Evaluation framework to assess benefits and harms of bone-anchored prosthesis

Frossard Laurent

Queensland University of Technology, Brisbane, QLD, Australia
University of the Sunshine Coast, Maroochydore, QLD, Australia

Introduction
Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb compared to socket-suspended prostheses. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. [1-15] Clearly, the current momentum experienced worldwide is creating a need for a standardized evaluation framework to assess the benefits and safety of each procedure.

Methods
The proposed evaluation framework was extracted from a systematic review of the literature including seminal studies focusing on clinical benefits and safety of procedures involving screw-type implant (e.g., OPRA) and press-fit fixations (e.g., EEFT, ILP, OPL). [16-25]

Results
The literature review highlighted that a standard and replicable evaluation framework should focus on:
- The clinical benefits with a systematic recording of health-related quality of life (SF-26, QTFA), mobility predictor (e.g., AMPRO), ambulation abilities (TUG, 6MWT), walking abilities (e.g., characteristic spatio-temporal) and actual activity level at baseline and follow-up post Stage 2 surgery.
- The potential harms with systematic recording of residuum care, infection, implant stability, implant integrity, injuries (e.g., falls) after Stage 1 surgery.

Discussion
There was a general consensus around the instruments to monitor most of the benefits and harms. The benefits could be assessed using a wide spectrum of complementary assessments ranging from subjective patient self-reporting to objective measurements of physical activity. However, this latter was assessed using a broad range of measurements (e.g., pedometer, load cell, energy consumption). More importantly, the lack of consistent grading of infections was sufficiently noticeable to impede cross-fixation comparisons. Clearly, a more universal grading system is needed. In the meanwhile, investigators are encouraged to implement an evaluation framework featuring the domains and instruments proposed above using a single database to facilitate robust prospective studies about potential benefits and harms of their procedure.

References
1. Kang, N.V., D. Morritt, C. Pendegrass, and G. Blunn, Use of

Evaluation framework to assess benefits and harms of bone-anchored prosthesis

Adj/Prof Laurent Frossard

Queensland University of Technology, Brisbane, QLD, Australia
University of the Sunshine Coast, Maroochydore, QLD, Australia

www.LaurentFrossard.com

6th International Conference Advances in Orthopaedic Osseointegration

Las Vegas, Nevada, USA
26/03/2015

Created by Laurent Frossard (PhD)
Background

What is an evaluation framework?

• Toolbox including a set of instruments to monitor the treatment and to assess the benefits and harms of bone-anchored prosthesis
Background

Why an evaluation framework is needed?

• Quick access to critical data
• Systematic way to report progresses
• Reflective and evidence-based practice
• Speed-up publications
• Facilitate approvals (FDA, ISO norm)
• Convince decision-makers
Background

How to design an evaluation framework?

- Purpose 1: The content
 - Choice of evaluation domains
 - Choice of instruments
- Purpose 2: The structure
 - Choice of technical platform
Content – Literature review

Evaluation framework

Generic publications

Specific publications

Grey literature

Benefits and harms of bone-anchored prosthesis

Personal notes

20 yrs of experience

Commonly accepted set of standardized evaluations

Osseointegration: Examining the Pros and Cons
Content – Overview

Clinical pathways

- Screening
- Pre-op
- Surgeries
- Rehab
- Follow-ups

- Pre-op data
- Surgery data
- Post-op data
- Rehab data
- Follow-ups data

Evaluation framework
Content – Overview

Clinical pathways

- Screening
- Pre-op
- Surgeries
- Rehab
- Follow-ups

Pre-op data
Surgery data
Post-op data
Rehab data
Follow-ups data

Clinical Outcomes Registry

Evaluation framework
Content – Overview

Clinical pathways

- Screening
- Pre-op
- Surgeries
- Rehab
- Follow-ups

Pre-op data
- Surgery data
- Post-op data
- Rehab data
- Follow-ups data

Health related quality of life
- Mobility prediction
- Ambulation abilities
- Walking abilities
- Activity level

Clinical Outcomes Registry

Benefits

Evaluation framework

Created by Laurent Frossard (PhD)
Content – Benefits

<table>
<thead>
<tr>
<th>Pre-op</th>
<th>S1</th>
<th>Post-op</th>
<th>Follow-ups</th>
</tr>
</thead>
<tbody>
<tr>
<td>-18 mth</td>
<td>0 mth</td>
<td>6 mth</td>
<td>18 mth</td>
</tr>
<tr>
<td>0 mth</td>
<td></td>
<td>12 mth</td>
<td>24 mth</td>
</tr>
<tr>
<td>6 mth</td>
<td></td>
<td>12 mth</td>
<td>36 mth</td>
</tr>
</tbody>
</table>

Rehab

Community-based

Unstable

Stable

http://news.err.ee/v/health/895aba12-fc3e-4258-bbf8-8ba1ef5791f
Content – Benefits

<table>
<thead>
<tr>
<th>Evaluation framework - Benefits</th>
<th>Clinical Outcomes Registry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td></td>
</tr>
</tbody>
</table>
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Domain

Assessment

Created by Laurent Frossard (PhD)
Content – Benefits

<table>
<thead>
<tr>
<th>Evaluation framework - Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Outcomes Registry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content – Benefits

<table>
<thead>
<tr>
<th>Evaluation framework - Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Outcomes Registry</td>
</tr>
</tbody>
</table>

Variables

Tool

Domain

Assessment
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Variables

Tool

Domain

Assessment

Subjective self-report

Objective measurements

Created by Laurent Frossard (PhD)
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Variables

Tool

Domain

Assessment

Self-report

Subjective self-report

Objective measurements

Created by Laurent Frossard (PhD)
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Variables
Mental and Physical Component Summaries

Tool
SF-36

Domain
Generic
Health related quality of life

Assessment
Self-report

Subjective self-report

Objective measurements

Created by Laurent Frossard (PhD)
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Variables
- Mental and Physical Component Summaries
- Prosthetic use-VM
- K-level
 - Prosthetic use, Mobility, Problem, Global
 - Amputee mobility predictor score

Tool
- SF-36
- Q-TFA
- AMPRO

Domain
- Generic
- Specific
- Health related quality of life
- Mobility Prediction
- Ambulation abilities

Assessment
- Self-report
 - Standardized tests
 - Physical tasks
- Objective measurements

Subjective self-report
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Variables
- Mental and Physical Component Summaries
- Prosthetic use-VM
- Prosthetic use, Mobility, Problem, Global
- K-level
- Amputee mobility predictor score
- Duration

Tool
- SF-36
- Q-TFA
- AMPRO
- TUG

Domain
- Generic
- Specific
- Mobility Prediction
- Ambulation abilities

Assessment
- Self-report
- Standardized tests
- Physical tasks

Subjective self-report

Objective measurements

Created by Laurent Frossard (PhD)
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Variables
- Mental and Physical Component Summaries
- Prosthetic use-VM
- Prosthetic use, Mobility, Problem, Global
- K-level
- Amputee mobility predictor score
- Duration
- Distance walked
- Characteristics spatial and temporal

Tool
- SF-36
- Q-TFA
- AMPRO
- TUG
- 6MWT
- Gait lab / GaitRite

Domain
- Generic
- Specific
- Mobility Prediction
- Ambulation abilities
- Walking abilities

Assessment
- Self-report
- Standardized tests
- Physical tasks

Subj ective self-report

Objective measurements

Created by Laurent Frossard (PhD)
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Variables
- Mental and Physical Component Summaries
- Prosthetic use-VM
- Prosthetic use, Mobility, Problem, Global
- K-level
- Amputee mobility predictor score
- Duration
- Distance walked
- Characteristics spatial and temporal

Tool
- SF-36
- Q-TFA
- AMPRO
- TUG
- 6MWT
- Gait lab / GaitRite

Domain
- Generic
- Specific
- Mobility Prediction
- Ambulation abilities
- Walking abilities
- Activity level

Assessment
- Self-report
- Standardized tests
- Community-based activity
- Physical tasks

Subjective self-report
Objective measurements

Created by Laurent Frossard (PhD)
Content – Benefits

Evaluation framework - Benefits

Clinical Outcomes Registry

Variables
- Mental and Physical Component Summaries
- Prosthetic use-VM
- Prosthetic use, Mobility, Problem, Global
- K-level
- Amputee mobility predictor score
- Duration
- Distance walked
- Characteristics spatial and temporal
- Inner loading Usage of prosthesis
- Number of steps, Physical activity duration, Total energy expended

Tool
- SF-36
- Q-TFA
- AMPRO
- TUG
- 6MWT
- Gait lab/GaitRite
- iPecs
- SenseWear

Domain
- Generic
- Specific
- Mobility Prediction
- Ambulation abilities
- Walking abilities
- Activity level

Assessment
- Self-report
- Standardized tests
- Community-based activity
- Physical tasks

Commonly reported
- Not commonly reported

Created by Laurent Frossard (PhD)
Content – Harms

<table>
<thead>
<tr>
<th>S1</th>
<th>Post-op</th>
<th>Post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mth</td>
<td>6 mth</td>
<td>12 mth</td>
</tr>
<tr>
<td>Op</td>
<td>Rehab</td>
<td>Activity</td>
</tr>
</tbody>
</table>

http://www.drsumit.co.in/treatment-queries.html
Content – Harms

<table>
<thead>
<tr>
<th>Evaluation framework – Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical outcomes registry</td>
</tr>
</tbody>
</table>

Created by Laurent Frossard (PhD)
Content – Harms
Content – Harms

<table>
<thead>
<tr>
<th>Evaluation framework – Harms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical outcomes registry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnosis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Advert event</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Domain</th>
</tr>
</thead>
</table>
Content – Harms

Evaluation framework – Harms
Clinical outcomes registry

Action
Diagnosis
Alert event
Domain
Content – Harms

Evaluation framework – Harms

Clinical outcomes registry

- Action
 - Refashion

- Diagnosis
 - Observations
 - Interview

- Adverse event
 - Skin loosening / irritation

- Domain
 - Residuum integrity
Content – Harms

Evaluation framework – Harms

Clinical outcomes registry

Action
- Refashion
- OA
- PA
- Surgery
- Revision
- Surgery

Diagnosis
- Grading
- X-Rays
- Pathology
- X-Rays
- Observations
- Interview

Adverse event
- Skin loosening / irritation
- Superficial
- Deep
- Failure
- Loosening

Domain
- Residuum integrity
- Infection
- Fixation stability

Created by Laurent Frossard (PhD)
Evaluation framework – Harms

Clinical outcomes registry

Action
- Refashion
- OA
- PA
- Surgery
- Revision
- Surgery
- Surgery
- Replacement
- Fitting / Rehab

Diagnosis
- Grading
- X-Rays
- Pathology
- X-Rays

Observations
- Observations
- Observations
- Observations

Interview
- Interview
- Interview
- Interview

Adverse event
- Skin loosening / irritation
- Superficial
- Deep
- Failure
- Loosening
- Periprosthetic fractures

Domain
- Residuum integrity
- Infection
- Fixation stability
- Fixation integrity

Created by Laurent Frossard (PhD)
Content – Harms

Evaluation framework – Harms

Clinical outcomes registry

Action
- Refashion
- OA
- PA
- Surgery
- Revision
- Surgery
- Surgery
- Replacement
- Fitting / Rehab

Diagnosis
- Grading
- X-Rays
- Pathology
- Observations
- Interview
- Observations
- Interview
- Observations
- Interview

Adverse event
- Skin loosening / irritation
- Superficial
- Deep
- Failure
- Loosening
- Periprosthetic fractures
- Fixation complications
- Falls

Domain
- Residuum integrity
- Infection
- Fixation stability
- Fixation integrity

Created by Laurent Frossard (PhD)
Structure - Technical platform

Medical information

X-ray, MRI, Scans, etc…
Structure - Technical platform

Outcome measures

Adverse events:
Deep infection, breakage, etc...

Benefits:
SF-36, Q-TFA, TUG, 6MWT, etc...

Mainly majors events picked up at follow-ups
Structure - Technical platform

Structure - Technical platform

Patient journey

e.g., Static and dynamics load bearing progression, first walk, etc…
Structure - Technical platform

Incidental events

e.g., Fall, new components, etc…
Minor events

Minor infections treated by GP,
Self-adjustment of fixation, etc…

Not typically pickup at follow-ups
Structure - Technical platform

- **Open source**
- **Commercial software**
 - Microsoft Access
 - Microsoft Excel
- **Web-based software**

- **600 hrs**
- **400 hrs**
- **400 hrs**
- **500 hrs**

Created by Laurent Frossard (PhD)
Structure - Technical platform

cloud-based system

http://www.soshawaii.com/services/cloud-computing-for-oahu-businesses/

800 hrs
Structure - Organisation

Easy to import and export data sets (SF-36)

Structure - Organisation

Cross-correlations between cofounders and outcomes

http://gibraltar databases.com/database_portfolio.html
Structure - Organisation

Reporting overall and individual data

http://theunboundedspirit.com/
Conclusion – Tips

1. Identify all your outcome measures first

Do the “thinking” before the “doing”!
Conclusion – Tips

1. Identify all your outcome measures first
2. Implement at least the common outcomes

Make sure you are using validated instruments providing publishable data!
Conclusion – Tips

1. Identify all your outcome measures first
2. Implement at least the common outcomes
3. Choose a commonly used platform

Do you want to “build” or to “drive” the car?
Conclusion – Tips

1. Identify all your outcome measures first
2. Implement at least the common outcomes
3. Choose a commonly used platform
4. Choose a flexible platform

Needs and standards change: make sure you can accommodate adjustments
Conclusion – Tips

1. Identify all your outcome measures first
2. Implement at least the common outcomes
3. Choose a commonly used platform
4. Choose a flexible platform
5. Start building your DB with Case 1

Entering back-log of data could take a long time!
Conclusion – Tips

1. Identify all your outcome measures first
2. Implement at least the common outcomes
3. Choose a commonly used platform
4. Choose a flexible platform
5. Start building your DB with Case 1
6. Generate statistically-ready outcomes

Data matter… but statistical analyses matter more!
Conclusion – To know more

Publication submitted to APMR:

Conclusion – To know more

Presentation at 2nd Australasian Osseointegrated for Amputees Conference:

http://eprints.qut.edu.au/82497/

Created by Laurent Frossard (PhD)
Evaluation framework to assess benefits and harms of bone-anchored prosthesis

Adj/Prof Laurent Frossard

Queensland University of Technology, Brisbane, QLD, Australia
University of the Sunshine Coast, Maroochydore, QLD, Australia

www.LaurentFrossard.com

6th International Conference Advances in Orthopaedic Osseointegration

Las Vegas, Nevada, USA
26/03/2015
Website
www.laurentfrossard.com
www.YourResearchProject.com

LinkedIn
www.ca.linkedin.com/pub/laurent-frossard/5/4b4/b59/

Google+
www.plus.google.com/#113083134851353167716/about

Facebook
www.facebook.com/YourResearchProject