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PURPOSE: Age-related changes in motion sensitivity have been found to relate to reductions in 

various indices of driving performance and safety. The aim of this study was to investigate the basis 

of this relationship in terms of determining which aspects of motion perception are most relevant to 

driving 

METHODS: Participants included 61 regular drivers (age range 22 - 87 years). Visual performance 

was measured binocularly. Measures included visual acuity, contrast sensitivity and motion 

sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting 

Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot 

display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating.  

Participants then completed the Hazard Perception Test (HPT) in which they were required to 

identify moving hazards in videos of real driving scenes, and also a Direction of Heading task 

(DOH) in which they identified deviations from normal lane keeping in brief videos of driving 

filmed from the interior of a vehicle. 

RESULTS: In bivariate correlation analyses, all motion sensitivity measures significantly declined 

with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order 

stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, 

visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual 

differences in DOH accuracy partly explained these relationships, where those individuals with 

poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive 

deviations in motion in the driving videos, which related in turn to their ability to detect the moving 

hazards. 

CONCLUSTIONS: The ability to detect subtle movements in the driving environment (as 

determined by the DOH task) may be an important contributor to effective hazard perception, and is 

associated with age, and an individuals’ performance on tests of motion sensitivity.  The locus of 

the processing deficits appears to lie in first-order, rather than second-order motion pathways. 
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INTRODUCTION  

The visual world is constantly in motion.  Visually guided behaviours such as driving 

require adequate perception of the constantly changing and dynamic information within the driving 

environment, including awareness of objects in motion, as well as an awareness of the viewer’s 

own position in space relative to the environment.  Recent studies have demonstrated that age-

related changes in sensitivity to visual motion may have an important influence over people’s 

driving ability or safety.1-5  In previous research we have shown that sensitivity to visual motion 

may predict older adults’ performance in closed4 and on-road driving environments,5 as well as 

their ability to perceive hazards in video presentations of driving scenes.6 

Moreover, we have also shown that these relationships are not merely a result of low-level 

visual changes (visual acuity or contrast sensitivity), suggesting that the ability to process visual 

motion represents a distinct predictor of driving-related hazard perception.6  The measure of hazard 

detection that we employed was the Hazard Perception Test (HPT), in which participants were 

asked to identify road hazards in videos of real road scenes. Hazard perception tests are currently 

used in the UK and certain states of Australia for the purpose of licensing.7 Performance on such 

tests has been associated with self-reported crash involvement in retrospective 8-11 and prospective 

12 studies. 

In the present study, we were interested in determining the basis of the previously 

demonstrated link between visual motion sensitivity and driving, in terms of the types of motion 

cues that might change with age and which might be important for driving, and the ways in which 

they might be compromised when motion sensitivity is decreased.  We hypothesised that correct 

perception of the direction of heading of a vehicle (in terms of being able to detect deviations in 

approach path) would be one important component of driving that would be affected by changes in 

motion sensitivity, and might also be an effective indicator of participants’ ability to effectively 

manoeuvre, as well as to easily identify moving hazards, in the driving environment.  Given that in 

part the definition of a road hazard relies on whether or not a driver is on a collision course with 
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respect to it, knowledge of one’s trajectory or heading with respect to other road users is key to 

effective avoidance of collisions. Accuracy of direction of heading judgments has been shown to 

reduce with age.13 In this study we administered the HPT, as used previously, and also tested 

participants on a new test which comprised short segments of the HPT videos, in which participants 

were asked to identify whether the vehicle was moving straight ahead, or veering to the left or right 

according to what would be considered ‘ideal’ lane-keeping (Direction of Heading – DOH task).  

We hypothesized that older participants would be compromised in terms of their motion sensitivity 

and perform more poorly on the HPT, as well as the DOH test.  In addition, we hypothesised that 

the differences between participants on the DOH measure would in part explain the association 

between motion sensitivity and performance on the HPT. 

To more closely examine the level of processing at which the changes in motion sensitivity 

affect driving, we used a battery of psychophysical motion sensitivity tests which are believed to be 

processed at different levels of the visual system. We measured sensitivity for a drifting Gabor 

patch, a stimulus which does not require fine resolution of detail in order to be seen, and therefore is 

unlikely to be affected by low-level visual changes.6  Thus it is assumed that this is an effective 

stimulus for stimulating motion detectors at all levels of the visual system, but should not 

discriminate between individuals on the basis of their visual function. We also included two 

measures of motion perception using random dot kinematograms: Dmin thresholds and coherence 

thresholds.  Dmin, the minimum displacement threshold of individual dots in a random dot 

kinematogram, is likely to be processed at the retinal level, but judgments of the overall direction of 

motion of the display (global motion) would also involve higher-level coding. 14, 15  Dmin has been 

shown to be sensitive to retinal pathology in patients with glaucoma.16 Coherence thresholds 

represent, for a given displacement, the proportion of dots which must move coherently to enable 

detection.  Perception of motion coherence (i.e., separating the signal from noise dots) has been 

shown to correlate with higher level neural processes (in the medial temporal areas) and thus 
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require higher level processing,17 and was shown to be unrelated to retinal pathology in patients 

with glaucoma.16  

 Previous research has only used first-order motion displays in exploring the relationship 

between motion perception and driving.1-5 First-order motion refers to the visual cues provided by a 

moving stimulus which are defined by differences in luminance across the image. Stimuli such as 

random-dot kinematograms and Gabor patches vary in luminance and it is the luminance changes 

which provide the cues relevant to motion.  However, it has been shown that in real world stimuli, 

important motion cues can be provided by second-order motion (motion defined by differences in 

texture, contrast, or colour, but not luminance).18  Previous research has suggested that separate 

pathways are responsible for coding of first and second-order motion.19  In this project we also 

wished to establish whether a test of second-order motion would be differentially useful in 

predicting HPT performance in this sample. 

Thus in this study we compared four different measures of motion sensitivity in terms of 

their capacity to predict changes in ability to detect hazards on the HPT and identify heading 

direction, in order to better understand the likely processing stage which is impacted in those older 

adults who have reduced performance on both tasks.  

 

METHOD 

Participants 

Sixty one adults aged between 22 and 87 years of age (M = 51.31, SD = 20.36) were 

recruited to participate in the current study.  The driving experience of participants ranged between 

4 and 69 years (M = 32.22, SD = 19.41): all participants held a current Queensland drivers licence 

and drove regularly in the Brisbane metropolitan area. Participants were required to be living 

independently in the community and have no significant eye diseases or health conditions that 

might adversely affect their driving. Participants were recruited by word of mouth or via 

information flyers that invited adults to participate in a study of driving safety and motion 
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perception.  The procedure was approved by the Queensland University of Technology Human 

Research Ethics Committee and complied with the Declaration of Helsinki. 

 

Procedure 

Participants were tested individually in a single session which took approximately 1.5-2 

hours to complete. Informed consent was obtained from all participants who were instructed that 

they could withdraw from the study at any time and that all data collected as part of the study would 

be completely confidential; the assessments were conducted as part of a larger study of driver 

safety. All tests were conducted with participants wearing their habitual distance vision correction 

for driving (if any) and an appropriate working distance correction lens. 

 

Materials and Procedures 

Vision measures. Visual performance was assessed binocularly. For all vision tests, 

participants were instructed to guess if they were unsure. Visual acuity was assessed at a working 

distance of  3.2 metres using the  Bailey-Lovie chart 20 under standard testing conditions and each 

letter was scored as -0.02 log units. Binocular contrast sensitivity was measured with the Pelli-

Robson chart under standard conditions at a viewing distance of 1 m with an appropriate correction 

for the working distance where necessary.  Participants were encouraged to guess at letters; each 

letter was scored 0.05 log units. 

Motion perception measures. All motion tests were conducted in a dimly lit room 

(approximately 15 lux).  Motion stimuli were displayed at the maximum contrast possible with the 

CRT display (>99% weber contrast) with the lowest luminance output of the display (black 

background for dot stimuli and darkest part of the grating for the grating stimuli) being less than 3 

cd m-2 allowing for room illumination. Stimuli were displayed on a 365mm x 275mm NEC 

MultiSync E950 computer screen. The working distance was 3 metres and participants responded 

verbally and were instructed to guess when they were unsure.   
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Measures of motion perception from RDK stimuli. Two aspects of central motion 

perception; minimum displacement threshold (Dmin) and coherence threshold (signal to noise ratio), 

were measured through the use of RDKs.  These included a 3.9° square patch of white dots 

displayed across a black background. On each trial, a cluster of dots within the centre of this patch 

(subtending 2.9°) was displaced across four frames at a rate of one frame per 100 ms and with no 

interval between presentations, eliciting the sensation of uniform movement in one of four 

directions (upwards, downwards, left or right).5 The density of dots (proportion of the screen area 

occupied by dots) was 0.43% and frames were depicted using a standard VGA card.  

Minimum displacement threshold. A participant’s minimum displacement threshold 

(Dmin) represents the smallest amount of motion detected by that participant. Participants 

were required to identify the direction of movement on each trial; the degree of movement 

was varied in a 2-down 1-up staircase, with 8 reversals. A minimum displacement threshold 

(Dmin; i.e., the smallest amount of movement detected by a participant) was defined as the 

average of the displacement for the last 6 reversals in the series of trials.  

Coherence threshold. A participant’s coherence threshold represents the minimum 

amount of coherent movement that is necessary in order for that participant to detect a 

uniform direction against a background of “noise”. Participants were required to identify the 

most coherent direction of movement on each trial. Throughout trials, the proportion of 

coherent and random dots was varied in a 2-down 1-up staircase, with 8 reversals to 

determine a coherence threshold.  

The drifting Gabor test consisted of a Gabor patch subtending 2°, which contained a 3 

cycle/degree vertical sinusoidal grating filtered through a Gaussian envelope. The phase angle of 

the Gabor incrementally changed during each refresh cycle, producing a sensation of smooth 

horizontal motion. Participants were required to identify the direction in which the patch seemed to 

be drifting. The drift rate varied in a 2-down 1-up staircase with 8 reversals, and the average of the 
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last six reversals was taken as the threshold. For any given bar in the grating, the speed with which 

the bar image moved across the screen was used as the dependent variable.    

Second order motion test. The second-order motion stimulus was a contrast-modulated 

patch of dynamic noise subtending 3.5°, where the noise comprised pixels of random luminance 

ranging from the minimum to the maximum output of the display.  The contrast modulation 

consisted of a vertical sinusoidal grating of 8 cycles whose phase angle was varied in the same 

manner as for the Gabor stimulus described above. 

Hazard Perception Test. A shortened version of the HPT was used to provide an index of 

driving performance and safety 7, 9, 11, 21. In the current study, the HPT was presented on a 50 inch 

LG50PJ650 plasma screen at a working distance of 1 metre and participants completed one of four 

possible versions of the HPT in a random order. All versions consisted of 25 previously validated 

video-clips of everyday driving scenes from the perspective of the driver, and each video-clip 

contained a unique traffic conflict (which was defined as anything that requires the driver to take 

immediate action, such as a change in steering or driving speed, to avoid a collision with another 

road user). 7, 9, 11, 21   Hazards presented in this test included pedestrians or cyclists entering the 

roadway or crossing the road, inappropriate merging by adjacent cars into the user’s lane, cars and 

motor cycles crossing the centre line approaching from the opposite direction, and on occasion 

stationary objects, for instance cars or transit vehicles blocking the approach of the vehicle. 

Participants were required to identify each unique traffic conflict as quickly as possible, and 

respond by clicking on the identified traffic conflict with a mouse. Each participant was provided 

with a practice session consisting of approximately 10 video-clips from one of the other three 

versions that were not allocated to them for testing purposes. This was to minimise the potential of 

missing or inaccurate responses that may have occurred due to participants (1) not responding to the 

correct traffic conflicts or (2) not identifying traffic conflicts as worth responding to, and therefore 

not responding at all.9 Once participants responded correctly to approximately 5 consecutive videos, 

or when participants reported that they fully understood the test, the practice condition was 
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terminated and the test condition was commenced. Participants’ response times in seconds, as well 

as the accuracy of the response, was recorded for each video-clip in the test condition. The mean 

response time was calculated as per our previous studies for the 25 video-clips, and video-clips that 

participants did not respond to were excluded from their score.9   

Direction of Heading test.  This consisted of 78 short video segments (1-2 s in duration) 

that were created from the original HPT videos.  As for the HPT, the videos were taken from the 

perspective of a driver. The video segments were selected so that the direction of heading of the 

vehicle (relative to what would be considered ideal lane-keeping) was unambiguously either 

drifting left, drifting right, or driving straight ahead within the lane markings. The direction of 

heading of the vehicle in each of the video segments was confirmed by measuring the distance and 

angle between the car and lane markings during the course of the video.  Participants were 

instructed to imagine themselves driving the vehicle and asked to indicate the direction of travel 

(relative to normal lane-keeping) by using the arrow keys (left for a leftward drift, right for a 

rightward drift, up to indicate ‘straight ahead’ or ‘appropriate’ lane-keeping). The selection of 

videos was based on the results of a pilot study and included only those videos to which the pilot 

participants responded correctly better than chance.  The final set of videos included 21 scenes 

involving a leftward drift, 28 right, and 29 straight ahead.  The DOH test was displayed on the same 

screen as the HPT, at 1 metre. 

 

RESULTS 

 Table 1 shows the median and interquartile ranges for the measures used in this study.  

There was a range of visual function corresponding to the ages of the participants.  Age was 

bimodal, with an overall higher proportion of participants aged <30 or >60  (in all there were 18 

participants aged 21-30, 6 aged 31-40, 1 aged 41-50, 5 aged 51-60, 23 aged 61-70 and 8 aged 70+).  

The Gabor and second-order motion tests were positively skewed, and the number of correct 

responses on the HPT negatively skewed.  To ensure robustness, the analyses were conducted using 
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both parametric and bootstrap non-parametric analyses, and analyses flagged as significant only 

where both parametric and bootstrap analyses agreed.  Given the large number of comparisons 

included in this study, Bonferroni correction would have reduced the power of the study to 

unacceptable levels,22 therefore no adjustment for type I error was undertaken. 

 

Table 1.  Mean, standard deviation and range of each of the key measures used in the study 

 

 Median IQR Minimum Maximum 
Age (years) 61 38 22 87 
Visual Acuity 
(logMAR) 

-0.08 0.15 -0.22 0.20 

Contrast Sensitivity 
(log units) 

2.05 0.13 1.60 2.30 

Dmin (log min arc) -0.67 0.32 -1.04 -0.34 
Motion Coherence 
threshold (%) 

0.30 0.20 0.03 0.41 

Drifting Gabor (Hz) 0.07 0.08 0.01 0.31 
Second Order Motion 
(Hz) 

0.05 0.09 0.01 0.31 

Direction of Heading 
accuracy (%) 

79.5 17.31 36 74 

HPT Mean Response 
Time (sec) 

5.08 1.18 3.25 7.81 

HPT Accuracy (out of 
25) 

21 3 8 25 

 

 

Table 2 shows the correlations between each of the vision tests (VA, CS and the motion 

tests) with the three measures of perception in the video driving scenes including HPT accuracy, 

HPT response time, and DOH accuracy.  At the bivariate level, there were strong significant age-

related changes for all measures.  All of the vision measures related significantly to HPT accuracy.  

Dmin, coherence, and the drifting Gabor measure all related significantly to the hazard perception 

response time, and also to the DOH accuracy. 
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Table 2. Bivariate correlations between all variables 

 

  2 3 4 5 6 7 8 9 10 

1. Age -.37** .41** -.72** .45** -.53** .71** .37** .32* .27* 

2. HPT (number correct)  -.51** .48** -.29* .33* -.39** -.42** -.36** -.30* 

3. HPT (reaction time)    -.31* 0.07 -0.24 .29* .26* .29* 0.20 

4. Direction of Heading (number correct)    

 

-.37** .48** -.55** -.40** -.38** -0.23 

5. Visual Acuity    

  

-.38** .51** .41** .38** 0.19 

6. Letter Contrast Sensitivity    

   

-.44** -.28* -.27* -.34** 

7. Dmin    

    

.62** .31* .35** 

8. Coherence    

     

0.25 .33* 

9. Gabor    

      

0.25 

10.  Second Order Motion                  

** Correlation is significant at the 0.01 level 
(2-tailed). 

 

        * Correlation is significant at the 0.05 level 
(2-tailed). 

 

        
 Listwise N=61 
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In order to examine the unique contributions of motion perception to the HPT and DOH 

measures, controlling for age and other aspects of visual function (visual acuity and contrast 

sensitivity), a series of partial correlations were conducted (Table 3). The Gabor motion test 

remained a significant predictor of HPT accuracy and response time.  Coherence was also a 

significant predictor of HPT accuracy controlling for age and the visual function measures.
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Table 3.  Partial correlations between motion sensitivity measures and the HPT and Direction of Heading measures, controlling for age, visual acuity 

and contrast sensitivity  

 

  2 3 4 5 6 7 

1.  HPT (number correct) -0.45 0.31 -0.16 -0.29* -0.24* -0.19 

2. HPT (reaction time) 

 

-0.03 0.03 0.18 0.23* 0.10 

3. Direction of Heading (number correct) 

  

-0.06 -0.19 -0.21 -0.01 

4. Dmin 

   

0.50 0.03 0.21 

5. Coherence 

    

0.06 0.24 

6. Gabor 

     

0.15 

7.  Second Order Motion             

* p < .05 (1-tailed) 
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To investigate whether the relationship between motion sensitivity and HPT accuracy was 

significantly mediated by the ability to detect motion direction in the hazard perception videos (as 

assessed by the DOH task), bootstrap tests of mediation were conducted for each of the motion tests 

shown to be significant in the partial regression analysis (ie. Coherence, and Gabor).  The 

relationship between Coherence and HPT accuracy was significantly mediated by performance on 

the DOH task (indirect effect b = -4.33, 95% CI [-11.07, -0.23]), such that the relationship was 

significantly reduced after controlling for DOH, although it did remain significant (p = .029).  In 

contrast the relationship between the Gabor motion sensitivity index and performance on the HPT 

was fully explained by differences in performance on the DOH task (indirect effect b = -6.53 95% 

CI [-17.52, -0.89]) and became non-significant after controlling for DOH (p = 0.13). 

 

DISCUSSION 

In this study we examined how the deficits in motion perception which occur with 

increasing age can lead to changes in performance on a range of driving-related tasks. As predicted, 

older adults performed significantly more poorly on all the tests included in this study, including the 

visual function measures, motion sensitivity and the HPT and DOH tests. The DOH judgment was 

significantly impaired in older participants, particularly those with impaired motion sensitivity, and 

performance on this task explained in part the association between motion sensitivity and 

performance on the HPT. 

A number of the motion tests were significantly associated with performance on the HPT. 

The Gabor motion sensitivity task was a significant predictor of both accuracy and response time on 

the HPT, consistent with our previous findings.23  Since perception of motion from this stimulus 

can be accomplished at all levels of the visual system, including both low (retinal) and higher 

(cortical) levels of processing, no definitive conclusions can be drawn regarding the level of the 

visual system which affects driving.  However, the test which showed the strongest unique 

relationship with HPT accuracy in this sample was the coherence threshold, which is known to 
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correlate with higher-level processing.17  Dmin, which has been shown to be sensitive to low-level 

(retinal) changes was not similarly associated with HPT performance after controlling for age or 

visual function. Thus we conclude that the relationship between motion perception and performance 

on the HPT is likely to be due to higher-level changes in the neural systems responsible for 

extracting motion from visual noise.  

The DOH measure created for this study is novel, and elucidates an important aspect of 

visual perception in driving which can be compromised in those with reduced motion sensitivity.  

Correct perception of the direction of heading of one’s own vehicle, as well as other vehicles on the 

road, is essential to maintaining correct lane position, as well as ensuring smooth handling and 

navigation through traffic.  Certain hazards, for instance pedestrians or cyclists, may be defined as 

hazards only if the approaching vehicle is on a collision course with respect to them, and avoiding 

collisions with pedestrians or cyclists requires perceptual feedback regarding whether it is necessary 

to alter one’s approach (either by braking or steering).  Other hazards presented in the HPT used 

here featured appropriate or inappropriate merging of other vehicles (e.g., changing lanes). 

Successful merging largely relies on being able to correctly identify one’s position with respect to 

other road users at all times. It is important to note, however, that this is only one of a number of 

motion cues important to driving (others might include judging the speed of vehicles crossing one’s 

path, estimating time to contact for a looming object, and judging acceptable time headway to 

merge or enter traffic).  Thus it is not surprising that performance on this task only partially 

mediated the relationship between motion perception and HPT performance in this study.  

Potentially the relationship observed between the DOH and the coherence test and HPT reflects the 

complex nature of direction judgments in real-world driving.  Since the direction judgment requires 

simultaneous perception of looming as well as translational motion vectors (optic flow) it should 

also reflect some of the abilities used by drivers in judging the angle of approach to a hazard, and 

therefore being able to judge in some sense the location of the hazard in depth and whether they are 

on a collision course with it.  It is important to note in this context that the sense of direction and 
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velocity are derived here from 2-dimesional cues, and there may be other cues that are derived from 

real motion in depth (including somatic and vestibular cues as well as peripheral monocular cues) 

which could only be examined in real-world driving situations. 

These results have potential implications for the future remediation of unsafe driving. 

Wilkins et al24 reported that motion sensitivity can be improved among younger drivers following 

training and this translated to improvements in braking responses on a simulator task.  If this were 

replicated in a wider population, it might be possible to remediate through training some of the 

deficits observed here, leading to overall higher safety among this population. 

The second-order motion sensitivity test was related to HPT at the bivariate level, but was 

not a significant predictor after controlling for age and the visual function measures.  Since the 

second-order motion stimulus used here consisted of a contrast-modulated grating we conjecture 

that this test may have acted as a surrogate measure for participant’s contrast sensitivity, and not 

motion perception, in this study.  Given that previous research has strongly indicated that first- and 

second-order motion are processed in different (possibly parallel) streams in the visual system,19 the 

fact that the first-order motion tests used here correlated with hazard perception while the second-

order stimulus did not, seems to indicate that first-order motion is the strongest contributor to the 

kind of motion judgments measured in the displays used here. 

A strength of this study was the inclusion of visually normal adults over a wide age range, 

which enabled us to investigate the changes in motion perception with increasing age, effectively 

uncontaminated by eye disease.  Although participants were not specifically screened by 

ophthalmoscopy, all performed within a normal range according to their visual acuity and contrast 

sensitivity (-0.22 to 0.20 logMAR visual acuity, and letter contrast sensitivity of 1.60 to 2.30 log 

units), and therefore the changes in both motion sensitivity and performance on the video-based 

driving perception measures are unlikely to be due to ocular pathology, but rather to represent 

‘normal’ age-related changes in motion sensitivity.  Although it is impossible to ever fully separate 

age from general sensory decline, the robustness of the relationships here, even controlling for 
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visual acuity and contrast sensitivity, in addition to age, indicate that there is something unique in 

the changes in motion processing which is not explained by simple sensory decline. 

The findings of this study should also be considered in light of some potential limitations. 

The HPT measure used in this study, while demonstrably a useful proxy measure of perceptual 

ability in driving, is nonetheless an artificial task, as was the DOH test constructed for this study.  

The high level of accuracy on the HPT is typical in this paradigm, as hazards are chosen to be such 

that most people do eventually detect them. This high accuracy created some ceiling compression in 

the data, which can suppress some effects. Thus it would be informative to also incorporate a test 

with greater variability in terms of accuracy (i.e., a more difficult measure) in future research.  The 

sample, while evidencing strong and significant results, was nonetheless small. Volunteer 

participants recruited by word of mouth, as in the present study, may also differ in some 

characteristics from participants less willing to volunteer for research participation. It is necessary 

to validate these findings in on-road driving, and also through prospective examination of crash 

rates, among a larger sample of current drivers.  However, these preliminary data support previous 

reports regarding the importance of motion sensitivity for the perception of dynamic cues in driving 

scenes, and suggest a possible mechanism through which these changes may be manifested. 
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