is also required. A large group of 

respondents in the present study claimed that work circumstances were a reason why 

they could not change mode, but even here there may be a role for policies in addressing 

the responsibilities of employers in aiding a shift from car dependency. The findings 

would suggest reviewing the potential for altering work hours and existing car subsidies 

(company cars) and reconsidering the need for a car for business purposes every day. 

The extent to which travel behaviour is affected by this measurement remains difficult 

to measure and will benefit from further research. 
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In the factor analysis carried out in this study, the value of Cronbach’s alpha (calculated 

to consider the internal consistency of the grouped statements) was 0.16 for the first 

factor. This is very low to be considered reliable for the factors identified in the PAF. 

Peterson (1994) indicated that acceptable alpha scores range from 0.5 for a preliminary 

analysis to 0.9 for applied research. The possible reasons behind the small value include 

a large number of questions, weak relationships between them, or heterogeneous 

constructs (Loewenthal, 2001; Johnson and Wichern, 2007). Therefore, it is 

recommended that more advanced statistical methods and more datasets with 

supplementary questions should be considered in further analysis of such data in order 

to obtain a better model fit.  

 

The multivariate probit model presented in this study used C = 3, which combined the 

responses into categories of 0, 1, and 2, for example by combining “Agree” with 

“Strongly agree” and “Disagree” with “Strongly disagree”, so that there were no 

unknown threshold parameters. In future work, this restriction should be relaxed and 

allow C > 3. Because the model includes correlations between responses, the 

computation of predictive probabilities is made possible for any combination of 

responses to the fourteen questions by a hypothetical future respondent with a given set 

of socio-demographic characteristics. In future work this could be exploited to 

investigate the characteristics of people most likely to give particular kinds of responses 

to the whole collection of questions rather than a subset as presented in this thesis.  

 

Furthermore, the application of these methods (to investigate attitudes and travel 

behaviour patterns and whether or not similarities in attitudes and behaviour exist) can 

also be applied to similar research in developing countries, where traffic congestion and 

environmental problems are often greater compared to the UK. Although the results 

presented in this study refer to the population of people in Great Britain, they illustrate 

patterns of behaviour that can be investigated for other countries. However, future 

research should include income as one of the key socio-demographic variables 

considered, since information on income would help to establish a greater degree of 

understanding of how disposable income influences travel choices or car ownership 

since this has been out of the scope of this study. 
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Future research could further the understanding of why attitudes do not always 

translate into action and to discover fundamental understanding of the feelings that 

need to be considered and addressed in order to change attitudes and influence 

behaviour in preparation for more targeted, community-level sustainability campaigns. 

In addition, barriers to change differ for different travel behaviours, for different 

segments of the population, as well as how these variables interact along with their 

dynamic feedback effects. These all remain important priorities for further research. 

 

All in all, it can be concluded that none of the approaches that could be used in such 

research can claim absolute superiority. Instead, their various application have specific 

advantages and disadvantages, which suggests that range of applications could be 

applied, after careful consideration of their appropriateness, to diverse aspects of the 

planning and design of sustainable mobility measures. 
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Appendices 

Appendix A 

Model specification for log-linear 
 

(a) Without age and gender effects 

 
library(rjags) 
q1data<-read.table("twelvegroups.txt",header = TRUE) 
y<-cbind(q1data[,1:5]) 
n<-rowSums(y) 
q1jagsdata<-list(n=n,y=y) 
q1jags<-jags.model("q1bug.txt",data=q1jagsdata,n.chains=2) 
update(q1jags,1000) 
q1samples<-coda.samples(q1jags,c("eta"),10000) 
summary(q1samples) 
q1samplesout<-as.matrix(q1samples,iters=TRUE) 
 
eta3.2<-q1samplesout[,16] 
x<-seq(-2.5,2.5,0.05) 
priordens<-dnorm(x,0,2.5) 
plot(density(eta3.2,adj=2.5),xlim=c(-2.5,2.5),main="Males 35-44, Agree Strongly",  
xlab=expression (eta["3,2"])) 
lines(x,priordens,col="red") 
abline(h=0,lty=2) 
 
eta3.2<-q1samplesout[,16] 
eta3.4<-q1samplesout[,40] 
diff<-eta3.2-eta3.4 
newpriordens<-dnorm(x,0,sqrt(12.5)) 
plot(density(diff,adj=1.5),xlim=c(-2.5,2.5),main="Females 35-44, Agree vs Disagree", 
xlab=expression(eta["3,2"]-eta["3,4"])) 
lines(x,newpriordens,col="red") 
abline(h=0,lty=2) 
 
model 
{ 
 for (i in 1:12) 
     {y[i,1:5]~dmulti(p[i,],n[i]) 
      for (k in 1:5) 
          {p[i,k]<-phi[i,k]/sum(phi[i,]) 
           phi[i,k]<-exp(eta[i,k]) 
           } 
      eta[i,3]<-0.0 
      for (k in 1:2) 
          {eta[i,k]~dnorm(mu[k],10) 
           } 
      for (k in 4:5) 
          {eta[i,k]~dnorm(mu[k],10) 
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           } 
      } 
 for (k in 1:2) 
     {mu[k]~dnorm(0,0.5) 
      } 
 for (k in 4:5) 
     {mu[k]~dnorm(0,0.2) 
      } 
 } 
 
Model summary 
 
Iterations = 2001:12000 
Thinning interval = 1  
Number of chains = 2  
Sample size per chain = 10000  
 
1. Empirical mean and standard deviation for each variable, 
   plus standard error of the mean: 
 
             Mean     SD Naive SE Time-series SE 
eta[1,1]  -1.2810 0.3233 0.002286       0.003676 
eta[2,1]  -1.6804 0.2900 0.002050       0.003370 
eta[3,1]  -1.2776 0.2443 0.001727       0.002926 
eta[4,1]  -1.4786 0.2559 0.001809       0.003006 
eta[5,1]  -1.5612 0.2568 0.001816       0.002936 
eta[6,1]  -1.4792 0.2371 0.001676       0.002689 
eta[7,1]  -1.5106 0.3231 0.002284       0.003831 
eta[8,1]  -1.2441 0.2526 0.001786       0.002965 
eta[9,1]  -1.4390 0.2362 0.001670       0.002735 
eta[10,1] -1.5258 0.2540 0.001796       0.002936 
eta[11,1] -1.4354 0.2615 0.001849       0.003012 
eta[12,1] -1.3372 0.2650 0.001874       0.003107 
eta[1,2]   0.5079 0.2789 0.001972       0.002741 
eta[2,2]   0.6006 0.1922 0.001359       0.002141 
eta[3,2]   0.4391 0.1686 0.001192       0.001957 
eta[4,2]   0.7782 0.1614 0.001141       0.001934 
eta[5,2]   0.6502 0.1612 0.001140       0.001846 
eta[6,2]   0.7549 0.1440 0.001018       0.001649 
eta[7,2]   0.5064 0.2540 0.001796       0.002660 
eta[8,2]   0.7724 0.1707 0.001207       0.001885 
eta[9,2]   0.6822 0.1446 0.001023       0.001570 
eta[10,2]  0.7481 0.1565 0.001106       0.001782 
eta[11,2]  0.6914 0.1689 0.001194       0.001837 
eta[12,2]  0.9318 0.1758 0.001243       0.002000 
eta[1,3]   0.0000 0.0000 0.000000       0.000000 
eta[2,3]   0.0000 0.0000 0.000000       0.000000 
eta[3,3]   0.0000 0.0000 0.000000       0.000000 
eta[4,3]   0.0000 0.0000 0.000000       0.000000 
eta[5,3]   0.0000 0.0000 0.000000       0.000000 
eta[6,3]   0.0000 0.0000 0.000000       0.000000 
eta[7,3]   0.0000 0.0000 0.000000       0.000000 
eta[8,3]   0.0000 0.0000 0.000000       0.000000 
eta[9,3]   0.0000 0.0000 0.000000       0.000000 
eta[10,3]  0.0000 0.0000 0.000000       0.000000 
eta[11,3]  0.0000 0.0000 0.000000       0.000000 
eta[12,3]  0.0000 0.0000 0.000000       0.000000 
eta[1,4]  -0.6607 0.3072 0.002173       0.003343 
eta[2,4]  -0.5110 0.2345 0.001658       0.002515 
eta[3,4]  -0.6068 0.2082 0.001472       0.002281 
eta[4,4]  -0.2192 0.1936 0.001369       0.002294 
eta[5,4]  -0.4863 0.1991 0.001408       0.002314 
eta[6,4]  -0.4609 0.1845 0.001305       0.002051 
eta[7,4]  -0.4952 0.2877 0.002034       0.003032 
eta[8,4]  -0.7596 0.2275 0.001609       0.002479 
eta[9,4]  -1.0911 0.2166 0.001532       0.002368 
eta[10,4] -0.7719 0.2123 0.001501       0.002390 
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eta[11,4] -0.6423 0.2175 0.001538       0.002322 
eta[12,4] -0.3247 0.2134 0.001509       0.002343 
eta[1,5]  -1.8363 0.3422 0.002419       0.004567 
eta[2,5]  -1.7615 0.2959 0.002093       0.003774 
eta[3,5]  -2.0446 0.2882 0.002038       0.003740 
eta[4,5]  -1.8458 0.2804 0.001983       0.003692 
eta[5,5]  -1.6827 0.2691 0.001903       0.003488 
eta[6,5]  -1.9140 0.2665 0.001885       0.003434 
eta[7,5]  -1.9679 0.3399 0.002404       0.004709 
eta[8,5]  -2.0624 0.2952 0.002087       0.003819 
eta[9,5]  -2.0301 0.2721 0.001924       0.003559 
eta[10,5] -2.2105 0.2917 0.002063       0.003685 
eta[11,5] -2.0129 0.2932 0.002073       0.003929 
eta[12,5] -2.0950 0.3061 0.002165       0.004147 
 
2. Quantiles for each variable: 
 
                2.5%     25%     50%      75%    97.5% 
eta[1,1]  -1.9241777 -1.4946 -1.2810 -1.06121 -0.65061 
eta[2,1]  -2.2561861 -1.8765 -1.6770 -1.47935 -1.12501 
eta[3,1]  -1.7740718 -1.4397 -1.2752 -1.10729 -0.81128 
eta[4,1]  -1.9955321 -1.6448 -1.4740 -1.30439 -0.99960 
eta[5,1]  -2.0762145 -1.7321 -1.5576 -1.38418 -1.07281 
eta[6,1]  -1.9589791 -1.6364 -1.4758 -1.31816 -1.02123 
eta[7,1]  -2.1605865 -1.7238 -1.5092 -1.28977 -0.88875 
eta[8,1]  -1.7511694 -1.4136 -1.2388 -1.07121 -0.76470 
eta[9,1]  -1.9128027 -1.5970 -1.4320 -1.28015 -0.98567 
eta[10,1] -2.0319766 -1.6980 -1.5237 -1.35194 -1.03084 
eta[11,1] -1.9612149 -1.6066 -1.4310 -1.25870 -0.93780 
eta[12,1] -1.8709396 -1.5112 -1.3313 -1.15874 -0.82787 
eta[1,2]  -0.0364442  0.3175  0.5089  0.69948  1.04571 
eta[2,2]   0.2238032  0.4713  0.6017  0.73123  0.97332 
eta[3,2]   0.1081940  0.3262  0.4406  0.55166  0.76677 
eta[4,2]   0.4654442  0.6678  0.7782  0.89059  1.08906 
eta[5,2]   0.3386798  0.5398  0.6498  0.75806  0.96523 
eta[6,2]   0.4781467  0.6563  0.7542  0.85124  1.03879 
eta[7,2]   0.0006438  0.3359  0.5079  0.67989  0.99665 
eta[8,2]   0.4364378  0.6572  0.7723  0.88901  1.10390 
eta[9,2]   0.4007402  0.5843  0.6812  0.77937  0.96744 
eta[10,2]  0.4407520  0.6425  0.7479  0.85303  1.05527 
eta[11,2]  0.3636411  0.5769  0.6908  0.80496  1.02454 
eta[12,2]  0.5893068  0.8125  0.9318  1.05128  1.27752 
eta[1,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[2,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[3,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[4,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[5,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[6,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[7,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[8,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[9,3]   0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[10,3]  0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[11,3]  0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[12,3]  0.0000000  0.0000  0.0000  0.00000  0.00000 
eta[1,4]  -1.2703038 -0.8646 -0.6601 -0.45250 -0.05857 
eta[2,4]  -0.9763449 -0.6682 -0.5080 -0.35473 -0.05424 
eta[3,4]  -1.0229209 -0.7443 -0.6037 -0.46669 -0.20269 
eta[4,4]  -0.6103321 -0.3459 -0.2155 -0.08878  0.15571 
eta[5,4]  -0.8771465 -0.6229 -0.4859 -0.34956 -0.10131 
eta[6,4]  -0.8250718 -0.5862 -0.4601 -0.33482 -0.10585 
eta[7,4]  -1.0655631 -0.6879 -0.4929 -0.30162  0.06565 
eta[8,4]  -1.2137106 -0.9110 -0.7567 -0.60548 -0.31924 
eta[9,4]  -1.5259731 -1.2314 -1.0886 -0.94569 -0.67437 
eta[10,4] -1.1914746 -0.9142 -0.7720 -0.62870 -0.35202 
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eta[11,4] -1.0755641 -0.7884 -0.6386 -0.49344 -0.22757 
eta[12,4] -0.7530117 -0.4669 -0.3235 -0.18144  0.09294 
eta[1,5]  -2.5107450 -2.0636 -1.8372 -1.60666 -1.17172 
eta[2,5]  -2.3658790 -1.9570 -1.7569 -1.56312 -1.19372 
eta[3,5]  -2.6210493 -2.2370 -2.0387 -1.84877 -1.48946 
eta[4,5]  -2.4115569 -2.0334 -1.8408 -1.65129 -1.30987 
eta[5,5]  -2.2219964 -1.8642 -1.6819 -1.49682 -1.16458 
eta[6,5]  -2.4571593 -2.0889 -1.9094 -1.73131 -1.40932 
eta[7,5]  -2.6604770 -2.1921 -1.9638 -1.74002 -1.32022 
eta[8,5]  -2.6532379 -2.2584 -2.0605 -1.86216 -1.49194 
eta[9,5]  -2.5820634 -2.2098 -2.0240 -1.84510 -1.51111 
eta[10,5] -2.7981214 -2.4007 -2.2045 -2.01234 -1.65672 
eta[11,5] -2.5934763 -2.2090 -2.0093 -1.81809 -1.44576 
eta[12,5] -2.7076018 -2.2982 -2.0890 -1.88955 -1.50193 
 

 

Trace plots and density curves for log-linear without age-gender effect 
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(b) With age and gender effects 

 
model  
{ 
for (i in 1:12)  
 {y[i,1:5]~dmulti(p[i,],n[i]) 
 for (k in 1:5)  
 {p[i,k]<-phi[i,k]/sum(phi[i,]) 
 phi[i,k]<-exp(eta[i,k]) 
  } 
eta[i,3]<-0 
for (k in 1:2) { 
eta[i,k]<-beta0[k]+betaa1[k]*a1[i]+betaa2[k]*a2[i]+betaa3[k]*a3[i]+betaa4[k]*a4[i]+ 
betaa5[k]*a5[i]+betag[k]*gender[i]+betaa1g[k]*a1[i]*gender[i]+betaa2g[k]*a2[i]*gender[i]+ 
betaa3g[k]*a3[i]*gender[i]+betaa4g[k]*a4[i]*gender[i]+betaa5g[k]*a5[i]*gender[i] 
 
eta[i,k+3]<-
beta0[k+3]+betaa1[k+3]*a1[i]+betaa2[k+3]*a2[i]+betaa3[k+3]*a3[i]+betaa4[k+3]*a4[i]+ 
betaa5[k+3]*a5[i]+betag[k+3]*gender[i]+betaa1g[k+3]*a1[i]*gender[i]+betaa2g[k+3]*a2[i]*gen
der[i]+ 
betaa3g[k+3]*a3[i]*gender[i]+betaa4g[k+3]*a4[i]*gender[i]+betaa5g[k+3]*a5[i]*gender[i] 
} 
} 
for (k in 1:2) { 
     beta0[k]~dnorm(mu0,1) 
     beta0[k+3]~dnorm(mu0,1) 
} 

for (k in 1:2) { 
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betaa1[k]~dnorm(mua1,10) 
betaa1[k+3]~dnorm(mua1,10) 
betaa2[k]~dnorm(mua2,10) 
betaa2[k+3]~dnorm(mua2,10) 
betaa3[k]~dnorm(mua3,10) 
betaa3[k+3]~dnorm(mua3,10) 
betaa4[k]~dnorm(mua4,10) 
betaa4[k+3]~dnorm(mua4,10) 
betaa5[k]~dnorm(mua5,10) 
betaa5[k+3]~dnorm(mua5,10) 
betag[k]~dnorm(mug,10) 
betag[k+3]~dnorm(mug,10) 
betaa1g[k]~dnorm(mua1g,20) 
betaa1g[k+3]~dnorm(mua1g,20) 
betaa2g[k]~dnorm(mua2g,20) 
betaa2g[k+3]~dnorm(mua2g,20) 
betaa3g[k]~dnorm(mua3g,20) 
betaa3g[k+3]~dnorm(mua3g,20) 
betaa4g[k]~dnorm(mua4g,20) 
betaa4g[k+3]~dnorm(mua4g,20) 
betaa5g[k]~dnorm(mua5g,20) 
betaa5g[k+3]~dnorm(mua5g,20) 
} 
beta0[3]<-0 
betaa1[3]<-0 
betaa2[3]<-0 
betaa3[3]<-0 
betaa4[3]<-0 
betaa5[3]<-0 
betag[3]<-0 
betaa1g[3]<-0 
betaa2g[3]<-0 
betaa3g[3]<-0 
betaa4g[3]<-0 
betaa5g[3]<-0 
mu0~dnorm(0,1) 
mua1~dnorm(0,10) 
mua2~dnorm(0,10) 
mua3~dnorm(0,10) 
mua4~dnorm(0,10) 
mua5~dnorm(0,10) 
mug~dnorm(0,10) 
mua1g~dnorm(0,20) 
mua2g~dnorm(0,20) 
mua3g~dnorm(0,20) 
mua4g~dnorm(0,20) 
mua5g~dnorm(0,20) 
} 
 

Model summary 
 
Iterations = 2001:12000 
Thinning interval = 1  
Number of chains = 2  
Sample size per chain = 10000  
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1. Empirical mean and standard deviation for each variable, 
   plus standard error of the mean: 
 
              Mean     SD Naive SE Time-series SE 
eta[1,1]  -1.16548 0.6553 0.004634       0.014010 
eta[2,1]  -1.94551 0.4922 0.003481       0.007243 
eta[3,1]  -1.23469 0.3303 0.002336       0.003451 
eta[4,1]  -1.40121 0.3643 0.002576       0.004374 
eta[5,1]  -1.64010 0.3711 0.002624       0.004335 
eta[6,1]  -1.48596 0.3253 0.002300       0.003234 
eta[7,1]  -1.68340 0.6154 0.004352       0.011296 
eta[8,1]  -1.18168 0.3455 0.002443       0.003845 
eta[9,1]  -1.56465 0.3111 0.002200       0.002853 
eta[10,1] -1.73599 0.3550 0.002510       0.003912 
eta[11,1] -1.50299 0.3658 0.002586       0.004603 
eta[12,1] -1.07328 0.3984 0.002817       0.005271 
eta[1,2]   0.36105 0.5065 0.003582       0.013932 
eta[2,2]   0.57491 0.2481 0.001755       0.003508 
eta[3,2]   0.34832 0.2085 0.001474       0.002609 
eta[4,2]   0.93078 0.2046 0.001447       0.002887 
eta[5,2]   0.70309 0.1981 0.001400       0.002640 
eta[6,2]   0.81054 0.1734 0.001226       0.002044 
eta[7,2]   0.27366 0.3953 0.002795       0.008494 
eta[8,2]   0.77964 0.2123 0.001501       0.002526 
eta[9,2]   0.57316 0.1667 0.001179       0.001728 
eta[10,2]  0.66340 0.1824 0.001289       0.002131 
eta[11,2]  0.66324 0.2071 0.001464       0.002915 
eta[12,2]  1.15231 0.2385 0.001686       0.003865 
eta[1,3]   0.00000 0.0000 0.000000       0.000000 
eta[2,3]   0.00000 0.0000 0.000000       0.000000 
eta[3,3]   0.00000 0.0000 0.000000       0.000000 
eta[4,3]   0.00000 0.0000 0.000000       0.000000 
eta[5,3]   0.00000 0.0000 0.000000       0.000000 
eta[6,3]   0.00000 0.0000 0.000000       0.000000 
eta[7,3]   0.00000 0.0000 0.000000       0.000000 
eta[8,3]   0.00000 0.0000 0.000000       0.000000 
eta[9,3]   0.00000 0.0000 0.000000       0.000000 
eta[10,3]  0.00000 0.0000 0.000000       0.000000 
eta[11,3]  0.00000 0.0000 0.000000       0.000000 
eta[12,3]  0.00000 0.0000 0.000000       0.000000 
eta[1,4]  -0.65994 0.5935 0.004197       0.014634 
eta[2,4]  -0.51042 0.3182 0.002250       0.004167 
eta[3,4]  -0.69287 0.2741 0.001939       0.003032 
eta[4,4]   0.01432 0.2433 0.001720       0.003161 
eta[5,4]  -0.38459 0.2523 0.001784       0.003073 
eta[6,4]  -0.37436 0.2268 0.001603       0.002531 
eta[7,4]  -0.65312 0.4826 0.003413       0.009303 
eta[8,4]  -0.83601 0.3098 0.002190       0.003636 
eta[9,4]  -1.51115 0.3068 0.002169       0.003518 
eta[10,4] -0.95057 0.2725 0.001927       0.003261 
eta[11,4] -0.72435 0.2891 0.002044       0.004120 
eta[12,4] -0.03421 0.2929 0.002071       0.004394 
eta[1,5]  -1.30600 0.6754 0.004776       0.014289 
eta[2,5]  -1.47722 0.4265 0.003016       0.005068 
eta[3,5]  -2.23987 0.4710 0.003331       0.005083 
eta[4,5]  -1.53721 0.3791 0.002681       0.004259 
eta[5,5]  -1.39135 0.3413 0.002414       0.003622 
eta[6,5]  -1.83269 0.3754 0.002654       0.003573 
eta[7,5]  -2.30125 0.6818 0.004821       0.011777 
eta[8,5]  -2.26253 0.4871 0.003445       0.005636 
eta[9,5]  -2.32280 0.4161 0.002942       0.003910 
eta[10,5] -2.80735 0.4989 0.003528       0.006172 
eta[11,5] -2.23699 0.4652 0.003289       0.005796 
eta[12,5] -2.28735 0.5963 0.004216       0.008584 
 
2. Quantiles for each variable: 
 
              2.5%       25%      50%     75%     97.5% 
eta[1,1]  -2.47231 -1.601713 -1.15320 -0.7161  0.092343 
eta[2,1]  -2.97291 -2.259818 -1.92786 -1.6070 -1.035777 
eta[3,1]  -1.91291 -1.448613 -1.22518 -1.0108 -0.613053 
eta[4,1]  -2.13287 -1.640465 -1.39335 -1.1543 -0.712511 
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eta[5,1]  -2.39312 -1.883633 -1.63092 -1.3846 -0.938136 
eta[6,1]  -2.15074 -1.698990 -1.47702 -1.2613 -0.876847 
eta[7,1]  -2.94036 -2.087166 -1.66058 -1.2572 -0.538260 
eta[8,1]  -1.88029 -1.410948 -1.17215 -0.9446 -0.523784 
eta[9,1]  -2.19898 -1.767932 -1.55592 -1.3520 -0.973893 
eta[10,1] -2.46681 -1.967521 -1.72172 -1.4906 -1.082698 
eta[11,1] -2.24391 -1.741957 -1.49580 -1.2500 -0.825542 
eta[12,1] -1.88627 -1.331800 -1.06122 -0.8044 -0.320995 
eta[1,2]  -0.63665  0.022646  0.35095  0.7018  1.363401 
eta[2,2]   0.09046  0.407454  0.57404  0.7403  1.064507 
eta[3,2]  -0.05689  0.205880  0.34670  0.4893  0.760450 
eta[4,2]   0.54754  0.790131  0.92677  1.0644  1.343290 
eta[5,2]   0.32704  0.564898  0.69977  0.8343  1.101365 
eta[6,2]   0.47440  0.692081  0.80966  0.9270  1.154854 
eta[7,2]  -0.50086  0.007997  0.26967  0.5366  1.063150 
eta[8,2]   0.36962  0.634979  0.77796  0.9208  1.204131 
eta[9,2]   0.24547  0.462034  0.57223  0.6845  0.903971 
eta[10,2]  0.31181  0.539577  0.66309  0.7862  1.020912 
eta[11,2]  0.26254  0.524441  0.66090  0.8011  1.077106 
eta[12,2]  0.69531  0.989045  1.14566  1.3120  1.635587 
eta[1,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[2,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[3,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[4,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[5,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[6,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[7,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[8,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[9,3]   0.00000  0.000000  0.00000  0.0000  0.000000 
eta[10,3]  0.00000  0.000000  0.00000  0.0000  0.000000 
eta[11,3]  0.00000  0.000000  0.00000  0.0000  0.000000 
eta[12,3]  0.00000  0.000000  0.00000  0.0000  0.000000 
eta[1,4]  -1.84022 -1.059482 -0.65382 -0.2582  0.481529 
eta[2,4]  -1.15019 -0.719819 -0.50743 -0.2934  0.103005 
eta[3,4]  -1.24518 -0.873616 -0.68669 -0.5079 -0.171912 
eta[4,4]  -0.45605 -0.151088  0.01327  0.1756  0.502887 
eta[5,4]  -0.88225 -0.551646 -0.38499 -0.2154  0.104430 
eta[6,4]  -0.82262 -0.527503 -0.37461 -0.2226  0.069840 
eta[7,4]  -1.61704 -0.978689 -0.65004 -0.3240  0.277148 
eta[8,4]  -1.45766 -1.040828 -0.83115 -0.6264 -0.245895 
eta[9,4]  -2.13037 -1.711929 -1.50184 -1.3039 -0.929313 
eta[10,4] -1.49822 -1.128315 -0.94526 -0.7661 -0.431478 
eta[11,4] -1.29704 -0.919924 -0.71937 -0.5278 -0.160346 
eta[12,4] -0.61718 -0.230538 -0.03339  0.1657  0.531120 
eta[1,5]  -2.66875 -1.758649 -1.29466 -0.8411 -0.008841 
eta[2,5]  -2.35278 -1.758268 -1.45933 -1.1811 -0.688208 
eta[3,5]  -3.22616 -2.543455 -2.21752 -1.9118 -1.380105 
eta[4,5]  -2.31597 -1.786380 -1.52641 -1.2770 -0.834258 
eta[5,5]  -2.09563 -1.615873 -1.38028 -1.1564 -0.746054 
eta[6,5]  -2.60430 -2.078414 -1.81769 -1.5707 -1.138450 
eta[7,5]  -3.69915 -2.749025 -2.28286 -1.8290 -1.037896 
eta[8,5]  -3.26893 -2.578628 -2.24667 -1.9186 -1.370867 
eta[9,5]  -3.19651 -2.590463 -2.30214 -2.0349 -1.567415 
eta[10,5] -3.84667 -3.134095 -2.78968 -2.4593 -1.880092 
eta[11,5] -3.20016 -2.534340 -2.21477 -1.9187 -1.374634 
eta[12,5] -3.55094 -2.666580 -2.25522 -1.8682 -1.214440 
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Trace plots and density curves for log-linear with age-gender effect 
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Content of data for log-linear model with and without age and gender effects 

y1 y2 y3 y4 y5 n a1 a2 a3 a4 a5 gender 
3 7 5 2 2 19 1 1 -1 0 0 1 
2 42 24 15 6 89 1 -1 -1 0 0 1 

12 55 39 20 4 130 1 0 2 0 0 1 
8 80 31 33 7 159 -1 0 0 1 -1 1 
7 74 37 25 10 153 -1 0 0 -1 -1 1 

11 107 48 33 8 207 -1 0 0 0 2 1 
1 12 10 6 1 30 1 1 -1 0 0 -1 

11 68 31 13 3 126 1 -1 -1 0 0 -1 
12 99 56 12 6 185 1 0 2 0 0 -1 

8 86 45 17 2 158 -1 0 0 1 -1 -1 
8 66 34 17 4 129 -1 0 0 -1 -1 -1 
8 70 22 22 2 124 -1 0 0 0 2 -1 
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Appendix B 

library(rjags) 
mydata<-read.csv(file.choose(),header=TRUE) 
 
y<-with (mydata , cbind (Cong_MWs, Cong_cities, Exhaustfumes, BuyLowEmi, ReducTravCar, 
CCView, CartoWalk, CartoBus, CartoBike, Tax_CarUse, AllowCarUse, ReducCarUse, 
ReducCarUse_NP, CarBetterPayLess)) 
 
ActAge<-mydata$ActAge 
Gender<-mydata$Gender 
HH<-mydata$HH 
inwork<-mydata$inwork 
employee<-mydata$employee 
fulltime<-mydata$fulltime 
noemp<-mydata$noemp 
Car<-mydata$Car 
cut<-c(-1,1) 
 
R<-rep(1,14) 
R<-diag(R) 
 
orddat<-list(y=y, ActAge=ActAge, Gender=Gender, HH=HH, inwork=inwork, 
employee=employee, fulltime=fulltime, noemp=noemp, Car=Car, cut=cut, R=R) 
 
zinits<-y-1 
zinits1<-2*zinits 
zinits2<-3*zinits 
zinits<-list(list(z=zinits1),list(z=zinits2)) 
 
ordjags<-jags.model("probitmodel.txt",data=orddat,inits=zinits,n.chains=2) 
update(ordjags,2000) 
ordsamples<-coda.samples(ordjags,c("beta.ActAge", "beta.Gender", "beta.HH", "beta.inwork", 
"beta.employee", "beta.fulltime", "beta.noemp", "beta.Car"), 10000) 
summary(ordsamples) 

 

Multivariate Probit model 
 
var z[1509,14]; 
model 
{ 
  for (i in 1:1509) 
    { 
      z[i,]~dmnorm(mu[i,],Omega) 
  for (j in 1:14) 
    { 
      y[i,j]~dinterval(z[i,j],cut) 
      mu[i,j]<-beta0[j]+beta.ActAge[j]*(ActAge[i]-50)+beta.Gender[j]*(2*Gender[i]-
3)+beta.HH[j,HH[i]]+beta.Car[j,Car[i]]+beta.inwork[j]*inwork[i]+beta.employee[j]*employee[i]+
beta.fulltime[j]*fulltime[i]+beta.noemp[j,noemp[i]] 
    } 
    } 
 Omega~dwish(R,20) 
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 for (j in 1:14) 
{ 
beta0[j]~dnorm(0,1) 
beta.ActAge[j]~dnorm(0,1) 
beta.Gender[j]~dnorm(0,1) 
beta.employee[j]~dnorm(0,0.0625) 
beta.inwork[j]~dnorm(0,0.0625) 
beta.fulltime[j]~dnorm(0,0.0625) 
 
  beta.HH[j,1]<-3*U.HH[j,1] 
  beta.HH[j,2]<-2*U.HH[j,2]-U.HH[j,1] 
  beta.HH[j,3]<-  U.HH[j,3]-U.HH[j,2]-U.HH[j,1] 
  beta.HH[j,4]<- -U.HH[j,3]-U.HH[j,2]-U.HH[j,1] 
  k.HH[j,1]<-9 
  k.HH[j,2]<-9/2 
  k.HH[j,3]<-9/6 
  for (k in 1:3) 

  {U.HH[j,k]~dnorm(0,k.HH[j,k]) 

  } 

  beta.Car[j,1]<-3*U.Car[j,1] 
  beta.Car[j,2]<-2*U.Car[j,2]-U.Car[j,1] 
  beta.Car[j,3]<-  U.Car[j,3]-U.Car[j,2]-U.Car[j,1] 
  beta.Car[j,4]<- -U.Car[j,3]-U.Car[j,2]-U.Car[j,1] 
  k.Car[j,1]<-9 
  k.Car[j,2]<-9/2 
  k.Car[j,3]<-9/6 
  for (k in 1:3) 

  {U.Car[j,k]~dnorm(0,k.Car[j,k]) 

  } 

  beta.noemp[j,1]<-2*U.noemp[j,1] 
  beta.noemp[j,2]<-U.noemp[j,2]-U.noemp[j,1] 
  beta.noemp[j,3]<--U.noemp[j,2]-U.noemp[j,1] 
  k.noemp[j,1]<-4 
  k.noemp[j,2]<-4/3 
  for (k in 1:2) 

  {U.noemp[j,k]~dnorm(0,k.noemp[j,k]) 

 
  beta.noemp[j,4]<-0 
 
  } 
}   
 
 
 
 
 
 
 
 
 
 



 

 

238 

Trace plots and density curves for latent variables 
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