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Abstract The ambiguity acceptance test is an important quality control procedure in high preci-
sion GNSS data processing. Although the ambiguity acceptance test methods have been extensively
investigated, its threshold determine method is still not well understood. Currently, the threshold is
determined with the empirical approach or the fixed failure rate (FF-) approach. The empirical ap-
proach is simple but lacking in theoretical basis, while the FF-approach is theoretical rigorous but
computationally demanding. Hence, the key of the threshold determination problem is how to effi-
ciently determine the threshold in a reasonable way. In this study, a new threshold determination
method named threshold function method is proposed to reduce the complexity of the FF-approach.
The threshold function method simplifies the FF-approach by a modeling procedure and an approxi-
mation procedure. The modeling procedure uses a rational function model to describe the relationship
between the FF-difference test threshold and the integer least-squares (ILS) success rate. The approx-
imation procedure replaces the ILS success rate with the easy-to-calculate integer bootstrapping (IB)
success rate. Corresponding modeling error and approximation error are analysed with simulation data
to avoid nuisance biases and unrealistic stochastic model impact. The results indicate the proposed
method can greatly simplify the FF-approach without introducing significant modeling error. The
threshold function method makes the fixed failure rate threshold determination method feasible for
real-time applications.

Keywords ambiguity acceptance test · fixed failure rate approach · ratio test · difference test ·
threshold function

1 Introduction

Integer ambiguity resolution (AR) is the key technique for precise GNSS positioning applications.
With the correctly fixed integer ambiguity parameters, centimetre to millimetre positioning accuracy
is achievable. However, incorrectly fixed integer ambiguity can introduce an unacceptable large error
into positioning results without notice. Reasonably reject unreliable integer ambiguities can reduce the
failure risk and improves the AR reliability. The procedure of determining whether to accept the fixed
integer ambiguity is known as ambiguity acceptance test.

The integer aperture (IA) estimation theory has been established to solve the ambiguity acceptance
test problem (Teunissen, 2003a,b). Under the IA framework, different IA estimators are constructed
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with different acceptance regions. The most popular IA estimators are derived from the ’discrimination
test’, e.g. the ratio test (Euler and Schaffrin, 1991; Abidin, 1993), the difference test (Tiberius and De
Jonge, 1995) and the projector test (Han, 1997; Wang et al., 1998).

Besides the acceptance region shape, the size of the acceptance region (or named the test threshold)
is also important in ambiguity acceptance test. Generally, the threshold determination method can be
classified into two classes: the empirical approach and the fixed failure rate (FF-) approach. The
empirical approach gives a fixed threshold according to indivadual experience,e.g. (Euler and Goad,
1991; Han, 1997). This method is simple but lacking in theoretical basis. The FF-approach (Teunissen
and Verhagen, 2009) determines the threshold according to the underlying model and the failure rate
tolerance. The FF-approach incorporates the impact of underlying model in decision-making and the
reliability becomes controllable. The limitation of the FF-approach is its complexity,which is caused by
the failure rate calculation and the inverse integration equation problem. The failure rate calculation is
a high dimensional integration problem over an irregular region. It is difficult to obtain the analytical
solution, thus the Monte Carlo method is adopted as an alternative. The Monte Carlo method requires
large-scale simulation work and introduces the ’computation burden’ problem into the FF-approach.
The threshold determination problem is the ’inversion’ of the integral equation that links the failure
rate to the size of the aperture (Teunissen and Verhagen, 2009). A look-up table method for the FF-
ratio test has been proposed to overcome the ’inversion’ problem in the FF-approach(Teunissen and
Verhagen, 2009; Verhagen and Teunissen, 2013; Wang and Feng, 2013).

In this paper, a new threshold determination method named threshold function method is pro-
posed to simplify the FF-approach. The remaining parts of the paper are organized as follows: current
threshold determination methods, including the empirical approach and the FF-approach, are reviewed
in section 2. The methodology of establishing the threshold function is introduced in section 3. The
modeling error and performance validation of the threshold function method is discussed in section 4.
Finally, the conclusion and outlook are summarized in section 5.

2 Threshold determination methods in ambiguity acceptance test

The ambiguity acceptance test is a quality control procedure deciding whether to accept the estimated
integer ambiguity. The threshold determination is an important aspect of the ambiguity acceptance
test problem. Current threshold determination methods can be divided into two classes: the empirical
approach and the fixed failure rate approach. In this section, these threshold determination approaches
are briefly reviewed.

2.1 The procedure of the ambiguity estimation and validation

The carrier phase based GNSS positioning model can be given as:

E(y) = Aa+Bb,D(y) = Qyy (1)

where E(·) and D(·) are the mathematical expectation and dispersion operators respectively. y is the
observation vector including both code and carrier phase measurements. a and b are the integer pa-
rameter vector and the real-valued parameter vector respectively. A and B are the design matrices
of a and b respectively. The observation vector y is assumed following the normal distribution and
corresponding variance-covariance (vc-) matrix is denoted as Qyy.

The mixed integer model (1) can be solved in four steps:

1. Solving equation (1) with standard least-squares method. In this step, the integer nature of a is

not considered. The estimated parameters â and b̂ are known as ’float solution’.
2. Integer ambiguity estimation. The float solution â is mapped to integer vector ǎ by the integer

estimator. The optimal integer estimator is the integer least-squares (ILS)(Teunissen, 1999). The
integer estimation procedure can be described as ǎ = I(â),with I : Rn → Zn. The integer estimator
maps all â falling in particular pull-in region Sǎ to same integer vector. The shape of the pull-in
region Sǎ is defined by the integer estimator.
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3. Ambiguity acceptance test. This step determines whether to accept the integer vector ǎ with IA
estimators. This study discusses how to reasonably determine the threshold of the IA estimators.

4. If the fixed integer ambiguity ǎ is accepted by the IA estimators, the real-valued parameters can be

updated with b̌ = b̂−Qb̂âQ−1
ââ (â− ǎ). The ǎ and b̌ are known as the ’fixed solution’. If ǎ is rejected,

the float solution b̂ is preferred.

2.2 The ratio test and the difference test

There are many IA estimators available for the ambiguity acceptance test problem, e.g. the ellipsoidal
integer aperture (EIA)(Teunissen, 2003a), the optimal integer aperture (OIA)(Teunissen, 2005). In
this study, the ratio test and difference test are selected due to their simplicity and high performance
(Verhagen, 2005).

The ratio test is defined as (Frei and Beutler, 1990):

µR =
‖â− ǎ2‖2Qââ

‖â− ǎ‖2Qââ

≥ µ̄R (2)

where µR and µ̄R as the ratio test statistic and corresponding threshold respectively. ǎ and ǎ2 are the
’best integer candidate’ and the ’second best integer candidate’ respectively. The best integer candidate
ǎ is defined as ǎ = arg min

z∈Zn
‖â− z‖2Qââ

and the second best integer candidate ǎ2 has the second smallest

Euclidean norm. ‖â− z‖2Qââ
= (â − z)TQ−1

ââ (â − z). The float ambiguity â and its vc-matrix Qââ can
be obtained by the standard least-squares and ǎ, ǎ2 can be obtained from the integer estimation.

The ratio test is a member of integer aperture estimator,which is known as ratio test integer aperture
(RTIA). Its acceptance region can be constructed from its definition (2), which is given as(Verhagen,
2005; Verhagen and Teunissen, 2006a):

Ω0,R = {x ∈ S0|
∥∥∥∥x+

µ̄R
1− µ̄R

z

∥∥∥∥2

Qââ

≤

µ̄R
(1− µ̄R)2

‖z‖2Qââ
∀z ∈ Zn\{0}}

(3)

where Ω0,R is the acceptance region of the RTIA centred at the integer vector {0}. The acceptance
region is an overlap of many hyper-ellipsoids, and its size is determined by the threshold µR. The details
of the ratio test acceptance region have been discussed (Verhagen, 2005; Verhagen and Teunissen, 2006a;
Wang et al., 2014).

Besides the ratio test, the difference test is a high performance IA estimator as well. Recent research
indicated the FF-difference test is an approximation of OIA and achieves higher success rate than the
FF-ratio test in strong models (Wang et al., 2014), so the difference test is worth to investigation.

The difference test is defined as (Tiberius and De Jonge, 1995):

µD = ‖â− ǎ2‖2Qââ
− ‖â− ǎ‖2Qââ

≥ µ̄D (4)

Similarly, µD and µ̄D are the difference test statistic value and corresponding threshold. The difference
test uses the difference of the two distances rather than the ratio to test the closeness between â and
ǎ.

Similar to the ratio test, the difference test is known as the difference test integer aperture (DTIA)
(Verhagen, 2005; Verhagen and Teunissen, 2006a). The definition of the DTIA can be derived from
equation (4) and expressed as:

Ω0,D = {x ∈ S0|xTQ−1
ââ z ≤

1

2
(‖z‖2Qââ

− µ̄D),

∀z ∈ Zn\{0}}
(5)

where xTQ−1
ââ z is a dot product of the vector x and z in Q−1

ââ spanned space. The geometrical inter-

pretation of the difference test is shown in Fig. 1. zmin = arg min
z∈Zn\{0}

‖â− z‖2Qââ
. The projection of
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Figure 1 A two-dimensional example of the difference test acceptance region

vector x on the vector zmin is
xTQ−1

ââ zmin

zTminQ
−1
ââ zmin

zmin, which is denoted as the vector xp in Fig. 1. B is the

intersection of the DTIA acceptance region bound and the vector zmin. The difference test compares
the norm of vector ‖xp‖2Qââ

and ‖B‖2Qââ
, if ‖xp‖2Qââ

≤ ‖B‖2Qââ
, x will be accepted. The size of the

DTIA acceptance region is controlled by the threshold µ̄D.

2.3 The empirical approach

The ratio test and the difference test defines their acceptance region shape and their thresholds deter-
mine the acceptance region size. With regard to the threshold determination problem, there are two
classes of approaches: the empirical approach and the fixed failure rate (FF-) approach.

The empirical approach determines the threshold according to individual experiences. Normally, the
empirical threshold is a constant. Landau and Euler (1992) and Wei and Schwarz (1995) recommended
2 as ratio test threshold, while Han (1997) suggested 1.5 as the threshold with an improved stochastic
model in kinematic data process. A more conservative ratio test threshold (e.g. 3 ) is also popular in
GNSS data process, e.g. (Leick, 2004; Takasu and Yasuda, 2010). Difference test threshold is suggested
as 15 by Tiberius and De Jonge (1995).

The empirical thresholds may work well in particular scenarios, but it is still far from enough. The
empirical approach simply assumes the threshold is independent from underlying model, while it is
unrealistic. The definition of the ratio test and the difference test has indicated the test statistics are
connected to Qââ. While Qââ is determined by the design matrices A,B and the observation noise
vc-matrix Qyy. Moreover, it is difficult to evaluate the performance of the ambiguity acceptance test
with empirical threshold, since there is no reliability indicator in the empirical approach.

2.4 The fixed failure rate approach

The FF-approach determines the threshold based on the probability theory, while it is more complex
than the empirical approach.

The probability model for the ambiguity acceptance test is demonstrated in Fig. 2. In one dimen-
sional case, the integer estimator pull-in region S0 is the interval [−0.5, 0.5] and Ω0 ⊂ S0. Assuming
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the float solution â follows normal distribution N(a,Qââ), the probability density function (PDF) of â
is given as:

fâ(x) =
1√

|Qââ|(2π)n
exp{−1

2
‖x− a‖2Qââ

} (6)

where | · | is the determinant of the matrix. The expectation of â is the unknown integer vector a. The
ambiguity residuals ε̌ is defined as ε̌ = â − ǎ and its PDF is given as(Teunissen, 2002; Verhagen and
Teunissen, 2006b):

fε̌(x) =
∑
z∈Zn

fâ(x+ z)s0(x), sz(x) =

{
1 if x ∈ Sz
0 otherwise

(7)

where Sz is the integer estimator pull-in region centered at the integer vector z, sz(x) is an indicator
function.
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Figure 2 Illustration of one dimensional integer aperture estimation model for the ambiguity validation
problem. The two curves shows fε̌(x) (upper) and fâ(x − a) (lower). The area of regions shows different
probability (Wang and Feng, 2013).

The two curves in the figure show the fε̌(x) (upper) and fâ(x − a) (lower). If the size of the
acceptance region is determined, the success rate and failure rate of the IA estimators are defined as
(Teunissen, 2003b; Verhagen, 2005):

Ps =

∫
Ω0

fâ(x− a)dx,Ω0 ⊂ S0 (8)

Pf =

∫
Ω0

fε̌(x)dx−
∫
Ω0

fâ(x− a)dx,Ω0 ⊂ S0 (9)

Ps and Pf can be geometrically interpreted as the area of dark grey and light grey region in the
acceptance region. If Ω0 = S0, equation (8) and (9) can be used to calculate the success rate and
failure rate of integer estimator.The success rate and failure rate reflect the correct and incorrect
probability in the acceptance region. The correct and incorrect probability in the rejected region are
known as false alarm rate and correctly rejected rate respectively.

The FF-approach follows a four-step procedure, which is described as (Verhagen, 2005; Verhagen
and Teunissen, 2013; Wang and Feng, 2013):

1. Calculating the test statistics value µ (e.g. µD = ‖â− ǎ2‖2Qââ
−‖â− ǎ‖2Qââ

) with the float solution
â and the fixed solution ǎ.

2. Addressing the relationship between the threshold µ̄ and the failure rate Pf with simulation. A
number of samples (e.g. 100,000 samples)following the normal distribution N(0, Qââ) is simulated to
numerically describe the probability distribution of â. The integer estimation procedure is performed
on each sample and corresponding test statistic value can be calculated. The fixed solution of each
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sample is compared with the true ambiguity vector 0 to verify their correctness. The distribution of
failed samples against the test statistic value µ can be numerically determined with the simulated
samples and corresponding PDF is denoted as fPf

(x). The relationship between the failure rate Pf
and the test threshold µ̄ can be expressed as :

Pf (µ̄) =

∫ ∞
µ̄

fPf
(x)dx (10)

It is noticed that integration interval depends on the definition of IA estimator, the interval [µ,∞]
is derived from the equation (2) and (4). Equation (10) indicates large µ̄ corresponds to small Pf .

3. Threshold determination. According to equation (10), the FF-threshold can be determined with
µ̄ = arg min

Pf (µ)≤P̄f

{µ} with P̄f is the failure rate tolerance. It is noticed that obtaining µ̄ from

equation (10) is an ’inverse integration’ problem. The problem can be solved by the numerical
root-finding method (Verhagen, 2005).

4. Comparing the threshold µ̄ calculated from step (3) with the test statistic value µ from step (1) to
make the final decision.

The key of the FF-approach is the function connecting the failure rate Pf and the threshold µ̄.
Unfortunately, the function depends on the vc-matrix Qââ, thus the simulation is always necessary for
different Qââ. Moreover, the ’inverse integration’ problem in the third step is also difficult to find the
analytical solution. The root-finding method can only find the numerical root of the implicit function
(10).

The look-up table method for the FF-ratio test

The FF-approach presents a general threshold determination method for all IA estimators. With
regarding to a specific IA estimator, the FF-approach can be simplified. The look-up table method is
a simplified version of FF-approach for the ratio test (Teunissen and Verhagen, 2009; Verhagen and
Teunissen, 2013). The method attempts to express the relationship between the failure rate Pf and the
threshold µ̄ with a two-dimensional table. In this method, the FF-ratio test threshold is expressed as
a function of the ILS failure rate and the ambiguity dimension. How to establish the look-up table has
been described by Verhagen and Teunissen (2013). An look-up table example is shown in Table 1. Since
the key relationship in the FF-approach is explicitly modeled in the table, the threshold calculation
becomes easier. The desired FF-threshold can be calculated with proper interpolation method rather
than the root-finding method.

Table 1 Example of a part of the look-up table for 1/µ̄R, given P̄f = 0.1%, with n equals to the number of
ambiguities. (Verhagen and Teunissen, 2013)

Pf,ILS n=2 n=3 n=4 n=5 n=6 n = · · ·
0.0010 1.00 1.00 1.00 1.00 1.00 · · ·
0.0012 0.94 0.94 0.94 0.94 0.94 · · ·
0.0015 0.87 0.87 0.88 0.88 0.89 · · ·
0.0020 0.78 0.78 0.80 0.80 0.81 · · ·
0.0050 0.54 0.54 0.57 0.57 0.59 · · ·
...

...
...

...
...

... · · ·

2.5 Comparison of the threshold determination methods

The principle of the empirical approach and the FF-approach has been discussed, while the difference
between the two methods still need to be examined.
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Whether the underlying model impacts the threshold is the fundamental difference between the
two approaches. In order to investigate this problem, two examples are employed. The first model is
the single-frequency short baseline model and the ionosphere is assumed absent. The second model is
the single frequency ionosphere-weighted model, which is suitable for medium baseline data processing
(Odijk, 2002). The ILS success rate Ps,ILS of the two examples is 99.9% and 61.3% respectively, thus
the first model is stronger than the second one. The success rate and failure rate of the ratio test are
denoted as Ps,RTIA and Pf,RTIA and listed in table 2.

With the empirical approach, for example, the threshold is set as 2. Corresponding failure rates
are 0.001% and 2.018% for the two models respectively. In order to achieve the same failure rate as
the first model, the second model has to set its ratio test threshold as 10. SThere is no doubt that
choosing 10 as threshold can ensure both of the models have their failure rate smaller than 0.001%,
but it is unfair for the first model since the over-conservative threshold decreases its success rate from
99.068% to 11.220% for no reason. Thus it is difficult to find a proper empirical threshold fitting all
underlying models.

The FF-approach determines the threshold according to the failure rate. Given P̄f = 0.001%, the
FF-approach can automatically identify the best thresholds are 2 and 10 for the two models respectively.
Comparing to the empirical approach, the limitation of the FF-approach is its complexity. Hence,
reducing the complexity of the FF-approach is important for solving the threshold determination
problem in ambiguity acceptance test.

Table 2 The ratio test success rate and failure rate comparison with different threshold determination method

Model Threshold 1 1.5 2 3 5 10

Model 1 Ps,RTIA 99.906% 99.068% 96.030% 82.407% 48.075% 11.220%

Pf,RTIA 0.094% 0.008% 0.001% 0.000% 0.000% 0.000%

Model 2 Ps,RTIA 61.305% 35.408% 18.999% 6.105% 1.029% 0.072%

Pf,RTIA 38.695% 7.432% 2.018% 0.289% 0.034% 0.001%

3 The threshold function method for FF-difference test

The FF-approach has been attempted to simplified with a look-up table method for the ratio test. In
this study, the FF-difference test is used to simplify the FF-approach.

3.1 The simulation strategy

In order to exclude the impact of inaccurate stochastic model, unexpected biases and outliers on
ambiguity acceptance test, our study is numerical simulation based. Short- to medium-distance real-
time kinematic (RTK) positioning scenario is considered in this study. The least-squares is adopted to
estimate the float solution based on single epoch GPS observations. The elevation-dependent weighting
strategy is used to capture the elevation-dependent observation noise and ionosphere noise, which is
given as(Verhagen et al., 2012):

w = (1 + 10e−
E
10 )−

1
2 (11)

where w is the weight factor and E is the elevation angle in degree.
In order to capture the satellite geometry impact, a 15o × 15o global-covered, evenly distributed

ground tracking network is simulated and 24 hours observation data from all monitor stations are
generated with 1800 second sampling interval. In this case, the satellite geometry in different location,
different time can be captured by the simulated data set. In order to investigate the impact of the
underlying model, four simulation schemes are designed and the simulation configurations are listed
in Table 3. These schemes are designed to reveal the impacts of the frequency number, the ionosphere
variance and the observation noise on the ratio test and difference test threshold. The short-baseline
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model is used for single frequency case, since it is too weak to handle the ionosphere parameters in
single epoch mode. For dual frequency and triple frequency cases, the ionosphere standard deviation on
zenith direction σz,I corresponds to 50km and 75km baseline respectively (Odijk, 2002). As ambiguity
resolution is attempted only if the underlying model is strong enough, otherwise the fixed rate would
be extremely low (Verhagen and Teunissen, 2013). In this study, the IB success rate Ps,IB higher than
85% are used as the model strength criterion empirically. The epochs with low IB success rate are
ignored in the simulative study. For each epoch, 100,000 samples are generated to calculate its Ps,ILS
and Pf,ILS .

Table 3 The Simulation Strategy. σz,φ,σz,P and σz,I refers to the undifferenced carrier phase, pseudorange
and ionosphere standard deviation on zenith direction respectively

Scheme Freq. number σz,φ σz,P σz,I
Scheme I Single Freq. 1mm 10cm 0mm

Scheme II Dual Freq. 1mm 10cm 20mm
Scheme III Triple Freq. 1mm 10cm 30mm
Scheme VI Single Freq. 2mm 20cm 0mm

3.2 Comparison of the FF-difference test threshold and the FF-ratio test threshold

The characteristic of the FF-difference test threshold is compared with the FF-ratio test threshold
since the FF-ratio test threshold has been modeled with the look-up table. In the comparison, the
Ps,ILS is used as the underlying model strength indicator and the FF-ratio test threshold and the FF-
difference test threshold are expressed as a function of the Ps,ILS . The simulation results are presented
in Fig. 3 with P̄f = 1%. The left panel shows the FF-difference test threshold decreases as the Ps,ILS
increases and the decreasing trends are consistent for all four schemes. The thresholds are distributed
quite concentrated and the dispersion is caused by the simulation error and possibly other errors. The
dispersion depends on the P̄f . According to the result, the relationship between the FF-difference test
threshold and the Ps,ILS can be presented as a function. Once the function is given, the threshold can
be calculated with a given Ps,ILS rather than relying on the root-finding method. Hence, it is possible
to simplify the FF-approach with a ’threshold function’.

The variation of the FF-ratio test threshold is shown in the right panel of Fig. 3. The figure indicate
the FF-ratio test threshold also decreases as the Ps,ILS increases, but the decreasing trends depends
on the simulation schemes. The FF-ratio test threshold is more spread out in the single-frequency
case. The dispersion of µ̄R may be caused by the underlying model or other factors (e.g. the ambiguity
dimension).

The comparison results indicate the FF-difference test threshold can be presented as a function of
Ps,ILS without considering other model factors e.g. the ambiguity dimension, the stochastic model.
On the other hand, the FF-ratio test threshold is also possible to be fitted as a function of the Ps,ILS ,
but it is not as good as the FF-difference test threshold, since its threshold is more spread out and
sensitive to other factors like ambiguity dimension.

3.3 Establishing the threshold function for the FF-difference test

The previous analysis has revealed the potential of establishing the threshold function for the FF-
difference test, the methodology of establishing the function is discussed in this section. The regression
analysis method is used to establish the threshold function for the FF-difference test. The Ps,ILS and
the threshold are selected as the independent variable and the dependent variable respectively in the
regression analysis.
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Figure 3 The threshold comparison of FF-ratio test and FF-difference test using four schemes with P̄f = 1%
(Left: FF-difference test; Right: FF-ratio test )

The rational model as the threshold function

The first step of establishing the threshold function is to identify the right model to fit the threshold.
The distribution of the FF-difference test threshold has been shown in Fig. 3, it helps to select potential
models. In order to keep the function simple, several commonly used non-linear models are attempted,
including the exponential function, the hyperbolic function, the polynomial function and the rational
function. The fitting residuals are used to evaluate the goodness of fitting. The fitting results indicate
the rational function has a simple form and relatively small fitting residuals, thus is selected as the
threshold function model. The rational function refers to a fractional function with its numerator and
the denominator are both polynomial functions. The threshold function for the FF-difference test is
given as:

µ̂Pf
(x) =

e1 + e2x

1 + e3x+ e4x2
(12)

where µ̂ means the FF-difference test threshold calculated from the threshold function method. µ̂ is
expressed as a function of Ps,ILS . e1, · · · , e4 are the coefficient of rational function.

It is noticed that the rational model is not the only valid threshold function model. Fitting the
threshold function with other models is also possible, the rational model is chosen in this study is
because of its small fitting residuals. The threshold function also can be fitted with higher order rational
functions. High order rational function model achieves comparable fitting precision as equation (12),
but they involves more coefficients. Overall, the advantages of the selected model are its simple form
and small fitting residuals.

Fitting the threshold function

With the function model been identified, the next step is to estimate the coefficient in the model.
There are several curve fitting methods applicable for this non-linear curve fitting problem, such as the
Gauss-Newton method, the Levenberg-Marquardt method and the trust-region method (Teunissen,
1990). In this study, the popular Levenberg-Marquardt method is adopted to fit the rational function.
This method is an improved version of the Gauss-Newton method (Teunissen, 1990), which can adap-
tively adjust the damping parameter according to the gradient descent to accelerate the convergence
(Marquardt, 1963).

Similar to the Gauss-Newton method, the Levenberg-Marquardt method relies on the gradient
methods to approximate the true curve iteratively. The non-linear problem is linearized with the
Taylor series, which is expressed as:

µ̂k+1 = µ̂k + J∆e, k = 0, 1, 2, · · · (13)
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where µ̂k is the rational function value calculated in the kth iteration. J is the Jacobian matrix
∂µk/∂ek. ek is coefficient on kth iteration. ∆e is a 4×1 increment vector of the coefficient parameters.

The Levenberg-Marquardt method adds a positive damping scaler λ into the cost function and its
normal equation is expressed as (Marquardt, 1963):

(JTWJ + λdiag(JTWJ))∆e = JTW (µILS − µ̂k) (14)

where W is the weight matrix. diag(·) means diagonalise the matrix, which keeps major diagonal entries
and sets off-diagonal entries as 0. µILS is the threshold calculated with the FF-approach and Ps,ILS ,
which is the observation in the modeling procedure. The coefficient increment ∆e can be estimated by
solving the normal equation (14).

The damping scaler λ is the key of the algorithm,which can be interpreted as a compromise between
the Newton’s method and the steepest descent method. When λ = 0, the Levenberg-Marquardt method
degrade as the Newton’s method and it becomes the steepest descent method when the λ is sufficient
large (Teunissen, 1990). Moreover, the term λdiag(JTWJ) can ensure the term JTWJ+λdiag(JTWJ)
is always positive definite. During the iteration process, the damping factor is controlled by the
quadratic form of posterior residual σ̂′, which is defined as:

σ̂′ = (µILS − µ̂k+1)TW (µILS − µ̂k+1) (15)

The procedure of the Levenberg-Marquardt method is described in Fig. 4. The criterion ε0 can be
calculated with ε0 = (µILS−µ̂0)TW (µILS−µ̂0). The iterative procedure requires several initial factors:
the ILS success rate Ps,ILS and the FF-difference test threshold µILS . The initial damping parameter
λ and initial coefficient e0 are essential as well. In the flowchart, the initial λ is an arbitrary positive
scaler. α is empirically given as 10. ε is an arbitrary small positive number controls the convergency,
which is given as 10−5. | · | means absolute value.

input Ps,ILS ,
µILS , λ,e0

Construct J
matrix with
ek and Ps,ILS

calculate ε0

estimate ∆e
and calculate σ̂′

σ̂′ ≤ ε0

|∆e| ≤ ε
λ = λ

α
ek+1 = ek + ∆e

k=k+1

λ = λα

stop

yes

yes

no

no

Figure 4 The flowchart of Levenberg-Marquardt method for the non-linear fitting problem.

The fitted threshold function and the quality control issues

The quality of fitting can be described by the posteriori standard deviation, which is defined as:

σ̂ =

√
vTWv

n− r (16)
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where v = µILS − µ̂k+1, n is the number of observation and r is the parameter number. In this study,
the weight matrix W is an identity matrix and r = 4. σ̂ reflects the discrepancy between the observation
and the fitted model. The discrepancy may be caused by the random error of the observation or the
systematical bias of the model. For a given data set, the model with smallest σ̂ has the smallest
systematical bias.

A group of fitted curve coefficient with different failure rate tolerance is listed in Table 4. With
these coefficients, the FF-difference test threshold can be directly calculated with given ILS success
rate. The fitted threshold function and corresponding σ̂ are illustrated in Fig. 5. The left panel shows
the agreement of the fitted curve with different failure rate tolerance. The dots shows the FF-difference
test threshold calculated with the FF-approach and the dashed line shows corresponding fitted ratio-
nal function. The fitted function locates in the middle of the threshold dots and thus describes the
relationship well.

The right panel shows the posterior standard deviation σ̂ of the threshold function. The figure
shows the smaller failure rate tolerance case deserves larger fitting errors, which is consistent with the
left panel.

Table 4 The coefficient of the threshold function for the FF-difference test with different failure rate tolerance

P̄f e1 e2 e3 e4

0.1% 13.2009 -13.2119 -0.8096 -0.1862

0.2% 13.5300 -13.5549 -0.6293 -0.3638

0.3% 13.4099 -13.4481 -0.5373 -0.4535

0.4% 12.6968 -12.7458 -0.5404 -0.4487

0.5% 12.6739 -12.7359 -0.4739 -0.5134

0.6% 11.9977 -12.0686 -0.5035 -0.4827

0.7% 11.5166 -11.5963 -0.5182 -0.4669

0.8% 11.2055 -11.2944 -0.5172 -0.4668

0.9% 10.5497 -10.6443 -0.5710 -0.4124

1.0% 10.1285 -10.2297 -0.5972 -0.3854

Figure 5 The goodness of fitting the rational model. The left panel shows the agreement of the fitting threshold
µ̂ (dash-lines)and FF-threshold µILS (dots), and the right panel shows the posterior standard deviation σ̂.



12

3.4 The feasibility of replacing ILS success rate with IB success rate

The fitted threshold function approximately describes the relationship between the ILS success rate
Ps,ILS and the FF-difference test threshold and it solves the ’inverse integration’ problem in the FF-
approach. However, the calculation of the Ps,ILS is still time-demanding. In order to further reduce the
computation burden, we have to find an easier way to calculate the Ps,ILS . In this section, the possibility
of approximate the Ps,ILS with the integer bootstrapping (IB) success rate Ps,IB is discussed.

Although the Ps,ILS is difficult to calculate directly, calculating its upper bound or lower bound is
possible(Hassibi and Boyd, 1998; Teunissen, 1998; Verhagen, 2003; Feng and Wang, 2011). Many upper
bounds and lower bounds of the Ps,ILS have been proposed from different point of view (Verhagen
et al., 2013). If the bounds are sharp enough, it can be used to approximate the Ps,ILS .

The question is using the upper bound or the lower bound to approximate the Ps,ILS in this context.
The coefficient listed in table 4 is the median curve of the threshold, it means about 50% FF-difference
test thresholds are larger than the threshold function. Hence, the threshold function is not conservative
enough. Since the threshold functions are monotonously decreasing function, the lower bound of the
Ps,ILS makes the threshold function more conservative. The sharpest lower bound of the Ps,ILS is
the integer bootstrapping (IB) success rate Ps,IB (Verhagen et al., 2013), thus the Ps,IB is suitable
to approximate the Ps,ILS . The Ps,IB is easy-to-calculate, which can be calculated with (Teunissen,
1998):

Ps,IB =

n∏
i=1

(2Φ(
1

2σâi|I
)− 1) (17)

where n is the dimension of Qââ, Φ(·) is the cumulative distribution function (CDF) of the normal
distribution. σâi|I is the ith conditional variance conditioning on {1, · · · , i− 1}. σâi|I can be obtained
by the LDL decomposition. It is noticed that the decorrelated version of Qââ must be used in the
success rate calculation, as IB success rate is not invariant against parameterizations of the ambiguities
(Teunissen, 1998). The decorrelation method and the LDL decomposition method are described in
Teunissen (1995).

The price of approximating the Ps,ILS with the Ps,IB is introducing the approximation error into the
threshold function method. As a trade-off between the computational burden and the approximation
error, the feasibility of the approximation have to be examined carefully, as the oversized approximation
error would make the method meaningless.

The examination of the success rate approximation feasibility includes two aspects: checking the
difference between the two success rates and checking the impact of the approximation on the failure
rate. The difference between the Ps,ILS and Ps,IB is shown in Fig. 6. The figure shows the Ps,IB is
a sharp lower bound of the Ps,ILS . The difference between the Ps,IB and Ps,ILS is normally smaller
than 5% for Ps,IB > 90% case. The difference decreases as the Ps,IB increases.

The second aspect of the feasibility examination is to investigate how the success rate difference
changes the behaviour of actual failure rate. The threshold calculated with the threshold function with
Ps,ILS and Ps,IB are denoted as µ̂ILS and µ̂IB respectively. In the validation procedure, the failure

rate calculated with µ̂ILS and µ̂IB are denoted as P̂f,ILS and P̂f,IB respectively.

Fig. 7 presents P̂f,ILS and P̂f,IB with respect to corresponding failure rate tolerance P̄f . The left

panel shows there is about 50% P̂f,ILS larger than P̄f . Thus µ̂ILS is not conservative enough as an

approximation of FF-approach. The right panel shows the majority of P̂f,IB is smaller than the P̄f .

Since Ps,IB ≤ Ps,ILS , µ̂IB ≥ µ̂ILS and then P̂f,IB ≤ P̂f,ILS . After the approximation, the failure rate

tolerance P̄f is close to the upper bound of P̂f,IB . Meanwhile, the uncertainty of P̂f,IB is larger than

P̂f,ILS . It is because µ̂ILS is free of the approximation error. Overall, the success rate approximation

procedure makes the threshold function method more conservative and P̂f,IB is still controllable in
majority case.

4 Validation of the threshold function method and modeling error analysis

The modeling procedure and the approximation procedure can efficiently simplify the FF-approach,
while these procedures also introduce errors inevitably. The impact of the errors on the decision-making
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Figure 6 Comparison of the Ps,IB and the Ps,ILS

Figure 7 Distribution of P̂f,ILS (left) and P̂f,IB (right). The black dashed lines are the failure rate tolerances
P̄f

is analysed in this section. The FF-approach is only affected by the simulation error and the simulation
error can be mitigated with larger sample size. The threshold function involves the modeling error and
the approximation error besides the simulation error. The total impact of the modeling error and
approximation error can be analysed by comparing with the original FF-approach and the magnitude
of the simulation error can be analyzed by repeatability check.

4.1 The modeling error and the approximation error impact

The modeling error and the approximation error are introduced to the threshold function method while
the original FF-approach does not suffer from these errors. Thus, the impact of these two errors can be
isolated by comparing the threshold function method with the original FF-approach. In this section,
the impact of the two errors on the failure rate and the false alarm rate are analysed.

The failure rate and the false alarm rate difference between the threshold function method and the
FF-approach are calculated and shown in Fig. 8. In this comparison,the actual failure rate calculated
with the original FF-approach in validation procedure is denoted as Pf,ILS . The left panel shows

P̂f,IB ≤ Pf,ILS holds in majority case. There are only a few samples having slightly higher P̂f,IB . The
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failure rate difference increases as Ps,ILS increases. It is because the failure rate difference depends on
the success rate difference and the gradient of the threshold function.

The right panel in Fig. 8 shows the false alarm rate difference between the two methods. As the µ̂IB
is more conservative, the corresponding type I error will be inevitably increasing. The figures show the
type I error of the threshold function method is larger than the original FF-approach in most cases.
In most cases, the type I error difference between the two methods is smaller than 5%.

Figure 8 The failure rate and false alarm rate difference between the threshold function method and the
FF-approach.

4.2 The simulation error impact

Both the FF-approach and the threshold function method are inevitably impacted by the simulation
error, since both of them employs numerical methods. The magnitude of the simulation error depends
on the simulated sample size. As a trade-off between the simulation error and the computational
efficiency, 100,000 samples are simulated to calculated the threshold in this experiment. Due to the
randomness of the simulation samples, the threshold may slightly different between different experiment
and it is considered as the simulation error.

The simulation error can be evaluated by checking the experiment repeatability. A 16-dimensional
example with Ps,ILS ≈ 97.1% is used to investigate the simulation error impact. The validation process
include two steps: The first step is determine the threshold with the FF-approach . The simulation error
may cause the FF-threshold and Ps,ILS slightly different. The second step is calculating the actual
failure rate with a fixed threshold. In this experiment, the maximum and minimum threshold out of
the 1000 repeat experiments are used as the fixed threshold and the corresponding maximum and
minimum actual failure rate are calculated. we denote the threshold and actual failure rate calculated
with the original FF-approach as µILS and Pf,ILS for simplicity.

The experiment results are presented in Fig. 9. The left panel shows the simulation error impact on
the FF-difference test threshold. The figure shows threshold calculated with the original FF-approach
µILS and the threshold function µ̂s,ILS are impacted by the simulation error. The simulation error
impact on µ̂ILS is smaller than µILS . µ̂IB is immune from the simulation error as it does not employ
simulation procedure. The figure also indicates the curve fitting procedure introduced in section 3.3
can mitigate the simulation error impact and µ̂IB ≥ µ̂ILS . The right panel shows the maximum and
minimum actual failure rate in the 1000 repeat experiments. The uncertainty in this figure reflects the
accumulated simulation error impact in the two validation steps. The simulation error impact on the
actual failure rate is similar to its impact on the threshold, but the uncertainty increases as P̄f increases
this time. The figure shows the actual failure rate of the original FF-approach may also exceed the
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failure rate tolerance due to the simulation error impact. While P̂f,ILS have a smaller uncertainty than

Pf,ILS . P̂f,IB is immune from the simulation error impact and meets the tolerance in majority cases.
With regarding to the simulation error impact, the µ̂IB somehow even outperforms the µILS .
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Figure 9 The impact of the simulation error on threshold determination (left) and actual failure rate (right).

4.3 Validation of the threshold function method

With errors been analysed, the performance of the threshold function is evaluated with extensive data.
The performance can be measured by two indicators: the maximum actual failure rate Max{P̂f,IB}
and the percentage of samples meeting P̂f,IB ≤ Pf .

The validation procedure described in section 4.2 is applied to all samples described in section 3.1
and the validation results are presented in Fig. 10. The left panel shows the largest overflowed actual
failure rate Max{P̂f,IB}− P̄f . The largest overflowed failure rate related to the P̄f . Small P̄f deserves
small overflowed failure rate in general. In the worst case, the overflowed failure rate reaches 0.08%,
which is still smaller than simulation error impact on Pf,ILS . The right panel shows the percentage of
samples meet the failure rate tolerance. There are more than 97% samples meeting the requirement
for P̄f > 0.1% cases. The P̄f = 0.1% case has a relatively lower percentage and it still achieves 92%.
Hence, the majority samples still meet the failure rate tolerance with the threshold function method.

4.4 The procedure of applying the threshold function method

In this section, the procedure of applying the threshold function method is summarized. Similar to the
original FF-approach, the procedure of applying the threshold function method also follows four steps:

1. Form the difference test statistics µD = ‖â− ǎ2‖2Qââ
− ‖â− ǎ‖2Qââ

. The squared Euclidean norm

‖â− ǎ‖2Qââ
and ‖â− ǎ2‖2Qââ

can be obtained from the integer least-squares estimator.

2. Calculate the IB success rate of Qââ with Ps,IB =
∏n
i=1(2Φ( 1

2σâi|I
)− 1). The decorrelated version

of Qââ has to be used in the IB success rate calculation, as the IB success rate depends on the
parametrisation form of the ambiguities. The decorrelation methods can be found in Teunissen
(1995) and De Jonge and Tiberius (1996)
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Figure 10 The validation results of the threshold function. The left panel shows the difference between the

largest P̂f,IB and P̄f . The right panel shows the percentage of samples meeting the failure rate requirements.

3. Calculate the test threshold with the threshold function. Choosing a group of coefficient from table
4 according to the P̄f , the FF-difference test threshold can be calculated with

µ̂ =


∞, Ps,IB < 0.85

e1+e2Ps,IB

1+e3Ps,IB+e4P 2
s,IB

, 0.85 ≤ Ps,IB < 1− P̄f
0, Ps,IB ≥ 1− P̄f

(18)

If Ps,IB < 0.85, the model is considered as too weak to resolve the ambiguity and more observations
are required to improve the model strength. Ps,IB ≥ 1 − P̄f means the failure rate of integer
estimator is smaller than the tolerance, µ̂ is set as 0 to avoid negative threshold in this case.

4. Compare µD and µ̂. If µD ≥ µ̂, ǎ can be accepted, otherwise reject it.

The procedures of the three different threshold determination methods with controllable failure
rate are compared in table 5. The three methods follow a similar four-step procedure. The original
FF-approach is the most general method and feasible to all IA estimators. The look-up table method
is proposed for the ratio test and the threshold function method is designed for the difference test.
The second step is the most time-demanding step in FF-approach due to large simulation work. The
look-up table method still relies on the simulation to calculate the ILS failure rate. In contrast, the
threshold function method enables to directly calculate the success rate rather than simulation, so it is
more efficient than the other two methods. Both the look-up table method and the threshold function
method circumvent the root-finding procedures. The look-up table method employs an interpolation
procedure to obtain the threshold whereas the threshold function method resorts to a function to
calculate the threshold. The decision-making step is the same for all three methods.

4.5 Some Remarks

Besides above discussion, there are several interesting topics, which are discussed in this section.

Computation efficiency improvement

The threshold function method circumvents the simulation step in the FF-approach and thus greatly
improves the computational efficiency. The computational efficiency of the original FF-approach de-
pends on the underlying model strength. The essential time consumption of the FF-approach varies
from a few seconds to several minutes. The threshold function method reduced the time consumption
to a negligible level. Moreover, the computation time becomes independent from the underlying model.
Thus, the threshold function method makes the fixed failure rate ambiguity validation approach always
applicable for real-time applications.
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Table 5 A comparison of three threshold determination procedures with controllable failure rate

Steps Original FF-approach Look-up table method Threshold function
method

Test statistic
construction

Any IA estimator Ratio test Difference test

Probability
calculation

Address the relation-
ship between thresh-
old and failure rate
with simulation

Calculate ILS failure
rate with simulation

Calculate IB success
rate from equation
(17)

Threshold de-
termination

Root-finding method Look-up table Threshold function

Decision-
making

Compare the test statistics with the threshold

Applicability of the threshold function

All above discussion about the threshold function method is confined to the FF-difference test, one may
concern whether it is applicable to other IA estimators (e.g. the FF-ratio test). The threshold function
is applicable to the ratio test according to Fig.3. However, the threshold function may not performs
as good as the FF-difference test, due to the FF-ratio test threshold distribution. The FF-ratio test
threshold function may be different for different ambiguity dimension. The feasibility and performance
of the threshold function need to be checked before applying it to other IA estimators.

Is success rate approximation applicable to the look-up table method?

The success rate approximation is also applicable for the look-up table method, but the approximation
would makes the threshold over conservative. The thresholds listed in the look-up table are upper
bound of the simulated thresholds, calculating with Ps,ILS is a conservative solution already. If Ps,ILS
is approximated with Ps,IB , the calculated threshold would be over-conservative. Although the step
can reduce the computation burden, the approximation makes the threshold discrepancy between the
FF-approach and the look-up table approach larger.

5 Conclusion and outlook

The paper has investigated the threshold determination issue in the ambiguity acceptance test problem.
At first, current threshold determination methods, the empirical method and the FF-approach have
been reviewed and compared. The FF-approach is more rigorous, but computationally demanding.
Thus, the key challenge of the threshold determination issue is how to reduce the complexity of FF-
approach.

A new method named the threshold function method is proposed to reduce the complexity of
the FF-approach. The method reduces the FF-approach with a two-step procedure. In the first step,
the relationship between the FF-difference test threshold and the ILS success rate is modeled as a
rational function. With the rational function, the ’inverse integration’ problem is converted to a direct
calculation problem. Then, the ILS success rate in the model is replaced by the IB success rate, since
the IB success rate can be easily calculated without any simulation.

The errors of the threshold function method is analyzed in this paper as well. The experiment
results indicate the threshold function modeling procedure can mitigate the simulation error impact.
The success rate approximation procedure can improve the computational efficiency and also makes
the threshold function method conservative. Extensive simulation results shows the threshold function
method can meet the failure rate tolerance in the majority cases. The occasional overflowed failure
rate is smaller than the simulation error impact, thus the threshold function method reduced the
computational burden of the FF-approach without degradation of its performance.

The proposed threshold function method reduces the computation burden of the FF-approach to a
negligible level with proper modeling and approximation procedure.It circumvents the complex theory
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and computation successfully and makes the fixed failure rate ambiguity validation method easy-to-
apply. However, the ambiguity validation problem is still challenging due to the potential discrepancy
between real data and underlying model. The feasibility of the threshold function method is analysed
from theoretical prospective, while the practical issues still need to be addressed before testing the
method with real GNSS data.
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